Sample records for three-dimensional mathematical model

  1. Summary of mathematical models for a conventional and vertical junction photoconverter

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1986-01-01

    The geometry and computer programming for mathematical models of a one-dimensional conventional photoconverter, a one-dimensional vertical junction photoconverter, a three-dimensional conventinal photoconverter, and a three-dimensional vertical junction solar cell are discussed.

  2. Three dimensional thermal pollution models. Volume 1: Review of mathematical formulations. [waste heat discharge from power plants and effects on ecosystems

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.

    1978-01-01

    A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.

  3. Application of Mathematical and Three-Dimensional Computer Modeling Tools in the Planning of Processes of Fuel and Energy Complexes

    NASA Astrophysics Data System (ADS)

    Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal

    2017-11-01

    This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.

  4. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  5. Mathematical modeling of forest fire initiation in three dimensional setting

    Treesearch

    Valeriy Perminov

    2007-01-01

    In this study, the assignment and theoretical investigations of the problems of forest fire initiation were carried out, including development of a mathematical model for description of heat and mass transfer processes in overterrestrial layer of atmosphere at crown forest fire initiation, taking into account their mutual influence. Mathematical model of forest fire...

  6. Two-Dimensional Versus Three-Dimensional Conceptualization in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reynolds, Michael David

    Numerous science conceptual issues are naturally three-dimensional. Classroom presentations are often two -dimensional or at best multidimensional. Several astronomy topics are of this nature, e. g. mechanics of the phases of the moon. Textbooks present this three-dimensional topic in two-dimensions; such is often the case in the classroom. This study was conducted to examine conceptions exhibited by pairs of like-sex 11th grade standard physics students as they modeled the lunar phases. Student pairs, 13 male and 13 female, were randomly selected and assigned. Pairing comes closer to classroom emulation, minimizes needs for direct probes, and pair discussion is more likely to display variety and depth. Four hypotheses were addressed: (1) Participants who model three-dimensionally will more likely achieve a higher explanation score. (2) Students who experienced more earth or physical science exposure will more likely model three-dimensionally. (3) Pairs that exhibit a strong science or mathematics preference will more likely model three-dimensionally. (4) Males will model in three dimensions more than females. Students provided background information, including science course exposure and subject preference. Each pair laid out a 16-card set representing two complete lunar phase changes. The pair was asked to explain why the phases occur. Materials were provided for use, including disks, spheres, paper and pen, and flashlight. Activities were videotaped for later evaluation. Statistics of choice was a correlation determination between course preference and model type and ANOVA for the other hypotheses. It was determined that pairs who modeled three -dimensionally achieved a higher score on their phases mechanics explanation at p <.05 level. Pairs with earth science or physical science exposure, those who prefer science or mathematics, and male participants were not more likely to model three-dimensionally. Possible reasons for lack of significance was small sample size and in the case of course preferences, small differences in course preference means. Based on this study, instructors should be aware of dimensionality and student misconceptions. Whenever possible, three-dimensional concepts should be modeled as such. Authors and publishers should consider modeling suggestions and three-dimensional ancillaries.

  7. Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Graves, D. L.

    1974-01-01

    The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.

  8. A Mathematical Evaluation of the Core Conductor Model

    PubMed Central

    Clark, John; Plonsey, Robert

    1966-01-01

    This paper is a mathematical evaluation of the core conductor model where its three dimensionality is taken into account. The problem considered is that of a single, active, unmyelinated nerve fiber situated in an extensive, homogeneous, conducting medium. Expressions for the various core conductor parameters have been derived in a mathematically rigorous manner according to the principles of electromagnetic theory. The purpose of employing mathematical rigor in this study is to bring to light the inherent assumptions of the one dimensional core conductor model, providing a method of evaluating the accuracy of this linear model. Based on the use of synthetic squid axon data, the conclusion of this study is that the linear core conductor model is a good approximation for internal but not external parameters. PMID:5903155

  9. Attitude determination of a high altitude balloon system. Part 1: Development of the mathematical model

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.

    1975-01-01

    A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.

  10. Modeling and simulation of the flow field in the electrolysis of magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo

    2009-05-01

    A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.

  11. Rocket injector anomalies study. Volume 1: Description of the mathematical model and solution procedure

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.

  12. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  13. NAPL: SIMULATOR DOCUMENTATION

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  14. Analysis of spatial thermal field in a magnetic bearing

    NASA Astrophysics Data System (ADS)

    Wajnert, Dawid; Tomczuk, Bronisław

    2018-03-01

    This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.

  15. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  16. Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters

    NASA Astrophysics Data System (ADS)

    Bischi, G. I.; Tramontana, F.

    2010-10-01

    We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.

  17. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  18. Towards a Bernsteinian Language of Description for Mathematics Classroom Discourse

    ERIC Educational Resources Information Center

    Straehler-Pohl, Hauke; Gellert, Uwe

    2013-01-01

    This article aims at developing an external language of description to investigate the problem of why particular groups of students are systematically not provided access to school mathematical knowledge. Based on Basil Bernstein's conceptualisation of power in classification, we develop a three-dimensional model that operationalises the…

  19. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  20. NAPL: SIMULATOR DOCUMENTATION (EPA/600/SR-97/102)

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  1. Mathematical models for determining the protected spaces of the vertical lightning rod

    NASA Technical Reports Server (NTRS)

    Mladenovic, I.; Vorgucic, A.

    1991-01-01

    Two mathematical models are presented for determining the protected spaces of the vertical lightning-rod. In the first model there was applied the circular approximation. Through the introduction of the modified striking distance in the second improved approximation there was obtained a new model for the protected space of the lightning-rod. The models are of general type, foreseen for the three-dimensional space and they are simply applied on solving the practical problems.

  2. The Modulus of Rupture from a Mathematical Point of View

    NASA Astrophysics Data System (ADS)

    Quintela, P.; Sánchez, M. T.

    2007-04-01

    The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.

  3. Three Dimensional Flow and Pressure Patterns in a Hydrostatic Journal Bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. Jack; Dzodzo, Milorad B.

    1996-01-01

    The flow in a hydrostatic journal bearing (HJB) is described by a mathematical model that uses the three dimensional non-orthogonal form of the Navier-Stokes equations. Using the u, v, w, and p, as primary variables, a conservative formulation, finite volume multi-block method is applied through a collocated, body fitted grid. The HJB has four shallow pockets with a depth/length ratio of 0.067. This paper represents a natural extension to the two and three dimensional studies undertaken prior to this project.

  4. Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome

    2016-06-01

    The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.

  5. Gender Differences in Lunar-Related Scientific and Mathematical Understandings

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2009-01-01

    This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle-level students interacted with the Moon through observations, sketching, journalling, two-dimensional and three-dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic…

  6. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  7. A comparison of analog and digital modeling techniques for simulating three-dimensional ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1980-01-01

    A three-dimensional electric-analog model of the Long Island, NY , groundwater system constructed by the U.S. Geological Survey in the early 1970 's was used as the basis for developing a digital, three-dimensional finite-difference model. The digital model was needed to provide faster modifications and more rapid solutions to water-management questions. Results generated by the two models are depicted as potentiometric-surface maps of the upper glacial and Magothy aquifers. Results compare favorably for all parts of Long Island except the northwestern part, where hydrologic discontinuities are most prevalent and which the two models represent somewhat differently. The mathematical and hydrologic principles used in development of ground-water models, and the procedures for calibration and acceptance, are presented in nontechnical terms. (USGS)

  8. Three-dimensional dynamics of scientific balloon systems in response to sudden gust loadings. [including a computer program user manual

    NASA Technical Reports Server (NTRS)

    Dorsey, D. R., Jr.

    1975-01-01

    A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.

  9. Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Nwadike, E. V.; Sinha, S. E.

    1982-01-01

    The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.

  10. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  11. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  12. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  13. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    PubMed Central

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  14. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    PubMed

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  15. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography.

    PubMed

    Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran

    2006-10-01

    In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.

  16. Mathematical Model Taking into Account Nonlocal Effects of Plasmonic Structures on the Basis of the Discrete Source Method

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2018-04-01

    The discrete source method is used to develop and implement a mathematical model for solving the problem of scattering electromagnetic waves by a three-dimensional plasmonic scatterer with nonlocal effects taken into account. Numerical results are presented whereby the features of the scattering properties of plasmonic particles with allowance for nonlocal effects are demonstrated depending on the direction and polarization of the incident wave.

  17. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    NASA Astrophysics Data System (ADS)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  18. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  19. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  20. Three-Dimensional Model for Preservation and Restoration of Architectural Heritage

    NASA Technical Reports Server (NTRS)

    Marchis, Elena

    2011-01-01

    Thc aim of the research will be to create a model, three-dimensional mathematical. implementation. consultation and assistance to "large" restoration projects that will assist the structural analysis, allowing easier display of dynamic strain. analysis and lighting noise. It could also be a valuable tool for decision support. therefore. may simulate several possible scenarios for intervention, This model appears therefore an excellent support for recovering. ordering and monitoring information about materials and data (stage of restoration. photographs. sampling points. results of diagnostic tests, etc.) collected dynamically during the "life" of the cultural heritage. allowing to document its complete history

  1. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements.

    PubMed

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel

    2018-01-01

    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  2. Improved method for calibration of exchange flows for a physical transport box model of Tampa Bay, FL USA

    EPA Science Inventory

    Results for both sequential and simultaneous calibration of exchange flows between segments of a 10-box, one-dimensional, well-mixed, bifurcated tidal mixing model for Tampa Bay are reported. Calibrations were conducted for three model options with different mathematical expressi...

  3. Estimation of three-dimensional radar tracking using modified extended kalman filter

    NASA Astrophysics Data System (ADS)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  4. Two-dimensional Mathematical Model of Oil-bearing Materials in Extrusion-type Transportation over Rectangular Screw Core

    NASA Astrophysics Data System (ADS)

    Gukasyan, A. V.; Koshevoy, E. P.; Kosachev, V. S.

    2018-05-01

    A comparative analysis of alternative models for plastic flow in extrusive transportation of oil-bearing materials was conducted; the research was directed at determining the function describing the screw core throughput capacity of the press (extruder). Transition from a one-dimensional model to a two-dimensional model significantly improves the mathematical model and allows using two-dimensional rheological models determining the throughput of the screw core.

  5. An Invitation to the Mathematics of Topological Quantum Computation

    NASA Astrophysics Data System (ADS)

    Rowell, E. C.

    2016-03-01

    Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.

  6. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  7. Measuring Developmental Students' Mathematics Anxiety

    ERIC Educational Resources Information Center

    Ding, Yanqing

    2016-01-01

    This study conducted an item-level analysis of mathematics anxiety and examined the dimensionality of mathematics anxiety in a sample of developmental mathematics students (N = 162) by Multi-dimensional Random Coefficients Multinominal Logit Model (MRCMLM). The results indicate a moderately correlated factor structure of mathematics anxiety (r =…

  8. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.

  9. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  10. Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu

    2018-04-01

    This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.

  11. Development of an Unstructured, Three-Dimensional Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph; Stern, Eric; Palmer, Grant; Muppidi, Suman; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. The extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries as well as multi-dimensional physics, which have been shown to be important in some scenarios and are not captured by one-dimensional models. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  12. Model based LV-reconstruction in bi-plane x-ray angiography

    NASA Astrophysics Data System (ADS)

    Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz

    2005-04-01

    Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.

  13. Thermal Pollution Mathematical Model. Volume 5: User's Manual for Three-Dimensional Rigid-Lid Model. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    A user's manual for a three dimensional, rigid lid model used for hydrothermal predictions of closed basins subjected to a heated discharge together with various other inflows and outflows is presented. The model has the capability to predict (1) wind driven circulation; (2) the circulation caused by inflows and outflows to the domain; and (3) the thermal effects in the domain, and to combine the above processes. The calibration procedure consists of comparing ground truth corrected airborne radiometer data with surface isotherms predicted by the model. The model was verified for accuracy at various sites and results are found to be fairly accurate in all verification runs.

  14. Thermal Pollution Mathematical Model. Volume 6; Verification of Three-Dimensional Free-Surface Model at Anclote Anchorage; [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1980-01-01

    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.

  15. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  16. Verification and transfer of thermal pollution model. Volume 6: User's manual for 1-dimensional numerical model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.

  17. Modeling and Visualization Process of the Curve of Pen Point by GeoGebra

    ERIC Educational Resources Information Center

    Aktümen, Muharem; Horzum, Tugba; Ceylan, Tuba

    2013-01-01

    This study describes the mathematical construction of a real-life model by means of parametric equations, as well as the two- and three-dimensional visualization of the model using the software GeoGebra. The model was initially considered as "determining the parametric equation of the curve formed on a plane by the point of a pen, positioned…

  18. A mathematical method for precisely calculating the radiographic angles of the cup after total hip arthroplasty.

    PubMed

    Zhao, Jing-Xin; Su, Xiu-Yun; Xiao, Ruo-Xiu; Zhao, Zhe; Zhang, Li-Hai; Zhang, Li-Cheng; Tang, Pei-Fu

    2016-11-01

    We established a mathematical method to precisely calculate the radiographic anteversion (RA) and radiographic inclination (RI) angles of the acetabular cup based on anterior-posterior (AP) pelvic radiographs after total hip arthroplasty. Using Mathematica software, a mathematical model for an oblique cone was established to simulate how AP pelvic radiographs are obtained and to address the relationship between the two-dimensional and three-dimensional geometry of the opening circle of the cup. In this model, the vertex was the X-ray beam source, and the generatrix was the ellipse in radiographs projected from the opening circle of the acetabular cup. Using this model, we established a series of mathematical formulas to reveal the differences between the true RA and RI cup angles and the measurements results achieved using traditional methods and AP pelvic radiographs and to precisely calculate the RA and RI cup angles based on post-operative AP pelvic radiographs. Statistical analysis indicated that traditional methods should be used with caution if traditional measurements methods are used to calculate the RA and RI cup angles with AP pelvic radiograph. The entire calculation process could be performed by an orthopedic surgeon with mathematical knowledge of basic matrix and vector equations. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Mathematical modeling of heat transfer problems in the permafrost

    NASA Astrophysics Data System (ADS)

    Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

    2014-11-01

    In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.

  20. Oscillations and stability of numerical solutions of the heat conduction equation

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Levi, E. V.

    1976-01-01

    The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.

  1. Conversion and comparison of the mathematical, three-dimensional, finite-difference, ground-water flow model to the modular, three-dimensional, finite-difference, ground-water flow model for the Tesuque aquifer system in northern New Mexico

    USGS Publications Warehouse

    Umari, A.M.; Szeliga, T.L.

    1989-01-01

    The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)

  2. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  3. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  4. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  5. Mathematical and Numerical Analysis of Model Equations on Interactions of the HIV/AIDS Virus and the Immune System

    NASA Astrophysics Data System (ADS)

    Parumasur, N.; Willie, R.

    2008-09-01

    We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.

  6. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    EPA Science Inventory

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  7. Finite fringe hologram

    NASA Technical Reports Server (NTRS)

    Heflinger, L. O.

    1970-01-01

    In holographic interferometry a small movement of apparatus between exposures causes the background of the reconstructed scene to be covered with interference fringes approximately parallel to each other. The three-dimensional quality of the holographic image is allowable since a mathematical model will give the location of the fringes.

  8. SIMPLE METHOD FOR THE REPRESENTATION, QUANTIFICATION, AND COMPARISON OF THE VOLUMES AND SHAPES OF CHEMICAL COMPOUNDS

    EPA Science Inventory

    A conceptually and computationally simple method for the definition, display, quantification, and comparison of the shapes of three-dimensional mathematical molecular models is presented. Molecular or solvent-accessible volume and surface area can also be calculated. Algorithms, ...

  9. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  10. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  11. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models.

    PubMed

    Saeedi, Mostafa; Vahidi, Omid; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Izadi, Leila; Mozafari, Masoud

    2017-11-01

    Distribution patterns/performance of magnetic nanoparticles (MNPs) was visualized by computer simulation and experimental validation on agarose gel tissue-mimicking phantom (AGTMP) models. The geometry of a complex three-dimensional mathematical phantom model of a cancer tumor was examined by tomography imaging. The capability of mathematical model to predict distribution patterns/performance in AGTMP model was captured. The temperature profile vs. hyperthermia duration was obtained by solving bio-heat equations for four different MNPs distribution patterns and correlated with cell death rate. The outcomes indicated that bio-heat model was able to predict temperature profile throughout the tissue model with a reasonable precision, to be applied for complex tissue geometries. The simulation results on the cancer tumor model shed light on the effectiveness of the studied parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  13. [Mathematical model of oblique three-dimensional intertrochanteric detorsion varus-forming osteotomy of the femur by the Bernbeck method in surgical treatment of congenital hip dysplasia in children].

    PubMed

    Bohatyrewicz, A

    1992-01-01

    Whenever the conservative procedure fails to bring about congruence of the dysplastic hip joint, an operative procedure becomes indispensable. In Orthopaedic Clinic of the Pomeranian Medical Academy in Szczecin we implement the oblique three-dimensional intertrochanteric detorsion and varus forming osteotomy after Bernbeck in order to correct the proximal end of the femoral bone. Precise determination of the plane to be cut, prior to the operative procedure, simplifies and shortens the operation itself and facilitates the achieving of the planned angular values in all three planes. Mathematical model of osteotomy according to Bernbeck considering required angles of correction as well as angles determining the plane of osteotomy was worked out. In collaboration of the Szczecin Technical University, a simple computer program was elaborated which allowed the presentation of the results in the form of tables. With the help of tables the optimal cutting plane was chosen and created correct biomechanical and anatomical conditions as well as optimal conditions for stable osteosynthesis of dissected fragments of the femoral bone. That type of osteotomy is useful in most operative correcrions of the dysplastic hip joint (not great varus formation connected with relatively extensive detorsion). The achieved congruence in the 22 dysplastic hip joints operated on was the most important condition for their later physiological development. Short post-operative observations confirm the value of described mathematic model.

  14. Computing Reliabilities Of Ceramic Components Subject To Fracture

    NASA Technical Reports Server (NTRS)

    Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.

    1992-01-01

    CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.

  15. Thermal Pollution Mathematical Model. Volume 4: Verification of Three-Dimensional Rigid-Lid Model at Lake Keowee. [envrionment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    The rigid lid model was developed to predict three dimensional temperature and velocity distributions in lakes. This model was verified at various sites (Lake Belews, Biscayne Bay, etc.) and th verification at Lake Keowee was the last of these series of verification runs. The verification at Lake Keowee included the following: (1) selecting the domain of interest, grid systems, and comparing the preliminary results with archival data; (2) obtaining actual ground truth and infrared scanner data both for summer and winter; and (3) using the model to predict the measured data for the above periods and comparing the predicted results with the actual data. The model results compared well with measured data. Thus, the model can be used as an effective predictive tool for future sites.

  16. Generalized Lorenz equations on a three-sphere

    NASA Astrophysics Data System (ADS)

    Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.

    2017-06-01

    Edward Lorenz is best known for one specific three-dimensional differential equation, but he actually created a variety of related N-dimensional models. In this paper, we discuss a unifying principle for these models and put them into an overall mathematical framework. Because this family of models is so large, we are forced to choose. We sample the variety of dynamics seen in these models, by concentrating on a four-dimensional version of the Lorenz models for which there are three parameters and the norm of the solution vector is preserved. We can therefore restrict our focus to trajectories on the unit sphere S 3 in ℝ4. Furthermore, we create a type of Poincaré return map. We choose the Poincaré surface to be the set where one of the variables is 0, i.e., the Poincaré surface is a two-sphere S 2 in ℝ3. Examining different choices of our three parameters, we illustrate the wide variety of dynamical behaviors, including chaotic attractors, period doubling cascades, Standard-Map-like structures, and quasiperiodic trajectories. Note that neither Standard-Map-like structure nor quasiperiodicity has previously been reported for Lorenz models.

  17. Modifications to the modular three-dimensional finite-difference ground-water flow model used for the Columbia Plateau Regional Aquifer-System Analysis, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Hansen, A.J.

    1993-01-01

    The report documents modifications to the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model used for a regional aquifer-system analysis of the Columbia Plateau. The report, which describes the concepts and mathematical basis for the modifications, is intended for potential users who are familiar with the original modular model. The modifications permit flow from a layer to any adjacent layer, allow the model to retain a cell of a layer that has been cut completely through by a canyon, and allow placing ground-water flow barriers on only specified branch conductances; a special version of the modified model uses a convergent grid. The report describes the data-input items that this modified model must read.

  18. Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.

    2012-11-01

    The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.

  19. Mathematical Modeling in Support of Military Operational Medicine

    DTIC Science & Technology

    2006-07-01

    of PBPK models in toxicol- ogy research and chemical risk assessment today is pri- marily related to their ability to make more quantitative ...derived earlier. The biomechanical basis of SFC is established by its correlation with strain. (a) Pretest Scan (b) Posttest Fracture...Three-Dimensional Reconstruction of Pretest and Posttest CT Scans Cited References Vander Vorst, M., Stuhmiller, J., et al., (2003). Biomechanically

  20. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  1. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  2. Mathematical geophysics: A survey of recent developments in seismology and geodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlaar, N.J.

    1988-01-01

    This survey deals with modern methods for the determination of the structure of the Earth and for the analysis and modeling of the dynamic processes in the Earth's interior. Seismology and the three-dimensional structure of the Earth are covered in chapters devoted to waves in the three-dimensional Earth and large-scale inversion, while the discussion of convection and lithospheric processes focuses on geomagnetism, mantle convection, post-glacial rebound, and thermomechanical processes in the lithosphere. The emphasis of the work is theoretical, but the reader will find a discussion of the pertinent observational evidence.

  3. Mathematics Hiding in the Nets for a Cube

    ERIC Educational Resources Information Center

    Jeon, Kyungsoon

    2009-01-01

    Whether they are third graders or teacher candidates, students can learn about perimeter and area while having fun manipulating two-dimensional figures into three-dimensional objects. In this article, the author describes a common mathematical activity for geometry students by creating nets for a cube. By making connections between nets in two…

  4. A theoretical analysis of fluid flow and energy transport in hydrothermal systems

    USGS Publications Warehouse

    Faust, Charles R.; Mercer, James W.

    1977-01-01

    A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)

  5. Study of Three-Dimensional Pressure-Driven Turbulent Boundary Layer

    DTIC Science & Technology

    1990-08-31

    614)-)) the flow development rate should be comparable with that of the flows used in practice. In the rest of the Chapter, first the governing...to develop these models will be briefly discussed. The available turbulence models used INTRODUCTION 2 for the mathematically closure of the of...equations, assumptions made for each model and the quantities to be measured for the further development of these models are also going to be pointed out

  6. Chaos and Robustness in a Single Family of Genetic Oscillatory Networks

    PubMed Central

    Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.

    2014-01-01

    Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178

  7. Mathematical Model of Bubble Sloshing Dynamics for Cryogenic Liquid Helium in Orbital Spacecraft Dewar Container

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.

  8. Verification and transfer of thermal pollution model. Volume 3: Verification of 3-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.

  9. Computer design of porous active materials at different dimensional scales

    NASA Astrophysics Data System (ADS)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  10. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  11. Verification and transfer of thermal pollution model. Volume 5: Verification of 2-dimensional numerical model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  12. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  13. Development of a Three-Dimensional, Unstructured Material Response Design Tool

    NASA Technical Reports Server (NTRS)

    Schulz, Joseph C.; Stern, Eric C.; Muppidi, Suman; Palmer, Grant E.; Schroeder, Olivia

    2017-01-01

    A preliminary verification and validation of a new material response model is presented. This model, Icarus, is intended to serve as a design tool for the thermal protection systems of re-entry vehicles. Currently, the capability of the model is limited to simulating the pyrolysis of a material as a result of the radiative and convective surface heating imposed on the material from the surrounding high enthalpy gas. Since the major focus behind the development of Icarus has been model extensibility, the hope is that additional physics can be quickly added. This extensibility is critical since thermal protection systems are becoming increasing complex, e.g. woven carbon polymers. Additionally, as a three-dimensional, unstructured, finite-volume model, Icarus is capable of modeling complex geometries. In this paper, the mathematical and numerical formulation is presented followed by a discussion of the software architecture and some preliminary verification and validation studies.

  14. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  15. Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom

    Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.

  16. Conformal mapping in optical biosensor applications.

    PubMed

    Zumbrum, Matthew E; Edwards, David A

    2015-09-01

    Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.

  17. Mathematical Modeling and Optimization Studies on Development of Fuel Cells for Multifarious Applications

    DTIC Science & Technology

    2010-05-12

    multicomponent steady-state model for liquid -feed solid polymer electrolyte DBFCs. These fuel cells use sodium borohydride (NaBH4) in alkaline media...layers, diffusion layers and the polymer electrolyte membrane for a liquid feed DBFC. Diffusion of reactants within and between the pores is accounted...projected for futuristic portable applications. In this project we developed a three- dimensional, multicomponent steady-state model for liquid -feed solid

  18. Error enhancement in geomagnetic models derived from scalar data

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Bredekamp, J. H.

    1975-01-01

    An investigation conducted by Backus (1970) regarding the possible existence of two harmonic functions of certain characteristics in three-dimensional space is considered. The derivation of a model of the main geomagnetic field from scalar data is discussed along with a numerical simulation study. It is found that experimental discrepancies between vector field observations and the predictions of the model may have a mathematical origin, related to the work of Backus.

  19. An asymptotic membrane model for wrinkling of very thin films

    NASA Astrophysics Data System (ADS)

    Battista, Antonio; Hamdouni, Aziz; Millet, Olivier

    2018-05-01

    In this work, a formal deduction of a two-dimensional membrane theory, similar to Landau-Lifshitz model, is performed via an asymptotic development of the weak formulation of the three-dimensional equations of elasticity. Some interesting aspects of the deduced model are investigated, in particular the property of obtaining a hyperbolic equation for the out-of-plane displacement under a certain class of boundary conditions and loads. Some simple cases are analyzed to show the relevant aspects of the model and the phenomenology that can be addressed. In particular, it is shown how this mathematical formulation is capable to describe instabilities well known as wrinkling, often observed for the buckling of very thin membranes.

  20. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion

    PubMed Central

    Mori, Yoichiro; Fishman, Glenn I.; Peskin, Charles S.

    2008-01-01

    We study cardiac action potential propagation under severe reduction in gap junction conductance. We use a mathematical model of cellular electrical activity that takes into account both three-dimensional geometry and ionic concentration effects. Certain anatomical and biophysical parameters are varied to see their impact on cardiac action potential conduction velocity. This study uncovers quantitative features of ephaptic propagation that differ from previous studies based on one-dimensional models. We also identify a mode of cardiac action potential propagation in which the ephaptic and gap-junction-mediated mechanisms alternate. Our study demonstrates the usefulness of this modeling approach for electrophysiological systems especially when detailed membrane geometry plays an important role. PMID:18434544

  1. Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew

    1999-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.

  2. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    PubMed

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  3. A finite area scheme for shallow granular flows on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  4. Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy

    PubMed Central

    Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.

    2015-01-01

    This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857

  5. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  6. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  7. Promoting Mathematical Connections Using Three-Dimensional Manipulatives

    ERIC Educational Resources Information Center

    Safi, Farshid; Desai, Siddhi

    2017-01-01

    "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) gives teachers access to an insightful, research-informed framework that outlines ways to promote reasoning and sense making. Specifically, as students transition on their mathematical journey through middle school and beyond, their knowledge and use of…

  8. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome.

    PubMed

    Bove, Edward L; Migliavacca, Francesco; de Leval, Marc R; Balossino, Rossella; Pennati, Giancarlo; Lloyd, Thomas R; Khambadkone, Sachin; Hsia, Tain-Yen; Dubini, Gabriele

    2008-08-01

    Stage one reconstruction (Norwood operation) for hypoplastic left heart syndrome can be performed with either a modified Blalock-Taussig shunt or a right ventricle-pulmonary artery shunt. Both methods have certain inherent characteristics. It is postulated that mathematic modeling could help elucidate these differences. Three-dimensional computer models of the Blalock-Taussig shunt and right ventricle-pulmonary artery shunt modifications of the Norwood operation were developed by using the finite volume method. Conduits of 3, 3.5, and 4 mm were used in the Blalock-Taussig shunt model, whereas conduits of 4, 5, and 6 mm were used in the right ventricle-pulmonary artery shunt model. The hydraulic nets (lumped resistances, compliances, inertances, and elastances) were identical in the 2 models. A multiscale approach was adopted to couple the 3-dimensional models with the circulation net. Computer simulations were compared with postoperative catheterization data. Good correlation was found between predicted and observed data. For the right ventricle-pulmonary artery shunt modification, there was higher aortic diastolic pressure, decreased pulmonary artery pressure, lower Qp/Qs ratio, and higher coronary perfusion pressure. Mathematic modeling predicted minimal regurgitant flow in the right ventricle-pulmonary artery shunt model, which correlated with postoperative Doppler measurements. The right ventricle-pulmonary artery shunt demonstrated lower stroke work and a higher mechanical efficiency (stroke work/total mechanical energy). The close correlation between predicted and observed data supports the use of mathematic modeling in the design and assessment of surgical procedures. The potentially damaging effects of a systemic ventriculotomy in the right ventricle-pulmonary artery shunt modification of the Norwood operation have not been analyzed.

  9. Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)

    NASA Technical Reports Server (NTRS)

    Warman, E. A.; Lindsey, B. A.

    1972-01-01

    The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.

  10. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor

    NASA Astrophysics Data System (ADS)

    Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko

    2014-06-01

    Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.

  11. Mathematical methods for protein science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focusedmore » on two aspects of protein science: mathematical structure prediction, and inverse protein folding.« less

  12. Investigation on the Yarn Squeezing Effect of Three Dimensional Full Five Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan

    2018-04-01

    The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.

  13. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

  14. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  15. One-dimensional cold cap model for melters with bubblers

    DOE PAGES

    Pokorny, Richard; Hilliard, Zachary J.; Dixon, Derek R.; ...

    2015-07-28

    The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer of reacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for themore » dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale melter studies. Lastly, the cold cap model will become part of the full three-dimensional mathematical model of the waste glass melter.« less

  16. A Cognitive Analysis of Students’ Mathematical Communication Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Sari, D. S.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    This study aims to analyze the difficulties of mathematical communication ability of students in one of secondary school on “three-dimensional space” topic. This research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and the sample was thirty students that was chosen by purposive sampling technique. Data of mathematical communication were collected through essay test. Furthermore, the data were analyzed with a descriptive way. The results of this study indicate that the percentage of achievement of student mathematical communication indicators as follows 1) Stating a situation, ideas, and mathematic correlation into images, graphics, or algebraic expressions is 35%; 2) Stating daily experience into a mathematic language / symbol, or a mathematic model is 35%; and 3) Associating images or diagrams into mathematical ideas is 53.3%. Based on the percentage of achievement on each indicator, it can be concluded that the level of achievement of students’ mathematical communication ability is still low. It can be caused the students were not used to convey or write their mathematical ideas systematically. Therefore students’ mathematical communication ability need to be improved.

  17. On dependency properties of the ISIs generated by a two-compartmental neuronal model.

    PubMed

    Benedetto, Elisa; Sacerdote, Laura

    2013-02-01

    One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267-286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.

  18. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  19. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  20. Illusions of Space: Charting Three Dimensions

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2014-01-01

    We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…

  1. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  2. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems that were addressed in this work: (i) registration, i.e. automated methods of data acquisition and the ability to align multiple data sets with each other; (ii) visualization and reconstruction, i.e. the environment in which registered data sets can be displayed on a plane or in multidimensional space; (iii) segmentation, i.e. automated and semi-automated methods to create models of relevant anatomy from images; (iv) simulation and prediction, i.e. techniques that can be used to simulate growth end evolution of researched phenomenon. Mathematical models can not only be used to verify experimental findings, but also to make qualitative and quantitative predictions, that might serve as guidelines for the future development of technology and/or treatment.

  3. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    NASA Astrophysics Data System (ADS)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  4. Numerical study of propagation of forest fires in the presence of fire breaks using an averaged setting

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.

  5. Parameter extraction and transistor models

    NASA Technical Reports Server (NTRS)

    Rykken, Charles; Meiser, Verena; Turner, Greg; Wang, QI

    1985-01-01

    Using specified mathematical models of the MOSFET device, the optimal values of the model-dependent parameters were extracted from data provided by the Jet Propulsion Laboratory (JPL). Three MOSFET models, all one-dimensional were used. One of the models took into account diffusion (as well as convection) currents. The sensitivity of the models was assessed for variations of the parameters from their optimal values. Lines of future inquiry are suggested on the basis of the behavior of the devices, of the limitations of the proposed models, and of the complexity of the required numerical investigations.

  6. The Mathematical Modeling and Computer Simulation of Electrochemical Micromachining Using Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.

    2009-05-01

    The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.

  7. Energy transfer simulation for radiantly heated and cooled enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, K.S.; Zhang, P.

    1996-11-01

    This paper presents the development of a three-dimensional mathematical model to compute heat transfer within a radiantly heated or cooled room, which then calculates the mass-averaged room air temperature and the wall surface temperature distributions. The radiation formulation used in the model accommodates arbitrary placement of walls and objects within the room. The convection model utilizes Nusselt number correlations published in the open literature. The complete energy transfer model is validated by comparing calculated room temperatures to temperatures measured in a radiantly heated room. This three-dimensional model may be applied to a building to assist the heating/cooling system design engineermore » in sizing a radiant heating/cooling system. By coupling this model with a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater/cooler location. In addition, obstacles such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the radiant heating system performance.« less

  8. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. © 2015 Wiley Periodicals, Inc.

  9. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  10. Dynamic behaviour of thin composite plates for different boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprintu, Iuliana, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com

    2014-12-10

    In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin.more » This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.« less

  11. Spatial versus Object Visualisation: The Case of Mathematical Understanding in Three-Dimensional Arrays of Cubes and Nets

    ERIC Educational Resources Information Center

    Pitta-Pantazi, Demetra; Christou, Constantinos

    2010-01-01

    This paper investigates the relations of students' spatial and object visualisation with their analytic, creative and practical abilities in three-dimensional geometry. Fifty-three 11-year-olds were tested using a Greek modified version of the Object-Spatial Imagery Questionnaire (OSIQ) (Blajenkova, Kozhevnikov, & Motes, 2006) and two…

  12. Three-Dimensional Printing: A Journey in Visualization

    ERIC Educational Resources Information Center

    Poetzel, Adam; Muskin, Joseph; Munroe, Anne; Russell, Craig

    2012-01-01

    Imagine high school students glued to computer screens--not playing video games but applying their mathematical knowledge of functions to the design of three-dimensional sculptures. Imagine these students engaging in rich discourse as they transform functions of their choosing to design unique creations. Now, imagine these students using…

  13. Three Dimensional Flow and Pressure Patterns in a Single Pocket of a Hydrostatic Journal Bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. Jack; Dzodzo, Milorad B.

    1996-01-01

    The flow in a hydrostatic pocket is described by a mathematical model that uses the three dimensional Navier-Stokes equations written in terms of the primary variables, u, v, w, and p. Using a conservative formulation, a finite volume multi-block method is applied through a collocated, body fitted grid. The flow is simulated in a shallow pocket with a depth/length ratio of 0.02. The flow structures obtained and described by the authors in their previous two dimensional models are made visible in their three dimensional aspect for the Couette flow. It has been found that the flow regimes formed central and secondary vortical cells with three dimensional corkscrew-like structures that lead the fluid on an outward bound path in the axial direction of the pocket. The position of the central vortical cell center is at the exit region of the capillary restrictor feedline. It has also been determined that a fluid turn around zone occupies all the upstream space between the floor of the pocket and the runner, thus preventing any flow exit through the upstream port. The corresponding pressure distribution under the shaft presented as well. It was clearly established that for the Couette dominated case the pressure varies significantly in the pocket in the circumferential direction, while its variation is less pronounced axially.

  14. Modeling and visual simulation of Microalgae photobioreactor

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  15. A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.

    PubMed

    Charny, C K; Levin, R L

    1991-10-01

    Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.

  16. Mathematical Skills in Ninth-graders: Relationship with Visuo-spatial Abilities and Working Memory.

    ERIC Educational Resources Information Center

    Reuhkala, Minna

    2001-01-01

    Investigates the relationship between working memory (WM) capacity (particularly visuo-spatial working memory (VSWM)), the ability to mentally rotate three-dimensional objects, and mathematical skills. Explains that in experiment 1, VSWM was examined; and in experiment 2, contributions of other WM components to mathematical skills was examined.…

  17. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  18. Application of a laser scanner to three dimensional visual sensing tasks

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.

    1992-01-01

    The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.

  19. Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems

    NASA Astrophysics Data System (ADS)

    Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.

    2017-07-01

    A hardware-software platform is presented, which is designed for the development and hardware-in-the-loop simulation of flying vehicle control systems. This platform ensures the construction of the mathematical model of the plant, development of algorithms and software for onboard radioelectronic equipment and ground control station, and visualization of the three-dimensional model of the vehicle and external environment of the cockpit in the simulator training mode.

  20. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator

    NASA Astrophysics Data System (ADS)

    Yuan, X.-X.; He, L.; Wang, S.-T.; Deng, D.-L.; Wang, F.; Lian, W.-Q.; Wang, X.; Zhang, C.-H.; Zhang, H.-L.; Chang, X.-Y.; Duan, L.-M.

    2017-06-01

    Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties, including fascinating topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.

  1. Self-dual random-plaquette gauge model and the quantum toric code

    NASA Astrophysics Data System (ADS)

    Takeda, Koujin; Nishimori, Hidetoshi

    2004-05-01

    We study the four-dimensional Z2 random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, pc=0.889972…, and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions.

  2. Vertically reciprocating auger

    NASA Technical Reports Server (NTRS)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-01-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  3. Computational techniques to enable visualizing shapes of objects of extra spatial dimensions

    NASA Astrophysics Data System (ADS)

    Black, Don Vaughn, II

    Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.

  4. Visualization of nuclear particle trajectories in nuclear oil-well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Case, C.R.; Chiaramonte, J.M.

    Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less

  5. [Three dimensional mathematical model of tooth for finite element analysis].

    PubMed

    Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka

    2010-01-01

    The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  6. Computing Mass Properties From AutoCAD

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1990-01-01

    Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).

  7. Mighty Math[TM] Zoo Zillions[TM]. [CD-ROM].

    ERIC Educational Resources Information Center

    1996

    Zoo Zillions contains five activities for grades K-2: Annie's Jungle Trail, 3D Gallery, Number Line Express, Gnu Ewe Boutique, and Fish Stories. These activities enable children to review and practice basic mathematics skills; identify three-dimensional shapes, watch them in motion, and create their own three-dimensional designs; locate numbers…

  8. A numerical solution of the problem of crown forest fire initiation and spread

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.

  9. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  10. Thermal mathematical modeling and system simulation of Space Shuttle less subsystem

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Battley, H. H.; Gallegos, J. J.; Curry, D. M.

    1984-01-01

    Applications, validation tests, and upgrades of the two- and three-dimensional system level thermal mathematical system simulation models (TMSSM) used for thermal protection system (TPS) analyses are described. The TMSSM were developed as an aid to predicting the performance requirements and configurations of the Shuttle wing leading edge (WLE) and nose cone (NC) TPS tiles. The WLE and its structure were subjected to acoustic, thermal/vacuum, and air loads tests to simulate launch, on-orbit, and re-entry behavior. STS-1, -2 and -5 flight data led to recalibration of on-board instruments and raised estimates of the thermal shock at the NC and WLE. Baseline heating data are now available for the design of future TPS.

  11. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  12. Three-Dimensional Messages for Interstellar Communication

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.

  13. Examination of the Assumptions and Properties of the Graded Item Response Model: An Example Using a Mathematics Performance Assessment.

    ERIC Educational Resources Information Center

    Lane, Suzanne; And Others

    1995-01-01

    Over 5,000 students participated in a study of the dimensionality and stability of the item parameter estimates of a mathematics performance assessment developed for the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) Project. Results demonstrate the test's dimensionality and illustrate ways to examine use of the…

  14. The experiment of cooperative learning model type team assisted individualization (TAI) on three-dimensional space subject viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Manapa, I. Y. H.; Budiyono; Subanti, S.

    2018-03-01

    The aim of this research is to determine the effect of TAI or direct learning (DL) on student’s mathematics achievement viewed from spatial intelligence. This research was quasi experiment. The population was 10th grade senior high school students in Alor Regency on academic year of 2015/2016 chosen by stratified cluster random sampling. The data were collected through achievement and spatial intelligence test. The data were analyzed by two ways, ANOVA with unequal cell and scheffe test. This research showed that student’s mathematics achievement used in TAI had better results than DL models one. In spatial intelligence category, student’s mathematics achievement with high spatial intelligence has better result than the other spatial intelligence category and students with high spatial intelligence have better results than those with middle spatial intelligence category. At TAI, student’s mathematics achievement with high spatial intelligence has better result than those with the other spatial intelligence category and students with middle spatial intelligence have better results than students with low spatial intelligence. In DL model, student’s mathematics achievement with high and middle spatial intelligence has better result than those with low spatial intelligence, but students with high spatial intelligence and middle spatial intelligence have no significant difference. In each category of spatial intelligence and learning model, mathematics achievement has no significant difference.

  15. Exploring extra dimensions with scalar fields

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  16. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  17. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  18. Kinematics of swimming of the manta ray: three-dimensional analysis of open-water maneuverability.

    PubMed

    Fish, Frank E; Kolpas, Allison; Crossett, Andrew; Dudas, Michael A; Moored, Keith W; Bart-Smith, Hilary

    2018-03-22

    For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray ( Mobula birostris ), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s -1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies. © 2018. Published by The Company of Biologists Ltd.

  19. The numerical study of the coextrusion process of polymer melts in the cable head

    NASA Astrophysics Data System (ADS)

    Kozitsyna, M. V.; Trufanova, N. M.

    2017-06-01

    The process of coextrusion consists in a simultaneous creation of all necessary insulating layers of different polymers in the channel of a special forming tool. The main focus of this study is the analysis of technological, geometrical and rheological characteristics on the values of the layer’s thickness. In this paper are considered three geometries of cable head on the three-dimensional and two-dimensional representation. The mathematical models of separate and joint flow of polymer melts have been implemented by the finite element method in Ansys software package. The velocity fields, temperature, pressure in the cross-sections of the channel and by the length have been obtained. The influence of some thickness characteristics of insulation layers has been identified.

  20. Peristaltic motion of magnetohydrodynamic viscous fluid in a curved circular tube

    NASA Astrophysics Data System (ADS)

    Yasmeen, Shagufta; Okechi, Nnamdi Fidelis; Anjum, Hafiz Junaid; Asghar, Saleem

    In this paper we investigate the peristaltic flow of viscous fluid through three-dimensional curved tube in the presence of the applied magnetic field. We present a mathematical model and an asymptotic solution for the three dimensional Navier-Stokes equations under the assumption of small inertial forces and long wavelength approximation. The effects of the curvature of the tube are investigated with particular interest. The solution is sought in terms of regular perturbation expansion for small curvature parameter. It is noted that the velocity field is more sensitive to the curvature of tube in comparison to the pressure gradient. It is shown that peristaltic magnetohydrodynamic (MHD) flow in a straight tube is the limiting case of this study.

  1. Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements

    NASA Technical Reports Server (NTRS)

    Truman, W. M.; Balanis, C. A.; Holmes, J. J.

    1977-01-01

    In this paper, a three-dimensional Fourier transform inversion method describing the interaction between water surface emitted radiation from a flat finite wave tank and antenna radiation characteristics is reported. The transform technique represents the scanning of the antenna mathematically as a correlation. Computation time is reduced by using the efficient and economical fast Fourier transform algorithm. To verify the inversion method, computations have been made and compared with known data and other available results. The technique has been used to restore data of the finite wave tank system and other available antenna temperature measurements made at the Cape Cod Canal. The restored brightness temperatures serve as better representations of the emitted radiation than the measured antenna temperatures.

  2. Review on experiment-based two- and three-dimensional models for wound healing

    PubMed Central

    Gefen, Amit

    2016-01-01

    Traumatic and chronic wounds are a considerable medical challenge that affects many populations and their treatment is a monetary and time-consuming burden in an ageing society to the medical systems. Because wounds are very common and their treatment is so costly, approaches to reveal the responses of a specific wound type to different medical procedures and treatments could accelerate healing and reduce patient suffering. The effects of treatments can be forecast using mathematical modelling that has the predictive power to quantify the effects of induced changes to the wound-healing process. Wound healing involves a diverse and complex combination of biophysical and biomechanical processes. We review a wide variety of contemporary approaches of mathematical modelling of gap closure and wound-healing-related processes, such as angiogenesis. We provide examples of the understanding and insights that may be garnered using those models, and how those relate to experimental evidence. Mathematical modelling-based simulations can provide an important visualization tool that can be used for illustrational purposes for physicians, patients and researchers. PMID:27708762

  3. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  4. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  5. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1987-01-01

    The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.

  6. Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition.

    PubMed

    Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A

    2008-01-18

    The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.

  7. The Effect of Using Dynamic Mathematics Software: Cross Section and Visualization

    ERIC Educational Resources Information Center

    Kösa, Temel

    2016-01-01

    The main purpose of this study is to determine the effects of using dynamic mathematics software on pre-service mathematics teachers' ability to infer the shape of a cross section of a three-dimensional solid, as well as on their spatial visualization skills. The study employed a quasi-experimental design with a control group; the Purdue Spatial…

  8. Three-dimensional FLASH Laser Radar Range Estimation via Blind Deconvolution

    DTIC Science & Technology

    2009-10-01

    scene can result in errors due to several factors including the optical spatial impulse response, detector blurring, photon noise , timing jitter, and...estimation error include spatial blur, detector blurring, noise , timing jitter, and inter-sample targets. Unlike previous research, this paper ac- counts...for pixel coupling by defining the range image mathematical model as a 2D convolution between the system spatial impulse response and the object (target

  9. CAD system of design and engineering provision of die forming of compressor blades for aircraft engines

    NASA Astrophysics Data System (ADS)

    Khaimovich, I. N.

    2017-10-01

    The articles provides the calculation algorithms for blank design and die forming fitting to produce the compressor blades for aircraft engines. The design system proposed in the article allows generating drafts of trimming and reducing dies automatically, leading to significant reduction of work preparation time. The detailed analysis of the blade structural elements features was carried out, the taken limitations and technological solutions allowed forming generalized algorithms of forming parting stamp face over the entire circuit of the engraving for different configurations of die forgings. The author worked out the algorithms and programs to calculate three dimensional point locations describing the configuration of die cavity. As a result the author obtained the generic mathematical model of final die block in the form of three-dimensional array of base points. This model is the base for creation of engineering documentation of technological equipment and means of its control.

  10. Dimensional coordinate measurements: application in characterizing cervical spine motion

    NASA Astrophysics Data System (ADS)

    Zheng, Weilong; Li, Linan; Wang, Shibin; Wang, Zhiyong; Shi, Nianke; Xue, Yuan

    2014-06-01

    Cervical spine as a complicated part in the human body, the form of its movement is diverse. The movements of the segments of vertebrae are three-dimensional, and it is reflected in the changes of the angle between two joint and the displacement in different directions. Under normal conditions, cervical can flex, extend, lateral flex and rotate. For there is no relative motion between measuring marks fixed on one segment of cervical vertebra, the cervical vertebrae with three marked points can be seen as a body. Body's motion in space can be decomposed into translational movement and rotational movement around a base point .This study concerns the calculation of dimensional coordinate of the marked points pasted to the human body's cervical spine by an optical method. Afterward, these measures will allow the calculation of motion parameters for every spine segment. For this study, we choose a three-dimensional measurement method based on binocular stereo vision. The object with marked points is placed in front of the CCD camera. Through each shot, we will get there two parallax images taken from different cameras. According to the principle of binocular vision we can be realized three-dimensional measurements. Cameras are erected parallelly. This paper describes the layout of experimental system and a mathematical model to get the coordinates.

  11. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman

    2008-10-01

    The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.

  12. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  13. A tool for simulating collision probabilities of animals with marine renewable energy devices.

    PubMed

    Schmitt, Pál; Culloch, Ross; Lieber, Lilian; Molander, Sverker; Hammar, Linus; Kregting, Louise

    2017-01-01

    The mathematical problem of establishing a collision probability distribution is often not trivial. The shape and motion of the animal as well as of the the device must be evaluated in a four-dimensional space (3D motion over time). Earlier work on wind and tidal turbines was limited to a simplified two-dimensional representation, which cannot be applied to many new structures. We present a numerical algorithm to obtain such probability distributions using transient, three-dimensional numerical simulations. The method is demonstrated using a sub-surface tidal kite as an example. Necessary pre- and post-processing of the data created by the model is explained, numerical details and potential issues and limitations in the application of resulting probability distributions are highlighted.

  14. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong

    2014-01-01

    A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

  15. Propagation of Cutaneous Thermal Injury: A Mathematical Model

    PubMed Central

    Xue, Chuan; Chou, Ching-Shan; Kao, Chiu-Yen; Sen, Chandan K.; Friedman, Avner

    2012-01-01

    Cutaneous burn wounds represent a significant public health problem with 500,000 patients per year in the U.S. seeking medical attention. Immediately after skin burn injury, the volume of the wound burn expands due to a cascade of chemical reactions, including lipid peroxidation chain reactions. Based on these chemical reactions, the present paper develops for the first time a three-dimensional mathematical model to quantify the propagation of tissue damage within 12 hours post initial burn. We use the model to investigate the effect of supplemental antioxidant vitamin E for stopping the propagation. We show, for example, that if the production rate of vitamin E is increased, post burn, by five times the natural production in a healthy tissue, then this would slow down the lipid peroxide propagation by at least 50%. Our model is formulated in terms of differential equations, and sensitivity analysis is performed on the parameters to ensure the robustness of the results. PMID:22211391

  16. Exploring the Educational Potential of Three-Dimensional Multi-User Virtual Worlds for STEM Education: A Mixed-Method Systematic Literature Review

    ERIC Educational Resources Information Center

    Pellas, Nikolaos; Kazanidis, Ioannis; Konstantinou, Nikolaos; Georgiou, Georgia

    2017-01-01

    The present literature review builds on the results of 50 research articles published from 2000 until 2016. All these studies have successfully accomplished various learning tasks in the domain of Science, Technology, Engineering, and Mathematics (STEM) education using three-dimensional (3-D) multi-user virtual worlds for Primary, Secondary and…

  17. One-dimensional collision carts computer model and its design ideas for productive experiential learning

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang

    2012-05-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a consistent simulation world view with a pen and paper representation, (2) a data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and (3) a game for simple concept testing that can further support learning. We also suggest using a physical world setup augmented by simulation by highlighting three advantages of real collision carts equipment such as a tacit 3D experience, random errors in measurement and the conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes.

  18. Organization of the cytokeratin network in an epithelial cell.

    PubMed

    Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien

    2003-08-07

    The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.

  19. The Effect of 3D Virtual Learning Environment on Secondary School Third Grade Students' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Simsek, Irfan

    2016-01-01

    With this research, in Second Life environment which is a three dimensional online virtual world, it is aimed to reveal the effects of student attitudes toward mathematics courses and design activities which will enable the third grade students of secondary school (primary education seventh grade) to see the 3D objects in mathematics courses in a…

  20. Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution

    NASA Astrophysics Data System (ADS)

    Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao

    2008-09-01

    Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.

  1. Reconfiguration of broad leaves into cones

    NASA Astrophysics Data System (ADS)

    Miller, Laura

    2013-11-01

    Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.

  2. A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness

    PubMed Central

    Stride, E.; Cheema, U.

    2017-01-01

    The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127

  3. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  4. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    PubMed

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  5. One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes.

    PubMed

    Cheviakov, A F; Ganghoffer, J-F

    2016-05-01

    The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cheshire charge in (3+1)-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2017-07-01

    We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.

  7. CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler

    NASA Astrophysics Data System (ADS)

    Yu, Z. S.; Ma, X. Q.; Lai, Z. Y.; Xiao, H. M.

    Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used based on a commercial software FLUENT for combustion. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around l400K. It indicates that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (l396.3K), area-weighted average temperature (l109.6K) and the furnace gas outlet area-weighted average temperature(996.8K).The mathematical modeling also predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K. Moreover, it is proved that mathematical models can serve as a tool for detailed analysis of co-combustion of paper sludge and coal processes in a circulating fluidized bed furnace when in view of its convenience. The results gained from numerical simulation show that paper sludge enter into furnace from the recycle inlet excelled than mixing with coal and at the underside of phase interface.

  8. Mathematical model of a smoldering log.

    Treesearch

    Fernando de Souza Costa; David Sandberg

    2004-01-01

    A mathematical model is developed describing the natural smoldering of logs. It is considered the steady one dimensional propagation of infinitesimally thin fronts of drying, pyrolysis, and char oxidation in a horizontal semi-infinite log. Expressions for the burn rates, distribution profiles of temperature, and positions of the drying, pyrolysis, and smoldering fronts...

  9. A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.

    PubMed

    Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V

    1998-04-01

    Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.

  10. National geodetic satellite program, part 2

    NASA Technical Reports Server (NTRS)

    Schmid, H.

    1977-01-01

    Satellite geodesy and the creation of worldwide geodetic reference systems is discussed. The geometric description of the surface and the analytical description of the gravity field of the earth by means of worldwide reference systems, with the aid of satellite geodesy, are presented. A triangulation method based on photogrammetric principles is described in detail. Results are derived in the form of three dimensional models. These mathematical models represent the frame of reference into which one can fit the existing geodetic results from the various local datums, as well as future measurements.

  11. Continuous and Discontinuous Galerkin Methods for a Scalable Three-Dimensional Nonhydrostatic Atmospheric Model: Limited-Area Mode

    DTIC Science & Technology

    2012-01-01

    atmosphere model, Int. J . High Perform. Comput. Appl. 26 (1) (2012) 74–89. [8] J.M. Dennis, M. Levy, R.D. Nair, H.M. Tufo, T . Voran. Towards and efficient...26] A. Klockner, T . Warburton, J . Bridge, J.S, Hesthaven, Nodal discontinuous galerkin methods on graphics processors, J . Comput. Phys. 228 (21) (2009...mode James F. Kelly, Francis X. Giraldo ⇑ Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, United States a r t i c l e i n

  12. Updated Panel-Method Computer Program

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1995-01-01

    Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.

  13. Interactive computer aided technology, evolution in the design/manufacturing process

    NASA Technical Reports Server (NTRS)

    English, C. H.

    1975-01-01

    A powerful computer-operated three dimensional graphic system and associated auxiliary computer equipment used in advanced design, production design, and manufacturing was described. This system has made these activities more productive than when using older and more conventional methods to design and build aerospace vehicles. With the use of this graphic system, designers are now able to define parts using a wide variety of geometric entities, define parts as fully surface 3-dimensional models as well as "wire-frame" models. Once geometrically defined, the designer is able to take section cuts of the surfaced model and automatically determine all of the section properties of the planar cut, lightpen detect all of the surface patches and automatically determine the volume and weight of the part. Further, his designs are defined mathematically at a degree of accuracy never before achievable.

  14. The 1986 advances in bioengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, S.A.; King, A.I.

    1986-01-01

    This book presents the papers given at a conference on biomedicine. Topics considered at the conference included a mathematical method for obtaining three-dimensional information from standard two-dimensional radiographs, the human lumbar spine, scoliosis and instrumentation, vehicle crashworthiness, lung mechanics, physiological fluid mechanics, microgravity, cardiovascular mechanics, and soft tissue.

  15. Numerical simulations of a reduced model for blood coagulation

    NASA Astrophysics Data System (ADS)

    Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia

    2016-04-01

    In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.

  16. Description of two-metal biosorption equilibria by Langmuir-type models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.H.; Volesky, B.

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake ofmore » Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.« less

  17. Radiant heat exchange calculations in radiantly heated and cooled enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, K.S.; Zhang, P.

    1995-08-01

    This paper presents the development of a three-dimensional mathematical model to compute the radiant heat exchange between surfaces separated by a transparent and/or opaque medium. The model formulation accommodates arbitrary arrangements of the interior surfaces, as well as arbitrary placement of obstacles within the enclosure. The discrete ordinates radiation model is applied and has the capability to analyze the effect of irregular geometries and diverse surface temperatures and radiative properties. The model is verified by comparing calculated heat transfer rates to heat transfer rates determined from the exact radiosity method for four different enclosures. The four enclosures were selected tomore » provide a wide range of verification. This three-dimensional model based on the discrete ordinates method can be applied to a building to assist the design engineer in sizing a radiant heating system. By coupling this model with a convective and conductive heat transfer model and a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater location. In addition, objects such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the performance of the radiant heating system.« less

  18. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor.

    PubMed

    Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo

    2013-11-01

    The main challenge in engineered cartilage consists in understanding and controlling the growth process towards a functional tissue. Mathematical and computational modelling can help in the optimal design of the bioreactor configuration and in a quantitative understanding of important culture parameters. In this work, we present a multiphysics computational model for the prediction of cartilage tissue growth in an interstitial perfusion bioreactor. The model consists of two separate sub-models, one two-dimensional (2D) sub-model and one three-dimensional (3D) sub-model, which are coupled between each other. These sub-models account both for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Navier-Stokes equation, the mass transport equation and the biomass growth. The biomass, assumed as a phase comprising cells and the synthesised extracellular matrix, has been modelled by using a moving boundary approach. In particular, the boundary at the fluid-biomass interface is moving with a velocity depending from the local oxygen concentration and viscous stress. In this work, we show that all parameters predicted, such as oxygen concentration and wall shear stress, by the 2D sub-model with respect to the ones predicted by the 3D sub-model are systematically overestimated and thus the tissue growth, which directly depends on these parameters. This implies that further predictive models for tissue growth should take into account of the three dimensionality of the problem for any scaffold microarchitecture.

  19. Semianalytical solutions for transport in aquifer and fractured clay matrix system

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2015-09-01

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.

  20. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  1. Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.

    DTIC Science & Technology

    1975-01-01

    Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which

  2. Computer Programs For Automated Welding System

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.

    1993-01-01

    Computer programs developed for use in controlling automated welding system described in MFS-28578. Together with control computer, computer input and output devices and control sensors and actuators, provide flexible capability for planning and implementation of schemes for automated welding of specific workpieces. Developed according to macro- and task-level programming schemes, which increases productivity and consistency by reducing amount of "teaching" of system by technician. System provides for three-dimensional mathematical modeling of workpieces, work cells, robots, and positioners.

  3. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  4. Basin-scale hydrogeologic modeling

    NASA Astrophysics Data System (ADS)

    Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant

    1996-02-01

    Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.

  5. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  6. Kinematic reconstruction in cardiovascular imaging.

    PubMed

    Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A

    2018-05-17

    Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    PubMed Central

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-01

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers. PMID:24481066

  8. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacón, L.; Cappello, S.

    2010-08-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.

  9. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna

    2010-01-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less

  10. Changing Pre-Service Mathematics Teachers' Beliefs about Using Computers for Teaching and Learning Mathematics: The Effect of Three Different Models

    ERIC Educational Resources Information Center

    Karatas, Ilhan

    2014-01-01

    This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model (IM)…

  11. Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies

    PubMed Central

    Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia

    2016-01-01

    The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008

  12. Estimation of cylinder orientation in three-dimensional point cloud using angular distance-based optimization

    NASA Astrophysics Data System (ADS)

    Su, Yun-Ting; Hu, Shuowen; Bethel, James S.

    2017-05-01

    Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.

  13. Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation

    NASA Technical Reports Server (NTRS)

    Thompson, William K.

    2006-01-01

    This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.

  14. Analytical and computational studies on the vacuum performance of a chevron ejector

    NASA Astrophysics Data System (ADS)

    Kong, F. S.; Jin, Y. Z.; Kim, H. D.

    2016-11-01

    The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.

  15. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  16. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  17. 3-Dimensional stereo implementation of photoacoustic imaging based on a new image reconstruction algorithm without using discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu

    2017-05-01

    In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.

  18. Getting out of Flatland

    ERIC Educational Resources Information Center

    Popelka, Susan R.; Langlois, Joshua

    2018-01-01

    "Flatland: A Romance of Many Dimensions" is an 1884 novella written by English schoolmaster Edwin Abbott. He describes what it would be like to live in a two-dimensional (2D) world--Flatland. It is fascinating reading that underscores the challenge of teaching three-dimensional (3D) mathematics using 2D tools. Real-world applications of…

  19. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  20. Design and realization of retina-like three-dimensional imaging based on a MOEMS mirror

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hao, Qun; Xia, Wenze; Peng, Yuxin; Cheng, Yang; Mu, Jiaxing; Wang, Peng

    2016-07-01

    To balance conflicts for high-resolution, large-field-of-view and real-time imaging, a retina-like imaging method based on time-of flight (TOF) is proposed. Mathematical models of 3D imaging based on MOEMS are developed. Based on this method, we perform simulations of retina-like scanning properties, including compression of redundant information and rotation and scaling invariance. To validate the theory, we develop a prototype and conduct relevant experiments. The preliminary results agree well with the simulations.

  1. Condition of Mechanical Equilibrium at the Phase Interface with Arbitrary Geometry

    NASA Astrophysics Data System (ADS)

    Zubkov, V. V.; Zubkova, A. V.

    2017-09-01

    The authors produced an expression for the mechanical equilibrium condition at the phase interface within the force definition of surface tension. This equilibrium condition is the most general one from the mathematical standpoint and takes into account the three-dimensional aspect of surface tension. Furthermore, the formula produced allows describing equilibrium on the fractal surface of the interface. The authors used the fractional integral model of fractal distribution and took the fractional order integrals over Euclidean space instead of integrating over the fractal set.

  2. Pilot plant operation of a nonadiabatic methanation reactor. [15 refs. ; Raney nickel catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schehl, R.R.; Pennline, H.W.; Strakey, J.P.

    The design and operation of a pilot plant scale hybrid methanation reactor is discussed. The hybrid methanator, utilizing a finned, Raney nickel coated insert, consolidates features of the tube-wall and hot-gas-recycle methanation reactors. Data are presented from four tests lasting from 3/sup 1///sub 2/ weeks to three months. Topics discussed include conversion, product yields, catalyst properties, and reactor temperature profiles. A one-dimensional mathematical model capable of explaining reactor performance trends is employed.

  3. [Characteristics of Waves Generated Beneath the Solar Convection Zone by Penetrative Overshoot

    NASA Technical Reports Server (NTRS)

    Julien, Keith

    2000-01-01

    The goal of this project was to theoretically and numerically characterize the waves generated beneath the solar convection zone by penetrative overshoot. Three dimensional model simulations were designed to isolate the effects of rotation and shear. In order to overcome the numerically imposed limitations of finite Reynolds numbers (Re) below solar values, series of simulations were designed to elucidate the Reynolds-number dependence (hoped to exhibit mathematically simple scaling on Re) so that one could cautiously extrapolate to solar values.

  4. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  5. An exactly solvable, spatial model of mutation accumulation in cancer

    NASA Astrophysics Data System (ADS)

    Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej

    2016-12-01

    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.

  6. High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.

  7. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    PubMed

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  8. Recent Survey and Application of the simSUNDT Software

    NASA Astrophysics Data System (ADS)

    Persson, G.; Wirdelius, H.

    2010-02-01

    The simSUNDT software is based on a previous developed program (SUNDT). The latest version has been customized in order to generate realistic synthetic data (including a grain noise model), compatible with a number of off-line analysis software. The software consists of a Windows®-based preprocessor and postprocessor together with a mathematical kernel (UTDefect), dealing with the actual mathematical modeling. The model employs various integral transforms and integral equation and enables simulations of the entire ultrasonic testing situation. The model is completely three-dimensional though the simulated component is two-dimensional, bounded by the scanning surface and a planar back surface as an option. It is of great importance that inspection methods that are applied are proper validated and that their capability of detection of cracks and defects are quantified. In order to achieve this, statistical methods such as Probability of Detection (POD) often are applied, with the ambition to estimate the detectability as a function of defect size. Despite the fact that the proposed procedure with the utilization of test pieces is very expensive, it also tends to introduce a number of possible misalignments between the actual NDT situation that is to be performed and the proposed experimental simulation. The presentation will describe the developed model that will enable simulation of a phased array NDT inspection and the ambition to use this simulation software to generate POD information. The paper also includes the most recent developments of the model including some initial experimental validation of the phased array probe model.

  9. A mathematical model of the structure and evolution of small-scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, Charles E.

    1990-01-01

    A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.

  10. The research of statistical properties of colorimetric features of screens with a three-component color formation principle

    NASA Astrophysics Data System (ADS)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The problem of the research is concerned with quantitative analysis of influence of technological variation of the screen color profile parameters on chromaticity coordinates of the displayed image. Some mathematical expressions which approximate the two-dimensional distribution of chromaticity coordinates of an image, which is displayed on the screen with a three-component color formation principle were proposed. Proposed mathematical expressions show the way to development of correction techniques to improve reproducibility of the colorimetric features of displays.

  11. Tomography: Three Dimensional Image Construction. Applications of Analysis to Medical Radiology. [and] Genetic Counseling. Applications of Probability to Medicine. [and] The Design of Honeycombs. Applications of Differential Equations to Biology. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 318, 456, 502.

    ERIC Educational Resources Information Center

    Solomon, Frederick; And Others.

    This document consists of three modules. The first looks at applications of analysis to medical radiology. The goals are to provide: 1) acquaintance with a significant applied mathematics problem utilizing Fourier Transforms; 2) generalization of the Fourier Transforms to two dimensions; 3) practice with Fourier Transforms; and 4) introduction to…

  12. Practical application of stereological methods in experimental kidney animal models.

    PubMed

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Reviewing and Viewing.

    ERIC Educational Resources Information Center

    Clements, Douglas H., Ed.; And Others

    1988-01-01

    Presents reviews of three software packages. Includes "Cube Builder: A 3-D Geometry Tool," which allows students to build three-dimensional shapes; "Number Master," a multipurpose practice program for whole number computation; and "Safari Search: Problem Solving and Inference," which focuses on decision making in mathematical analysis. (PK)

  14. Mathematical model and software for investigation of internal ballistic processes in high-speed projectile installations

    NASA Astrophysics Data System (ADS)

    Diachkovskii, A. S.; Zykova, A. I.; Ishchenko, A. N.; Kasimov, V. Z.; Rogaev, K. S.; Sidorov, A. D.

    2017-11-01

    This paper describes a software package that allows to explore the interior ballistics processes occurring in a shot scheme with bulk charges using propellant pasty substances at various loading schemes, etc. As a mathematical model, a model of a polydisperse mixture of non-deformable particles and a carrier gas phase is used in the quasi-one-dimensional approximation. Writing the equations of the mathematical model allows to use it to describe a broad class of interior ballistics processes. Features of the using approach are illustrated by calculating the ignition period for the charge of tubular propellant.

  15. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  16. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  17. Two-Dimensional Mathematical Modeling of the Pack Carburizing Process

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Gupta, G. S.

    2008-10-01

    Pack carburization is the oldest method among the case-hardening treatments, and sufficient attempts have not been made to understand this process in terms of heat and mass transfer, effect of alloying elements, dimensions of the sample, etc. Thus, a two-dimensional mathematical model in cylindrical coordinate is developed for simulating the pack carburization process for chromium-bearing steel in this study. Heat and mass balance equations are solved simultaneously, where the surface temperature of the sample varies with time, but the carbon potential at the surface during the process remains constant. The fully implicit finite volume technique is used to solve the governing equations. Good agreement has been found between the predicted and published data. The effect of temperature, carburizing time, dimensions of the sample, etc. on the pack carburizing process shows some interesting results. It is found that the two-dimensional model gives better insight into understanding the carburizing process.

  18. Assessing the Effectiveness of a 3-D Instructional Game on Improving Mathematics Achievement and Motivation of Middle School Students

    ERIC Educational Resources Information Center

    Bai, Haiyan; Pan, Wei; Hirumi, Astusi; Kebritchi, Mansureh

    2012-01-01

    This research study assessed the effectiveness of a three-dimensional mathematics game, DimensionM, through a pretest-posttest control group quasi-experimental design. Participants consisted of 437 eighth graders. The classrooms were randomly assigned either to the treatment group that utilized DimensionM as a supplement to regular classroom…

  19. Origami Instruction in the Middle School Mathematics Classroom: Its Impact on Spatial Visualization and Geometry Knowledge of Students

    ERIC Educational Resources Information Center

    Boakes, Norma J.

    2009-01-01

    Within the study of geometry in the middle school curriculum is the natural development of students' spatial visualization, the ability to visualize two- and three-dimensional objects. The national mathematics standards call specifically for the development of such skills through hands-on experiences. A commonly accepted method is through the…

  20. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  1. In Vivo Bioluminescence Tomography for Monitoring Breast Tumor Growth and Metastatic Spreading: Comparative Study and Mathematical Modeling

    PubMed Central

    Mollard, Séverine; Fanciullino, Raphaelle; Giacometti, Sarah; Serdjebi, Cindy; Benzekry, Sebastien; Ciccolini, Joseph

    2016-01-01

    This study aimed at evaluating the reliability and precision of Diffuse Luminescent Imaging Tomography (DLIT) for monitoring primary tumor and metastatic spreading in breast cancer mice, and to develop a biomathematical model to describe the collected data. Using orthotopic mammary fat pad model of breast cancer (MDAMB231-Luc) in mice, we monitored tumor and metastatic spreading by three-dimensional (3D) bioluminescence and cross-validated it with standard bioluminescence imaging, caliper measurement and necropsy examination. DLIT imaging proved to be reproducible and reliable throughout time. It was possible to discriminate secondary lesions from the main breast cancer, without removing the primary tumor. Preferential metastatic sites were lungs, peritoneum and lymph nodes. Necropsy examinations confirmed DLIT measurements. Marked differences in growth profiles were observed, with an overestimation of the exponential phase when using a caliper as compared with bioluminescence. Our mathematical model taking into account the balance between living and necrotic cells proved to be able to reproduce the experimental data obtained with a caliper or DLIT imaging, because it could discriminate proliferative living cells from a more composite mass consisting of tumor cells, necrotic cell, or inflammatory tissues. DLIT imaging combined with mathematical modeling could be a powerful and informative tool in experimental oncology. PMID:27812027

  2. Three-dimensional orientation and location-dependent varying rules of radiographic angles of the acetabular cup.

    PubMed

    Zhao, Jing-Xin; Su, Xiu-Yun; Zhao, Zhe; Xiao, Ruo-Xiu; Zhang, Li-Cheng; Tang, Pei-Fu

    2018-02-17

    The aim of this study is to demonstrate the varying rules of radiographic angles following varying three-dimensional (3D) orientations and locations of cup using an accurate mathematical model. A cone model is established to address the quantitative relationship between the opening circle of cup and its ellipse projection on radiograph. The varying rules of two-dimensional (2D) radiographic anteversion (RA) and inclination (RI) angles can be analyzed. When the centre of cup is located above X-ray source, with proper 3D RI/RA angles, 2D RA angle can be equal to its 3D counterpart, and 2D RI angle is usually greater than its 3D counterpart. Except for the original point on hip-centered anterior-posterior radiograph, there is no area on radiograph where both 2D RA and RI angles are equal to their 3D counterparts simultaneously. This study proposes an innovative model for accurately explaining how 2D RA/RI angles of cup are varying following different 3D RA/RI angles and location of cup. The analysis results provide clinicians an intuitive grasp of knowledge about 2D RA/RI angles greater or smaller than their 3D counterparts post-operatively. The established model may allow determining the effects of pelvic rotations on 2D radiographic angles of cup.

  3. Electromagnetic density of modes for a finite-size three-dimensional structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J

    2004-05-01

    The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.

  4. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  5. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  6. Hierarchical classification in high dimensional numerous class cases

    NASA Technical Reports Server (NTRS)

    Kim, Byungyong; Landgrebe, D. A.

    1990-01-01

    As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.

  7. The Role of Motion Concepts in Understanding Non-Motion Concepts

    PubMed Central

    Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando

    2017-01-01

    This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715

  8. Finite element meshing approached as a global minimization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less

  9. Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.

    2008-12-01

    The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.

  10. Stability and Control of Human Trunk Movement During Walking.

    PubMed

    Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.

    1998-01-01

    A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.

  11. Evaluation of the three-dimensional parabolic flow computer program SHIP

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.

  12. "They're gonna explain to us what makes a cube a cube?" Geometrical properties as contingent achievement of sequentially ordered child-centered mathematics lessons

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael; Gardener, Rod

    2012-09-01

    In mathematics education, there is a continuing debate about the nature of mathematics, which some claim to be an objective science, whereas others note its socially and individually constructed nature. From a strict cultural-historical perspective, the objective and subjective sides of mathematics are but manifestations of a higher-order phenomenon that may be summarized by the aphorism that mind is in society to the extent that society is in the mind. In this study, we show, drawing on exemplifying materials from a second-grade unit on three-dimensional geometry, how mathematics manifests itself both as objective science all the while being subjectively produced. A particular three-turn interactional sequence comes to play a central role. We conclude by re-assigning a positive role to a much-maligned sequentially ordered conversational routine.

  13. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  14. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  15. Three-dimensional measurement of femur based on structured light scanning

    NASA Astrophysics Data System (ADS)

    Li, Jie; Ouyang, Jianfei; Qu, Xinghua

    2009-12-01

    Osteometry is fundamental to study the human skeleton. It has been widely used in palaeoanthropology, bionics, and criminal investigation for more than 200 years. The traditional osteometry is a simple 1-dimensional measurement that can only get 1D size of the bones in manual step-by-step way, even though there are more than 400 parameters to be measured. For today's research and application it is significant and necessary to develop an advanced 3-dimensional osteometry technique. In this paper a new 3D osteometry is presented, which focuses on measurement of the femur, the largest tubular bone in human body. 3D measurement based on the structured light scanning is developed to create fast and precise measurement of the entire body of the femur. The cloud data and geometry model of the sample femur is established in mathematic, accurate and fast way. More than 30 parameters are measured and compared with each other. The experiment shows that the proposed method can meet traditional osteometry and obtain all 1D geometric parameters of the bone at the same time by the mathematics model, such as trochanter-lateral condyle length, superior breadth of shaft, and collo-diaphyseal angle, etc. In the best way, many important geometric parameters that are very difficult to measure by existing osteometry, such as volume, surface area, and curvature of the bone, can be obtained very easily. The overall measuring error is less than 0.1mm.

  16. Three-dimensional measurement of femur based on structured light scanning

    NASA Astrophysics Data System (ADS)

    Li, Jie; Ouyang, Jianfei; Qu, Xinghua

    2010-03-01

    Osteometry is fundamental to study the human skeleton. It has been widely used in palaeoanthropology, bionics, and criminal investigation for more than 200 years. The traditional osteometry is a simple 1-dimensional measurement that can only get 1D size of the bones in manual step-by-step way, even though there are more than 400 parameters to be measured. For today's research and application it is significant and necessary to develop an advanced 3-dimensional osteometry technique. In this paper a new 3D osteometry is presented, which focuses on measurement of the femur, the largest tubular bone in human body. 3D measurement based on the structured light scanning is developed to create fast and precise measurement of the entire body of the femur. The cloud data and geometry model of the sample femur is established in mathematic, accurate and fast way. More than 30 parameters are measured and compared with each other. The experiment shows that the proposed method can meet traditional osteometry and obtain all 1D geometric parameters of the bone at the same time by the mathematics model, such as trochanter-lateral condyle length, superior breadth of shaft, and collo-diaphyseal angle, etc. In the best way, many important geometric parameters that are very difficult to measure by existing osteometry, such as volume, surface area, and curvature of the bone, can be obtained very easily. The overall measuring error is less than 0.1mm.

  17. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.

    PubMed

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-11

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  18. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-01

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  19. The operating diagram of a model of two competitors in a chemostat with an external inhibitor.

    PubMed

    Dellal, Mohamed; Lakrib, Mustapha; Sari, Tewfik

    2018-05-24

    Understanding and exploiting the inhibition phenomenon, which promotes the stable coexistence of species, is a major challenge in the mathematical theory of the chemostat. Here, we study a model of two microbial species in a chemostat competing for a single resource in the presence of an external inhibitor. The model is a four-dimensional system of ordinary differential equations. Using general monotonic growth rate functions of the species and absorption rate of the inhibitor, we give a complete analysis for the existence and local stability of all steady states. We focus on the behavior of the system with respect of the three operating parameters represented by the dilution rate and the input concentrations of the substrate and the inhibitor. The operating diagram has the operating parameters as its coordinates and the various regions defined in it correspond to qualitatively different asymptotic behavior: washout, competitive exclusion of one species, coexistence of the species around a stable steady state and coexistence around a stable cycle. This bifurcation diagram which determines the effect of the operating parameters, is very useful to understand the model from both the mathematical and biological points of view, and is often constructed in the mathematical and biological literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A Case Study of Teachers' Development of Well-Structured Mathematical Modelling Activities

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Maiorca, Cathrine; Allen, Charlie

    2017-01-01

    This case study investigated how three teachers developed mathematical modelling activities integrated with content standards through participation in a course on mathematical modelling. The class activities involved experiencing a mathematical modelling activity, reading and rating example mathematical modelling activities, reading articles about…

  1. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    PubMed

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  2. Characterization and modeling of an advanced flexible thermal protection material for space applications

    NASA Technical Reports Server (NTRS)

    Clayton, Joseph P.; Tinker, Michael L.

    1991-01-01

    This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.

  3. Pattern selection in solidification

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1984-01-01

    Directional solidification of alloys produces a wide variety of cellular or lamellar structures which, depending upon growth conditions, may be reproducibly regular or may behave chaotically. It is not well understood how these patterns are selected and controlled or even whether there ever exist sharp selection mechanisms. A related phenomenon is the spatial propagation of a pattern into a system which has been caused to become unstable against pattern-forming deformations. This phenomenon has some features in common with the propagation of sidebranching modes in dendritic solidification. In a class of one-dimensional models, the nonlinear system can be shown to select the propagating mode in which the leading edge of the pattern is just marginally stable. This stability principle, when applicable, predicts both the speed of propagation and the geometrical characteristics of the pattern which forms behind the moving front. A boundary-layer model for fully two or three dimensional solidification problems appears to exhibit similar mathematical behavior.

  4. Creep crack-growth: A new path-independent T sub o and computational studies

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1981-01-01

    Two path independent integral parameters which show some degree of promise as fracture criteria are the C* and delta T sub c integrals. The mathematical aspects of these parameters are reviewed. This is accomplished by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects and large deformations. Two principal conclusions are that delta T sub c is a valid crack tip parameter during nonsteady as well as steady state creep and that delta T sub c has an energy rate interpretation whereas C* does not. An efficient, small displacement, infinitestimal strain, displacement based finite element model is developed for general elastic/plastic material behavior. For the numerical studies, this model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations.

  5. Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Modena, T. D.

    1979-01-01

    An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions.

  6. On firework blasts and qualitative parameter dependency.

    PubMed

    Zohdi, T I

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given.

  7. On firework blasts and qualitative parameter dependency

    PubMed Central

    Zohdi, T. I.

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given. PMID:26997903

  8. An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    Darcy-Forchheimer three dimensional flow of Carreau nanoliquid induced by a linearly stretchable surface with convective boundary condition has been analyzed. Buongiorno model has been employed to elaborate thermophoresis and Brownian diffusion effects. Zero nanoparticles mass flux and convective surface conditions are implemented at the boundary. The governing problems are nonlinear. Optimal homotopic procedure has been used to tackle the governing mathematical system. Graphical results clearly depict the outcome of temperature and concentration fields. Surface drag coefficients and local Nusselt number are also plotted and discussed.

  9. Numerical investigations of hybrid rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  10. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  11. Cochlear mechanics: Analysis for a pure tone

    NASA Astrophysics Data System (ADS)

    Holmes, M. H.; Cole, J. D.

    1983-11-01

    The dynamical response of a three-dimensional hydroelastic model of the cochlea is studied for a pure tone forcing. The basilar membrane is modeled as an inhomogenous, orthotropic elastic plate and the fluid is assumed to be Newtonian. The resulting mathematical problem is reduced using viscous boundary layer theory and slender body approximations. This leads to a nonlinear eigenvalue problem in the transverse cross-section. The solutions for the case of a rectangular and semi-circular cross-section are computed and comparison is made with experiment. The role of the place principle in determining the difference limen is presented and it is shown how the theory agrees with the experimental measurements.

  12. Improvement of ecological characteristics of the hydrogen diesel engine

    NASA Astrophysics Data System (ADS)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  13. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  14. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1982-01-01

    A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.

  15. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  16. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (PME 20) (20th, Valencia, Spain, July 8-12, 1996). Volume 1.

    ERIC Educational Resources Information Center

    Puig, Luis, Ed.; Gutierrez, Angel, Ed.

    The first volume of this proceedings contains three plenary addresses: (1) "Visualization in 3-dimensional geometry: In search of a framework" (A. Gutierrez); (2) "The ongoing value of proof" (G. Hanna); and (3) "Modern times: The symbolic surfaces of language, mathematics and art" (D. Pimm). Plenary panels include: (1) "Contribution to the panel…

  17. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  18. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  19. A 3D mathematical model for the horizontal anode baking furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.

    In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less

  20. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less

  1. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  2. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

    NASA Astrophysics Data System (ADS)

    Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

    2018-05-01

    In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

  3. A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Gambolati, Giuseppe; Teatini, Pietro

    1996-01-01

    A new quasi three-dimensional finite element model of groundwater flow is developed for highly compressible multiaquifer systems where aquitard permeability and elastic storage are dependent on hydraulic drawdown. The model is solved by a block iterative strategy, which is naturally suggested by the geological structure of the porous medium and can be shown to be mathematically equivalent to a block Gauss-Seidel procedure. As such it can be generalized into a block overrelaxation procedure and greatly accelerated by the use of the optimum overrelaxation factor. Results for both linear and nonlinear multiaquifer systems emphasize the excellent computational performance of the model and indicate that convergence in leaky systems can be improved up to as much as one order of magnitude.

  4. Simulating Microbial Community Patterning Using Biocellion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak

    2014-04-17

    Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vastmore » space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.« less

  5. Study of propellant dynamics in a shuttle type launch vehicle

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Feng, G. C.

    1972-01-01

    A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.

  6. Pulse Phase Dynamic Thermal Tomography Investigation on the Defects of the Solid-Propellant Missile Engine Cladding Layer

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Wang, Fei; Liu, Jun-yan; Xiao, Peng; Wang, Yang; Dai, Jing-min

    2018-04-01

    Pulse phase dynamic thermal tomography (PP-DTT) was introduced as a nondestructive inspection technique to detect the defects of the solid-propellant missile engine cladding layer. One-dimensional thermal wave mathematical model stimulated by pulse signal was developed and employed to investigate the thermal wave transmission characteristics. The pulse phase algorithm was used to extract the thermal wave characteristic of thermal radiation. Depth calibration curve was obtained by fuzzy c-means algorithm. Moreover, PP-DTT, a depth-resolved photothermal imaging modality, was employed to enable three-dimensional (3D) visualization of cladding layer defects. The comparison experiment between PP-DTT and classical dynamic thermal tomography was investigated. The results showed that PP-DTT can reconstruct the 3D topography of defects in a high quality.

  7. Stress wave calculations in composite plates using the fast Fourier transform.

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  8. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy

    PubMed Central

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Background Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. Materials and Methods We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. Results In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Conclusion Our results provide a theoretical background for a much more effective bevacizumab treatment using optimized administration. PMID:26540189

  9. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy.

    PubMed

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Our results provide a theoretical background for a much more effective bevacizumab treatment using optimized administration.

  10. Rigorous Model Reduction for a Damped-Forced Nonlinear Beam Model: An Infinite-Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Kogelbauer, Florian; Haller, George

    2018-06-01

    We use invariant manifold results on Banach spaces to conclude the existence of spectral submanifolds (SSMs) in a class of nonlinear, externally forced beam oscillations. SSMs are the smoothest nonlinear extensions of spectral subspaces of the linearized beam equation. Reduction in the governing PDE to SSMs provides an explicit low-dimensional model which captures the correct asymptotics of the full, infinite-dimensional dynamics. Our approach is general enough to admit extensions to other types of continuum vibrations. The model-reduction procedure we employ also gives guidelines for a mathematically self-consistent modeling of damping in PDEs describing structural vibrations.

  11. A characterization of linearly repetitive cut and project sets

    NASA Astrophysics Data System (ADS)

    Haynes, Alan; Koivusalo, Henna; Walton, James

    2018-02-01

    For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.

  12. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  13. A 2D nonlinear multiring model for blood flow in large elastic arteries

    NASA Astrophysics Data System (ADS)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  14. Visualizing Three-Dimensional Calculus Concepts: The Study of a Manipulative's Effectiveness

    ERIC Educational Resources Information Center

    McGee, Daniel, Jr.; Moore-Russo, Deborah; Ebersole, Dennis; Lomen, David O.; Quintero, Maider Marin

    2012-01-01

    With the help of the National Science Foundation, the Department of Mathematics at the University of Puerto Rico in Mayaguez has developed a set of manipulatives to help students of science and engineering visualize concepts relating to points, surfaces, curves, contours, and vectors in three dimensions. This article will present the manipulatives…

  15. Numerical simulation of injection process of warm carbon dioxide into layer saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.

    2018-05-01

    In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.

  16. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    DOE PAGES

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; ...

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less

  17. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  18. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  19. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    NASA Astrophysics Data System (ADS)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  20. DNA denaturation through a model of the partition points on a one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology.

  1. Dimensional analysis, similarity, analogy, and the simulation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, A.A.

    1978-01-01

    Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theorymore » which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others.« less

  2. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.

  3. Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the Acoustic Velocity Potential Equation (AVPE). The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob [2, 3]. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.

  4. A computer program for uncertainty analysis integrating regression and Bayesian methods

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary

    2014-01-01

    This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.

  5. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  6. Method of surface error visualization using laser 3D projection technology

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  7. Three-dimensional automatic computer-aided evaluation of pleural effusions on chest CT images

    NASA Astrophysics Data System (ADS)

    Bi, Mark; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The ability to estimate the volume of pleural effusions is desirable as it can provide information about the severity of the condition and the need for thoracentesis. We present here an improved version of an automated program to measure the volume of pleural effusions using regular chest CT images. First, the lungs are segmented using region growing, mathematical morphology, and anatomical knowledge. The visceral and parietal layers of the pleura are then extracted based on anatomical landmarks, curve fitting and active contour models. The liver and compressed tissues are segmented out using thresholding. The pleural space is then fitted to a Bezier surface which is subsequently projected onto the individual two-dimensional slices. Finally, the volume of the pleural effusion is quantified. Our method was tested on 15 chest CT studies and validated against three separate manual tracings. The Dice coefficients were 0.74+/-0.07, 0.74+/-0.08, and 0.75+/-0.07 respectively, comparable to the variation between two different manual tracings.

  8. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  9. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  10. A variable-order laminated plate theory based on the variational-asymptotical method

    NASA Technical Reports Server (NTRS)

    Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.

    1993-01-01

    The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.

  11. Mathematical Model and Simulation of Particle Flow around Choanoflagellates Using the Method of Regularized Stokeslets

    NASA Astrophysics Data System (ADS)

    Nararidh, Niti

    2013-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.

  12. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  13. Summer Camp of Mathematical Modeling in China

    ERIC Educational Resources Information Center

    Tian, Xiaoxi; Xie, Jinxing

    2013-01-01

    The Summer Camp of Mathematical Modeling in China is a recently created experience designed to further Chinese students' academic pursuits in mathematical modeling. Students are given more than three months to research on a mathematical modeling project. Researchers and teams with outstanding projects are invited to the Summer Camp to present…

  14. Roots and decompositions of three-dimensional topological objects

    NASA Astrophysics Data System (ADS)

    Matveev, Sergei V.

    2012-06-01

    In 1942 M.H.A. Newman formulated and proved a simple lemma of great importance for various fields of mathematics, including algebra and the theory of Gröbner-Shirshov bases. Later it was called the Diamond Lemma, since its key construction was illustrated by a diamond-shaped diagram. In 2005 the author suggested a new version of this lemma suitable for topological applications. This paper gives a survey of results on the existence and uniqueness of prime decompositions of various topological objects: three-dimensional manifolds, knots in thickened surfaces, knotted graphs, three-dimensional orbifolds, and knotted theta-curves in three-dimensional manifolds. As it turned out, all these topological objects admit a prime decomposition, although it is not unique in some cases (for example, in the case of orbifolds). For theta-curves and knots of geometric degree 1 in a thickened torus, the algebraic structure of the corresponding semigroups can be completely described. In both cases the semigroups are quotients of free groups by explicit commutation relations. Bibliography: 33 titles.

  15. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    PubMed

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  16. Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems

    NASA Astrophysics Data System (ADS)

    Badriev, I. B.; Paimuhin, V. N.

    2018-01-01

    The coupled problem of planar acoustic wave propagation through a composite plate covered with a second damping layer with a large logarithmic decrement of oscillations is formulated. The aerohydrodynamic interaction of a plate with external acoustic environment is described by three-dimensional wave equations and the mechanical behavior of a two-layer plate by the classical Kirchhoff-Love model. An exact analytic solution of the problem is found for the case of hinged support of the edges of a plate. On the basis of this, the parameters of the covering damping layer were found, under which it is possible to achieve a practically complete damping of the plate vibration under resonant modes of its acoustic loading.

  17. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  18. Three-dimensional description and mathematical characterization of the parasellar internal carotid artery in human infants

    PubMed Central

    Meng, Stefan; da F Costa, Luciano; Geyer, Stefan H; Viana, Matheus P; Reiter, Christian; Müller, Gerd B; Weninger, Wolfgang J

    2008-01-01

    Inside the ‘cavernous sinus’ or ‘parasellar region’ the human internal carotid artery takes the shape of a siphon that is twisted and torqued in three dimensions and surrounded by a network of veins. The parasellar section of the internal carotid artery is of broad biological and medical interest, as its peculiar shape is associated with temperature regulation in the brain and correlated with the occurrence of vascular pathologies. The present study aims to provide anatomical descriptions and objective mathematical characterizations of the shape of the parasellar section of the internal carotid artery in human infants and its modifications during ontogeny. Three-dimensional (3D) computer models of the parasellar section of the internal carotid artery of infants were generated with a state-of-the-art 3D reconstruction method and analysed using both traditional morphometric methods and novel mathematical algorithms. We show that four constant, demarcated bends can be described along the infant parasellar section of the internal carotid artery, and we provide measurements of their angles. We further provide calculations of the curvature and torsion energy, and the total complexity of the 3D skeleton of the parasellar section of the internal carotid artery, and compare the complexity of this in infants and adults. Finally, we examine the relationship between shape parameters of the parasellar section of the internal carotid artery in infants, and the occurrence of intima cushions, and evaluate the reliability of subjective angle measurements for characterizing the complexity of the parasellar section of the internal carotid artery in infants. The results can serve as objective reference data for comparative studies and for medical imaging diagnostics. They also form the basis for a new hypothesis that explains the mechanisms responsible for the ontogenetic transformation in the shape of the parasellar section of the internal carotid artery. PMID:18397239

  19. How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?

    PubMed

    Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2015-12-01

    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

  20. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  1. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  2. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  3. Modeling of the financial market using the two-dimensional anisotropic Ising model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-09-01

    We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.

  4. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  5. Molecular modeling: An open invitation for applied mathematics

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  6. A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok

    2016-03-01

    An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.

  7. Epistemological Beliefs of Prospective Preschool Teachers and Their Relation to Knowledge, Perception, and Planning Abilities in the Field of Mathematics: A Process Model

    ERIC Educational Resources Information Center

    Dunekacke, Simone; Jenßen, Lars; Eilerts, Katja; Blömeke, Sigrid

    2016-01-01

    Teacher competence is a multi-dimensional construct that includes beliefs as well as knowledge. The present study investigated the structure of prospective preschool teachers' mathematics-related beliefs and their relation to content knowledge and pedagogical content knowledge. In addition, prospective preschool teachers' perception and planning…

  8. Physical and mathematical cochlear models

    NASA Astrophysics Data System (ADS)

    Lim, Kian-Meng

    2000-10-01

    The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity, and non-linear effects such as compression of response with stimulus level, two-tone suppression and the generation of harmonic and distortion products.

  9. Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data

    PubMed Central

    2014-01-01

    Background High-throughput omics technologies have enabled the measurement of many genes or metabolites simultaneously. The resulting high dimensional experimental data poses significant challenges to transcriptomics and metabolomics data analysis methods, which may lead to spurious instead of biologically relevant results. One strategy to improve the results is the incorporation of prior biological knowledge in the analysis. This strategy is used to reduce the solution space and/or to focus the analysis on biological meaningful regions. In this article, we review a selection of these methods used in transcriptomics and metabolomics. We combine the reviewed methods in three groups based on the underlying mathematical model: exploratory methods, supervised methods and estimation of the covariance matrix. We discuss which prior knowledge has been used, how it is incorporated and how it modifies the mathematical properties of the underlying methods. PMID:25033193

  10. System and method for extracting dominant orientations from a scene

    DOEpatents

    Straub, Julian; Rosman, Guy; Freifeld, Oren; Leonard, John J.; Fisher, III; , John W.

    2017-05-30

    In one embodiment, a method of identifying the dominant orientations of a scene comprises representing a scene as a plurality of directional vectors. The scene may comprise a three-dimensional representation of a scene, and the plurality of directional vectors may comprise a plurality of surface normals. The method further comprises determining, based on the plurality of directional vectors, a plurality of orientations describing the scene. The determined plurality of orientations explains the directionality of the plurality of directional vectors. In certain embodiments, the plurality of orientations may have independent axes of rotation. The plurality of orientations may be determined by representing the plurality of directional vectors as lying on a mathematical representation of a sphere, and inferring the parameters of a statistical model to adapt the plurality of orientations to explain the positioning of the plurality of directional vectors lying on the mathematical representation of the sphere.

  11. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  12. Using the 1989 Calendar as a Resource.

    ERIC Educational Resources Information Center

    Chick, Helen

    1989-01-01

    Presents 10 space-related ideas, thoughts, and questions represented on the Australian Association of Mathematics Teachers (AAMT) calendar. The ideas are on impossible shapes, fractals, space itself, galaxy, tesselated pigs, spirals, helices, black holes and three-dimensional surfaces, tesseracts, and mobius bands. (YP)

  13. A "Kane's Dynamics" Model for the Active Rack Isolation System Part Two: Nonlinear Model Development, Verification, and Simplification

    NASA Technical Reports Server (NTRS)

    Beech, G. S.; Hampton, R. D.; Rupert, J. K.

    2004-01-01

    Many microgravity space-science experiments require vibratory acceleration levels that are unachievable without active isolation. The Boeing Corporation's active rack isolation system (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station. Effective model-based vibration isolation requires: (1) An isolation device, (2) an adequate dynamic; i.e., mathematical, model of that isolator, and (3) a suitable, corresponding controller. This Technical Memorandum documents the validation of that high-fidelity dynamic model of ARIS. The verification of this dynamics model was achieved by utilizing two commercial off-the-shelf (COTS) software tools: Deneb's ENVISION(registered trademark), and Online Dynamics Autolev(trademark). ENVISION is a robotics software package developed for the automotive industry that employs three-dimensional computer-aided design models to facilitate both forward and inverse kinematics analyses. Autolev is a DOS-based interpreter designed, in general, to solve vector-based mathematical problems and specifically to solve dynamics problems using Kane's method. The simplification of this model was achieved using the small-angle theorem for the joint angle of the ARIS actuators. This simplification has a profound effect on the overall complexity of the closed-form solution while yielding a closed-form solution easily employed using COTS control hardware.

  14. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two-dimensional and three-dimensional simulation results in the context of the maximum temperature observed in the domain, it is apparent that three-dimensional calculations are necessary in order to avoid belated ignition times in reactive scenarios.

  15. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  16. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  17. A History of the Description of the Three-Dimensional Finite Rotation

    NASA Astrophysics Data System (ADS)

    Fraiture, Luc

    2009-01-01

    A history of the description of a three-dimensional finite rotation is given starting with Cardano in the middle of the sixteenth century and ending with Bryan in the beginning of the past century. Description means both a textual description and/or a mathematical representation. To appreciate the historical context of the milestones reached over the centuries, the background and personality of the main players in this history are given. At the end, a short critical discussion is added, reviewing the present names of rotation parameters in use related to the scientists which have been considered here.

  18. Wave field restoration using three-dimensional Fourier filtering method.

    PubMed

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  19. Conversion of NIMROD simulation results for graphical analysis using VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  20. Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Dummuller, D.C.; Trent, D.S.

    Pacific Northwest Laboratory (PNL) performed a study for the US Environmental Protection Agency's Office of Radiation Programs to (1) identify candidate models for regional modeling of low-level waste ocean disposal sites in the mid-Atlantic ocean; (2) evaluate mathematical representation of the model's eddy viscosity/dispersion coefficients; and (3) evaluate the adequacy of the k-{epsilon} turbulence model and the feasibility of one of the candidate models, TEMPEST{copyright}/FLESCOT{copyright}, to deep-ocean applications on a preliminary basis. PNL identified the TEMPEST{copyright}/FLESCOT{copyright}, FLOWER, Blumberg's, and RMA 10 models as appropriate candidates for the regional radionuclide modeling. Among these models, TEMPEST/FLESCOT is currently the only model thatmore » solves distributions of flow, turbulence (with the k-{epsilon} model), salinity, water temperature, sediment, dissolved contaminants, and sediment-sorbed contaminants. Solving the Navier-Stokes equations using higher order correlations is not practical for regional modeling because of the prohibitive computational requirements; therefore, the turbulence modeling is a more practical approach. PNL applied the three-dimensional code, TEMPEST{copyright}/FLESCOT{copyright} with the k-{epsilon} model, to a very simple, hypothetical, two-dimensional, deep-ocean case, producing at least qualitatively appropriate results. However, more detailed testing should be performed for the further testing of the code. 46 refs., 39 figs., 6 tabs.« less

  1. Dynamical systems defined on infinite dimensional lie algebras of the ''current algebra'' or ''Kac-Moody'' type

    NASA Astrophysics Data System (ADS)

    Hermann, Robert

    1982-07-01

    Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.

  2. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  3. A mathematical model of a steady flow through the Kaplan turbine - The existence of a weak solution in the case of an arbitrarily large inflow

    NASA Astrophysics Data System (ADS)

    Neustupa, Tomáš

    2017-07-01

    The paper presents the mathematical model of a steady 2-dimensional viscous incompressible flow through a radial blade machine. The corresponding boundary value problem is studied in the rotating frame. We provide the classical and weak formulation of the problem. Using a special form of the so called "artificial" or "natural" boundary condition on the outflow, we prove the existence of a weak solution for an arbitrarily large inflow.

  4. Mathematical Modeling: Challenging the Figured Worlds of Elementary Mathematics

    ERIC Educational Resources Information Center

    Wickstrom, Megan H.

    2017-01-01

    This article is a report on a teacher study group that focused on three elementary teachers' perceptions of mathematical modeling in contrast to typical mathematics instruction. Through the theoretical lens of figured worlds, I discuss how mathematics instruction was conceptualized across the classrooms in terms of artifacts, discourse, and…

  5. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    ERIC Educational Resources Information Center

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  6. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  7. Unsteady flow model for circulation-control airfoils

    NASA Technical Reports Server (NTRS)

    Rao, B. M.

    1979-01-01

    An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.

  8. A Long-Term Mathematical Model for Mining Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Giraud, Pierre-Noel; Lasry, Jean-Michel

    A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In somemore » cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.« less

  9. Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Kamnev, I. S.; Seredovich, V. A.

    2017-12-01

    The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.

  10. A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET

    PubMed Central

    Rockne, Russell C.; Trister, Andrew D.; Jacobs, Joshua; Hawkins-Daarud, Andrea J.; Neal, Maxwell L.; Hendrickson, Kristi; Mrugala, Maciej M.; Rockhill, Jason K.; Kinahan, Paul; Krohn, Kenneth A.; Swanson, Kristin R.

    2015-01-01

    Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. PMID:25540239

  11. Approximating high-dimensional dynamics by barycentric coordinates with linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics ofmore » the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.« less

  12. Approximating high-dimensional dynamics by barycentric coordinates with linear programming.

    PubMed

    Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma

    2015-01-01

    The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.

  13. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments Database

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  14. SU-E-T-750: Three Dimensional in Silico Study of Brachytherapy Application with In-Situ Dose-Painting Administered Via Gold-Nanoparticle Eluters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, N; Cifter, G; Ngwa, W

    Purpose: Brachytherapy Application with in-situ Dose-painting Administered via Gold-Nanoparticle Eluters (BANDAGE) has been proposed as a new therapeutic strategy for radiation boosting of high-risk prostate tumor subvolume while minimizing dose to neighboring organs-at-risk. In a previous study the one-dimensional dose-painting with gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers was investigated. The current study investigates BANDAGE in three-dimensions. Methods: To simulate GNPs transport in prostrate tumors, a three dimensional, cylindrically symmetric transport model was generated using a finite element method (FEM). A mathematical model of Gold nanoparticle (GNPs) transport provides a useful strategy to optimize potential treatment planning for BANDAGE.more » Here, treatment of tumors with a radius of 2.5 cm was simulated in 3-D. This simulation phase considered one gold based cylindrical spacer (GBS of size 5mm × 0.8 mm) introduced at the center of the spherical tumor with initial concentration of 100 mg/g or 508 mol/m3 of GNP. Finite element mesh is used to stimulate the GNP transport. Gold concentrations within the tumor were obtained using a 3-D FEM solution implemented by COMSOL. Results: The analysis shows the spread of the GNPs through-out the tumor with the increase of concentration towards the periphery with time. The analysis also shows the concentration profiles and corresponding dose enhancement factors (dose boost factor) as a function of GNP size. Conclusion: This study demonstrates the use of computational modeling and optimal parameter estimation to predict local GNPs from central implant as a function of x, y and z axis . Such a study provides a useful reference for ongoing translational studies for the BANDAGE approach.« less

  15. [Mathematical calculation of strength of the vertebral column in surgical treatment of unstable fractures of the spine].

    PubMed

    Orlov, S V; Kanykin, A Iu; Moskalev, V P; Shchedrenok, V V; Sedov, R L

    2009-01-01

    A mathematical model of a three-vertebra complex was developed in order to make an exact calculation of loss of supporting ability of the vertebral column in trauma. Mathematical description of the dynamic processes was based on Lagrange differential equation of the second order. The degree of compression and instability of the three-vertebra complex, established using mathematical modeling, determines the decision on the surgical treatment and might be considered as a prognostic criterion of the course of the compression trauma of the spine. The method of mathematical modeling of supporting ability of the vertebral column was used in 72 patients.

  16. Prediction of android and gynoid body adiposity via a three-dimensional stereovision body imaging system and dual-energy x-ray absorptiometry

    PubMed Central

    Lee, Jane J.; Freeland-Graves, Jeanne H.; Pepper, M. Reese; Stanforth, Philip R.; Xu, Bugao

    2017-01-01

    Objective Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease-of-use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. Methods A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percent fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. Results The R2 of the prediction equations for fat mass and percent body fat were 93.2% and 76.4% for android, and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percent fat were − 0.06 ± 0.87 kg and − 0.11 ± 1.97 % for android and − 0.04 ± 1.58 kg and − 0.19 ± 4.27 % for gynoid. Prediction values for fat mass and percent fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. Conclusions The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid, as well as total and regional (trunk, leg) fat mass. PMID:25915106

  17. Prediction of Android and Gynoid Body Adiposity via a Three-dimensional Stereovision Body Imaging System and Dual-Energy X-ray Absorptiometry.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Stanforth, Philip R; Xu, Bugao

    2015-01-01

    Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease of use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percentage fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. The R(2) of the prediction equations for fat mass and percentage body fat were 93.2% and 76.4% for android and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percentage fat were -0.06 ± 0.87 kg and -0.11% ± 1.97% for android and -0.04 ± 1.58 kg and -0.19% ± 4.27% for gynoid. Prediction values for fat mass and percentage fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid as well as total and regional (trunk, leg) fat mass.

  18. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsoulakis, Markos

    2014-08-09

    Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less

  19. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Muhammad, Taseer; Alsaedi, A.; Alhuthali, M. S.

    2015-07-01

    Magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid in the presence of thermophoresis and Brownian motion effects is analyzed. Energy equation subject to nonlinear thermal radiation is taken into account. The flow is generated by a bidirectional stretching surface. Fluid is electrically conducting in the presence of a constant applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds number. Mathematical formulation is performed using boundary layer analysis. Newly proposed boundary condition requiring zero nanoparticle mass flux is employed. The governing nonlinear mathematical problems are first converted into dimensionless expressions and then solved for the series solutions of velocities, temperature and nanoparticles concentration. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Skin friction coefficients and Nusselt number are also computed and analyzed. It is found that the thermal boundary layer thickness is an increasing function of radiative effect.

  20. Python as a federation tool for GENESIS 3.0.

    PubMed

    Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.

  1. Python as a Federation Tool for GENESIS 3.0

    PubMed Central

    Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101

  2. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroer, Bert

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated localmore » covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125.« less

  3. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2006-02-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff( S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular "Euclideanization" is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an "Encyclopedia of Mathematical Physics" contribution hep-th/0502125.

  4. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  5. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  6. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  7. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  8. 3-D characterization of weathered building limestones by high resolution synchrotron X-ray microtomography.

    PubMed

    Rozenbaum, O

    2011-04-15

    Understanding the weathering processes of building stones and more generally of their transfer properties requires detailed knowledge of the porosity characteristics. This study aims at analyzing three-dimensional images obtained by X-ray microtomography of building stones. In order to validate these new results a weathered limestone previously characterised (Rozenbaum et al., 2007) by two-dimensional image analysis was selected. The 3-D images were analysed by a set of mathematical tools that enable the description of the pore and solid phase distribution. Results show that 3-D image analysis is a powerful technique to characterise the morphological, structural and topological differences due to weathering. The paper also discusses criteria for mathematically determining whether a stone is weathered or not. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  10. Asymptotic dynamics of some t-periodic one-dimensional model with application to prostate cancer immunotherapy.

    PubMed

    Foryś, U; Bodnar, M; Kogan, Y

    2016-10-01

    In the case of some specific cancers, immunotherapy is one of the possible treatments that can be considered. Our study is based on a mathematical model of patient-specific immunotherapy proposed in Kronik et al. (PLoS One 5(12):e15,482, 2010). This model was validated for clinical trials presented in Michael et al. (Clin Cancer Res 11(12):4469-4478, 2005). It consists of seven ordinary differential equations and its asymptotic dynamics can be described by some t-periodic one-dimensional dynamical system. In this paper we propose a generalised version of this t-periodic system and study the dynamics of the proposed model. We show that there are three possible types of the model behaviour: the solution either converges to zero, or diverges to infinity, or it is periodic. Moreover, the periodic solution is unique, and it divides the phase space into two sub-regions. The general results are applied to the PC specific case, which allow to derive conditions guaranteeing successful as well as unsuccessful treatment. The results indicate that a single vaccination is not sufficient to cure the cancer.

  11. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  12. Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang

    2017-03-01

    In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.

  13. T-cell movement on the reticular network.

    PubMed

    Donovan, Graham M; Lythe, Grant

    2012-02-21

    The idea that the apparently random motion of T cells in lymph nodes is a result of movement on a reticular network (RN) has received support from dynamic imaging experiments and theoretical studies. We present a mathematical representation of the RN consisting of edges connecting vertices that are randomly distributed in three-dimensional space, and models of lymphocyte movement on such networks including constant speed motion along edges and Brownian motion, not in three-dimensions, but only along edges. The simplest model, in which a cell moves with a constant speed along edges, is consistent with mean-squared displacement proportional to time over intervals long enough to include several changes of direction. A non-random distribution of turning angles is one consequence of motion on a preformed network. Confining cell movement to a network does not, in itself, increase the frequency of cell-cell encounters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Generalized Weierstrass-Mandelbrot Function Model for Actual Stocks Markets Indexes with Nonlinear Characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Yu, C.; Sun, J. Q.

    2015-03-01

    It is difficult to simulate the dynamical behavior of actual financial markets indexes effectively, especially when they have nonlinear characteristics. So it is significant to propose a mathematical model with these characteristics. In this paper, we investigate a generalized Weierstrass-Mandelbrot function (WMF) model with two nonlinear characteristics: fractal dimension D where 2 > D > 1.5 and Hurst exponent (H) where 1 > H > 0.5 firstly. And then we study the dynamical behavior of H for WMF as D and the spectrum of the time series γ change in three-dimensional space, respectively. Because WMF and the actual stock market indexes have two common features: fractal behavior using fractal dimension and long memory effect by Hurst exponent, we study the relationship between WMF and the actual stock market indexes. We choose a random value of γ and fixed value of D for WMF to simulate the S&P 500 indexes at different time ranges. As shown in the simulation results of three-dimensional space, we find that γ is important in WMF model and different γ may have the same effect for the nonlinearity of WMF. Then we calculate the skewness and kurtosis of actual Daily S&P 500 index in different time ranges which can be used to choose the value of γ. Based on these results, we choose appropriate γ, D and initial value into WMF to simulate Daily S&P 500 indexes. Using the fit line method in two-dimensional space for the simulated values, we find that the generalized WMF model is effective for simulating different actual stock market indexes in different time ranges. It may be useful for understanding the dynamical behavior of many different financial markets.

  15. Hydrodynamic water impact. [Apollo spacecraft waterlanding

    NASA Technical Reports Server (NTRS)

    Kettleborough, C. F.

    1972-01-01

    The hydrodynamic impact of a falling body upon a viscous incompressible fluid was investigated by numerically solving the equations of motion. Initially the mathematical model simulated the axisymmetric impact of a rigid right circular cylinder upon the initially quiescent free surface of a fluid. A compressible air layer exists between the falling cylinder and the liquid free surface. The mathematical model was developed by applying the Navier-Stokes equations to the incompressible air layer and the incompressible fluid. Assuming the flow to be one dimensional within the air layer, the average velocity, pressure and density distributions were calculated. The liquid free surface was allowed to deform as the air pressure acting on it increases. For the liquid the normalized equations were expressed in two-dimensional cylindrical coordinates. The governing equations for the air layer and the liquid were expressed in finite difference form and solved numerically. For the liquid a modified version of the Marker-and-Cell method was used. The mathematical model has been reexamined and a new approach has recently been initiated. Essentially this consists of examining the impact of an inclined plate onto a quiesent water surface with the equations now formulated in cartesian coordinates.

  16. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  17. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  18. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    NASA Astrophysics Data System (ADS)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  19. Phase Transitions and Free Boundaries

    DTIC Science & Technology

    1991-10-31

    Antman & M. Lanza de Gristoforis On the asymptotic properties of Leray’s solutions to exterior stationary three-dimensional Navier-Stokes equations...the School of Mathematics and the IMA Unless otherwise indicated, the talks today are in Conteence Hall EE/CS 3-180 9:30 am S. Antman Nonlinear

  20. The Axial Curve Rotator.

    ERIC Educational Resources Information Center

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  1. PROGRAM VSAERO: A computer program for calculating the non-linear aerodynamic characteristics of arbitrary configurations: User's manual

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1982-01-01

    VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.

  2. Mathematical modeling of flow in the working part of an acousto-convective drying system

    NASA Astrophysics Data System (ADS)

    Kravchenko, A. S.; Zhilin, A. A.; Fedorova, N. N.

    2018-03-01

    The objective of this study was to numerically simulate the nonstationary processes occurring in the acoustic-convective dryer (ACD) channel. In the present work, the problem was solved numerically in a three-dimensional formulation taking into account all features of the ACD duct in real geometry. The processes occurring in the ACD duct were simulated using the ANSYS Fluent 18.0 software. The numerical experiments provided an aggregate picture of the working gas flow in the ACD duct with the features near the subsonic nozzle and the cavity. The results of the numerical calculations were compared with experimental data. The best agreement with the experimental data was obtained for the viscosity model neglecting turbulent effects.

  3. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1983-01-01

    Extending the work of Goree and Gross (1979), solutions are given for a two-dimensional region of unidirectional fibers embedded in an elastic matrix whose initial flaw may take the form of a transverse notch, a rectangular cutout, or a circular hole. Subsequent flaw-induced damage is generated by remote stresses acting parallel to the fibers. For the case of such ductile matrix composites as boron/aluminum, present results indicate that both longitudinal matrix yielding and transverse notch extension must be included in order for the model to agree with experimental results. Little difference is found for the three types of initial damage considered. In all cases, the presence of additional damage changes the nature of stress distribution through the unbroken fibers.

  4. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  5. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  6. Three essays on multi-level optimization models and applications

    NASA Astrophysics Data System (ADS)

    Rahdar, Mohammad

    The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation problem in each node and decreasing the number of iterations. Computational experiments show that the proposed algorithm is faster than the existing ones.

  7. Impact of renal medullary three-dimensional architecture on oxygen transport.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T

    2014-08-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption. Copyright © 2014 the American Physiological Society.

  8. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  9. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  10. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  11. Optimization of the lithium/thionyl chloride battery

    NASA Technical Reports Server (NTRS)

    White, Ralph E.

    1987-01-01

    The progress which has been made in modeling the lithium/thionyl chloride cell over the past year and proposed research for the coming year are discussed. A one-dimensional mathematical model for a lithium/thionyl chloride cell has been developed and used to investigate methods of improving cell performance. During the course of the work a problem was detected with the banded solver being used. It was replaced with one more reliable. Future work may take one of two directions. The one-dimensional model could be augmented to include additional features and to investigate in more detail the cell temperature behavior, or a simplified two-dimensional model for the spirally wound design of this battery could be developed to investigate the heat flow within the cell.

  12. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta

    PubMed Central

    Holzapfel, Gerhard A.; Ogden, Ray W.

    2010-01-01

    This paper provides the first analysis of the three-dimensional state of residual stress and stretch in an artery wall consisting of three layers (intima, media and adventitia), modelled as a circular cylindrical tube. The analysis is based on experimental results on human aortas with non-atherosclerotic intimal thickening documented in a recent paper by Holzapfel et al. ( Holzapfel et al. 2007 Ann. Biomed. Eng. 35, 530–545 (doi:10.1007/s10439-006-9252-z)). The intima is included in the analysis because it has significant thickness and load-bearing capacity, unlike in a young, healthy human aorta. The mathematical model takes account of bending and stretching in both the circumferential and axial directions in each layer of the wall. Previous analysis of residual stress was essentially based on a simple application of the opening-angle method, which cannot accommodate the three-dimensional residual stretch and stress states observed in experiments. The geometry and nonlinear kinematics of the intima, media and adventitia are derived and the associated stress components determined explicitly using the nonlinear theory of elasticity. The theoretical results are then combined with the mean numerical values of the geometrical parameters and material constants from the experiments to illustrate the three-dimensional distributions of the stretches and stresses throughout the wall. The results highlight the compressive nature of the circumferential stress in the intima, which may be associated with buckling of the intima and its delamination from the media, and show that the qualitative features of the stretch and stress distributions in the media and adventitia are unaffected by the presence or absence of the intima. The circumferential residual stress in the intima increases significantly as the associated residual deformation in the intima increases while the corresponding stress in the media (which is compressive at its inner boundary and tensile at its outer boundary) is only slightly affected. The theoretical framework developed herein enables the state of residual stress to be calculated directly, serves to improve insight into the mechanical response of an unloaded artery wall and can be extended to accommodate more general geometries, kinematics and states of residual stress as well as more general constitutive models. PMID:19828496

  13. Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems

    NASA Astrophysics Data System (ADS)

    Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.

    2018-02-01

    A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.

  14. A generalization of algebraic surface drawing

    NASA Technical Reports Server (NTRS)

    Blinn, J. F.

    1982-01-01

    An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.

  15. The hydrodynamics of the Big Horn Basin: a study of the role of faults

    USGS Publications Warehouse

    Bredehoeft, J.D.; Belitz, K.; Sharp-Hansen, S.

    1992-01-01

    A three-dimensional mathematical model simulates groundwater flow in the Big Horn basin, Wyoming. The hydraulic head at depth over much of the Big Horn basin is near the land surface elevation, a condition usually defined as hydrostatic. This condition indicates a high, regional-scale, vertical conductivity for the sediments in the basin. Our hypothesis to explain the high conductivity is that the faults act as vertical conduits for fluid flow. These same faults can act as either horizontal barriers to flow or nonbarriers, depending upon whether the fault zones are more permeable or less permeable than the adjoining aquifers. -from Authors

  16. A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Samei, Ehsan

    2014-11-01

    Realistic three-dimensional (3D) mathematical models of subtle lesions are essential for many computed tomography (CT) studies focused on performance evaluation and optimization. In this paper, we develop a generic mathematical framework that describes the 3D size, shape, contrast, and contrast-profile characteristics of a lesion, as well as a method to create lesion models based on CT data of real lesions. Further, we implemented a technique to insert the lesion models into CT images in order to create hybrid CT datasets. This framework was used to create a library of realistic lesion models and corresponding hybrid CT images. The goodness of fit of the models was assessed using the coefficient of determination (R2) and the visual appearance of the hybrid images was assessed with an observer study using images of both real and simulated lesions and receiver operator characteristic (ROC) analysis. The average R2 of the lesion models was 0.80, implying that the models provide a good fit to real lesion data. The area under the ROC curve was 0.55, implying that the observers could not readily distinguish between real and simulated lesions. Therefore, we conclude that the lesion-modeling framework presented in this paper can be used to create realistic lesion models and hybrid CT images. These models could be instrumental in performance evaluation and optimization of novel CT systems.

  17. Feasibility of High Energy Lasers for Interdiction Activities

    DTIC Science & Technology

    2017-12-01

    2.3.2 Power in the Bucket Another parameter we will use in this study is the power-in-the-bucket. The “bucket” is defined as the area on the target we...the heat diffusion equation for a one -dimensional case (where the x-direction is into the target) and assuming a semi-infinite slab of material. The... studied and modeled. One of the approaches to describe these interactions is by making a one -dimensional mathematical model assuming [8]: 1. A semi

  18. Foundations of chaotic mixing.

    PubMed

    Wiggins, Stephen; Ottino, Julio M

    2004-05-15

    The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (2D) 'blinking flows', or three-dimensional (3D) duct flows. Given that mixing in continuous 3D duct flows depends critically on cross-sectional mixing, and that many microfluidic applications involve continuous flows, we focus on the essential aspects of mixing in 2D flows, as they provide a foundation from which to base our understanding of more complex cases. The baker's transformation is taken as the centrepiece for describing the dynamical systems framework. In particular, a hierarchy of characterizations of mixing exist, Bernoulli --> mixing --> ergodic, ordered according to the quality of mixing (the strongest first). Most importantly for the design process, we show how the so-called linked twist maps function as a minimal picture of mixing, provide a mathematical structure for understanding the type of 2D flows that arise in many micromixers already built, and give conditions guaranteeing the best quality mixing. Extensions of these concepts lead to first-principle-based designs without resorting to lengthy computations.

  19. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium.

    PubMed

    Kocica, Mladen J; Corno, Antonio F; Carreras-Costa, Francesc; Ballester-Rodes, Manel; Moghbel, Mark C; Cueva, Clotario N C; Lackovic, Vesna; Kanjuh, Vladimir I; Torrent-Guasp, Francisco

    2006-04-01

    We are currently witnessing the advent of new diagnostic tools and therapies for heart diseases, but, without serious scientific consensus on fundamental questions about normal and diseased heart structure and function. During the last decade, three successive, international, multidisciplinary symposia were organized in order to setup fundamental research principles, which would allow us to make a significant step forward in understanding heart structure and function. Helical ventricular myocardial band of Torrent-Guasp is the revolutionary new concept in understanding global, three-dimensional, functional architecture of the ventricular myocardium. This concept defines the principal, cumulative vectors, integrating the tissue architecture (i.e. form) and net forces developed (i.e. function) within the ventricular mass. Here we expose the compendium of Torrent-Guasp's half-century long functional anatomical investigations in the light of ongoing efforts to define the integrative approach, which would lead to new understanding of the ventricular form and function by linking across multiple scales of biological organization, as defined in ongoing Physiome project. Helical ventricular myocardial band of Torrent-Guasp may also, hopefully, allow overcoming some difficulties encountered in contemporary efforts to create a comprehensive mathematical model of the heart.

  20. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  1. Agent-Based Phytoplankton Models of Cellular and Population Processes: Fostering Individual-Based Learning in Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.

    2016-02-01

    Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).

  2. Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief

    PubMed Central

    Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H.; Nuerk, Hans-Christoph

    2016-01-01

    Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors “Mathematical Test Anxiety” (MTA) and “Numerical Anxiety” (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established. PMID:26924996

  3. Components of Mathematics Anxiety: Factor Modeling of the MARS30-Brief.

    PubMed

    Pletzer, Belinda; Wood, Guilherme; Scherndl, Thomas; Kerschbaum, Hubert H; Nuerk, Hans-Christoph

    2016-01-01

    Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors "Mathematical Test Anxiety" (MTA) and "Numerical Anxiety" (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established.

  4. Longitudinal dispersion modeling in small streams

    NASA Astrophysics Data System (ADS)

    Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol

    2014-05-01

    The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological Laboratory in 1958. Since 1986 started a chemical program in the basin. The total area of the Rybarik basin is 0.119 km2. The length of the stream from spring to closing profile is 256 m, the mean slope of the stream is 9.1%, and the mean slope of the basin is 14.9%. The elevation is from 369 to 434 m above the sea level. The geological conditions in the Rybarik basin are characterized by flysh substrates (altering layers of clay and sandstones). The basin is from 2/3 cultivated by the state farm, private farmer covers the rest of the area. The forest coverage during the period 1986-2004 was approximately 10%, rest of the land is arable. NaCl (10-30 g) was injected to the Rybárik brook at different water levels and in different seasons. The electric conductivity was measured 100 and 250 m downstream the injection point. The samples were taken for Cl- concentration analyses during the first cases. The Cl and EC waves were identical. Coefficients of the longitudinal dispersion were estimated by trial-error method in the Rybárik brook using model SIRENIE. Coefficients were in range of 0.2 - 0.7 m2.s-1. Acknowledgement: This work was supported by project VEGA 0010/11.

  5. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions

    PubMed Central

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807

  6. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    PubMed

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.

  7. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  8. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  9. Let's Cut the Cake

    ERIC Educational Resources Information Center

    Zeybek, Zulfiye; Cross Francis, Dionne I.

    2017-01-01

    Measurement is an important component of K-grade 12 mathematics curricula. The concepts of area and perimeter of polygons are first introduced in third grade and serve as the basis for teaching in the upper grades. Without a strong understanding of measurement, students will struggle to meaningfully grasp three-dimensional measurement concepts…

  10. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  11. Using Matlab in a Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Schlatter, Mark D.

    The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…

  12. Analysis of oxidation of self-baking electrodes (Soederberg electrodes) by means of three-dimensional model

    NASA Astrophysics Data System (ADS)

    Pashnin, S. V.

    2017-10-01

    The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.

  13. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model

    PubMed Central

    Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael

    2011-01-01

    With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808

  14. Computational control of flexible aerospace systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  15. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  16. Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Reddy, C. J.

    2011-01-01

    This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.

  17. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    NASA Astrophysics Data System (ADS)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  18. Laser Metrology In Biomechanics

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    1983-12-01

    Modern treatment of sceletal disharmonies and malocclusions utilizes application of external forces. In order to effectively use these therapeutic forces, knowledge of three-dimensional displacements of bones with correlation to biological changes is required. In the past, this problem has been studied in a number of ways using, for example, strain gauges, brittle coatings, photoelasticity, as well as clinical observations and mathematical modeling. Becouse of their inherent limitations, these techniques did not always provide all the information necessary for development of meaningful relationships between the applied force system and the resulting biological remodeling. However, recent advances in the field of la-ser metrology allowed to overcome some of the dificulties found in the earlier methods and permitted development of new techniques for non-invasive measurements of bone motions in three-dimensional space. These laser techniques are particularly useful in biomechanics because they provide for rapid and accurate determination of displacements over the entire surface of the investigate object. In this paper, application of laser techniques for quantitative in-vivo and in-vitro measurements in biomechanics will be discussed and illustrated with representative examples.

  19. Evaluating the morphological completeness of a training image.

    PubMed

    Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue

    2017-05-01

    Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.

  20. Layout design-based research on optimization and assessment method for shipbuilding workshop

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Meng, Mei; Liu, Shuang

    2013-06-01

    The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.

  1. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  2. Dimensions and geometry of the temporomandibular joint and masseter muscles.

    PubMed

    Zurowski, R; Gosek, M; Aleksandrowicz, R

    1976-01-01

    The bio-engineering team presents its suggestion of a method for the measurement of the temporomandibular joint and masseter muscles in order to determine the parameters necessary for exact sciences and indispensable for unified and objective cognitive studies. Ten formalin-fixed human cadavers served for the studies. The preparations were prepared by the modified method of anatomical procedure. Linear and angular measurements of temporomandibular joint and masseter muscles were carried out with the use of the three-dimensional Cartesian system of OXYZ coordinates in relation to frontal, sagittal and horizontal planes. The physiological cross-sections of the masseter, temporal, lateral and medial pterygoid muscles were also determined. The collected data make it possible to develop a mathematical three-dimensioned model of the osseo-articulo-muscular system of the mastication organ.

  3. On the mathematical modeling of the Reynolds stress's equations

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    By considering the Reynolds stress equations as a possible descriptor of complex turbulent fields, pressure-velocity interaction and turbulence dissipation are studied as two of the main physical contributions to Reynolds stress balancing in turbulent flow fields. It is proven that the pressure interaction term contains turbulence generation elements. However, the usual 'return to isotropy' element appears more weakly than in the standard models. In addition, convection-like elements are discovered mathematically, but there is no mathematical evidence that the pressure fluctuations contribute to the turbulent transport mechanism. Calculations of some simple one-dimensional fields indicate that this extra convection, rather than the turbulent transport, is needed mathematically. Similarly, an expression for the turbulence dissipation is developed. The end result is a dynamic equation for the dissipation tensor which is based on the tensorial length scales.

  4. Physical and mathematical modeling of antimicrobial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  5. A network model for characterizing brine channels in sea ice

    NASA Astrophysics Data System (ADS)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  6. Random medium model for cusping of plane waves.

    PubMed

    Li, Jia; Korotkova, Olga

    2017-09-01

    We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.

  7. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  8. The Challenge of Learning Physics Before Mathematics: A Case Study of Curriculum Change in Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Mei-Shiu

    2016-12-01

    The aim of this study was to identify challenges in implementing a physics-before- 10 mathematics curriculum. Obviously, students need to learn necessary mathematics skills in order to develop advanced physics knowledge. In the 2010 high school curriculum in Taiwan, however, grade 11 science students study two-dimensional motion in physics without prior learning experiences of trigonometry in mathematics. The perspectives of three curriculum developers, 22 mathematics and physics teachers, two principals, and 45 science students were obtained by interview. The results of qualitative data analysis revealed six challenges and suggested likely solutions. The national level includes political and social challenges, resolved by respecting teachers as professionals; the teacher level includes knowledge and teaching challenges, resolved by increasing teacher trans-literal capacities; and the student level includes learning and justice challenges, resolved by focusing on students' diverse developments in cross-domain learning.

  9. A Comparison of Simplified Two-dimensional Flow Models Exemplified by Water Flow in a Cavern

    NASA Astrophysics Data System (ADS)

    Prybytak, Dzmitry; Zima, Piotr

    2017-12-01

    The paper shows the results of a comparison of simplified models describing a two-dimensional water flow in the example of a water flow through a straight channel sector with a cavern. The following models were tested: the two-dimensional potential flow model, the Stokes model and the Navier-Stokes model. In order to solve the first two, the boundary element method was employed, whereas to solve the Navier-Stokes equations, the open-source code library OpenFOAM was applied. The results of numerical solutions were compared with the results of measurements carried out on a test stand in a hydraulic laboratory. The measurements were taken with an ADV probe (Acoustic Doppler Velocimeter). Finally, differences between the results obtained from the mathematical models and the results of laboratory measurements were analysed.

  10. A thermal analysis of a spirally wound battery using a simple mathematical model

    NASA Technical Reports Server (NTRS)

    Evans, T. I.; White, R. E.

    1989-01-01

    A two-dimensional thermal model for spirally wound batteries has been developed. The governing equation of the model is the energy balance. Convective and insulated boundary conditions are used, and the equations are solved using a finite element code called TOPAZ2D. The finite element mesh is generated using a preprocessor to TOPAZ2D called MAZE. The model is used to estimate temperature profiles within a spirally wound D-size cell. The model is applied to the lithium/thionyl chloride cell because of the thermal management problems that this cell exhibits. Simplified one-dimensional models are presented that can be used to predict best and worst temperature profiles. The two-dimensional model is used to predict the regions of maximum temperature within the spirally wound cell. Normal discharge as well as thermal runaway conditions are investigated.

  11. Three-dimensional full-field X-ray orientation microscopy

    PubMed Central

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  12. A virtual reality atlas of craniofacial anatomy.

    PubMed

    Smith, Darren M; Oliker, Aaron; Carter, Christina R; Kirov, Miro; McCarthy, Joseph G; Cutting, Court B

    2007-11-01

    Head and neck anatomy is complex and represents an educational challenge to the student. Conventional two-dimensional illustrations inherently fall short in conveying intricate anatomical relationships that exist in three dimensions. A gratis three-dimensional virtual reality atlas of craniofacial anatomy is presented in an effort to address the paucity of readily accessible and customizable three-dimensional educational material available to the student of head and neck anatomy. Three-dimensional model construction was performed in Alias Maya 4.5 and 6.0. A basic three-dimensional skull model was altered to include surgical landmarks and proportions. Some of the soft tissues were adapted from previous work, whereas others were constructed de novo. Texturing was completed with Adobe Photoshop 7.0 and Maya. The Internet application was designed in Viewpoint Enliven 1.0. A three-dimensional computer model of craniofacial anatomy (bone and soft tissue) was completed. The model is compatible with many software packages and can be accessed by means of the Internet or downloaded to a personal computer. As the three-dimensional meshes are publicly available, they can be extensively manipulated by the user, even at the polygonal level. Three-dimensional computer graphics has yet to be fully exploited for head and neck anatomy education. In this context, the authors present a publicly available computer model of craniofacial anatomy. This model may also find applications beyond clinical medicine. The model can be accessed gratis at the Plastic and Reconstructive Surgery Web site or obtained as a three-dimensional mesh, also gratis, by contacting the authors.

  13. Tricuspid Annular Geometry: A Three-Dimensional Transesophageal Echocardiographic Study

    PubMed Central

    Mahmood, Feroze; Kim, Han; Chaudary, Bilal; Bergman, Remco; Matyal, Robina; Gerstle, Jeniffer; Gorman, Joseph H.; Gorman, Robert C.; Khabbaz, Kamal R.

    2013-01-01

    Objective To demonstrate the clinical feasibility of accurately measuring tricuspid annular area by 3-dimensional (3D) transesophageal echocardiography (TEE) and to assess the geometric differences based on the presence of tricuspid regurgitation (TR). Also, the shape of the tricuspid annulus was compared with previous descriptions in the literature. Design Prospective. Setting Tertiary care university hospital. Interventions Three-dimensional TEE. Participants Patients undergoing cardiac surgery. Measurements and Main Results Volumetric data sets from 20 patients were acquired by 3D TEE and prospectively analyzed. Comparisons in annular geometry were made between groups based on the presence of TR. The QLab (Philips Medical Systems, Andover, MA) software package was used to calculate tricuspid annular area by both linear elliptical dimensions and planimetry. Further analyses were performed in the 4D Cardio-View (TomTec Corporation GmBH, Munich, Germany) and MATLAB (Natick, MA) software environments to accurately assess annular shape. It was found that patients with greater TR had an eccentrically dilated annulus with a larger annular area. Also, the area as measured by the linear ellipse method was overestimated as compared to the planimetry method. Furthermore, the irregular saddle-shaped geometry of the tricuspid annulus was confirmed through the mathematic model developed by the authors. Conclusions Three-dimensional TEE can be used to measure the tricuspid annular area in a clinically feasible fashion, with an eccentric dilation seen in patients with TR. The tricuspid annulus shape is complex, with annular high and low points, and annular area calculation based on linear measurements significantly overestimates 3D planimetered area. PMID:23725682

  14. Chaotic dynamics and thermodynamics of periodic systems with long-range forces

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj

    Gravitational and electromagnetic interactions form the backbone of our theoretical understanding of the universe. While, in general, such interactions are analytically inexpressible for three-dimensional infinite systems, one-dimensional modeling allows one to treat the long-range forces exactly. Not only are one-dimensional systems of profound intrinsic interest, physicists often rely on one-dimensional models as a starting point in the analysis of their more complicated higher-dimensional counterparts. In the analysis of large systems considered in cosmology and plasma physics, periodic boundary conditions are a natural choice and have been utilized in the study of one dimensional Coulombic and gravitational systems. Such studies often employ numerical simulations to validate the theoretical predictions, and in cases where theoretical relations have not been mathematically formulated, numerical simulations serve as a powerful method in characterizing the system's physical properties. In this dissertation, analytic techniques are formulated to express the exact phase-space dynamics of spatially-periodic one-dimensional Coulombic and gravitational systems. Closed-form versions of the Hamiltonian and the electric field are derived for single-component and two-component Coulombic systems, placing the two on the same footing as the gravitational counterpart. Furthermore, it is demonstrated that a three-body variant of the spatially-periodic Coulombic or gravitational system may be reduced isomorphically to a periodic system of a single particle in a two-dimensional rhombic potential. The analytic results are utilized for developing and implementing efficient computational tools to study the dynamical and the thermodynamic properties of the systems without resorting to numerical approximations. Event-driven algorithms are devised to obtain Lyapunov spectra, radial distribution function, pressure, caloric curve, and Poincare surface of section through an N-body molecular-dynamics approach. The simulation results for the three-body systems show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. The results for the large versions of the single-component and two-component Coulombic systems show no clear-cut indication of a phase transition. However, as predicted by the theoretical treatment, the simulated temperature dependencies of energy, pressure as well as Lyapunov exponent for the gravitational system indicate a phase transition and the critical temperature obtained in simulation agrees well with that from the theory.

  15. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  16. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations.

    PubMed

    Braun, Katharina; Böhnke, Frank; Stark, Thomas

    2012-06-01

    We present a complete geometric model of the human cochlea, including the segmentation and reconstruction of the fluid-filled chambers scala tympani and scala vestibuli, the lamina spiralis ossea and the vibrating structure (cochlear partition). Future fluid-structure coupled simulations require a reliable geometric model of the cochlea. The aim of this study was to present an anatomical model of the human cochlea, which can be used for further numerical calculations. Using high resolution micro-computed tomography (µCT), we obtained images of a cut human temporal bone with a spatial resolution of 5.9 µm. Images were manually segmented to obtain the three-dimensional reconstruction of the cochlea. Due to the high resolution of the µCT data, a detailed examination of the geometry of the twisted cochlear partition near the oval and the round window as well as the precise illustration of the helicotrema was possible. After reconstruction of the lamina spiralis ossea, the cochlear partition and the curved geometry of the scala vestibuli and the scala tympani were presented. The obtained data sets were exported as standard lithography (stl) files. These files represented a complete framework for future numerical simulations of mechanical (acoustic) wave propagation on the cochlear partition in the form of mathematical mechanical cochlea models. Additional quantitative information concerning heights, lengths and volumes of the scalae was found and compared with previous results.

  17. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    NASA Astrophysics Data System (ADS)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  18. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards modelers that have used approximate methods in radiation transport. In this context, different, presumably simpler, equations (such as diffusion) are used in order to make a significant gain on the efficiency axis. We will describe in some detail the most promising approaches to approximate 3D radiative transfer in clouds. Somewhat paradoxically, and in spite of its importance in the above-mentioned applications, approximate radiative transfer modeling lags significantly behind its exact counterpart because the required mathematical and computational culture is essentially alien to the native atmospheric radiation community. I3RC is receiving enough funding from NASA/HQ and DOE/ARM for its essential operations out of NASA/GSFC. However, this does not cover the time and effort of any of the participants; so only existing models were entered. At present, none of inherently approximate methods are represented, only severe truncations of some exact methods. We therefore welcome the Math/Geo initiative at NSF which should enable the proper consortia of experts in atmospheric radiation and in applied mathematics to fill an important niche.

  19. Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners.

    PubMed

    Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K

    2012-04-01

    (1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.

  20. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  1. [Rapid prototyping: a very promising method].

    PubMed

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  2. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  3. Computational experience with a three-dimensional rotary engine combustion model

    NASA Astrophysics Data System (ADS)

    Raju, M. S.; Willis, E. A.

    1990-04-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  4. Computational experience with a three-dimensional rotary engine combustion model

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  5. Three-dimensional modeling of the plasma arc in arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less

  6. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling

    PubMed Central

    Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460

  7. Progress in Modeling Nonlinear Dendritic Evolution in Two and Three Dimensions, and Its Mathematical Justification

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Foster, M. R.

    2002-01-01

    We report progress in three areas of investigation related to dendritic crystal growth. Those items include: 1. Selection of tip features dendritic crystal growth; 2) Investigation of nonlinear evolution for two-sided model; and 3) Rigorous mathematical justification.

  8. Visual Simulation of Microalgae Growth in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.

  9. Effective Swimmer’s Action during the Grab Start Technique

    PubMed Central

    Mourão, Luis; de Jesus, Karla; Roesler, Hélio; Machado, Leandro J.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo; Vaz, Mário A. P.

    2015-01-01

    The external forces applied in swimming starts have been often studied, but using direct analysis and simple interpretation data processes. This study aimed to develop a tool for vertical and horizontal force assessment based on the swimmers’ propulsive and structural forces (passive forces due to dead weight) applied during the block phase. Four methodological pathways were followed: the experimented fall of a rigid body, the swimmers’ inertia effect, the development of a mathematical model to describe the outcome of the rigid body fall and its generalization to include the effects of the inertia, and the experimental swimmers’ starting protocol analysed with the inclusion of the developed mathematical tool. The first three methodological steps resulted in the description and computation of the passive force components. At the fourth step, six well-trained swimmers performed three 15 m maximal grab start trials and three-dimensional (3D) kinetic data were obtained using a six degrees of freedom force plate. The passive force contribution to the start performance obtained from the model was subtracted from the experimental force due to the swimmers resulting in the swimmers’ active forces. As expected, the swimmers’ vertical and horizontal active forces accounted for the maximum variability contribution of the experimental forces. It was found that the active force profile for the vertical and horizontal components resembled one another. These findings should be considered in clarifying the active swimmers’ force variability and the respective geometrical profile as indicators to redefine steering strategies. PMID:25978370

  10. Analysis of laser remote fusion cutting based on a mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matti, R. S.; Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul; Ilar, T.

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, lasermore » remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.« less

  11. Analysis of laser remote fusion cutting based on a mathematical model

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Ilar, T.; Kaplan, A. F. H.

    2013-12-01

    Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

  12. Two dimensional analytical model for a reconfigurable field effect transistor

    NASA Astrophysics Data System (ADS)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  13. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  14. Functional mathematical model of a hydrogen-driven combustion chamber for a scramjet

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2015-09-01

    A functional mathematical model of a hydrogen-driven combustion chamber for a scramjet is described. The model is constructed with the use of one-dimensional steady gas-dynamic equations and parametrization of the channel configuration and the governing parameters (fuel injection into the flow, fuel burnout along the channel, dissipation of kinetic energy, removal of some part of energy generated by gases for modeling cooling of channel walls by the fuel) with allowance for real thermophysical properties of the gases. Through parametric calculations, it is found that fuel injection in three cross sections of the channel consisting of segments with weak and strong expansion ensures a supersonic velocity of combustion products in the range of free-stream Mach numbers M∞ = 6-12. It is demonstrated that the angle between the velocity vectors of the gaseous hydrogen flow and the main gas flow can be fairly large in the case of distributed injection of the fuel. This allows effective control of the mixing process. It is proposed to use the exergy of combustion products as a criterion of the efficiency of heat supply in the combustion chamber. Based on the calculated values of exergy, the critical free-stream Mach number that still allows scramjet operation is estimated.

  15. Mathematical Modeling of Radiofrequency Ablation for Varicose Veins

    PubMed Central

    Choi, Sun Young; Kwak, Byung Kook

    2014-01-01

    We present a three-dimensional mathematical model for the study of radiofrequency ablation (RFA) with blood flow for varicose vein. The model designed to analyze temperature distribution heated by radiofrequency energy and cooled by blood flow includes a cylindrically symmetric blood vessel with a homogeneous vein wall. The simulated blood velocity conditions are U = 0, 1, 2.5, 5, 10, 20, and 40 mm/s. The lower the blood velocity, the higher the temperature in the vein wall and the greater the tissue damage. The region that is influenced by temperature in the case of the stagnant flow occupies approximately 28.5% of the whole geometry, while the region that is influenced by temperature in the case of continuously moving electrode against the flow direction is about 50%. The generated RF energy induces a temperature rise of the blood in the lumen and leads to an occlusion of the blood vessel. The result of the study demonstrated that higher blood velocity led to smaller thermal region and lower ablation efficiency. Since the peak temperature along the venous wall depends on the blood velocity and pullback velocity, the temperature distribution in the model influences ablation efficiency. The vein wall absorbs more energy in the low pullback velocity than in the high one. PMID:25587351

  16. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells.

    PubMed

    Gustavsson, Anna-Karin; van Niekerk, David D; Adiels, Caroline B; Kooi, Bob; Goksör, Mattias; Snoep, Jacky L

    2014-06-01

    Oscillations are widely distributed in nature and synchronization of oscillators has been described at the cellular level (e.g. heart cells) and at the population level (e.g. fireflies). Yeast glycolysis is the best known oscillatory system, although it has been studied almost exclusively at the population level (i.e. limited to observations of average behaviour in synchronized cultures). We studied individual yeast cells that were positioned with optical tweezers in a microfluidic chamber to determine the precise conditions for autonomous glycolytic oscillations. Hopf bifurcation points were determined experimentally in individual cells as a function of glucose and cyanide concentrations. The experiments were analyzed in a detailed mathematical model and could be interpreted in terms of an oscillatory manifold in a three-dimensional state-space; crossing the boundaries of the manifold coincides with the onset of oscillations and positioning along the longitudinal axis of the volume sets the period. The oscillatory manifold could be approximated by allosteric control values of phosphofructokinase for ATP and AMP. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/webMathematica/UItester.jsp?modelName=gustavsson5. [Database section added 14 May 2014 after original online publication]. © 2014 FEBS.

  17. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  18. SIERRA/Aero Theory Manual Version 4.46.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    2017-09-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  19. SIERRA/Aero Theory Manual Version 4.44

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal /Fluid Team

    2017-04-01

    SIERRA/Aero is a two and three dimensional, node-centered, edge-based finite volume code that approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to inviscid and high Reynolds number laminar and turbulent flows. Currently, two classes of turbulence models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases. This document describes the mathematical models contained in the code, as well as certain implementation details. First, themore » governing equations are presented, followed by a description of the spatial discretization. Next, the time discretization is described, and finally the boundary conditions. Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.« less

  20. Modelling and calculation of flotation process in one-dimensional formulation

    NASA Astrophysics Data System (ADS)

    Amanbaev, Tulegen; Tilleuov, Gamidulla; Tulegenova, Bibigul

    2016-08-01

    In the framework of the assumptions of the mechanics of the multiphase media is constructed a mathematical model of the flotation process in the dispersed mixture of liquid, solid and gas phases, taking into account the degree of mineralization of the surface of the bubbles. Application of the constructed model is demonstrated on the example of one-dimensional stationary flotation and it is shown that the equations describing the process of ascent of the bubbles are singularly perturbed ("rigid"). The effect of size and concentration of bubbles and the volumetric content of dispersed particles on the flotation process are analyzed.

  1. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    PubMed Central

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-01-01

    In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517

  2. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.

    PubMed

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-02-28

    In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  3. Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models II: The Role of Quantum Affine Symmetry

    NASA Astrophysics Data System (ADS)

    Jimbo, Michio

    2013-03-01

    Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.

  4. Secondary School Students' Reasoning about Conditional Probability, Samples, and Sampling Procedures

    ERIC Educational Resources Information Center

    Prodromou, Theodosia

    2016-01-01

    In the Australian mathematics curriculum, Year 12 students (aged 16-17) are asked to solve conditional probability problems that involve the representation of the problem situation with two-way tables or three-dimensional diagrams and consider sampling procedures that result in different correct answers. In a small exploratory study, we…

  5. Vectors in Use in a 3D Juggling Game Simulation

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Latsi, Maria

    2006-01-01

    The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as…

  6. Developing Children's Conceptual Understanding of Area Measurement: A Curriculum and Teaching Experiment

    ERIC Educational Resources Information Center

    Huang, Hsin-Mei E.; Witz, Klaus G.

    2011-01-01

    The present study examined the effectiveness of three instructional treatments which had different combinations of mathematical elements regarding 2-dimensional (2-D) geometry and area measurement for developing 4th-grade children's understanding of the formulas for area measurement and their ability to solve area measurement problems.…

  7. The perception of three-dimensionality across continuous surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, Kent A.

    1989-01-01

    The apparent three-dimensionality of a viewed surface presumably corresponds to several internal preceptual quantities, such as surface curvature, local surface orientation, and depth. These quantities are mathematically related for points within the silhouette bounds of a smooth, continuous surface. For instance, surface curvature is related to the rate of change of local surface orientation, and surface orientation is related to the local gradient of distance. It is not clear to what extent these 3D quantities are determined directly from image information rather than indirectly from mathematically related forms, by differentiation or by integration within boundary constraints. An open empirical question, for example, is to what extent surface curvature is perceived directly, and to what extent it is quantitative rather than qualitative. In addition to surface orientation and curvature, one derives an impression of depth, i.e., variations in apparent egocentric distance. A static orthographic image is essentially devoid of depth information, and any quantitative depth impression must be inferred from surface orientation and other sources. Such conversion of orientation to depth does appear to occur, and even to prevail over stereoscopic depth information under some circumstances.

  8. Chronoamperometric study of the films formed by 4,4'-bipyridyl cation radical salts on mercury in the presence of iodide ions: consecutive two-dimensional phase transitions.

    PubMed

    Gómez, L; Ruiz, J J; Camacho, L; Rodríguez-Amaro, R

    2005-01-04

    This paper reports a new mathematical model for consecutive two-dimensional phase transitions that accounts for the chronoamperometric behavior observed in the formation of electrochemical phases by 4,4'-bipyridyl cation radical (BpyH(2)(*)(+)) on mercury in aqueous iodide solutions. Also, a new interpretation for the induction time is proposed.

  9. Taking the mystery out of mathematical model applications to karst aquifers—A primer

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2014-01-01

    Advances in mathematical model applications toward the understanding of the complex flow, characterization, and water-supply management issues for karst aquifers have occurred in recent years. Different types of mathematical models can be applied successfully if appropriate information is available and the problems are adequately identified. The mathematical approaches discussed in this paper are divided into three major categories: 1) distributed parameter models, 2) lumped parameter models, and 3) fitting models. The modeling approaches are described conceptually with examples (but without equations) to help non-mathematicians understand the applications.

  10. Textbook Mediation of Teaching: An Example from Tertiary Mathematics Instructors

    ERIC Educational Resources Information Center

    Mesa, Vilma; Griffiths, Brett

    2012-01-01

    Drawing on data from interviews with mathematics faculty in three different types of undergraduate institutions and using Rabardel's model of instrument use (Verillon & Rabardel "1995"), we describe three ways textbooks mediate college faculty work regarding instruction. The model anticipates epistemic and pragmatic mediations between the…

  11. The mathematical formulation of a generalized Hooke's law for blood vessels.

    PubMed

    Zhang, Wei; Wang, Chong; Kassab, Ghassan S

    2007-08-01

    It is well known that the stress-strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic-exponential (log-exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola-Kirchhoff stresses by differentiating the potential with respect to the log-exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log-exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log-exp strains. In this paper, the proposed linear stress-strain relation is shown to represent the pseudoelastic Fung model very well.

  12. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  13. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  14. Supercritical wing sections 2, volume 108

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Garabedian, P.; Korn, D.; Jameson, A.; Beckmann, M. (Editor); Kuenzi, H. P. (Editor)

    1975-01-01

    A mathematical theory for the design and analysis of supercritical wing sections was previously presented. Examples and computer programs showing how this method works were included. The work on transonics is presented in a more definitive form. For design, a better model of the trailing edge is introduced which should eliminate a loss of fifteen or twenty percent in lift experienced with previous heavily aft loaded models, which is attributed to boundary layer separation. How drag creep can be reduced at off-design conditions is indicated. A rotated finite difference scheme is presented that enables the application of Murman's method of analysis in more or less arbitrary curvilinear coordinate systems. This allows the use of supersonic as well as subsonic free stream Mach numbers and to capture shock waves as far back on an airfoil as desired. Moreover, it leads to an effective three dimensional program for the computation of transonic flow past an oblique wing. In the case of two dimensional flow, the method is extended to take into account the displacement thickness computed by a semi-empirical turbulent boundary layer correction.

  15. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    PubMed

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Interstitial hyperthermia treatment of countercurrent vascular tissue: a comparison of Pennes, WJ and porous media bioheat models.

    PubMed

    Hassanpour, Saied; Saboonchi, Ahmad

    2014-12-01

    Development of appropriate heat transfer models to investigate the thermal behavior of living tissues has become increasingly important in simulations of cancer hyperthermia. In this paper, a review is initially presented of the more important general models developed for heat transfer description of perfused tissues. Comparisons are then made between Pennes' simplified Weinbaum and Jiji "WJ" and the more recent porous media "PM" bioheat models. For this purpose, a mathematical model is developed for the heat transfer in a cylindrical medium containing parallel counter-current pairs of small vessels with characteristics as much as possible similar to those of living tissues. The validity of the models is examined and confirmed using the Pennes in vivo experiments and one-dimensional analytical solutions. For consideration of interstitial hyperthermia treatment the smaller cylindrical zone with typical heat generation, is assumed in the center of the main cylinder. The numerical simulation results revealed that, despite difference in temperature distributions calculated by these three models at normal condition, the heat affected zone at hyperthermic condition predicted by all three models are similar. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Kepler's Cosmos And The Lathe Of Heaven

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2011-01-01

    Johannes Kepler's Mysterium Cosmographicum, published in 1596, presented his vision of the geometrical structure of the solar system. Kepler sought to account for the number of planets, thought to be six, as well as their orbital radii. He assigned orbits to the planets in three-dimensional space. Kepler proposed that the planets move on six spheres inscribed within and circumscribed around the five platonic solids. How did he arrive at his model? By his own account reported in the book, the central idea occurred to him while giving a lecture about planetary conjunctions. But was this revelation the origin of the model? In this presentation, we discuss the artistic, scientific and mathematical environment in which Kepler was immersed in late 16th century Europe. Examples will be shown of some of the readily available inscribed polyhedra that he may have seen - printed in widely circulated books, included in well-known paintings and engravings, and displayed as three dimensional ornamentally turned sculptures. It is highly likely that he saw such physical models five years later while in the employ of Rudolf II who was an avid ornamental turner. Layered polyhedral ivory turnings were made by the nobility with what were then fairly common lathes. Kepler himself wanted to have his own celestial model made into a punch bowl! Therefore, it seems plausible that Kepler had seen models of inscribed platonic solids well before 1596. Later in life Kepler reprinted the Mysterium Cosmographicum with very little fundamental change in its outlook, even after having found what we now call Kepler's three laws of planetary motion. His interest in nested polyhedra may well have preceded any astronomical evidence or geometrical reasoning, arising from artistic and aesthetic encounters that occurred early in his life. Project LITE is supported by the NSF through DUE Grant # 0715975.

  18. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  19. Multiple object, three-dimensional motion tracking using the Xbox Kinect sensor

    NASA Astrophysics Data System (ADS)

    Rosi, T.; Onorato, P.; Oss, S.

    2017-11-01

    In this article we discuss the capability of the Xbox Kinect sensor to acquire three-dimensional motion data of multiple objects. Two experiments regarding fundamental features of Newtonian mechanics are performed to test the tracking abilities of our setup. Particular attention is paid to check and visualise the conservation of linear momentum, angular momentum and energy. In both experiments, two objects are tracked while falling in the gravitational field. The obtained data is visualised in a 3D virtual environment to help students understand the physics behind the performed experiments. The proposed experiments were analysed with a group of university students who are aspirant physics and mathematics teachers. Their comments are presented in this paper.

  20. Method for determining size of inhomogeneity localization region based on analysis of secondary wave field of second harmonic

    NASA Astrophysics Data System (ADS)

    Chernov, N. N.; Zagray, N. P.; Laguta, M. V.; Varenikova, A. Yu

    2018-05-01

    The article describes the research of the method of localization and determining the size of heterogeneity in biological tissues. The equation for the acoustic harmonic wave, which propagates in the positive direction, is taken as the main one. A three-dimensional expression that describes the field of secondary sources at the observation point is obtained. The simulation of the change of the amplitude values of the vibrational velocity of the second harmonic of the acoustic wave at different coordinates of the inhomogeneity location in three-dimensional space is carried out. For the convenience of mathematical calculations, the area of heterogeneity is reduced to a point.

  1. Recent Developments In Theory Of Balanced Linear Systems

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek

    1994-01-01

    Report presents theoretical study of some issues of controllability and observability of system represented by linear, time-invariant mathematical model of the form. x = Ax + Bu, y = Cx + Du, x(0) = xo where x is n-dimensional vector representing state of system; u is p-dimensional vector representing control input to system; y is q-dimensional vector representing output of system; n,p, and q are integers; x(0) is intial (zero-time) state vector; and set of matrices (A,B,C,D) said to constitute state-space representation of system.

  2. Mathematical Modeling of Electrochemical Flow Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, NC; Wainright, JS; Savinell, RF

    Electrochemical flow capacitors (EFCs) for grid-scale energy storage are a new technology that is beginning to receive interest. Prediction of the expected performance of such systems is important as modeling can be a useful avenue in the search for design improvements. Models based off of circuit analogues exist to predict EFC performance, but these suffer from deficiencies (e.g. a multitude of fitting constants that are required and the ability to analyze only one spatial direction at a time). In this paper mathematical models based off of three-dimensional macroscopic balances (similar to models for porous electrodes) are reported. Unlike existing three-dimensionalmore » porous electrode-based approaches for modeling slurry electrodes, advection (i.e., transport associated with bulk fluid motion) of the overpotential is included in order to account for the surface charge at the interface between flowing particles and the electrolyte. Doing so leads to the presence of overpotential boundary layers that control the performance of EFCs. These models were used to predict the charging behavior of an EFC under both flowing and non-flowing conditions. Agreement with experimental data was good, including proper prediction of the steady-state current that is achieved during charging of a flowing EFC. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.« less

  3. Modelling in Action. Examining How Students Approach Modelling Real Life Situations. Three Case Studies. Model of the Movement of an Elevator

    ERIC Educational Resources Information Center

    Rivas, Eugenia Marmolejo

    2015-01-01

    By means of three case studies, we will present two mathematical modelling activities that are suitable for students enrolled in senior high school and the first year of mathematics at university level. The activities have been designed to enrich the learning process and promote the formation of vital modelling skills. In case studies one and two,…

  4. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  5. Topology of Flow Separation on Three-Dimensional Bodies

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.; Yates, Leslie A.

    1991-01-01

    In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.

  6. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  7. Development and external validation of new ultrasound-based mathematical models for preoperative prediction of high-risk endometrial cancer.

    PubMed

    Van Holsbeke, C; Ameye, L; Testa, A C; Mascilini, F; Lindqvist, P; Fischerova, D; Frühauf, F; Fransis, S; de Jonge, E; Timmerman, D; Epstein, E

    2014-05-01

    To develop and validate strategies, using new ultrasound-based mathematical models, for the prediction of high-risk endometrial cancer and compare them with strategies using previously developed models or the use of preoperative grading only. Women with endometrial cancer were prospectively examined using two-dimensional (2D) and three-dimensional (3D) gray-scale and color Doppler ultrasound imaging. More than 25 ultrasound, demographic and histological variables were analyzed. Two logistic regression models were developed: one 'objective' model using mainly objective variables; and one 'subjective' model including subjective variables (i.e. subjective impression of myometrial and cervical invasion, preoperative grade and demographic variables). The following strategies were validated: a one-step strategy using only preoperative grading and two-step strategies using preoperative grading as the first step and one of the new models, subjective assessment or previously developed models as a second step. One-hundred and twenty-five patients were included in the development set and 211 were included in the validation set. The 'objective' model retained preoperative grade and minimal tumor-free myometrium as variables. The 'subjective' model retained preoperative grade and subjective assessment of myometrial invasion. On external validation, the performance of the new models was similar to that on the development set. Sensitivity for the two-step strategy with the 'objective' model was 78% (95% CI, 69-84%) at a cut-off of 0.50, 82% (95% CI, 74-88%) for the strategy with the 'subjective' model and 83% (95% CI, 75-88%) for that with subjective assessment. Specificity was 68% (95% CI, 58-77%), 72% (95% CI, 62-80%) and 71% (95% CI, 61-79%) respectively. The two-step strategies detected up to twice as many high-risk cases as preoperative grading only. The new models had a significantly higher sensitivity than did previously developed models, at the same specificity. Two-step strategies with 'new' ultrasound-based models predict high-risk endometrial cancers with good accuracy and do this better than do previously developed models. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  8. A vectorized algorithm for 3D dynamics of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Howard B.

    1989-01-01

    Equations of motion characterizing the three dimensional motion of a tethered satellite during the retrieval phase are studied. The mathematical model involves an arbitrary number of point masses connected by weightless cords. Motion occurs in a gravity gradient field. The formulation presented accounts for general functions describing support point motion, rate of tether retrieval, and arbitrary forces applied to the point masses. The matrix oriented program language MATLAB is used to produce an efficient vectorized formulation for computing natural frequencies and mode shapes for small oscillations about the static equilibrium configuration; and for integrating the nonlinear differential equations governing large amplitude motions. An example of time response pertaining to the skip rope effect is investigated.

  9. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  10. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  11. Physics of the Lorentz Group

    NASA Astrophysics Data System (ADS)

    Başkal, Sibel

    2015-11-01

    This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.

  12. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  13. Dimensional reduction for a SIR type model

    NASA Astrophysics Data System (ADS)

    Cahyono, Edi; Soeharyadi, Yudi; Mukhsar

    2018-03-01

    Epidemic phenomena are often modeled in the form of dynamical systems. Such model has also been used to model spread of rumor, spread of extreme ideology, and dissemination of knowledge. Among the simplest is SIR (susceptible, infected and recovered) model, a model that consists of three compartments, and hence three variables. The variables are functions of time which represent the number of subpopulations, namely suspect, infected and recovery. The sum of the three is assumed to be constant. Hence, the model is actually two dimensional which sits in three-dimensional ambient space. This paper deals with the reduction of a SIR type model into two variables in two-dimensional ambient space to understand the geometry and dynamics better. The dynamics is studied, and the phase portrait is presented. The two dimensional model preserves the equilibrium and the stability. The model has been applied for knowledge dissemination, which has been the interest of knowledge management.

  14. The Bean model in suprconductivity: Variational formulation and numerical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, L.

    The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.

  15. The benefits of 3D modelling and animation in medical teaching.

    PubMed

    Vernon, Tim; Peckham, Daniel

    2002-12-01

    Three-dimensional models created using materials such as wax, bronze and ivory, have been used in the teaching of medicine for many centuries. Today, computer technology allows medical illustrators to create virtual three-dimensional medical models. This paper considers the benefits of using still and animated output from computer-generated models in the teaching of medicine, and examines how three-dimensional models are made.

  16. Research of MPPT for photovoltaic generation based on two-dimensional cloud model

    NASA Astrophysics Data System (ADS)

    Liu, Shuping; Fan, Wei

    2013-03-01

    The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.

  17. [Construction of platform on the three-dimensional finite element model of the dentulous mandibular body of a normal person].

    PubMed

    Gong, Lu-Lu; Zhu, Jing; Ding, Zu-Quan; Li, Guo-Qiang; Wang, Li-Ming; Yan, Bo-Yong

    2008-04-01

    To develop a method to construct a three-dimensional finite element model of the dentulous mandibular body of a normal person. A series of pictures with the interval of 0.1 mm were taken by CT scanning. After extracting the coordinates of key points of some pictures by the procedure, we used a C program to process the useful data, and constructed a platform of the three-dimensional finite element model of the dentulous mandibular body with the Ansys software for finite element analysis. The experimental results showed that the platform of the three-dimensional finite element model of the dentulous mandibular body was more accurate and applicable. The exact three-dimensional shape of model was well constructed, and each part of this model, such as one single tooth, can be deleted, which can be used to emulate various tooth-loss clinical cases. The three-dimensional finite element model is constructed with life-like shapes of dental cusps. Each part of this model can be easily removed. In conclusion, this experiment provides a good platform of biomechanical analysis on various tooth-loss clinical cases.

  18. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    PubMed

    Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  19. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  20. Recent trends in digital human modeling and the concurrent issues that face human modeling approach

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Gonzalez, L. Javier; Margerum, Sarah; Clowers, Kurt; Moreny, Richard; Abercomby, Andrew; Velasquez, Luis

    2006-01-01

    Tremendous strides have been made in the recent years to digitally represent human beings in computer simulation models ranging from assembly plant maintenance operations to occupants getting in and out of vehicles to action movie scenarios. While some of these tools are being actively pursued by the engineering communities, there is still a lot of work that remains to be done for the newly planned planetary exploration missions. For example, certain unique and several common challenges are seen in developing computer generated suited human models for designing the next generation space vehicle. The purpose of this presentation is to discuss NASA s potential needs for better human models and to show also many of the inherent yet not too obvious pitfalls that still are left unresolved in this new arena of digital human modeling. As part of NASA s Habitability and Human Factors Branch, the Anthropometry and Biomechanics Facility has been engaged in studying the various facets of computer generated human physical performance models; for instance, it has been engaged in utilizing three-dimensional laser scan data along with three dimensional video based motion and reach data to gather suited anthropometric and shape and size information that are not available yet in the form of computer mannequins. Our goal is to bring in new approaches to deal with heavily clothed humans (such as, suited astronauts) and to overcome the current limitations of wrongly identifying humans (either real or virtual) as univariate percentiles. We are looking at whole-body posture based anthropometric models as a means to identify humans of significantly different shapes and sizes to arrive at mathematically sound computer models for analytical purposes.

Top