NASA Astrophysics Data System (ADS)
Grimm, T.; Wiora, G.; Witt, G.
2017-03-01
Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.
The purpose of this study is to evaluate the Urban Airshed Model (UAM), a three-dimensional photochemical urban air quality simulation model, using field observations from the Tokyo Metropolitan Area. mphasis was placed on the photochemical smog formation mechanism under stagnant...
NASA Technical Reports Server (NTRS)
Wilmington, R. P.; Klute, Glenn K. (Editor); Carroll, Amy E. (Editor); Stuart, Mark A. (Editor); Poliner, Jeff (Editor); Rajulu, Sudhakar (Editor); Stanush, Julie (Editor)
1992-01-01
Kinematics, the study of motion exclusive of the influences of mass and force, is one of the primary methods used for the analysis of human biomechanical systems as well as other types of mechanical systems. The Anthropometry and Biomechanics Laboratory (ABL) in the Crew Interface Analysis section of the Man-Systems Division performs both human body kinematics as well as mechanical system kinematics using the Ariel Performance Analysis System (APAS). The APAS supports both analysis of analog signals (e.g. force plate data collection) as well as digitization and analysis of video data. The current evaluations address several methodology issues concerning the accuracy of the kinematic data collection and analysis used in the ABL. This document describes a series of evaluations performed to gain quantitative data pertaining to position and constant angular velocity movements under several operating conditions. Two-dimensional as well as three-dimensional data collection and analyses were completed in a controlled laboratory environment using typical hardware setups. In addition, an evaluation was performed to evaluate the accuracy impact due to a single axis camera offset. Segment length and positional data exhibited errors within 3 percent when using three-dimensional analysis and yielded errors within 8 percent through two-dimensional analysis (Direct Linear Software). Peak angular velocities displayed errors within 6 percent through three-dimensional analyses and exhibited errors of 12 percent when using two-dimensional analysis (Direct Linear Software). The specific results from this series of evaluations and their impacts on the methodology issues of kinematic data collection and analyses are presented in detail. The accuracy levels observed in these evaluations are also presented.
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
Three dimensional contact/impact methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less
Shi, Chaoyang; Kojima, Masahiro; Tercero, Carlos; Najdovski, Zoran; Ikeda, Seiichi; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto
2014-12-01
There are several complications associated with Stent-assisted Coil Embolization (SACE) in cerebral aneurysm treatments, due to damaging operations by surgeons and undesirable mechanical properties of stents. Therefore, it is necessary to develop an in vitro simulator that provides both training and research for evaluating the mechanical properties of stents. A new in vitro simulator for three-dimensional digital subtraction angiography was constructed, followed by aneurysm models fabricated with new materials. Next, this platform was used to provide training and to conduct photoelastic stress analysis to evaluate the SACE technique. The average interaction stress increasingly varied for the two different stents. Improvements for the Maximum-Likelihood Expectation-Maximization method were developed to reconstruct cross-sections with both thickness and stress information. The technique presented can improve a surgeon's skills and quantify the performance of stents to improve mechanical design and classification. This method can contribute to three-dimensional stress and volume variation evaluation and assess a surgeon's skills. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
NASA Technical Reports Server (NTRS)
Sharobeam, Monir H.
1994-01-01
Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.
Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves
2015-08-01
The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues.
Wu, Chin-San
2016-12-01
The mechanical properties, cytocompatibility, and fabrication of three-dimensional (3D) printing strips of composite materials containing polylactide (PLA) and chitosan (CS) were evaluated. Maleic anhydride-grafted polylactide (PLA-g-MA) and CS were used to enhance the desired characteristics of these composites. The PLA-g-MA/CS materials exhibited better mechanical properties than the PLA/CS composites; this effect was attributed to a greater compatibility between the grafted polyester and CS. The water resistance of the PLA-g-MA/CS composites was greater than that of the PLA/CS composites; cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, CS enhanced the antibacterial activity properties of PLA-g-MA and PLA/CS composites. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-Dimensional Versus Three-Dimensional Conceptualization in Astronomy Education
NASA Astrophysics Data System (ADS)
Reynolds, Michael David
Numerous science conceptual issues are naturally three-dimensional. Classroom presentations are often two -dimensional or at best multidimensional. Several astronomy topics are of this nature, e. g. mechanics of the phases of the moon. Textbooks present this three-dimensional topic in two-dimensions; such is often the case in the classroom. This study was conducted to examine conceptions exhibited by pairs of like-sex 11th grade standard physics students as they modeled the lunar phases. Student pairs, 13 male and 13 female, were randomly selected and assigned. Pairing comes closer to classroom emulation, minimizes needs for direct probes, and pair discussion is more likely to display variety and depth. Four hypotheses were addressed: (1) Participants who model three-dimensionally will more likely achieve a higher explanation score. (2) Students who experienced more earth or physical science exposure will more likely model three-dimensionally. (3) Pairs that exhibit a strong science or mathematics preference will more likely model three-dimensionally. (4) Males will model in three dimensions more than females. Students provided background information, including science course exposure and subject preference. Each pair laid out a 16-card set representing two complete lunar phase changes. The pair was asked to explain why the phases occur. Materials were provided for use, including disks, spheres, paper and pen, and flashlight. Activities were videotaped for later evaluation. Statistics of choice was a correlation determination between course preference and model type and ANOVA for the other hypotheses. It was determined that pairs who modeled three -dimensionally achieved a higher score on their phases mechanics explanation at p <.05 level. Pairs with earth science or physical science exposure, those who prefer science or mathematics, and male participants were not more likely to model three-dimensionally. Possible reasons for lack of significance was small sample size and in the case of course preferences, small differences in course preference means. Based on this study, instructors should be aware of dimensionality and student misconceptions. Whenever possible, three-dimensional concepts should be modeled as such. Authors and publishers should consider modeling suggestions and three-dimensional ancillaries.
Measuring Clearance Mechanics Based on Dynamic Leg Length
ERIC Educational Resources Information Center
Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli
2018-01-01
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…
Gurev, V.; Constantino, J.; Rice, J.J.; Trayanova, N.A.
2010-01-01
In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions. PMID:20682251
NASA Astrophysics Data System (ADS)
He, Jianmei
2017-11-01
Present metal artificial bones for bone grafts have the problems like too heavy and excessive elastic modulus compared with natural bones. In this study, three-dimensionally (3D) free-formable titanium mesh plates for bone graft applications was introduced to improve these problems. Fundamental mesh shapes and patterns were designed under different base shapes and design parameters through three dimensional CAD tools from higher flexibility and strength points of view. Based on the designed mesh shape and patterns, sample specimens of titanium mesh plates with different base shapes and design variables were manufactured through laser processing. Tensile properties of the sample titanium mesh plates like volume density, tensile elastic modulus were experimentally and analytically evaluated. Experimental results showed that such titanium mesh plates had much higher flexibility and their mechanical properties could be controlled to close to the natural bones. More details on the mechanical properties of titanium mesh plates including compression, bending, torsion and durability will be carried out in future study.
Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters
NASA Astrophysics Data System (ADS)
Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada
2011-01-01
We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Electromechanical vortex filaments during cardiac fibrillation
NASA Astrophysics Data System (ADS)
Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.
2018-03-01
The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.
Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal
2017-11-01
The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S
1996-09-15
For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.
Xiong, Yaoyang; Qian, Chao; Sun, Jian
2012-01-01
This study evaluated the feasibility of using three-dimensional printing (3DP) to fabricate porous titanium implants. Titanium powder was blended with a water-soluble binder material. Green, porous, titanium implants fabricated by 3DP were sintered under protective argon atmosphere at 1,200, 1,300, or 1,400°C. Sintered implant prototypes had uniform shrinkage and no obvious shape distortion after sintering. Evaluation of their mechanical properties revealed that titanium prototypes sintered at different temperatures had elastic modulus of 5.9-34.8 GPa, porosity of 41.06-65.01%, hardness of 115.2-182.8 VHN, and compressive strength of 81.3-218.6 MPa. There were significant differences in each type of these data among the different sintering temperatures (p<0.01). Results of this study confirmed the feasibility of fabricating porous titanium implants by 3DP: pore size and pore interconnectivity were conducive to bone cell ingrowth for implant stabilization, and the mechanical properties matched well with those of the human bone.
Poyraz, Esra; Öz, Tuğba Kemaloğlu; Zeren, Gönül; Güvenç, Tolga Sinan; Dönmez, Cevdet; Can, Fatma; Güvenç, Rengin Çetin; Dayı, Şennur Ünal
2017-09-01
In a fraction of patients with mild mitral stenosis, left ventricular systolic function deteriorates despite the lack of hemodynamic load imposed by the dysfunctioning valve. Neither the predisposing factors nor the earlier changes in left ventricular contractility were understood adequately. In the present study we aimed to evaluate left ventricular mechanics using three-dimensional (3D) speckle tracking echocardiography. A total of 31 patients with mild rheumatic mitral stenosis and 27 healthy controls were enrolled to the study. All subjects included to the study underwent echocardiographic examination to collect data for two- and three-dimensional speckle-tracking based stain, twist angle and torsion measurements. Data was analyzed offline with a echocardiographic data analysis software. Patients with rheumatic mild MS had lower global longitudinal (p < 0.001) circumferential (p = 0.02) and radial (p < 0.01) strain compared to controls, despite ejection fraction was similar for both groups [(p = 0.45) for three dimensional and (p = 0.37) for two dimensional measurement]. While the twist angle was not significantly different between groups (p = 0.11), left ventricular torsion was significantly higher in mitral stenosis group (p = 0.03). All strain values had a weak but significant positive correlation with mitral valve area measured with planimetry. Subclinical left ventricular systolic dysfunction develops at an early stage in rheumatic mitral stenosis. Further work is needed to elucidate patients at risk for developing overt systolic dysfunction.
Hawkins, Rhoda J.; Poincloux, Renaud; Bénichou, Olivier; Piel, Matthieu; Chavrier, Philippe; Voituriez, Raphaël
2011-01-01
We present a model of cell motility generated by actomyosin contraction of the cell cortex. We identify, analytically, dynamical instabilities of the cortex and show that they yield steady-state cortical flows, which, in turn, can induce cell migration in three-dimensional environments. This mechanism relies on the regulation of contractility by myosin, whose transport is explicitly taken into account in the model. Theoretical predictions are compared to experimental data of tumor cells migrating in three-dimensional matrigel and suggest that this mechanism could be a general mode of cell migration in three-dimensional environments. PMID:21889440
Mart, Christopher Robin; Eckhauser, Aaron Wesley; Murri, Michael; Su, Jason Thomas
2014-09-01
With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight into the mechanisms of TVI. It is the intent of this report to propose a systematic method on how to evaluate and display 3DE images of the TV in HLHS which has not been done previously. TV anatomy, function, and the known mechanisms of insufficiency are reviewed. We defined three regions of the TV (anterior, posterior, septal) that can help define valve "leaflets" that incorporates the many variations of TV anatomy. To determine how the surgeon views the TV, a picture of a pathologic specimen of the TV was placed on a computer screen and rotated until it was oriented as it appears during surgery, the "surgeons view." We have proposed a systematic method for evaluating and displaying the TV using 3DE which can provide significant insight into the mechanisms causing TVI in HLHS. This has the potential to improve both the surgical approach to repairing the valve and, ultimately, patient outcomes.
Mart, Christopher Robin; Eckhauser, Aaron Wesley; Murri, Michael; Su, Jason Thomas
2014-01-01
With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight into the mechanisms of TVI. It is the intent of this report to propose a systematic method on how to evaluate and display 3DE images of the TV in HLHS which has not been done previously. TV anatomy, function, and the known mechanisms of insufficiency are reviewed. We defined three regions of the TV (anterior, posterior, septal) that can help define valve “leaflets” that incorporates the many variations of TV anatomy. To determine how the surgeon views the TV, a picture of a pathologic specimen of the TV was placed on a computer screen and rotated until it was oriented as it appears during surgery, the “surgeons view.” We have proposed a systematic method for evaluating and displaying the TV using 3DE which can provide significant insight into the mechanisms causing TVI in HLHS. This has the potential to improve both the surgical approach to repairing the valve and, ultimately, patient outcomes. PMID:25298694
NASA Astrophysics Data System (ADS)
Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.
2014-03-01
The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.
NASA Technical Reports Server (NTRS)
Juran, C. M.; Blaber, E. A.; Almeida, E. A. C.
2016-01-01
Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
Three-dimensional modelling of slope stability using the Local Factor of Safety concept
NASA Astrophysics Data System (ADS)
Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger
2017-04-01
Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.
STUDY USING A THREE-DIMENSIONAL SMOG FORMATION MODEL UNDER CONDITIONS OF COMPLEX FLOW
To clarify the photochemical smog formation mechanisms under conditions of complex flow, the SAI Urban Airshed Model was evaluated using a 1981 field observed data base. In the Tokyo Metropolitan Area higher O3 concentrations are usually observed near the shore in the morning. As...
Development of Moire machine vision
NASA Technical Reports Server (NTRS)
Harding, Kevin G.
1987-01-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Development of Moire machine vision
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
1987-10-01
Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Brasseur, James G.
2017-06-01
We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.
NASA Technical Reports Server (NTRS)
Hooper, Steven J.
1989-01-01
Delamination is a common failure mode of laminated composite materials. This type of failure frequently occurs at the free edges of laminates where singular interlaminar stresses are developed due to the difference in Poisson's ratios between adjacent plies. Typically the delaminations develop between 90 degree plies and adjacent angle plies. Edge delamination has been studied by several investigators using a variety of techniques. Recently, Chan and Ochoa applied the quasi-three-dimensional finite element model to the analysis of a laminate subject to bending, extension, and torsion. This problem is of particular significance relative to the structural integrity of composite helicopter rotors. The task undertaken was to incorporate Chan and Ochoa's formulation into a Raju Q3DG program. The resulting program is capable of modeling extension, bending, and torsional mechanical loadings as well as thermal and hygroscopic loadings. The addition of the torsional and bending loading capability will provide the capability to perform a delamination analysis of a general unsymmetric laminate containing four cracks, each of a different length. The solutions obtained using this program are evaluated by comparing them with solutions from a full three-dimensional finite element solution. This comparison facilitates the assessment of three dimensional affects such as the warping constraint imposed by the load frame grips. It wlso facilitates the evaluation of the external load representation employed in the Q3D formulation. Finally, strain energy release rates computed from the three-dimensional results are compared with those predicted using the quasi-three-dimensional formulation.
Woven TPS Mechanical Property Evaluation
NASA Technical Reports Server (NTRS)
Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.
2013-01-01
Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.
Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C
2002-04-01
The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.
View Combination: A Generalization Mechanism for Visual Recognition
ERIC Educational Resources Information Center
Friedman, Alinda; Waller, David; Thrash, Tyler; Greenauer, Nathan; Hodgson, Eric
2011-01-01
We examined whether view combination mechanisms shown to underlie object and scene recognition can integrate visual information across views that have little or no three-dimensional information at either the object or scene level. In three experiments, people learned four "views" of a two dimensional visual array derived from a three-dimensional…
Schiek, Richard [Albuquerque, NM
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
Michael, A.J.
1988-01-01
A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author
Solar Thermal Concept Evaluation
NASA Technical Reports Server (NTRS)
Hawk, Clark W.; Bonometti, Joseph A.
1995-01-01
Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations, recommendations and pit falls regarding the structure, materials and facility design are presented.
Garai, Subhadra; Sinha, Arvind
2014-03-01
An innovative biomimetic synthesis of novel three dimensional micro/macro porous carboxymethyl cellulose (CMC)-hydroxyapatite (HA) nanocomposites having four systematically different compositions has been established for its possible application as a load bearing synthetic bone graft. Our process, being in situ, involves a simple and cost effective route akin to a matrix mediated biomineralization process. Developed synthesis route not only controls the size of HA particles in the range of 15-50 nm, embedded in CMC matrix, but also assists in the formation of a mechanically strong three dimensional nanocomposite structures due to physical cross linking of HA impregnated CMC matrix. The process does not involve any toxic cross linker and works at near ambient conditions. The nanocomposites are systematically structurally and mechanically characterized using various techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), solid state (13)C nuclear magnetic resonance ((13)C NMR), thermo-gravimetric analysis (TGA) and Universal mechanical test. It reveals that the ionic/polar or electrostatic interactions are the main driving force for formation of load bearing three dimensional nanocomposites via a process similar to matrix mediated biomineralization. Compressive strength and compressive modulus of nanocomposites, being in the range of 1.74-12 MPa and 157-330 MPa, respectively, meet the desired range of compressive strength for the synthetic grafts used in cancellous bone. An increase in the compressive strength with increase in the porosity has been an interesting observation in the present study. In vitro cytotoxicity of the synthesized nanocomposites has been evaluated using bone marrow mesenchymal stem cells (BMSC) isolated from Wistar rat. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer
NASA Astrophysics Data System (ADS)
Wang, Chunqi; Huang, Lixi
2008-06-01
When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.
Analytical design of an advanced radial turbine. [automobile engines
NASA Technical Reports Server (NTRS)
Large, G. D.; Finger, D. G.; Linder, C. G.
1981-01-01
The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.
Insights into the selective binding and toxic mechanism of microcystin to catalase
NASA Astrophysics Data System (ADS)
Hu, Yuandong; Da, Liangjun
2014-03-01
Microcystin is a sort of cyclic nonribosomal peptides produced by cyanobacteria. It is cyanotoxin, which can be very toxic for plants and animals including humans. The present study evaluated the interaction of microcystin and catalase, under physiological conditions by means of fluorescence, three-dimensional (3D) fluorescence, circular dichroism (CD), Fourier Transform infrared (FT-IR) spectroscopy, and enzymatic reactionkinetic techniques. The fluorescence data showed that microcystin could bind to catalase to form a complex. The binding process was a spontaneous molecular interaction procedure, in which electrostatic interactions played a major role. Energy transfer and fluorescence studies proved the existence of a static binding process. Additionally, as shown by the three-dimensional fluorescence, CD and FT-IR results, microcystin could lead to conformational and microenvironmental changes of the protein, which may affect the physiological functions of catalase. The work provides important insights into the toxicity mechanism of microcystin in vivo.
Theory and application of a three-dimensional model of the human spine.
Belytschko, T; Schwer, L; Privitzer, E
1978-01-01
A three-dimensional, discrete model of the human spine, torso, and head was developed for the purpose of evaluating mechanical response in pilot ejection. However, it was developed in sufficient generality to be applicable to other body response problems, such as occupant response in aircraft crash and arbitrary loads on the head-spine system. The anatomy is modelled by a collection of rigid bodies, which represent skeletal segments such as the vertebrae, pelvis, head, and ribs, interconnected by deformable elements, which represent ligaments, cargilagenous joints, viscera and connective tissues. Results are presented for several conditions: different rates of onset, ejection at angles, preejection alignment, and eccentric head loadings. It is shown that slow rates of onset and angling the seat reduce both the peak axial loads and bending moments. In the presence of eccentric head masses, such as helmet-mounted devices, the reflected flexural wave is shown to be the key injury mechanism.
Three Dimensional Vibration Characteristics of the Permanent Magnet-HTSC Magnetic Bearing
NASA Astrophysics Data System (ADS)
Ohashi, Shunsuke
The three dimensional vibration of the rotor in a HTSC-permanent magnet bearing system is studied. We have developed the magnetic bearing system which can revolve up to 12,000rpm, and three dimensional vibration of the rotor is measured with laser displacement sensors. To consider the rotor vibration under the mechanical resonance state, static lateral and vertical pinning force of the magnetic bearing is measured. From the results, resonance frequency is given. There are two factors of mechanical resonance caused by the magnetic bearing. One is lateral equivalent spring and the other is vertical one. Influence of the resonance caused by the lateral spring is large, and that by the vertical one is small. Three dimensional vibration of the rotor position around the mechanical resonance frequency is measured. Because revolution of the rotor increases lateral force to the center, resonance frequency given from the free revolution experiment becomes larger than that from pinning force measurement.
Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F
2014-11-01
The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.
Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials
NASA Astrophysics Data System (ADS)
Trifale, Ninad T.
A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.
Integrated NDE and FEM characterization of composite rotors
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2001-08-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
An Integrated NDE and FEM Characterization of Composite Rotors
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2000-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey
2001-01-01
A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.
How Does Subclinical Hyperthyroidism Affect Right Heart Function and Mechanics?
Tadic, Marijana; Celic, Vera; Cuspidi, Cesare; Ilic, Sanja; Zivanovic, Vladimir; Marjanovic, Tamara
2016-02-01
Right heart function and mechanics have not been investigated in patients with subclinical hyperthyroidism. Our aim was to investigate right ventricular (RV) and right atrial (RA) function and deformation as evaluated by 3-dimensional echocardiography (3DE) and speckle-tracking 2-dimensional echocardiography (2DE) in these individuals. We included 39 untreated women with endogenous subclinical hyperthyroidism and 39 healthy women matched by age. All participants underwent laboratory analyses that included thyroid hormone levels and comprehensive 2DE and 3DE examinations. Three-dimensional echocardiographic RV volumes were significantly elevated in the patients with subclinical hyperthyroidism (P < .05), whereas the 3DE RV ejection fraction was reduced in this group, but with borderline significance. Two-dimensional echocardiographic longitudinal RV and RA strain were significantly reduced in the patients with subclinical hyperthyroidism. Two-dimensional echocardiographic RV systolic and early diastolic strain rates were reduced, whereas late diastolic strain rates were increased in the patients with subclinical hyperthyroidism. The same changes were detected in RA mechanics among the patients with subclinical hyperthyroidism. The thyrotropin (TSH) level correlated with the left ventricular mass index, transmitral early diastolic peak flow velocity (E)/late diastolic flow velocity (A) ratio, tricuspid E/A ratio, 2DE RV global strain, 2DE RA, strain, and 3DE RV end-diastolic volume. A multivariate regression analysis showed that the mitral E/A ratio, 2DE RV global strain, and 3DE RV end-diastolic volume were independently associated with the TSH level. Right ventricular and RA function as evaluated by 3DE and speckle-tracking 2DE is significantly impaired in patients with subclinical hyperthyroidism. The TSH level correlated with parameters for RV function and mechanics in the whole study population. © 2016 by the American Institute of Ultrasound in Medicine.
The mechanics and design of a lightweight three-dimensional graphene assembly
Qin, Zhao; Jung, Gang Seob; Kang, Min Jeong; Buehler, Markus J.
2017-01-01
Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials. PMID:28070559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.
1996-11-01
This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included -200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrich, J.T.; Argueello, J.G.; Thorne, B.J.
1996-12-31
This paper describes an integrated geomechanics analysis of well casing damage induced by compaction of the diatomite reservoir at the Belridge Field, California. Historical data from the five field operators were compiled and analyzed to determine correlations between production, injection, subsidence, and well failures. The results of this analysis were used to develop a three-dimensional geomechanical model of South Belridge, Section 33 to examine the diatomite reservoir and overburden response to production and injection at the interwell scale and to evaluate potential well failure mechanisms. The time-dependent reservoir pressure field was derived from a three-dimensional finite difference reservoir simulation andmore » used as input to three-dimensional non-linear finite element geomechanical simulations. The reservoir simulation included approximately 200 wells and covered 18 years of production and injection. The geomechanical simulation contained 437,100 nodes and 374,130 elements with the overburden and reservoir discretized into 13 layers with independent material properties. The results reveal the evolution of the subsurface stress and displacement fields with production and injection and suggest strategies for reducing the occurrence of well casing damage.« less
Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon; Marcott, Stephen C; Polamraju, Praveen V; Lee, Yeonkyung; Fischbach, Claudia
2016-08-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.
Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor
Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng
2016-01-01
In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194
Anchorage in Orthodontics: Three-dimensional Scanner Input.
Nabbout, Fidele; Baron, Pascal
2018-01-01
The aim of this article is to re-evaluate anchorage coefficient values in orthodontics and their influence in the treatment decision through the usage of three-dimensional (3D) scanner. A sample of 80 patients was analyzed with the 3D scanner using the C2000 and Cepha 3DT softwares (CIRAD Montpellier, France). Tooth anatomy parameters (linear measurements, root, and crown volumes) were then calculated to determine new anchorage coefficients based on root volume. Data were collected and statistically evaluated with the StatView software (version 5.0). The anchorage coefficient values found in this study are compared to those established in previous studies. These new values affect and modify our approach in orthodontic treatment from the standpoint of anchorage. The use of new anchorage coefficient values has significant clinical implications in conventional and in microimplants-assisted orthodontic mechanics through the selection and delivery of the optimal force system (magnitude and moment) for an adequate biological response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yi, E-mail: zhouyihn@163.com; Huang, Yan; Li, Dang
Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized onmore » a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.« less
Designing a new three-dimensional periodic cellular auxetic material
NASA Astrophysics Data System (ADS)
Zhou, Yiyi; Chen, Lianmen
2017-07-01
Auxetics are materials showing a negative Poisson’s ratio. Early research found several categories of auxetic materials in the chemical field. Later research identified the fundamental mechanism generating this behavior is rotation; a variety of two-dimensional auxetic material have been generated accordingly. Nevertheless, the successful example of three-dimensional auxetic material is still rare. This paper introduces a new design of three-dimensional periodic cellular auxetic material based on geometrical and mechanical methodology. The projections of the optimized periodic modules in two horizontal directions are geometrically same with auxetic hexahedral poem, so that the optimized periodic material can perform auxetic in both two horizontal directions under vertical compression. Parametric model is simulated to prove the design.
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2016-11-01
Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.
Modeling the effect of mood on dimensional attention during categorization.
Zivot, Matthew T; Cohen, Andrew L; Kapucu, Aycan
2013-08-01
Classification is a flexible process that can be affected by mood. The goal of this paper is to evaluate the idea that mood may modulate categorization behavior through an attentional weighting mechanism in which mood changes the attention afforded to different stimulus dimensions. In two experiments, participants learn and are tested on categories while in a calm or sad mood. In Experiment 1, sad participants are faster to learn one- and two-dimensional category structures, but show no advantage on a three-dimensional category structure. In Experiment 2, the generalized context model of categorization is used to measure dimensional weighting. The results suggest that sad participants have a narrower focus of attention, but that the narrowing tends to be on diagnostic dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Three-dimensional representation of curved nanowires.
Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S
2004-12-01
Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.
USDA-ARS?s Scientific Manuscript database
Seepage flow initiates undercutting, similar to development and headward migration of internal gullies, by liquefaction of soil particles, followed by mass wasting of the bank. Although seepage erosion has three-dimensional characteristics, two-dimensional lysimeters have been used in previous resea...
On three-dimensional misorientation spaces.
Krakow, Robert; Bennett, Robbie J; Johnstone, Duncan N; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J; Einsle, Joshua F; Midgley, Paul A; Rae, Catherine M F; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
On three-dimensional misorientation spaces
NASA Astrophysics Data System (ADS)
Krakow, Robert; Bennett, Robbie J.; Johnstone, Duncan N.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-10-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance.
Three-dimensional piezoelectric boundary elements
NASA Astrophysics Data System (ADS)
Hill, Lisa Renee
The strong coupling between mechanical and electrical fields in piezoelectric ceramics makes them appropriate for use as actuation devices; as a result, they are an important part of the emerging technologies of smart materials and structures. These piezoceramics are very brittle and susceptible to fracture, especially under the severe loading conditions which may occur in service. A significant portion of the applications under investigation involve dynamic loading conditions. Once a crack is initiated in the piezoelectric medium, the mechanical and electrical fields can act to drive the crack growth. Failure of the actuator can result from a catastrophic fracture event or from the cumulative effects of cyclic fatigue. The presence of these cracks, or other types of material defects, alter the mechanical and electrical fields inside the body. Specifically, concentrations of stress and electric field are present near a flaw and can lead to material yielding or localized depoling, which in turn can affect the sensor/actuator performance or cause failure. Understanding these effects is critical to the success of these smart structures. The complex coupling behavior and the anisotropy of the material makes the use of numerical methods necessary for all but the simplest problems. To this end, a three-dimensional boundary element method program is developed to evaluate the effect of flaws on these piezoelectric materials. The program is based on the linear governing equations of piezoelectricity and relies on a numerically evaluated Green's function for solution. The boundary element method was selected as the evaluation tool due to its ability to model the interior domain exactly. Thus, for piezoelectric materials the coupling between mechanical and electrical fields is not approximated inside the body. Holes in infinite and finite piezoceramics are investigated, with the localized stresses and electric fields clearly developed. The accuracy of the piezoelectric boundary element method is demonstrated with two problems: a two-dimensional circular void and a three-dimensional spherical cavity, both inside infinite solids. Application of the program to a finite body with a centered, spherical void illustrates the complex nature of the mechanical and electrical coupling. Mode I fracture is also examined, combining the linear boundary element solution with the modified crack closure integral to determine strain energy release rates. Experimental research has shown that the strain, rather than the total, energy release rate is a better predictor of crack growth in piezoelectric materials. Solutions for a two-dimensional slit-like crack and for three-dimensional penny and elliptical cracks are presented. These solutions are developed using the insulated crack face electrical boundary condition. Although this boundary condition is used by most researchers, recent discussion indicates that it may not be an accurate model for the slender crack geometry. The boundary element method is used with the penny crack problem to investigate the effect of different electrical boundary conditions on the strain energy release rate. Use of a conductive crack face boundary condition, rather than an insulated one, acts to increase the strain energy release rate for the penny crack. These conductive strain energies are closer to the values determined using a permeable electrical boundary condition than to the original conductive boundary condition ones. It is shown that conclusions about structural integrity are strongly dependent on the choice of boundary conditions.
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
ERIC Educational Resources Information Center
Koerber, Robert C.
2011-01-01
Strengthening the association between education and communication is difficult due to the scarcity of educationally initiated research into the mechanics of communication. Most of the existing communication research is domiciled in the departments of sociology, psychology, anthropology, journalism and business. Many educators are satisfied in…
A three-dimensional evaluation of a laser scanner and a touch-probe scanner.
Persson, Anna; Andersson, Matts; Oden, Agneta; Sandborgh-Englund, Gunilla
2006-03-01
The fit of a dental restoration depends on quality throughout the entire manufacturing process. There is difficulty in assessing the surface topography of an object with a complex form, such as teeth, since there is no exact reference form. The purpose of this study was to determine the repeatability and relative accuracy of 2 dental surface digitization devices. A computer-aided design (CAD) technique was used for evaluation to calculate and present the deviations 3-dimensionally. Ten dies of teeth prepared for complete crowns were fabricated in presintered yttria-stabilized tetragonal zirconia (Y-TZP). The surfaces were digitized 3 times each with an optical or mechanical digitizer. The number of points in the point clouds from each reading were calculated and used as the CAD reference model (CRM). Alignments were performed by registration software that works by minimizing a distance criterion. In color-difference maps, the distribution of the discrepancies between the surfaces in the CRM and the 3-dimensional surface models was identified and located. The repeatability of both scanners was within 10 microm, based on SD and absolute mean values. The qualitative evaluation resulted in an even distribution of the deviations in the optical digitizer, whereas the dominating part of the surfaces in the mechanical digitizer showed no deviations. The relative accuracy of the 2 surface digitization devices was within +/- 6 microm, based on median values. The repeatability of the optical digitizer was comparable with the mechanical digitization device, and the relative accuracy was similar.
Al-Mohaissen, Maha A; Chan, Kwan Leung
2012-03-01
Endocardial lead-induced tricuspid regurgitation has not been well recognized, either clinically or echocardiographically, and yet it is likely a preventable iatrogenic disease. In severe cases, it can lead to right ventricular failure and require tricuspid valve surgery. This complication will become increasingly important, because the numbers of permanent pacemakers and implantable cardioverter-defibrillators are expected to increase because of the aging population and the expanding capabilities of these devices. Published studies are largely retrospective, and serial studies to assess the time course of the development of tricuspid regurgitation are lacking. The mechanisms and severity of tricuspid regurgitation may not be well evaluated by two-dimensional echocardiography. Real-time three-dimensional echocardiography appears to be a promising technique to evaluate the mechanism of tricuspid regurgitation and may allow the early detection of patients who will develop severe lead-induced tricuspid regurgitation. A better understanding of the mechanism of lead-induced tricuspid regurgitation will be essential to the development of preventive strategies, which can then be tested in future clinical trials. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
The 1986 advances in bioengineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, S.A.; King, A.I.
1986-01-01
This book presents the papers given at a conference on biomedicine. Topics considered at the conference included a mathematical method for obtaining three-dimensional information from standard two-dimensional radiographs, the human lumbar spine, scoliosis and instrumentation, vehicle crashworthiness, lung mechanics, physiological fluid mechanics, microgravity, cardiovascular mechanics, and soft tissue.
Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom
2017-09-01
Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.
Engineering three-dimensional cell mechanical microenvironment with hydrogels.
Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian
2012-12-01
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.
Shear-wave elasticity measurements of three-dimensional cell cultures for mechanobiology
Kuo, Po-Ling; Charng, Ching-Che; Wu, Po-Chen
2017-01-01
ABSTRACT Studying mechanobiology in three-dimensional (3D) cell cultures better recapitulates cell behaviors in response to various types of mechanical stimuli in vivo. Stiffening of the extracellular matrix resulting from cell remodeling potentiates many pathological conditions, including advanced cancers. However, an effective tool for measuring the spatiotemporal changes in elastic properties of such 3D cell cultures without directly contacting the samples has not been reported previously. We describe an ultrasonic shear-wave-based platform for quantitatively evaluating the spatiotemporal dynamics of the elasticity of a matrix remodeled by cells cultured in 3D environments. We used this approach to measure the elasticity changes of 3D matrices grown with highly invasive lung cancer cells and cardiac myoblasts, and to delineate the principal mechanism underlying the stiffening of matrices remodeled by these cells. The described approach can be a useful tool in fields investigating and manipulating the mechanotransduction of cells in 3D contexts, and also has potential as a drug-screening platform. PMID:27505887
Lynch, Maureen E.; Chiou, Aaron E.; Lee, Min Joon; Marcott, Stephen C.; Polamraju, Praveen V.; Lee, Yeonkyung
2016-01-01
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis. PMID:27401765
Carrel, Jean-Pierre; Wiskott, Anselm; Scherrer, Susanne; Durual, Stéphane
2016-12-01
Osteoflux is a three-dimensional printed calcium phosphate porous structure for oral bone augmentation. It is a mechanically stable scaffold with a well-defined interconnectivity and can be readily shaped to conform to the bone bed's morphology. An animal experiment is reported whose aim was to assess the performance and safety of the scaffold in promoting vertical growth of cortical bone in the mandible. Four three-dimensional blocks (10 mm length, 5 mm width, 5 mm height) were affixed to edentulous segments of the dog's mandible and covered by a collagen membrane. During bone bed preparation, particular attention was paid not to create defects 0.5 mm or more so that the real potential of the three-dimensional block in driving vertical bone growth can be assessed. Histomorphometric analyses were performed after 8 weeks. At 8 weeks, the three-dimensional blocks led to substantial vertical bone growth up to 4.5 mm from the bone bed. Between 0 and 1 mm in height, 44% of the surface was filled with new bone, at 1 to 3 mm it was 20% to 35%, 18% at 3 to 4, and ca. 6% beyond 4 mm. New bone was evenly distributed along in mesio-distal direction and formed a new crest contour in harmony with the natural mandibular shape. After two months of healing, the three-dimensional printed blocks conducted new bone growth above its natural bed, up to 4.5 mm in a canine mandibular model. Furthermore, the new bone was evenly distributed in height and density along the block. These results are very promising and need to be further evaluated by a complete powerful study using the same model. © 2016 Wiley Periodicals, Inc.
Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Drummond, Charles H., III
1992-01-01
The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.
Kinetics of hexacelsian-to-celsian phase transformation in SrAl2Si2O8
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Drummond, Charles H., III
1993-01-01
The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.
Reconsideration of Si pillar thermal oxidation mechanism
NASA Astrophysics Data System (ADS)
Kageshima, Hiroyuki; Shiraishi, Kenji; Endoh, Tetsuo
2018-06-01
The mechanism of Si pillar thermal oxidation is considered. The Si emission is discussed in the oxidation of three-dimensional structures, which must be fundamentally important to understand the oxidation mechanism. It is confirmed that the Si emission is enhanced in the three-dimensional structures by the geometrical and stress effects. The larger effect is expected for Si spheres rather than for Si pillars. More enhanced Si emission can be expected for the smaller spheres. Then the mechanism of Si missing and the effect of Si emission are also discussed. The oxide viscous flow mechanism is the promising candidate to explain the Si missing, because the oxide viscosity could be reduced by the SiO incorporation and the compressive stress. The geometrical effect induces the viscosity gradient, which is important to induce the Si missing. Interplay of the emitted SiO and the accumulated stress is the key in Si pillar oxidation. Careful approaches are suggested for the oxidation of three-dimensional structures.
NASA Astrophysics Data System (ADS)
Nagaoka, Kenji; Yano, Hajime; Yoshimitsu, Tetsuo; Yoshida, Kazuya; Kubota, Takashi; Adachi, Tadashi; Kurisu, Masamitsu; Yatsunami, Hiroyuki; Kuroda, Yoji
This presentation introduces the analysis and evaluation of a deployment mechanism of a tiny rover by ZARM drop tower experiments. The mechanism is installed on the MINERVA-II2 system in the Hayabusa-2 project performed by JAXA. The MINERVA-II2 system includes a small exploration rover, and the rover will be released from the Hayabusa-2 spacecraft to the asteroid surface. After the rover lands on the surface, it will move over the surface and conduct scientific measurements. To achieve such a challenging mission, the deployment mechanism of the rover is one of the significant components. In particular, controlling the rover's landing velocity against the asteroid surface is required with high-reliability mechanism. In the MINERVA-II2 system, a reliable deployment mechanism using a metal spring is installed. By the simple mechanism, the rover's releasing velocity will be controlled within a required value. Although the performance evaluation and analysis are necessary before launch, it is difficult to experiment the deployment performance three-dimensionally on ground. In the MINERVA-II2 project, with the cooperation of ZARM, DLR and JAXA, we conducted microgravity experiments using a ZARM drop tower to examine the deployment performance in a three-dimensional microgravity. During the experiments, motion of the deployment mechanism and the rover were captured by an external camera mounted on the dropping chamber. After the drop, we analyzed the rover's releasing velocity based on image processing of the camera data. The experimental results confirmed that the deployment mechanism is feasible and reliable for controlling the rover's releasing velocity. In addition to the experiments, we analyzed a mechanical friction resistance of the mechanism from a theoretical viewpoint. These results contribute to design of spring stiffness and feedback to the development of the MINERVA-II2 flight model. Finally, the drop tower experiments were accomplished based on the agreement on the Hayabusa-2 project by DLR-JAXA. The chamber for the experiments was used, which was developed by the Hayabusa-2 project. In the experiments, we received technical and operations supports from ZARM. We sincerely express our acknowledgement to ZARM, DLR and JAXA.
NASA Technical Reports Server (NTRS)
Norton, J. M.; Tari, U.; Weber, R. M.
1979-01-01
A quasi three dimensional design system and multiple-circular-arc airfoil sections were used to design a fan rotor. An axisymmetric intrablade flow field calculation modeled the shroud of an isolated splitter and radial distribution. The structural analysis indicates that the design is satisfactory for evaluation of aerodynamic performance of the fan stage in a test facility.
Comparison of RCS prediction techniques, computations and measurements
NASA Astrophysics Data System (ADS)
Brand, M. G. E.; Vanewijk, L. J.; Klinker, F.; Schippers, H.
1992-07-01
Three calculation methods to predict radar cross sections (RCS) of three dimensional objects are evaluated by computing the radar cross sections of a generic wing inlet configuration. The following methods are applied: a three dimensional high frequency method, a three dimensional boundary element method, and a two dimensional finite difference time domain method. The results of the computations are compared with the data of measurements.
On three-dimensional misorientation spaces
Bennett, Robbie J.; Vukmanovic, Zoja; Solano-Alvarez, Wilberth; Lainé, Steven J.; Einsle, Joshua F.; Midgley, Paul A.; Rae, Catherine M. F.; Hielscher, Ralf
2017-01-01
Determining the local orientation of crystals in engineering and geological materials has become routine with the advent of modern crystallographic mapping techniques. These techniques enable many thousands of orientation measurements to be made, directing attention towards how such orientation data are best studied. Here, we provide a guide to the visualization of misorientation data in three-dimensional vector spaces, reduced by crystal symmetry, to reveal crystallographic orientation relationships. Domains for all point group symmetries are presented and an analysis methodology is developed and applied to identify crystallographic relationships, indicated by clusters in the misorientation space, in examples from materials science and geology. This analysis aids the determination of active deformation mechanisms and evaluation of cluster centres and spread enables more accurate description of transformation processes supporting arguments regarding provenance. PMID:29118660
Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho
2004-12-01
A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.
Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.
Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi
2015-12-23
Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capacity of 293 mAh·g(-1) at 2.0-3.6 V or 382.2 mAh·g(-1) at 1.0-4.0 V after 50 cycles at 30 mA·g(-1).
Continuum modeling of three-dimensional truss-like space structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1978-01-01
A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Anchorage in Orthodontics: Three-dimensional Scanner Input
Nabbout, Fidele; Baron, Pascal
2018-01-01
Aims and Objectives: The aim of this article is to re-evaluate anchorage coefficient values in orthodontics and their influence in the treatment decision through the usage of three-dimensional (3D) scanner. Materials and Methods: A sample of 80 patients was analyzed with the 3D scanner using the C2000 and Cepha 3DT softwares (CIRAD Montpellier, France). Tooth anatomy parameters (linear measurements, root, and crown volumes) were then calculated to determine new anchorage coefficients based on root volume. Data were collected and statistically evaluated with the StatView software (version 5.0). Results: The anchorage coefficient values found in this study are compared to those established in previous studies. These new values affect and modify our approach in orthodontic treatment from the standpoint of anchorage. Conclusion: The use of new anchorage coefficient values has significant clinical implications in conventional and in microimplants-assisted orthodontic mechanics through the selection and delivery of the optimal force system (magnitude and moment) for an adequate biological response. PMID:29629323
Fujiwara, Shohei; Komamura, Kazuo; Nakabo, Ayumi; Masaki, Mitsuru; Fukui, Miho; Sugahara, Masataka; Itohara, Kanako; Soyama, Yuko; Goda, Akiko; Hirotani, Shinichi; Mano, Toshiaki; Masuyama, Tohru
2016-02-01
Left ventricular (LV) dyssynchrony is a causal factor in LV dysfunction and thought to be associated with LV twisting motion. We tested whether three-dimensional speckle tracking (3DT) can be used to evaluate the relationship between LV twisting motion and dyssynchrony. We examined 25 patients with sick sinus syndrome who had received dual chamber pacemakers. The acute effects of ventricular pacing on LV wall motion after the switch from atrial to ventricular pacing were assessed. LV twisting motion and dyssynchrony during each pacing mode were measured using 3DT. LV dyssynchrony was calculated from the time to the minimum peak systolic area strain of 16 LV imaging segments. Ventricular pacing increased LV dyssynchrony and decreased twist and torsion. A significant correlation was observed between changes in LV dyssynchrony and changes in torsion (r = -0.65, p < 0.01). Evaluation of LV twisting motion can potentially be used for diagnosing LV dyssynchrony.
NASA Technical Reports Server (NTRS)
Moser, Robert D.; Rogers, Michael M.
1992-01-01
The evolution of three-dimensional temporally evolving plane mixing layers through as many as three pairings was simulated numerically. Initial conditions for all simulations consisted of a few low-wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity. Three-dimensional perturbations were used with amplitudes ranging from infinitesimal to large enough to trigger a rapid transition to turbulence. Pairing is found both to inhibit the growth of infinitesimal three-dimensional disturbances and to trigger the transition to turbulence in highly three dimensional flows. The mechanisms responsible for the growth of three-dimensionality as well as the initial phases of the transition to turbulence are described. The transition to turbulence is accompanied by the formation of thin sheets of span wise vorticity, which undergo a secondary roll up. Transition also produces an increase in the degree of scalar mixing, in agreement with experimental observations of mixing transition. Simulations were also conducted to investigate changes in span wise length scale that may occur in response to the change in stream wise length scale during a pairing. The linear mechanism for this process was found to be very slow, requiring roughly three pairings to complete a doubling of the span wise scale. Stronger three-dimensionality can produce more rapid scale changes but is also likely to trigger transition to turbulence. No evidence was found for a change from an organized array of rib vortices at one span wise scale to a similar array at a larger span wise scale.
Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds.
Alemán-Domínguez, Maria Elena; Giusto, Elena; Ortega, Zaida; Tamaddon, Maryam; Benítez, Antonio Nizardo; Liu, Chaozong
2018-05-02
Microcrystalline cellulose (MCC) is proposed in this study as an additive in polycaprolactone (PCL) matrices to obtain three-dimensional (3D) printed scaffolds with improved mechanical and biological properties. Improving the mechanical behavior and the biological performance of polycaprolactone-based scaffolds allows to increase the potential of these structures for bone tissue engineering. Different groups of samples were evaluated in order to analyze the effect of the additive in the properties of the PCL matrix. The concentrations of MCC in the groups of samples were 0, 2, 5, and 10% (w/w). These combinations were subjected to a thermogravimetric analysis in order to evaluate the influence of the additive in the thermal properties of the composites. 3D printed scaffolds were manufactured with a commercial 3D printer based on fused deposition modelling. The operation conditions have been established in order to obtain scaffolds with a 0/90° pattern with pore sizes between 450 and 500 µm and porosity values between 50 and 60%. The mechanical properties of these structures were measured in the compression and flexural modes. The scaffolds containing 2 and 5% MCC have higher flexural and compression elastic modulus, although those containing 10% do not show this reinforcement effect. On the other hand, the proliferation of sheep bone marrow cells on the proposed scaffolds was evaluated over 8 days. The results show that the proliferation is significantly better (p < 0.05) on the group of samples containing 2% MCC. Therefore, these scaffolds (PCL:MCC 98:2) have suitable properties to be further evaluated for bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tanahashi, Mamoru; Kikuta, Satoshi; Miyauchi, Toshio
2004-11-01
Three-dimensional DNS of methane-air turbulent premixed flames have been conducted to investigate local extinction mechanism of turbulent premixed flames. A reduced kinetic mechanism (MeCH-19), which is created from GRI-Mech. 2.11 and includes 23 reactive species and 19 step reactions, are used to simulate CH_4-O_2-N2 reaction in turbulence. The effectiveness of this reduced kinetic mechanism has been conformed by preliminary two-dimensional DNS with the reduced kinetic mechanism and two detailed kinetic mechanisms; GRI-Mech. 2.11 and Miller & Bowman. Flame structures of methane-air turbulent premixed flames are compared with those of hydrogen-air turbulent premixed flames which have been obtained by 3D-DNS with a detailed kinetic mechanism in our previous study. Local extinctions occur in methane-air turbulent premixed flames, whereas no extinction is observed for hydrogen-air flames in nearly same turbulence condition. The local extinction mechanism is discussed based on eddy/flame interaction in small scales.
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
2018-03-20
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Hygrothermal damage mechanisms in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Crossman, F. W.; Mauri, R. E.; Warren, W. J.
1979-01-01
T300/5209 and T300/5208 graphite epoxy laminates were studied experimentally and analytically in order to: (1) determine the coupling between applied stress, internal residual stress, and moisture sorption kinetics; (2) examine the microscopic damage mechanisms due to hygrothermal cycling; (3) evaluate the effect of absorbed moisture and hygrothermal cycling on inplane shear response; (4) determine the permanent loss of interfacial bond strength after moisture absorption and drying; and (5) evaluate the three dimensional stress state in laminates under a combination of hygroscopic, thermal, and mechanical loads. Specimens were conditioned to equilibrium moisture content under steady exposure to 55% or 95% RH at 70 C or 93 C. Some specimens were tested subsequent to moisture conditioning and 100 cycles between -54 C and either 70 C or 93 C.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi
2010-05-01
Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Atherosclerosis of the carotid artery: evaluation by magnetic resonance angiography.
Wildy, K S; Yuan, C; Tsuruda, J S; Ferguson, M S; Wen, N; Subramaniam, D S; Strandness, D E
1996-01-01
Carotid artery atherosclerotic plaques (APs) can lead to brain ischemia, an event shown to correlate with both the degree of stenosis and the composition of the AP. Currently, accurate estimates of stenosis can be obtained by either x-ray angiography or three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA). Our purpose was to determine whether three-dimensional TOF MRA images could also provide information on plaque location, morphology, and composition. Seven pre-endarterectomy patients underwent three-dimensional TOF MRA. After endarterectomy, plaque histology was evaluated. Three-dimensional TOF MRA images contained sufficient soft tissue contrast to differentiate the plaques from the surrounding tissues in all cases. Estimation of plaque morphology had 80% correlation with histology. Finally, intraplaque hemorrhage and calcification were deplicted as regions of moderately high and very low intensity, respectively. These preliminary results suggest that three-dimensional TOF MRA may be useful in studying the development and progression of carotid atherosclerosis.
Three-dimensional Modeling of Water Quality and Ecology in Narragansett Bay
This report presents the methodology to apply, calibrate, and validate the three-dimensional water quality and ecological model provided with the Environmental Fluid Dynamics Code (EFDC). The required advection and dispersion mechanisms are generated simultaneously by the EFDC h...
Effect of tow alignment on the mechanical performance of 3D woven textile composites
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave
1993-01-01
Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.
Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.
2015-01-01
Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485
Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J
2015-06-01
We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction <55%). All nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography images on real-world patients to measure left ventricular ejection fraction. Nurse-performed evaluation of left ventricular function could facilitate the broader application of echocardiography to allow cost-effective screening and monitoring for left ventricular dysfunction in high-risk populations. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.
1991-01-01
Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.
Pan, Xingren; Qin, Pengfei; Liu, Rutao; Wang, Jing
2011-06-22
Tartrazine is an artificial azo dye commonly used in food products. The present study evaluated the interaction of tartrazine with two serum albumins (SAs), human serum albumin (HSA) and bovine serum albumin (BSA), under physiological conditions by means of fluorescence, three-dimensional fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. The fluorescence data showed that tartrazine could bind to the two SAs to form a complex. The binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role. Additionally, as shown by the UV-vis absorption, three-dimensional fluorescence, and CD results, tartrazine could lead to conformational and some microenvironmental changes of both SAs, which may affect the physiological functions of SAs. The work provides important insight into the mechanism of toxicity of tartrazine in vivo.
Kinematic synthesis of bevel-gear-type robotic wrist mechanisms
NASA Astrophysics Data System (ADS)
Lin, Chen-Chou
Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of workplace are derived. The workspace boundary equations can be derived via both geometric consideration and Jacobian analysis. The workspace is divided by inner and outer boundaries into regions of accessibility of zero, two, and four. The design criteria of full workspace and a maximum four-root region are established.
Kamalaldin, Nurulain 'Atikah; Jaafar, Mariatti; Zubairi, Saiful Irwan; Yahaya, Badrul Hisham
2018-01-04
The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing
Milanovich, Monica; Nesbit, Steven M.
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623
A three-dimensional kinematic and kinetic study of the college-level female softball swing.
Milanovich, Monica; Nesbit, Steven M
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key PointsThe female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities.The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing.The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter.Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
[Three-dimensional finite element analysis on cell culture membrane under mechanical load].
Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai
2002-01-01
A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.
Three-dimensional laser window formation
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1992-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.
Lobet, S; Detrembleur, C; Francq, B; Hermans, C
2010-09-01
A major complication in haemophilia is the destruction of joint cartilage because of recurrent intraarticular and intramuscular bleeds. Therefore, joint assessment is critical to quantify the extent of joint damage, which has traditionally been evaluated using both radiological and clinical joint scores. Our study aimed to evaluate the natural progression of haemophilic arthopathy using three-dimensional gait analysis (3DGA) and to assess the reproducibility of this technique. We hypothesized that the musculoskeletal function was relatively stable in patients with haemophilia. Eighteen adults with established haemophilic arthropathies were evaluated twice by 3DGA (mean follow-up: 18 +/- 5 weeks). Unexpectedly, our findings revealed infraclinical deterioration of gait pattern, characterized by a 3.2% decrease in the recovery index, which is indicative of the subject's ability to save energy while walking. A tendency towards modification of segmental joint function was also observed. Gait analysis was sufficiently reproducible with regards to spatiotemporal parameters as well as kinetic, mechanical and energetic gait variables. The kinematic variables were reproducible in both the sagittal and frontal planes. In conclusion, 3DGA is a reproducible tool to assess abnormal gait patterns and monitor natural disease progression in haemophilic patients.
Assessment of dental plaque by optoelectronic methods
NASA Astrophysics Data System (ADS)
Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Bortun, Cristina Maria; Levai, Mihaela-Codrina; Topala, Florin Ionel; Crǎciunescu, Emanuela Lidia; Cojocariu, Andreea Codruta; Duma, Virgil Florin; Podoleanu, Adrian Gh.
2016-03-01
The formation of dental biofilm follows specific mechanisms of initial colonization on the surface, microcolony formation, development of organized three dimensional community structures, and detachment from the surface. The structure of the plaque biofilm might restrict the penetration of antimicrobial agents, while bacteria on a surface grow slowly and display a novel phenotype; the consequence of the latter is a reduced sensitivity to inhibitors. The aim of this study was to evaluate with different optoelectronic methods the morphological characteristics of the dental biofilm. The study was performed on samples from 25 patients aged between 18 and 35 years. The methods used in this study were Spectral Domain Optical Coherence Tomography (SD-OCT) working at 870 nm for in vivo evaluations and Scanning Electron Microscopy (SEM) for validations. For each patient a sample of dental biofilm was obtained directly from the vestibular surface of the teeth's. SD-OCT produced C- and B-scans that were used to generate three dimensional (3D) reconstructions of the sample. The results were compared with SEM evaluations. The biofilm network was dramatically destroyed after the professional dental cleaning. OCT noninvasive methods can act as a valuable tool for the 3D characterization of dental biofilms.
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
NASA Technical Reports Server (NTRS)
Sato, T.; Walker, R. J.; Ashour-Abdalla, M.
1984-01-01
The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).
Quantitative characterization of 3D deformations of cell interactions with soft biomaterials
NASA Astrophysics Data System (ADS)
Franck, Christian
In recent years, the importance of mechanical forces in directing cellular function has been recognized as a significant factor in biological and physiological processes. In fact, these physical forces are now viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these cellular forces, or cell tractions, play an important role in cell migration, they are also significant to many other physiological and pathological processes, both at the tissue and organ level, including wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell tractions during cell-material interactions can lead to a deeper understanding of the fundamental role these forces play in cell biology. Thus, understanding the function and role of a cell from a mechanical framework can have important implications towards the development of new implant materials and drug treatments. Previous research has contributed significant descriptions of cell-tissue interactions by quantifying cell tractions in two-dimensional environments; however, most physiological processes are three-dimensional in nature. Recent studies have shown morphological differences in cells cultured on two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular matrix interactions and migration behavior are different in three dimensions versus two dimensions. Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions. This thesis presents a full-field imaging technique capable of quantitatively measuring cell traction forces in all three spatial dimensions, and hence addresses the need of a three-dimensional quantitative imaging technique to gain insight into the fundamental role of physical forces in biological processes. The technique combines laser scanning confocal microscopy (LSCM) with digital volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.
Greene, Samuel M; Shan, Xiao; Clary, David C
2015-12-17
Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
Evaluation of the three-dimensional parabolic flow computer program SHIP
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.
Evaluation of three-dimensional virtual perception of garments
NASA Astrophysics Data System (ADS)
Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.
2017-10-01
In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.
ERIC Educational Resources Information Center
Allen, Lauren K.; Eagleson, Roy; de Ribaupierre, Sandrine
2016-01-01
Neuroanatomy is one of the most challenging subjects in anatomy, and novice students often experience difficulty grasping the complex three-dimensional (3D) spatial relationships. This study evaluated a 3D neuroanatomy e-learning module, as well as the relationship between spatial abilities and students' knowledge in neuroanatomy. The study's…
ERIC Educational Resources Information Center
Beltramini, Leila Maria; Araujo, Ana Paula Ulian; de Oliveira, Tales Henrique Goncalves; dos Santos Abel, Luciano Douglas; da Silva, Aparecido Rodrigues; dos Santos, Neusa Fernandes
2006-01-01
International specialized literature focused on research in biology education is sadly scarce, especially regarding biochemical and molecular aspects. In this light, researchers from this Centre for Structural Molecular Biotechnology developed and evaluated a three-dimensional educational model named "Building Life Molecules DNA and RNA." The…
Utilization of the Internet to deliver educational materials to healthcare professionals.
Hallgren, R C; Gorbis, S
1997-01-01
We have developed a computer-based learning module which uses three-dimensional animation sequences to enhance the acquisition of physical concepts and skills necessary for clinical evaluation and treatment of the cervical spine. This teaching tool, designed to serve as an adjunct to teaching strategies that faculty may be currently using, is available to students through the Kobiljak Resource Center at Michigan State University College of Osteopathic Medicine (MSUCOM) and via the Internet (http:/(/)hal.bim.msu.edu/EdTech) to individuals and groups who are physically removed from the MSU campus. While we are restricting this initial effort to the upper cervical spine, it is planned that future materials will include other parts of the body and, in addition, will enable students to not only visualize the effects of pathology on motion mechanics, but also give them the ability to interactively control an articulation in three-dimensional space.
Image processing and 3D visualization in forensic pathologic examination
NASA Astrophysics Data System (ADS)
Oliver, William R.; Altschuler, Bruce R.
1996-02-01
The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing and three-dimensional visualization in the analysis of patterned injuries and tissue damage. While image processing will never replace classical understanding and interpretation of how injuries develop and evolve, it can be a useful tool in helping an observer notice features in an image, may help provide correlation of surface to deep tissue injury, and provide a mechanism for the development of a metric for analyzing how likely it may be that a given object may have caused a given wound. We are also exploring methods of acquiring three-dimensional data for such measurements, which is the subject of a second paper.
Haider, Mansoor A.; Guilak, Farshid
2009-01-01
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. PMID:19851478
Haider, Mansoor A; Guilak, Farshid
2007-06-15
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain.
Robust control of multi-jointed arm with a decentralized autonomous control mechanism
NASA Technical Reports Server (NTRS)
Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki
1994-01-01
A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.
Entropic manifestations of topological order in three dimensions
NASA Astrophysics Data System (ADS)
Bullivant, Alex; Pachos, Jiannis K.
2016-03-01
We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general families of three-dimensional topological models. We show that the modification to the entropic area law due to three-dimensional topological properties is richer than the two-dimensional case. In addition to the reduction of the entropy caused by a nonzero vacuum expectation value of contractible loop operators, a topological invariant emerges that increases the entropy if the model consists of nontrivially braiding anyons. As a result the three-dimensional topological entanglement entropy provides only partial information about the two entropic topological invariants.
Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV
NASA Astrophysics Data System (ADS)
Phan, Hoang Vu; Park, Hoon Cheol
2016-04-01
In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.
NASA Astrophysics Data System (ADS)
Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.
2017-10-01
Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.
Swarming in viscous fluids: three-dimensional patterns in swimmer- and force-induced flows
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; D'Orsogna, Maria R.; Chou, Tom
Mathematical models of self-propelled interacting particles have reproduced various fascinating ``swarming'' patterns observed in natural and artificial systems. The formulation of such models usually ignores the influence of the surrounding medium in which the particles swarm. Here we develop from first principles a three-dimensional theory of swarming particles in a viscous fluid environment and investigate how the hydrodynamic coupling among the particles may affect their collective behavior. Specifically, we examine the hydrodynamic coupling among self-propelled particles interacting through ``social'' or ``mechanical'' forces. We discover that new patterns arise as a consequence of different interactions and self-propulsion mechanisms. Examples include flocks with prolate or oblate shapes, intermittent mills, recirculating peloton-like structures, and jet-like fluid flows that kinetically destabilize mill-like structures. Our results reveal possible mechanisms for three-dimensional swarms to kinetically control their collective behaviors in fluids. Supported by NSF DMS 1021818 & 1021850, ARO W1911NF-14-1-0472, ARO MURI W1911NF-11-10332.
Zhou, Hui; Liu, Jinkang; Chen, Shengxi; Xiong, Zeng; Zhou, Jianhua; Tong, Shiyu; Chen, Hao; Zhou, Moling
2012-06-01
To explore the degree, mechanism and clinical significance of three-dimensional tumor microvascular architecture phenotype heterogeneity (3D-TMAPH) in non-small cell carcinoma (NSCLC). Twenty-one samples of solitary pulmonary nodules were collected integrally. To establish two-dimensional tumor microvascular architecture phenotype (2D-TMAP) and three-dimensional tumor microvascular architecture phenotype (3D-TMAP), five layers of each nodule were selected and embedded in paraffin. Test indices included the expressions of vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), EphB4, ephfinB2 and microvascular density marked by anti-CD34 (CD34-MVD). The degrees of 3D-TMAPH were evaluated by the coefficient of variation and extend of heterogeneity. Spearman rank correlation analysis was used to investigate the relationships between 2D-TMAP, 3D-TMAP and clinicopathological features. 3D-TMAPH showed that 2D-TMAP heterogeneity was expressed in the tissues of NSCLC. The heterogeneities in the malignant nodules were significantly higher than those in the active inflammatory nodules and tubercular nodules. In addition, different degrees of heterogeneity of CD34-MVD and PCNA were found in NSCLC tissues. The coefficients of variation of CD34- MVD and PCNA were positively related to the degree of differentiation (all P<0.05), but not related to the P-TNM stages, histological type or lymphatic metastasis (all P>0.05). The level of heterogeneity of various expression indexes (ephrinB2, EphB4, VEGF) in NSCLC tissues were inconsistent, but there were no significant differences in heterogeneity in NSCLC tissues with different histological types (P>0.05). 3D-TMAPH exists widely in the microenvironment during the genesis and development of NSCLC and has a significant impact on its biological complexity.
NASA Astrophysics Data System (ADS)
Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao
2017-08-01
Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.
Three-dimensional mapping in the electrophysiological laboratory.
Maury, Philippe; Monteil, Benjamin; Marty, Lilian; Duparc, Alexandre; Mondoly, Pierre; Rollin, Anne
2018-06-07
Investigation and catheter ablation of cardiac arrhythmias are currently still based on optimal knowledge of arrhythmia mechanisms in relation to the cardiac anatomy involved, in order to target their crucial components. Currently, most complex arrhythmias are investigated using three-dimensional electroanatomical navigation systems, because these are felt to optimally integrate both the anatomical and electrophysiological features of a given arrhythmia in a given patient. In this article, we review the technical background of available three-dimensional electroanatomical navigation systems, and their potential use in complex ablations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Three-dimensional fabric reinforced plastics for cryogenic use
NASA Astrophysics Data System (ADS)
Iwasaki, Y.; Yasuda, J.; Hirokawa, T.; Noma, K.; Nishijima, S.; Okada, T.
Three-dimensional fabric reinforced plastics (3DFRPs) have been developed as insulating and/or structural materials in superconducting magnets. Three-dimensional fabrics were designed with practical applications in fibre composites of 3DFRP. The mechanical properties such as Young's modulus, Poisson's ratio, tensile strength and the compressive strength down to liquid helium temperature were measured. Thermal contraction was also measured. The cryogenic characteristics of 3DFRPs were compared with those of conventional laminates. The newly developed 3DFRPs were found to show satisfactory characteristics not only at room temperature but also at low temperatures.
NASA Astrophysics Data System (ADS)
Li, Lu-Ke; Zhang, Shen-Feng
2018-03-01
Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.
Tamai, Tsutomu; Taniyama, Oki; Oda, Kohei; Kasai, Ai; Ijyuin, Syo; Sakae, Haruka; Onishi, Hiroka; Tabu, Kazuaki; Kumagai, Kotaro; Mawatari, Seiichi; Moriuchi, Akihiro; Uto, Hirofumi; Ido, Akio
2018-05-01
We confirmed the clinical utility of a three-dimensional navigation system during transarterial chemoembolization. We evaluated 128 tumors in 91 patients enrolled between May 2015 and August 2016. We evaluated the accuracy of the three-dimensional navigation imaging system for all tumors. We compared the patients who were able to undergo route detection using three-dimensional navigation with previously treated patients who underwent transarterial chemoembolization without using three-dimensional navigation (n = 21). For 38 patients who underwent super-selective microcatheter insertion after a feeding artery was identified by three-dimensional navigation, we confirmed the relationship between the tumors and contrasted liver parenchyma and divided the computed tomography hepatic arteriography findings into four grades. Grade 1: an overlap of > 5 mm, grade 2: an overlap between 0 and 5 mm, grade 3: the borders of the tumor within the liver parenchyma but in contact with the edges, and grade 4: a tumor outside the borders of the liver parenchyma. Using the three-dimensional navigation system, we identified a tumor-feeding artery in 125/128 tumors (97.6%). Furthermore, this system allowed us to significantly reduce the volume of contrast media and the radiation exposure dose in patients undergoing an evaluation. We identified 15 grade 1 tumors (39.5%), 3 grade 2 tumors (7.9%), 11 grade 3 tumors (28.9%), and 9 grade 4 tumors (23.7%) according to our definitions. The three-dimensional navigation is useful not only for patients but also for surgeons who have relatively little experience. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F
2017-10-20
Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). There was no statistically significant difference in the wound area of front torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc ( F =0.33, P >0.05). The wound area of side torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (169±88), (150±80), and (169±86) cm(2,) respectively. There was no statistically significant difference in the wound area of side torso of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of side torso of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). (3) The time for getting information of wounds of patients by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (77±14), (10±3), and (9±3) s, respectively. The time for getting information of wounds of patients by transparency tracing method was longer than that by NIH Image J method and three dimensional human body scanning system BurnCalc (with P values below 0.05). The time for getting information of wounds of patients by three dimensional human body scanning system BurnCalc was close to that by NIH Image J method ( P >0.05). Conclusions: The three dimensional human body scanning system BurnCalc is stable and can accurately evaluate the wound area on limbs and torso of burn patients.
Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.
Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil
2018-06-01
The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, D.; Ohno, N.; Tanaka, H.
2014-03-15
Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V
2013-10-01
Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Three-dimensional interactions and vortical flows with emphasis on high speeds
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1980-01-01
Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.
A Conference on Three-Dimensional Representation held in University of Minnesota on 24-26 May 1989
NASA Astrophysics Data System (ADS)
Biederman, Irving
1989-06-01
This is the final report for a conference grant entitled: A conference on Three-Dimensional Representation. The two and one-half day conference was held at the University of Minn. on May 24 to 26, 1989 to evaluate the current status of problem associated with three-dimensional representations from current computational, psychological, development, and neurophysiological perspectives. Nineteen presentations were made spanning these approaches. One hundred sixty-six individuals attended the conference. Of 44 evaluations received, 75 percent rated the conference as excellent, 20 percent as good, and 5 percent as fair. None rated it poor. The report consists of the original and revised program, conference abstracts evaluation summary and the rooster of attendees.
Strongly magnetized classical plasma models
NASA Technical Reports Server (NTRS)
Montgomery, D. C.
1972-01-01
The class of plasma processes for which the so-called Vlasov approximation is inadequate is investigated. Results from the equilibrium statistical mechanics of two-dimensional plasmas are derived. These results are independent of the presence of an external dc magnetic field. The nonequilibrium statistical mechanics of the electrostatic guiding-center plasma, a two-dimensional plasma model, is discussed. This model is then generalized to three dimensions. The guiding-center model is relaxed to include finite Larmor radius effects for a two-dimensional plasma.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar
2016-12-01
Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2004-09-28
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C [Tucson, AZ; Rigali, Mark J [Carlsbad, NM; Sutaria, Manish P [Malden, MA; Artz, Gregory J [Tucson, AZ; Gafner, Felix H [Tucson, AZ; Vaidyanathan, K Ranji [Tucson, AZ
2008-06-17
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
The method of lines in three dimensional fracture mechanics
NASA Technical Reports Server (NTRS)
Gyekenyesi, J.; Berke, L.
1980-01-01
A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.
Are there two processes in reasoning? The dimensionality of inductive and deductive inferences.
Stephens, Rachel G; Dunn, John C; Hayes, Brett K
2018-03-01
Single-process accounts of reasoning propose that the same cognitive mechanisms underlie inductive and deductive inferences. In contrast, dual-process accounts propose that these inferences depend upon 2 qualitatively different mechanisms. To distinguish between these accounts, we derived a set of single-process and dual-process models based on an overarching signal detection framework. We then used signed difference analysis to test each model against data from an argument evaluation task, in which induction and deduction judgments are elicited for sets of valid and invalid arguments. Three data sets were analyzed: data from Singmann and Klauer (2011), a database of argument evaluation studies, and the results of an experiment designed to test model predictions. Of the large set of testable models, we found that almost all could be rejected, including all 2-dimensional models. The only testable model able to account for all 3 data sets was a model with 1 dimension of argument strength and independent decision criteria for induction and deduction judgments. We conclude that despite the popularity of dual-process accounts, current results from the argument evaluation task are best explained by a single-process account that incorporates separate decision thresholds for inductive and deductive inferences. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
An, Jia; Chua, Chee Kai; Leong, Kah Fai; Chen, Chih-Hao; Chen, Jyh-Ping
2012-10-01
Fabrication of aligned microfiber scaffolds is critical in successful engineering of anisotropic tissues such as tendon, ligaments and nerves. Conventionally, aligned microfiber scaffolds are two dimensional and predominantly fabricated by electrospinning which is solvent dependent. In this paper, we report a novel technique, named microfiber melt drawing, to fabricate a bundle of three dimensionally aligned polycaprolactone microfibers without using any organic solvent. This technique is simple yet effective. It has been demonstrated that polycaprolactone microfibers of 10 μm fiber diameter can be directly drawn from a 2 mm orifice. Orifice diameter, temperature and take-up speed significantly influence the final linear density and fiber diameter of the microfibers. Mechanical test suggests that mechanical properties such as stiffness and breaking force of microfiber bundles can be easily adjusted by the number of fibers. In vitro study shows that these microfibers are able to support the proliferation of human dermal fibroblasts over 7 days. In vivo result of Achilles tendon repair in a rabbit model shows that the microfibers were highly infiltrated by tendon tissue as early as in 1 month, besides, the repaired tendon have a well-aligned tissue structure under the guidance of aligned microfibers. However whether these three dimensionally aligned microfibers can induce three dimensionally aligned cells remains inconclusive.
Earth orbital teleoperator visual system evaluation program
NASA Technical Reports Server (NTRS)
Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III
1977-01-01
Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.
3D printed orodispersible films with Aripiprazole.
Jamróz, Witold; Kurek, Mateusz; Łyszczarz, Ewelina; Szafraniec, Joanna; Knapik-Kowalczuk, Justyna; Syrek, Karolina; Paluch, Marian; Jachowicz, Renata
2017-11-30
Three dimensional printing technology is gaining in importance because of its increasing availability and wide applications. One of the three dimensional printing techniques is Fused Deposition Modelling (FDM) which works on the basis of hot melt extrusion-well known in the pharmaceutical technology. Combination of fused deposition modelling with preparation of the orodispersible film with poorly water soluble substance such as aripiprazole seems to be extra advantageous in terms of dissolution rate. 3D printed as well as casted films were compared in terms of physicochemical and mechanical properties. Moreover, drug-free films were prepared to evaluate the impact of the extrusion process and aripiprazole presence on the film properties. X-ray diffractometry and thermal analyses confirmed transition of aripiprazole into amorphous state during film preparation using 3D printing technique. Amorphization of the aripiprazole and porous structure of printed film led to increased dissolution rate in comparison to casted films, which, however have slightly better mechanical properties due to their continuous structure. It can be concluded that fused deposition modelling is suitable technique and polyvinyl alcohol is applicable polymer for orodispersible films preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Arendasy, Martin; Sommer, Markus; Hergovich, Andreas; Feldhammer, Martina
2011-01-01
The gender difference in three-dimensional mental rotation is well documented in the literature. In this article we combined automatic item generation, (quasi-)experimental research designs and item response theory models of change measurement to evaluate the effect of the ability to extract the depth information conveyed in the two-dimensional…
The role of structural parameters in DNA cyclization
Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; ...
2016-02-04
The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.
Seago, Ainsley E.; Brady, Parrish; Vigneron, Jean-Pol; Schultz, Tom D.
2008-01-01
Members of the order Coleoptera are sometimes referred to as ‘living jewels’, in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles. PMID:18957361
The Effects of Talking-Head with Various Realism Levels on Students' Emotions in Learning
ERIC Educational Resources Information Center
Mohamad Ali, Ahmad Zamzuri; Hamdan, Mohd Najib
2017-01-01
The aim of this study was to evaluate the effects of various realistic levels of talking-head on students' emotions in pronunciation learning. Four talking-head characters with varying levels of realism were developed and tested: a nonrealistic three-dimensional character, a realistic three-dimensional character, a two-dimensional character, and…
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Optical lithography of three-dimensional magnetophotonic microdevices
NASA Astrophysics Data System (ADS)
Nguyen, Dam Thuy Trang; Del Guercio, Olivia; Au, Thi Huong; Trinh, Duc Thien; Mai, Nguyen Phuong Thao; Lai, Ngoc Diep
2018-04-01
We have recently demonstrated a simple and low-cost fabrication technique, called low one-photon absorption direct laser writing, to realize desired polymeric microstructures. We present the use of this technique for fabrication of three-dimensional magnetophotonic devices on a photocurable homogeneous nanocomposite consisting of magnetite (Fe3O4) nanoparticles and a commercial SU8 photoresist. The fabricated magnetophotonic microstructures show strong response to an applied external magnetic field. Thus, various three-dimensional submicromechanical magnetophotonic devices, which can be mechanically driven by magnetic force, are designed and created. Potential applications of these devices are also discussed.
Boeyens, Jan C.A.; Levendis, Demetrius C.
2012-01-01
Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753
Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou
2017-11-02
Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.
Validation of a three-dimensional viscous analysis of axisymmetric supersonic inlet flow fields
NASA Technical Reports Server (NTRS)
Benson, T. J.; Anderson, B. H.
1983-01-01
A three-dimensional viscous marching analysis for supersonic inlets was developed. To verify this analysis several benchmark axisymmetric test configurations were studied and are compared to experimental data. Detailed two-dimensional results for shock-boundary layer interactions are presented for flows with and without boundary layer bleed. Three dimensional calculations of a cone at angle of attack and a full inlet at attack are also discussed and evaluated. Results of the calculations demonstrate the code's ability to predict complex flow fields and establish guidelines for future calculations using similar codes.
Coarse-grained mechanics of viral shells
NASA Astrophysics Data System (ADS)
Klug, William S.; Gibbons, Melissa M.
2008-03-01
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Kim, Yong H.
1995-01-01
A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.
Mousa, Mohanad; Dong, Yu
2018-06-19
Mechanical properties of polymer nanocomposites depend primarily on nanointerphases as transitional zones between nanoparticles and surrounding matrices. Due to the difficulty in the quantitative characterisation of nanointerphases, previous literatures generally deemed such interphases as one-dimensional uniform zones around nanoparticles by assumption for analytical or theoretical modelling. We hereby have demonstrated for the first time direct three-dimensional topography and physical measurement of nanophase mechanical properties between nanodimeter bamboo charcoals (NBCs) and poly (vinyl alcohol) (PVA) in polymer nanocomposites. Topographical features, nanomechanical properties and dimensions of nanointerphases were systematically determined via peak force quantitative nanomechanical tapping mode (PFQNM). Significantly different mechanical properties of nanointerphases were revealed as opposed to those of individual NBCs and PVA matrices. Non-uniform irregular three-dimensional structures and shapes of nanointerphases are manifested around individual NBCs, which can be greatly influenced by nanoparticle size and roughness, and nanoparticle dispersion and distribution. Elastic moduli of nanointerphases were experimentally determined in range from 25.32 ±3.4 to 66.3±3.2 GPa. Additionally, it is clearly shown that the interphase modulus strongly depends on interphase surface area SAInterphase and interphase volume VInterphase. Different NBC distribution patterns from fully to partially embedded nanoparticles are proven to yield a remarkable reduction in elastic moduli of nanointerphases. © 2018 IOP Publishing Ltd.
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
Mizutani, Hiroya; Ono, Satoshi; Ushiku, Tetsuo; Kudo, Yotaro; Ikemura, Masako; Kageyama, Natsuko; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Someya, Takao; Fukayama, Masashi; Koike, Kazuhiko; Onodera, Hiroshi
2018-02-01
Although high-resolution three-dimensional imaging of endoscopically resected gastrointestinal specimens can help elucidating morphological features of gastrointestinal mucosa or tumor, there are no established methods to achieve this without breaking specimens apart. We evaluated the utility of transparency-enhancing technology for three-dimensional assessment of gastrointestinal mucosa in porcine models. Esophagus, stomach, and colon mucosa samples obtained from a sacrificed swine were formalin-fixed and paraffin-embedded, and subsequently deparaffinized for analysis. The samples were fluorescently stained, optically cleared using transparency-enhancing technology: ilLUmination of Cleared organs to IDentify target molecules method (LUCID), and visualized using laser scanning microscopy. After observation, all specimens were paraffin-embedded again and evaluated by conventional histopathological assessment to measure the impact of transparency-enhancing procedures. As a result, microscopic observation revealed horizontal section views of mucosa at deeper levels and enabled the three-dimensional image reconstruction of glandular and vascular structures. Besides, paraffin-embedded specimens after transparency-enhancing procedures were all assessed appropriately by conventional histopathological staining. These results suggest that transparency-enhancing technology may be feasible for clinical application and enable the three-dimensional structural analysis of endoscopic resected specimen non-destructively. Although there remain many limitations or problems to be solved, this promising technology might represent a novel histopathological method for evaluating gastrointestinal cancers. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Pothineni, Koteswara R; Duncan, Kurt; Yelamanchili, Pridhvi; Nanda, Navin C; Patel, Vinod; Fan, PoHoey; Burri, Manjula V; Singh, Anurag; Panwar, Sadik R
2007-05-01
Twenty-nine patients with different tricuspid valve (TV) pathologies were studied by both two-dimensional transthoracic (2DTTE) and live/real time three-dimensional transthoracic echocardiography (3DTTE). A major contribution of 3DTTE over 2DTTE was the en face visualization of all three leaflets of the TV in all patients. This allowed accurate assessment of TV orifice area in patients with TV stenosis and carcinoid disease. Loss of TV leaflet tissue, defects in TV leaflets and size of TV systolic non-coaptation could also be delineated and resulted in identifying the mechanism of tricuspid regurgitation (TR) in patients with Ebstein's anomaly and rheumatic heart disease. Prolapse of TV leaflets could also be well visualized and enabled us to develop a schema for systematic assessment of individual segment prolapse which could help in surgical planning. The exact sites of chordae rupture in patients with flail TV as well as right ventricular papillary muscle rupture could be well seen by 3DTTE. 3DTTE also permitted sectioning of various TV masses for more specific diagnosis of their nature. In addition, color Doppler 3DTTE provided an estimate of quantitative evaluation of TR severity, since the exact shape and size of the vena contracta could be accurately assessed. In conclusion, our preliminary experience with 3DTTE has demonstrated substantial incremental value over 2DTTE in the assessment of various TV pathologies.
NASA Astrophysics Data System (ADS)
Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.
2014-05-01
Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.
Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M
2008-12-01
Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.
A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C
2009-09-01
A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.
Fox, A S; Bonacci, J; McLean, S G; Saunders, N
2017-05-01
Screening methods sensitive to movement strategies that increase anterior cruciate ligament (ACL) loads are likely to be effective in identifying athletes at-risk of ACL injury. Current ACL injury risk screening methods are yet to be evaluated for their ability to identify athletes' who exhibit high-risk lower limb mechanics during sport-specific maneuvers associated with ACL injury occurrences. The purpose of this study was to examine the efficacy of two ACL injury risk screening methods in identifying high-risk lower limb mechanics during a sport-specific landing task. Thirty-two female athletes were screened using the Landing Error Scoring System (LESS) and Tuck Jump Assessment. Participants' also completed a sport-specific landing task, during which three-dimensional kinematic and kinetic data were collected. One-dimensional statistical parametric mapping was used to examine the relationships between screening method scores, and the three-dimensional hip and knee joint rotation and moment data from the sport-specific landing. Higher LESS scores were associated with reduced knee flexion from 30 to 57 ms after initial contact (P = 0.003) during the sport-specific landing; however, no additional relationships were found. These findings suggest the LESS and Tuck Jump Assessment may have minimal applicability in identifying athletes' who exhibit high-risk landing postures in the sport-specific task examined. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Two-dimensional speckle tracking cardiac mechanics and constrictive pericarditis: systematic review.
Madeira, Marta; Teixeira, Rogério; Costa, Marco; Gonçalves, Lino; Klein, Allan L
2016-10-01
Transthoracic echocardiography has a pivotal role in the diagnosis of constrictive pericarditis (CP). In addition to the classic M-mode, two-dimensional and Doppler indices, newer methodologies designed to evaluate myocardial mechanics, such as two-dimensional speckle tracking echocardiography (2DSTE), provide additional diagnostic and clinical information in the context of CP. Research has demonstrated that cardiac mechanics can improve echocardiographic diagnostic accuracy of CP and aid in differentiating between constrictive and restrictive ventricular physiology. 2DSTE can also be used to assess the success of pericardiectomy and its impact on atrial and ventricular mechanics. In the course of this review, we describe cardiac mechanics in patients with CP and summarize the influence of pericardiectomy on atrial and ventricular mechanics assessed using 2DSTE. © 2016, Wiley Periodicals, Inc.
Kim, Beom-Su; Yang, Sun-Sik; Park, Ho; Lee, Se-Hwan; Cho, Young-Sam; Lee, Jun
2017-09-01
Powder-based three-dimensional (3D) printing is an excellent method to fabricate complex-shaped scaffolds for tissue engineering. However, their lower mechanical strength restricts their application in bone tissue engineering. Here, we created a 3D-printed scaffold coated with a ε-polycaprolactone (PCL) polymer solution (5 and 10 w/v %) to improve the mechanical strength of the scaffold. The 3D scaffold was fabricated from calcium sulfate hemihydrate powder (CaSO 4 -1/2 H 2 O), transformed into hydroxyapatite (HAp) by treatment with a hydrothermal reaction in an NH 4 H 2 PO 4 solution. The surface properties and composition of the scaffold were evaluated using scanning electron microscopy and X-ray diffraction analysis. We demonstrated that the 3D scaffold coated with PCL had an improved mechanical modulus. Coating with 5 and 10% PCL increased the compressive strength significantly, by about 2-fold and 4-fold, respectively, compared with that of uncoated scaffolds. However, the porosity was reduced significantly by coating with 10% PCL. In vitro biological evaluation demonstrated that MG-63 cells adhered well and proliferated on the 3D scaffold coated with PCL, and the scaffold was not cytotoxic. In addition, alkaline phosphatase activity and real time polymerase chain reaction demonstrated that osteoblast differentiation also improved in the PCL-coated 3D scaffolds. These results indicated that PCL polymer coating could improve the compressive strength and biocompatibility of 3D HAp scaffolds for bone tissue engineering applications.
Tricuspid Valve Repair in Infancy Using Neochordae: Three-Dimensional Echocardiographic Imaging.
Martin, Billie-Jean; Khoo, Nee S; Smallhorn, Jeffrey; Aklabi, Mohammed Al
2017-11-01
Tricuspid regurgitation (TR) in infancy poses a surgical challenge. Both two- and three-dimensional echocardiography (3DE) can provide detailed information about the mechanism(s) of valve failure and insights into valve adaptation during follow-up. We report two patients who underwent tricuspid valve repair using Gore-Tex neochordae, repairs which were facilitated by and assessed with 3DE. Both infants had less than mild residual TR and no valve tethering at hospital discharge. Furthermore, follow-up 3DEs have helped to confirm valve competence, lack of tethering, and growth of the valve and valve apparatus.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
Tong, Haizhou; Gao, Feng; Yin, Jiapeng; Shi, Zehong; Song, Tao; Li, Haidong; Sun, Xiaomei; Wang, Yongqian; Yin, Ningbei; Zhao, Zhenmin
2015-11-01
Trans-sutural distraction osteogenesis (TSDO) is an alternative method for the early treatment of midfacial hypoplasia in growing patients with cleft lip and palate (CLP). The purpose of this study was to analyze three-dimensional (3D) midfacial skeletal changes after TSDO and to explore the mechanism in this process. All patients with nonsyndromic CLP who underwent bone-borne TSDO for midfacial hypoplasia from 2005 to 2014 were reviewed in this retrospective study. 3D morphological and quantitative measurement analyses were performed to evaluate midfacial skeletal changes by superimposition of preoperative and postoperative computed tomographic images. Twenty-six patients with mean age of 11.5 years met the inclusion criteria. The 3D morphological findings exhibited the most significant suture stress changes at the pterygomaxillary suture area, with obvious bone generation in all patients. The whole midfacial skeleton had progressively increased advancement in a craniocaudal direction along the midface segment, associated with morphological changes in skeleton itself. The 3D quantitative measurement findings showed differential advancement of each landmark at the maxillary alveolar, zygomatic bone, orbital rim, and nasal bone, which was consistent with morphological findings. TSDO allows rotation advancement of the midfacial skeleton to achieve occlusal correction and facial harmony through the mechanism of both suture remodeling and bone remodeling. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hiramatsu, Seiki; Kinoshita, Masao
2005-09-01
This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.
Scolozzi, Paolo; Momjian, Armen; Heuberger, Joris; Andersen, Elene; Broome, Martin; Terzic, Andrej; Jaques, Bertrand
2009-07-01
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.
Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu
2012-11-01
The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ostrowska, Barbara; Di Luca, Andrea; Szlazak, Karol; Moroni, Lorenzo; Swieszkowski, Wojciech
2016-04-01
Fused deposition modeling has been used to fabricate three-dimensional (3D) scaffolds for tissue engineering applications, because it allows to tailor their pore network. Despite the proven flexibility in doing so, a limited amount of studies have been performed to evaluate whether specific pore shapes have an influence on cell activity and tissue formation. Our study aimed at investigating the influence of internal pore architecture on the biological and mechanical properties of 3D scaffolds seeded with mesenchymal stromal cells. Polycaprolactone scaffolds with six different geometries were fabricated. The 3D samples were manufactured with different lay-down pattern of the fibers by varying the layer deposition angle from 0°/15°/30°, to 0°/30°/60°, 0°/45°/90°, 0°/60°/120°, 0°/75°/150°, and 0°/90°/180°. The scaffolds were investigated by scanning electron microscopy and micro computed tomographical analysis and displayed a fully interconnected pore network. Cell proliferation and differentiation toward the osteogenic lineage were evaluated by DNA, alkaline phosphatase activity, and polymerase chain reaction. The obtained scaffolds had structures with open porosity (50%-60%) and interconnected pores ranging from 380 to 400 µm. Changing the angle deposition affected significantly the mechanical properties of the scaffolds. With increasing the angle deposition between successive layers, the elastic modulus increased as well. Cellular studies also showed influence of the internal architecture on cell adhesion and proliferation within the 3D construct, yet limited influence on cell differentiation was observed. © 2016 Wiley Periodicals, Inc.
Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro
2017-09-28
The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
Apical polarity in three-dimensional culture systems: where to now?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inman, J.L.; Bissell, Mina
2010-01-21
Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.
Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T
2003-03-01
In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing improved mechanical properties and osteointegrative potential compared to degradable polymers of poly(lactic acid-glycolic acid) alone. Future work will focus on the optimization of the composite scaffold for bone tissue-engineering applications and the evaluation of the 3-D composite in an in vivo model. Copyright 2003 Wiley Periodicals, Inc.
Computed tomography-guided tissue engineering of upper airway cartilage.
Brown, Bryan N; Siebenlist, Nicholas J; Cheetham, Jonathan; Ducharme, Norm G; Rawlinson, Jeremy J; Bonassar, Lawrence J
2014-06-01
Normal laryngeal function has a large impact on quality of life, and dysfunction can be life threatening. In general, airway obstructions arise from a reduction in neuromuscular function or a decrease in mechanical stiffness of the structures of the upper airway. These reductions decrease the ability of the airway to resist inspiratory or expiratory pressures, causing laryngeal collapse. We propose to restore airway patency through methods that replace damaged tissue and improve the stiffness of airway structures. A number of recent studies have utilized image-guided approaches to create cell-seeded constructs that reproduce the shape and size of the tissue of interest with high geometric fidelity. The objective of the present study was to establish a tissue engineering approach to the creation of viable constructs that approximate the shape and size of equine airway structures, in particular the epiglottis. Computed tomography images were used to create three-dimensional computer models of the cartilaginous structures of the larynx. Anatomically shaped injection molds were created from the three-dimensional models and were seeded with bovine auricular chondrocytes that were suspended within alginate before static culture. Constructs were then cultured for approximately 4 weeks post-seeding and evaluated for biochemical content, biomechanical properties, and histologic architecture. Results showed that the three-dimensional molded constructs had the approximate size and shape of the equine epiglottis and that it is possible to seed such constructs while maintaining 75%+ cell viability. Extracellular matrix content was observed to increase with time in culture and was accompanied by an increase in the mechanical stiffness of the construct. If successful, such an approach may represent a significant improvement on the currently available treatments for damaged airway cartilage and may provide clinical options for replacement of damaged tissue during treatment of obstructive airway disease.
Force system generated by elastic archwires with vertical V bends: a three-dimensional analysis.
Upadhyay, Madhur; Shah, Raja; Peterson, Donald; Asaki, Takafumi; Yadav, Sumit; Agarwal, Sachin
2017-04-01
Our previous understanding of V-bend mechanics is primarily from two-dimensional (2D) analysis of archwire bracket interactions in the second order. These analyses do not take into consideration the three-dimensional (3D) nature of orthodontic appliances involving the third order. To quantify the force system generated in a 3D two bracket set up involving the molar and incisors with vertical V-bends. Maxillary molar and incisor brackets were arranged in a dental arch form and attached to load cells capable of measuring forces and moments in all three planes (x, y, and z) of space. Symmetrical V-bends (right and left sides) were placed at 11 different locations along rectangular beta-titanium archwires of various sizes at an angle of 150degrees. Each wire was evaluated for the 11 bend positions. Specifically, the vertical forces (Fz) and anterio-posterior moments (Mx) were analysed. Descriptive statistics were used to interpret the results. With increasing archwire size, Fz and Mx increased at the two brackets (P < 0.05). The vertical forces were linear and symmetric in nature, increasing in magnitude as the bends moved closer to either bracket. The Mx curves were asymmetric and non-linear displaying higher magnitudes for molar bracket. As the bends were moved closer to either bracket a distinct flattening of the incisor Mx curve was noted, implying no change in its magnitude. This article provides critical information on V-bend mechanics involving second order and third order archwire-bracket interactions. A model for determining this force system is described that might allow for easier translation to actual clinical practice. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C
2016-08-01
To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.
NASA Astrophysics Data System (ADS)
Zeng, Bin; Chen, Xiaohua; Ning, Xutao; Chen, Chuansheng; Deng, Weina; Huang, Qun; Zhong, Wenbin
2013-07-01
Carbon nanotubes/reduced graphene oxides (CNTs/rGO) implanting cuprous oxide (Cu2O) composite spheres have been successfully prepared via an electrostatic self-assemble with microwave-assisted. Scanning electron microscopy and transmission electron microscopy observations confirmed that the hybrid of CNTs and rGO was implanted into Cu2O matrix and formed a three-dimensional embedded micrometer sphere structure. The possible formation mechanism of this architecture was also proposed. The photocatalytic properties were further investigated by evaluating on photo-degradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 99.8% decomposition of MO after 40 min in the presence of H2O2 under visible light irradiation, which was much higher than that of pure Cu2O powders (67.9%). This study provides a convenient method for assembling various CNTs/rGO-semiconductor composites in the future applications of water purification as well as optoelectronic fields at a large scale.
Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, H.; Kang, Z.J.; Bong, T.Y.
1999-11-12
Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less
Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent; ...
2017-09-04
Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent
Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Energy Efficient Engine Low Pressure Subsystem Flow Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.
1998-01-01
The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.
Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.
1998-01-01
The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.
A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well
NASA Astrophysics Data System (ADS)
Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun
2017-11-01
Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.
Yuasa, Toshinori; Takasaki, Kunitsugu; Mizukami, Naoko; Ueya, Nami; Kubota, Kayoko; Horizoe, Yoshihisa; Chaen, Hideto; Kuwahara, Eiji; Kisanuki, Akira; Hamasaki, Shuichi
2013-09-01
A 39-year-old male who had undergone tricuspid valve replacement for severe tricuspid regurgitation was admitted with palpitation and general edema. Two-dimensional (2D) echocardiography showed tricuspid prosthetic valve dysfunction. Additional three-dimensional (3D) transthoracic and transesophageal echocardiography (TEE) could clearly demonstrate the disabilities of the mechanical tricuspid valve. Particularly, 3D TEE demonstrated a mass located on the right ventricular side of the tricuspid prosthesis, which may have caused the stuck disk. This observation was confirmed by intra-operative findings.
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
Three-dimensional deformation of orthodontic brackets.
Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.
Natiello, Michelle; Samuelson, Don
2005-01-01
To examine the angioarchitecture of the ciliary body in the West Indian manatee (Trichechus manatus), through the use of three-dimensional reconstruction. Specimens from West Indian manatee were preserved in 10% buffered formalin, embedded in paraffin, serial sectioned and stained by Masson trichrome for light microscopic three-dimensional reconstruction and evaluation. The network of blood vessels in the ciliary processes of the West Indian manatee is fed by the major arterial circle that lies mostly near the base of the iris. The branching arterioles give rise to a capillary-sinusoidal bed that extends internally along each process, emptying into two sets of veins, one being elevated. The elevated and nonelevated veins join posteriorly before emptying into the choroidal venous system. The angioarchitecture of the ciliary body of the West Indian manatee is clearly unique when compared to those previously examined in land mammals. Three-dimensional reconstruction of paraffin sections is an effective means to evaluate vascular patterns in ocular specimens, especially those unavailable for corrosion casting.
Dimensional Analysis Applied to Electricity and Mechanics.
ERIC Educational Resources Information Center
Thomas, G.
1979-01-01
Suggests an alternative system of measurement to be used in engineering, which provides theoretical insight and leads to definitions of dual and analogous physical quantities. The system is based on the notion that the dimensional product of three fundamental quantities should be energy. (GA)
Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo
2017-01-01
The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, J; Irianto, J; Inamdar, S; Pravincumar, P; Lee, D A; Bader, D L; Knight, M M
2012-09-19
This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is <5 kPa exhibit a cellular Young's modulus of ∼5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young's modulus of ∼20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A three-dimensional turbulent separated flow and related mesurements
NASA Technical Reports Server (NTRS)
Pierce, F. J.
1985-01-01
The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.
Three types of dermal grafts in rats: the importance of mechanical property and structural design.
You, Chuangang; Wang, Xingang; Zheng, Yurong; Han, Chunmao
2013-12-04
To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes-ADM, CS and PMCSs are different in the tensile properties and microstructure. Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague-Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). In vitro studies demonstrated ADM had a higher Young's modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for maintaining the three-dimensional microarchitecture of constructs used to induce tissue regeneration and vascularization. The results illustrated that tissue regeneration requires the proper pore size and an appropriate mechanical property like PMCS which could satisfy these conditions to sustain growth.
Three types of dermal grafts in rats: the importance of mechanical property and structural design
2013-01-01
Background To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes—ADM, CS and PMCSs are different in the tensile properties and microstructure. Methods Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague–Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). Results In vitro studies demonstrated ADM had a higher Young’s modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for maintaining the three-dimensional microarchitecture of constructs used to induce tissue regeneration and vascularization. Conclusion The results illustrated that tissue regeneration requires the proper pore size and an appropriate mechanical property like PMCS which could satisfy these conditions to sustain growth. PMID:24304500
Posttest analysis of a 1:6-scale reinforced concrete reactor containment building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weatherby, J.R.
In an experiment conducted at Sandia National Laboratories, 1:6-scale model of a reinforced concrete light water reactor containment building was pressurized with nitrogen gas to more than three times its design pressure. The pressurization produced one large tear and several smaller tears in the steel liner plate that functioned as the primary pneumatic seal for the structure. The data collected from the overpressurization test have been used to evaluate and further refine methods of structural analysis that can be used to predict the performance of containment buildings under conditions produced by a severe accident. This report describes posttest finite elementmore » analyses of the 1:6-scale model tests and compares pretest predictions of the structural response to the experimental results. Strain and displacements calculated in axisymmetric finite element analyses of the 1:6-scale model are compared to strains and displacement measured in the experiment. Detailed analyses of the liner plate are also described in the report. The region of the liner surrounding the large tear was analyzed using two different two-dimensional finite elements model. The results from these analyzed indicate that the primary mechanisms that initiated the tear can be captured in a two- dimensional finite element model. Furthermore, the analyses show that studs used to anchor the liner to the concrete wall, played an important role in initiating the liner tear. Three-dimensional finite element analyses of liner plates loaded by studs are also presented. Results from the three-dimensional analyses are compared to results from two-dimensional analyses of the same problems. 12 refs., 56 figs., 1 tab.« less
Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling
2013-07-01
Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.
1977-01-01
A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.
Image intensifier-based volume tomographic angiography imaging system: system evaluation
NASA Astrophysics Data System (ADS)
Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.
1995-05-01
An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.
Self-assembled three dimensional network designs for soft electronics
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-01-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors. PMID:28635956
Self-assembled three dimensional network designs for soft electronics
NASA Astrophysics Data System (ADS)
Jang, Kyung-In; Li, Kan; Chung, Ha Uk; Xu, Sheng; Jung, Han Na; Yang, Yiyuan; Kwak, Jean Won; Jung, Han Hee; Song, Juwon; Yang, Ce; Wang, Ao; Liu, Zhuangjian; Lee, Jong Yoon; Kim, Bong Hoon; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Kim, Bum Jun; Jang, Hokyung; Yu, Ki Jun; Kim, Jeonghyun; Lee, Jung Woo; Jeong, Jae-Woong; Song, Young Min; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2017-06-01
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.
NASA Astrophysics Data System (ADS)
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-01
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu
2017-07-21
The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.
Nishino, Katsutoshi; Omori, Go; Koga, Yoshio; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji; Tanaka, Masaei; Arakawa, Masaaki
2015-07-01
We recently developed a new method for three-dimensional evaluation of mechanical factors affecting knee joint in order to help identify factors that contribute to the progression of knee osteoarthritis (KOA). This study aimed to verify the clinical validity of our method by evaluating knee joint dynamics during gait. Subjects were 41 individuals (14 normal knees; 8 mild KOAs; 19 severe KOAs). The positions of skin markers attached to the body were captured during gait, and bi-planar X-ray images of the lower extremities were obtained in standing position. The positional relationship between the markers and femorotibial bones was determined from the X-ray images. Combining this relationship with gait capture allowed for the estimation of relative movement between femorotibial bones. We also calculated the point of intersection of loading axis of knee on the tibial proximal surface (LAK point) to analyze knee joint dynamics. Knee flexion range in subjects with severe KOA during gait was significantly smaller than that in those with normal knees (p=0.011), and knee adduction in those with severe KOA was significantly larger than in those with mild KOA (p<0.000). LAK point was locally loaded on the medial compartment of the tibial surface as KOA progressed, with LAK point of subjects with severe KOA rapidly shifting medially during loading response. Local loading and medial shear force were applied to the tibial surface during stance phase as medial KOA progressed. Our findings suggest that our method is useful for the quantitative evaluation of mechanical factors that affect KOA progression. Copyright © 2015 Elsevier B.V. All rights reserved.
Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin
2015-12-01
The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).
Rhee, Ye-Kyu
2015-01-01
PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Zhang, R. F.
2017-11-01
The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated. Afterwards, the total energy for each distorted structure is calculated by the first-principles codes, e.g. VASP [3]. Finally, the second-order elastic constants are determined from the quadratic coefficients of the polynomial fitting of the energies vs strain relationships and other elastic properties are accordingly derived. References [1] http://atztogo.github.io/spglib/. [2] A. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE standard on piezoelectricity, Society, 1988. [3] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
NASA Technical Reports Server (NTRS)
Meyer, T. G.; Hill, J. T.; Weber, R. M.
1988-01-01
A viscoplastic material model for the high temperature turbine airfoil material B1900 + Hf was developed and was demonstrated in a three dimensional finite element analysis of a typical turbine airfoil. The demonstration problem is a simulated flight cycle and includes the appropriate transient thermal and mechanical loads typically experienced by these components. The Walker viscoplastic material model was shown to be efficient, stable and easily used. The demonstration is summarized and the performance of the material model is evaluated.
Short cell-penetrating peptides: a model of interactions with gene promoter sites.
Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P
2013-01-01
Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.
Improving Perceptual Skills with 3-Dimensional Animations.
ERIC Educational Resources Information Center
Johns, Janet Faye; Brander, Julianne Marie
1998-01-01
Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)
A three-dimensional inverse finite element analysis of the heel pad.
Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet
2012-03-01
Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.
Structure and topology of three-dimensional hydrocarbon polymers.
Kondrin, Mikhail V; Lebed, Yulia B; Brazhkin, Vadim V
2016-08-01
A new family of three-dimensional hydrocarbon polymers which are more energetically favorable than benzene is proposed. Although structurally these polymers are closely related to well known diamond and lonsdaleite carbon structures, using topological arguments we demonstrate that they have no known structural analogs. Topological considerations also give some indication of possible methods of synthesis. Taking into account their exceptional optical, structural and mechanical properties these polymers might have interesting applications.
Experimental investigation of stress wave propagation in standing trees
Houjiang Zhang; Xiping Wang; Juan Su
2011-01-01
The objective of this study was to investigate how a stress wave travels in a standing tree as it is introduced into the tree trunk through a mechanical impact. A series of stress wave time-of-flight (TOF) data were obtained from three freshly-cut red pine (Pinus resinosa Ait.) logs by means of a two-probe stress wave timer. Two-dimensional (2D) and three-dimensional (...
An Elaborate Data Set Characterizing the Mechanical Response of the Foot
Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.
2010-01-01
Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Rodriguez-Lorenzo, Andres; Audolfsson, Thorir; Wong, Corrine; Cheng, Angela; Arbique, Gary; Nowinski, Daniel; Rozen, Shai
2015-10-01
The aim of this study was to evaluate the contribution of a single unilateral facial vein in the venous outflow of total-face allograft using three-dimensional computed tomographic imaging techniques to further elucidate the mechanisms of venous complications following total-face transplant. Full-face soft-tissue flaps were harvested from fresh adult human cadavers. A single facial vein was identified and injected distally to the submandibular gland with a radiopaque contrast (barium sulfate/gelatin mixture) in every specimen. Following vascular injections, three-dimensional computed tomographic venographies of the faces were performed. Images were viewed using TeraRecon Software (Teracon, Inc., San Mateo, CA, USA) allowing analysis of the venous anatomy and perfusion in different facial subunits by observing radiopaque filling venous patterns. Three-dimensional computed tomographic venographies demonstrated a venous network with different degrees of perfusion in subunits of the face in relation to the facial vein injection side: 100% of ipsilateral and contralateral forehead units, 100% of ipsilateral and 75% of contralateral periorbital units, 100% of ipsilateral and 25% of contralateral cheek units, 100% of ipsilateral and 75% of contralateral nose units, 100% of ipsilateral and 75% of contralateral upper lip units, 100% of ipsilateral and 25% of contralateral lower lip units, and 50% of ipsilateral and 25% of contralateral chin units. Venographies of the full-face grafts revealed better perfusion in the ipsilateral hemifaces from the facial vein in comparison with the contralateral hemifaces. Reduced perfusion was observed mostly in the contralateral cheek unit and contralateral lower face including the lower lip and chin units. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Ko, Hsu-Feng; Sfeir, Charles; Kumta, Prashant N.
2010-01-01
Recent developments in tissue engineering approaches frequently revolve around the use of three-dimensional scaffolds to function as the template for cellular activities to repair, rebuild and regenerate damaged or lost tissues. While there are several biomaterials to select as three-dimensional scaffolds, it is generally agreed that a biomaterial to be used in tissue engineering needs to possess certain material characteristics such as biocompatibility, suitable surface chemistry, interconnected porosity, desired mechanical properties and biodegradability. The use of naturally derived polymers as three-dimensional scaffolds has been gaining widespread attention owing to their favourable attributes of biocompatibility, low cost and ease of processing. This paper discusses the synthesis of various polysaccharide-based, naturally derived polymers, and the potential of using these biomaterials to serve as tissue engineering three-dimensional scaffolds is also evaluated. In this study, naturally derived polymers, specifically cellulose, chitosan, alginate and agarose, and their composites, are examined. Single-component scaffolds of plain cellulose, plain chitosan and plain alginate as well as composite scaffolds of cellulose–alginate, cellulose–agarose, cellulose–chitosan, chitosan–alginate and chitosan–agarose are synthesized, and their suitability as tissue engineering scaffolds is assessed. It is shown that naturally derived polymers in the form of hydrogels can be synthesized, and the lyophilization technique is used to synthesize various composites comprising these natural polymers. The composite scaffolds appear to be sponge-like after lyophilization. Scanning electron microscopy is used to demonstrate the formation of an interconnected porous network within the polymeric scaffold following lyophilization. It is also established that HeLa cells attach and proliferate well on scaffolds of cellulose, chitosan or alginate. The synthesis protocols reported in this study can therefore be used to manufacture naturally derived polymer-based scaffolds as potential biomaterials for various tissue engineering applications. PMID:20308112
Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir
2017-06-01
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.
Zhang, Jianhua; Zhao, Shichang; Zhu, Yufang; Huang, Yinjun; Zhu, Min; Tao, Cuilian; Zhang, Changqing
2014-05-01
In this study, we fabricated strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds with controlled architecture and enhanced mechanical strength using a three-dimensional (3-D) printing technique. The study showed that Sr-MBG scaffolds had uniform interconnected macropores and high porosity, and their compressive strength was ∼170 times that of polyurethane foam templated MBG scaffolds. The physicochemical and biological properties of Sr-MBG scaffolds were evaluated by ion dissolution, apatite-forming ability and proliferation, alkaline phosphatase activity, osteogenic expression and extracelluar matrix mineralization of osteoblast-like cells MC3T3-E1. The results showed that Sr-MBG scaffolds exhibited a slower ion dissolution rate and more significant potential to stabilize the pH environment with increasing Sr substitution. Importantly, Sr-MBG scaffolds possessed good apatite-forming ability, and stimulated osteoblast cells' proliferation and differentiation. Using dexamethasone as a model drug, Sr-MBG scaffolds also showed a sustained drug delivery property for use in local drug delivery therapy, due to their mesoporous structure. Therefore, the 3-D printed Sr-MBG scaffolds combined the advantages of Sr-MBG such as good bone-forming bioactivity, controlled ion release and drug delivery and enhanced mechanical strength, and had potential application in bone regeneration. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Development of a computer-assisted system for model-based condylar position analysis (E-CPM).
Ahlers, M O; Jakstat, H
2009-01-01
Condylar position analysis is a measuring method for the three-dimensional quantitative acquisition of the position of the mandible in different conditions or at different points in time. Originally, the measurement was done based on a model, using special mechanical condylar position measuring instruments, and on a research scale with mechanical-electronic measuring instruments. Today, as an alternative, it is possible to take measurements with electronic measuring instruments applied directly to the patient. The computerization of imaging has also facilitated condylar position measurement by means of three-dimensional data records obtained by imaging examination methods, which has been used in connection with the simulation and quantification of surgical operation results. However, the comparative measurement of the condylar position at different points in time has so far not been possible to the required degree. An electronic measuring instrument, allowing acquisition of the condylar position in clinical routine and facilitating later calibration with measurements from later examinations by data storage and use of precise equalizing systems, was therefore designed by the present authors. This measuring instrument was implemented on the basis of already existing components from the Reference CPM und Cadiax Compact articulator and registration systems (Gamma Dental, Klosterneuburg, Austria) as well as the matching CMD3D evaluation software (dentaConcept, Hamburg).
Bahreinizad, Hossein; Salimi Bani, Milad; Hasani, Mojtaba; Karimi, Mohammad Taghi; Sharifmoradi, Keyvan; Karimi, Alireza
2017-08-09
The influence of various musculoskeletal disorders has been evaluated using different kinetic and kinematic parameters. But the efficiency of walking can be evaluated by measuring the effort of the subject, or by other words the energy that is required to walk. The aim of this study was to identify mechanical energy differences between the normal and pathological groups. Four groups of 15 healthy subjects, 13 Parkinson subjects, 4 osteoarthritis subjects, and 4 ACL reconstructed subjects have participated in this study. The motions of foot, shank and thigh were recorded using a three dimensional motion analysis system. The kinetic, potential and total mechanical energy of each segment was calculated using 3D markers positions and anthropometric measurements. Maximum value and sample entropy of energies was compared between the normal and abnormal subjects. Maximum value of potential energy of OA subjects was lower than the normal subjects. Furthermore, sample entropy of mechanical energy for Parkinson subjects was low in comparison to the normal subjects while sample entropy of mechanical energy for the ACL subjects was higher than that of the normal subjects. Findings of this study suggested that the subjects with different abilities show different mechanical energy during walking.
NASA Astrophysics Data System (ADS)
Chen, G. Y.; Lan, C. W.
2017-09-01
Adaptive phase field modeling is used in order to model the formation mechanism of a silicon faceted interface in three dimensions. We investigate the faceting condition for equilibrium shapes and dynamic situations. In this study, we propose a new anisotropic function of surface energy for the phase-field simulations in three-dimension, and negative stiffness is further considered. The morphological evolutions are presented and compare well with experimental findings. The growth mechanism is further discussed.
Mass production of bulk artificial nacre with excellent mechanical properties.
Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong
2017-08-18
Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.
Ejection mechanisms in the sublayer of a turbulent channel
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Moin, P.; Moser, R.; Keefe, L.
1988-01-01
The structure of the vorticity field in the viscous wall layer of a turbulent channel is studied by examining the results of a fully resolved direct numerical simulation. It is shown that this region is dominated by intense three-dimensional shear layers in which the dominant vorticity component is spanwise. The advection and reproduction processes of these structures are examined and shown to be consistent with the classical generation mechanism for two-dimensional Tollmien-Schlichting waves. This process is fundamentally different from the usually accepted mechanism involving hairpin vortices.
Glassy dynamics in three-dimensional embryonic tissues
Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa
2013-01-01
Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179
3D-PDR: Three-dimensional photodissociation region code
NASA Astrophysics Data System (ADS)
Bisbas, T. G.; Bell, T. A.; Viti, S.; Yates, J.; Barlow, M. J.
2018-03-01
3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.
NASA Astrophysics Data System (ADS)
Sebastian Mannoor, Manu
Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.
NASA Technical Reports Server (NTRS)
Davis, Steven B.
1990-01-01
Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.
Simulating Geriatric Home Safety Assessments in a Three-Dimensional Virtual World
ERIC Educational Resources Information Center
Andrade, Allen D.; Cifuentes, Pedro; Mintzer, Michael J.; Roos, Bernard A.; Anam, Ramanakumar; Ruiz, Jorge G.
2012-01-01
Virtual worlds could offer inexpensive and safe three-dimensional environments in which medical trainees can learn to identify home safety hazards. Our aim was to evaluate the feasibility, usability, and acceptability of virtual worlds for geriatric home safety assessments and to correlate performance efficiency in hazard identification with…
Evaluation of the three-dimensional bony coverage before and after rotational acetabular osteotomy.
Tanaka, Takeyuki; Moro, Toru; Takatori, Yoshio; Oshima, Hirofumi; Ito, Hideya; Sugita, Naohiko; Mitsuishi, Mamoru; Tanaka, Sakae
2018-02-26
Rotational acetabular osteotomy is a type of pelvic osteotomy that involves rotation of the acetabular bone to improve the bony coverage of the femoral head for patients with acetabular dysplasia. Favourable post-operative long-term outcomes have been reported in previous studies. However, there is a paucity of published data regarding three-dimensional bony coverage. The present study investigated the three-dimensional bony coverage of the acetabulum covering the femoral head in hips before and after rotational acetabular osteotomy and in normal hips. The computed tomography data of 40 hip joints (12 joints before and after rotational acetabular osteotomy; 16 normal joints) were analyzed. The three-dimensional bony coverage of each joint was evaluated using original software. The post-operative bony coverage improved significantly compared with pre-operative values. In particular, the anterolateral aspect of the acetabulum tended to be dysplastic in patients with acetabular dysplasia compared to those with normal hip joints. However, greater bony coverage at the anterolateral aspect was obtained after rotational acetabular osteotomy. Meanwhile, the results of the present study may indicate that the bony coverage in the anterior aspect may be excessive. Three-dimensional analysis indicated that rotational acetabular osteotomy achieved favorable bony coverage. Further investigations are necessary to determine the ideal bony coverage after rotational acetabular osteotomy.
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung
2011-09-01
Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.
Echocardiographic Assessment of Heart Valve Prostheses
Sordelli, Chiara; Severino, Sergio; Ascione, Luigi; Coppolino, Pasquale; Caso, Pio
2014-01-01
Patients submitted to valve replacement with mechanical or biological prosthesis, may present symptoms related either to valvular malfunction or ventricular dysfunction from other causes. Because a clinical examination is not sufficient to evaluate a prosthetic valve, several diagnostic methods have been proposed to assess the functional status of a prosthetic valve. This review provides an overview of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. Compared to native valves, echocardiographic evaluation of prosthetic valves is certainly more complex, both for the examination and the interpretation. Echocardiography also allows discriminating between intra- and/or peri-prosthetic regurgitation, present in the majority of mechanical valves. Transthoracic echocardiography (TTE) requires different angles of the probe with unconventional views. Transesophageal echocardiography (TEE) is the method of choice in presence of technical difficulties. Three-dimensional (3D)-TEE seems to be superior to 2D-TEE, especially in the assessment of paravalvular leak regurgitation (PVL) that it provides improved localization and analysis of the PVL size and shape. PMID:28465917
Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners
NASA Astrophysics Data System (ADS)
Noma, Atsushi; He, Jianmei
2017-11-01
Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.
Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles
NASA Astrophysics Data System (ADS)
Zhang, Jun; Simeonov, Anthony; Yip, Michael C.
2018-03-01
Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Lanzavecchia, S; Bellon, P L; Tosoni, L
1993-12-01
FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.
Dynamic 3D echocardiography in virtual reality
van den Bosch, Annemien E; Koning, Anton HJ; Meijboom, Folkert J; McGhie, Jackie S; Simoons, Maarten L; van der Spek, Peter J; Bogers, Ad JJC
2005-01-01
Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium) I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes). Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited. PMID:16375768
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Yao, Mao-Sung
1990-01-01
A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1984-01-01
An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.
REASSESSING MECHANISM AS A PREDICTOR OF PEDIATRIC INJURY MORTALITY
Beck, Haley; Mittal, Sushil; Madigan, David; Burd, Randall S.
2015-01-01
Background The use of mechanism of injury as a predictor of injury outcome presents practical challenges because this variable may be missing or inaccurate in many databases. The purpose of this study was to determine the importance of mechanism of injury as a predictor of mortality among injured children. Methods The records of children (<15 years old) sustaining a blunt injury were obtained from the National Trauma Data Bank. Models predicting injury mortality were developed using mechanism of injury and injury coding using either Abbreviated Injury Scale post-dot values (low-dimensional injury coding) or injury ICD-9 codes and their two-way interactions (high-dimensional injury coding). Model performance with and without inclusion of mechanism of injury was compared for both coding schemes, and the relative importance of mechanism of injury as a variable in each model type was evaluated. Results Among 62,569 records, a mortality rate of 0.9% was observed. Inclusion of mechanism of injury improved model performance when using low-dimensional injury coding but was associated with no improvement when using high-dimensional injury coding. Mechanism of injury contributed to 28% of model variance when using low-dimensional injury coding and <1% when high-dimensional injury coding was used. Conclusions Although mechanism of injury may be an important predictor of injury mortality among children sustaining blunt trauma, its importance as a predictor of mortality depends on approach used for injury coding. Mechanism of injury is not an essential predictor of outcome after injury when coding schemes are used that better characterize injuries sustained after blunt pediatric trauma. PMID:26197948
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
Computer Simulation For Design Of TWT's
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1992-01-01
A three-dimensional finite-element analytical technique facilitates design and fabrication of traveling-wave-tube (TWT) slow-wave structures. Used to perform thermal and mechanical analyses of TWT designed with variety of configurations, geometries, and materials. Using three-dimensional computer analysis, designer able to simulate building and testing of TWT, with consequent substantial saving of time and money. Technique enables detailed look into operation of traveling-wave tubes to help improve performance for future communications systems.
Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching
NASA Astrophysics Data System (ADS)
Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki
2018-06-01
A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.
Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C.
1998-01-01
The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that higher lift is achieved with the deployed slat with no increase in angle of attack. The layouts demonstrate that these slat systems can be designed with no need for slave links, and an experimental test program is outlined to experimentally validate the lift characteristics of the shallow slat.
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction
Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric
2012-01-01
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291
Emergence of energy dependence in the fragmentation of heterogeneous materials
NASA Astrophysics Data System (ADS)
Pál, Gergő; Varga, Imre; Kun, Ferenc
2014-12-01
The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.
Fracture Analyses of Cracked Delta Eye Plates in Ship Towing
NASA Astrophysics Data System (ADS)
Huang, Xiangbing; Huang, Xingling; Sun, Jizheng
2018-01-01
Based on fracture mechanics, a safety analysis approach is proposed for cracked delta eye plates in ship towing. The static analysis model is presented when the delta eye plate is in service, and the fracture criterion is introduced on basis of stress intensity factor, which is estimated with domain integral method. Subsequently, three-dimensional finite element analyses are carried out to obtain the effective stress intensity factors, and a case is studied to demonstrate the reasonability of the approach. The results show that the classical strength theory is not applicable to evaluate the cracked plate while fracture mechanics can solve the problem very well, and the load level, which a delta eye plate can carry on, decreases evidently when it is damaged.
ERIC Educational Resources Information Center
Albers, Eric C.; Santangelo, Linda K.; McKinlay, George; Cavote, Steve; Rock, Stephen L.; Evans, William
2002-01-01
Presents a three-dimensional model for conceptualizing existing prevention programs, defining and measuring effects of prevention programs, and making a connection between those programmatic effects, and the interests of the funder. This paper describes the methodology and its use for promoting the efficiency and effectiveness of substance abuse…
2017-01-01
PURPOSE The purposes of this study were to evaluate the marginal and internal gaps, and the potential clinical applications of three different methods of dental prostheses fabrication, and to compare the prostheses prepared using the silicone replica technique (SRT) and those prepared using the three-dimensional superimposition analysis (3DSA). MATERIALS AND METHODS Five Pekkton, lithium disilicate, and zirconia crowns were each manufactured and tested using both the SRT and the two-dimensional section of the 3DSA. The data were analyzed with the nonparametric version of a two-way analysis of variance using rank-transformed values and the Tukey's post-hoc test (α = .05). RESULTS Significant differences were observed between the fabrication methods in the marginal gap (P < .010), deep chamfer (P < .001), axial wall (P < .001), and occlusal area (P < .001). A significant difference in the occlusal area was found between the two measurement methods (P < .030), whereas no significant differences were found in the marginal gap (P > .350), deep chamfer (P > .719), and axial wall (P > .150). As the 3DSA method is three-dimensional, it allows for the measurement of arbitrary points. CONCLUSION All of the three fabrication methods are valid for measuring clinical objectives because they produced prostheses within the clinically acceptable range. Furthermore, a three-dimensional superimposition analysis verification method such as the silicone replica technique is also applicable in clinical settings. PMID:28680546
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Akiyama, Keisuke; Yoshikawa, Hideki; Sugamoto, Kazuomi
2011-12-01
We evaluated the validity of the Robin and Graham classification system of hip disease in cerebral palsy (CP) using three-dimensional computed tomography in young people with CP. A total of 91 hips in 91 consecutive children with bilateral spastic CP (57 males, 34 females; nine classified at Gross Motor Function Classification System level II, 42 at level III, 32 at level IV, and eight at level V; mean age 5 y 2 mo, SD 11 mo; range 2-6 y) were investigated retrospectively using anteroposterior plain radiographs and three-dimensional computed tomography (3D-CT) of the hip. The migration percentage was calculated on plain radiographs and all participants were classified into four groups according to migration percentage: grade II, migration percentage ≥ 10% but ≤ 15%, (four hips), grade III, migration percentage >15% but ≤ 30%, (20 hips); grade IV, migration percentage >30% but <100%, (63 hips); and grade V, migration percentage ≥ 100%, (four hips). The lateral opening angle and the sagittal inclination angle of the acetabulum, the neck-shaft angle, and the femoral anteversion of the femur were measured on 3D-CT. The three-dimensional quantitative evaluation indicated that there were significant differences in the lateral opening angle and the neck-shaft angle between the four groups (Kruskal-Wallis test, p ≤ 0.001). This three-dimensional evaluation supports the validation of the Robin and Graham classification system for hip disease in 2- to 7-year-olds with CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Sade, Leyla Elif; Kozan, Hatice; Eroglu, Serpil; Pirat, Bahar; Aydinalp, Alp; Sezgin, Atilla; Muderrisoglu, Haldun
2017-02-01
Residual pulmonary hypertension challenges the right ventricular function and worsens the prognosis in heart transplant recipients. The complex geometry of the right ventricle complicates estimation of its function with conventional transthoracic echocardiography. We evaluated right ventricular function in heart transplant recipients with the use of 3-dimensional echocardiography in relation to systolic pulmonary artery pressure. We performed 32 studies in 26 heart transplant patients, with 6 patients having 2 studies at different time points with different pressures and thus included. Right atrial volume, tricuspid annular plane systolic excursion, peak systolic annular velocity, fractional area change, and 2-dimensional speckle tracking longitudinal strain were obtained by 2-dimensional and tissue Doppler imaging. Three-dimensional right ventricular volumes, ejection fraction, and 3-dimensional right ventricular strain were obtained from the 3-dimensional data set by echocardiographers. Systolic pulmonary artery pressure was obtained during right heart catheterization. Overall mean systolic pulmonary artery pressure was 26 ± 7 mm Hg (range, 14-44 mmHg). Three-dimensional end-diastolic (r = 0.75; P < .001) and end-systolic volumes (r = 0.55; P = .001)correlated well with systolic pulmonary artery pressure. Right ventricular ejection fraction and right atrium volume also significantly correlated with systolic pulmonary artery pressure (r = 0.49 and P = .01 for both). However, right ventricular 2- and 3-dimensional strain, tricuspid annular plane systolic excursion, and tricuspid annular velocity did not. The effects of pulmonary hemodynamic burden on right ventricular function are better estimated by a 3-dimensional volume evaluation than with 3-dimensional longitudinal strain and other 2-dimensional and tissue Doppler measurements. These results suggest that the peculiar anatomy of the right ventricle necessitates 3-dimensional volume quantification in heart transplant recipients in relation to residual pulmonary hypertension.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Three-dimensional knee motion before and after high tibial osteotomy for medial knee osteoarthritis.
Takemae, Takashi; Omori, Go; Nishino, Katsutoshi; Terajima, Kazuhiro; Koga, Yoshio; Endo, Naoto
2006-11-01
High tibial osteotomy (HTO) is an established surgical option for treating medial knee osteoarthritis. HTO moves the mechanical load on the knee joint from the medial compartment to the lateral compartment by changing the leg alignment, but the effects of the operation remain unclear. The purpose of this study was to evaluate the change in three-dimensional knee motion before and after HTO, focusing on lateral thrust and screw home movement, and to investigate the relationship between the change in knee motion and the clinical results. A series of 19 patients with medial knee osteoarthritis who had undergone HTO were evaluated. We performed a clinical assessment, radiological evaluation, and motion analysis at 2.4 years postoperatively. The clinical assessment was performed using the Japanese Orthopaedic Association knee score. The score was significantly improved in all patients after operation. Motion analysis revealed that lateral thrust, which was observed in 18 of the 20 knees before operation, was reduced to 7 knees after operation. Regarding active terminal extension of the knee, three patterns of rotational movement were observed before operation: screw home movement (external rotation), reverse screw home movement (internal rotation), and no rotation. By contrast, after operation, only reverse screw home movement and no rotation were observed; the screw home movement disappeared in all patients. In the knees with reverse screw home movement after operation, the preoperative score was significantly lower than those in the knees with no rotation after operation. Kinetically, HTO was useful for suppressing lateral thrust in medial knee osteoarthritis, although the rotational movement of the knee joint was unchanged.
Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim
2017-06-01
The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
NASA Astrophysics Data System (ADS)
Scolan, Y.-M.; Korobkin, A. A.
2003-02-01
Hydrodynamic impact phenomena are three dimensional in nature and naval architects need more advanced tools than a simple strip theory to calculate impact loads at the preliminary design stage. Three-dimensional analytical solutions have been obtained with the help of the so-called inverse Wagner problem as discussed by Scolan and Korobkin in 2001. The approach by Wagner provides a consistent way to evaluate the flow caused by a blunt body entering liquid through its free surface. However, this approach does not account for the spray jets and gives no idea regarding the energy evacuated from the main flow by the jets. Clear insight into the jet formation is required. Wagner provided certain elements of the answer for two-dimensional configurations. On the basis of those results, the energy distribution pattern is analysed for three-dimensional configurations in the present paper.
Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi
2016-08-01
The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.
Luebberding, Stefanie; Krueger, Nils; Kerscher, Martina
2014-01-01
Whereas the molecular mechanisms of skin aging are well understood, little information is available concerning the clinical onset and lifetime development of facial wrinkles. To perform the first systematic evaluation of the lifetime development of facial wrinkles and sex-specific differences using three-dimensional (3D) imaging and clinical rating. 200 men and women aged 20 to 70 were selected. Wrinkle severity of periorbital, glabellar, and forehead lines was evaluated using 3D imaging and validated assessment scales. Wrinkle severity was greater at all assessed locations with older age. In men, wrinkles manifested earlier and were more severe than in women. In women, periorbital lines were the first visible wrinkles, in contrast to the forehead lines in men. In both sexes, glabellar lines did not clinically manifest before the age of 40. The results of the present study confirm a progressive increase of crow's feet and forehead and glabellar lines in men and women. Although the development of facial wrinkles happens earlier and is more severe in men, perimenopause seems to particularly affect development in women. Clinical ratings and 3D measurements are suitable methods to assess facial wrinkle severity in men and women. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
In Vivo, High-Frequency Three-Dimensional Cardiac MR Elastography: Feasibility in Normal Volunteers
Arani, Arvin; Glaser, Kevin L.; Arunachalam, Shivaram P.; Rossman, Phillip J.; Lake, David S.; Trzasko, Joshua D.; Manduca, Armando; McGee, Kiaran P.; Ehman, Richard L.; Araoz, Philip A.
2016-01-01
Purpose Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. Methods The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). Results The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. Conclusion This study motivates future evaluation of high-frequency 3D MRE in patient populations. PMID:26778442
Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M
2015-07-01
The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4 mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.
NASA Astrophysics Data System (ADS)
Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan
2013-01-01
At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.
Eye movements, visual search and scene memory, in an immersive virtual environment.
Kit, Dmitry; Katz, Leor; Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary
2014-01-01
Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency.
High-fidelity simulations of a standing-wave thermoacoustic-piezoelectric engine
NASA Astrophysics Data System (ADS)
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2014-11-01
We have carried out time-domain three-dimensional and one-dimensional numerical simulations of a thermoacoustic Stirling heat engine (TASHE). The TASHE model adopted for our study is that of a standing-wave engine: a thermal gradient is imposed in a resonator tube and is capped with a piezoelectric diaphragm in a Helmholtz resonator cavity for acoustic energy extraction. The 0.51 m engine sustains 500 Pa pressure oscillations with atmospheric air and pressure. Such an engine is interesting in practice as an external heat engine with no mechanically-moving parts. Our numerical setup allows for both the evaluation of the nonlinear effects of scaling and the effect of a fully electromechanically-coupled impedance boundary condition, representative of a piezoelectric element. The thermoacoustic stack is fully resolved. Previous modeling efforts have focused on steady-state solvers with impedances or nonlinear effects without energy extraction. Optimization of scaling and the impedance for power output can now be simultaneously applied; engines of smaller sizes and higher frequencies suitable for piezoelectric energy extraction can be studied with three-dimensional solvers without restriction. Results at a low-amplitude regime were validated against results obtained from the steady-state solver DeltaEC and from experimental results in literature. Pressure and velocity amplitudes within the cavities match within 2% difference.
NASA Astrophysics Data System (ADS)
Zeng, Hai-Rong; Song, Hui-Zhen
1999-05-01
Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversion of geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of the Green’s function about 3-D FEM, we invert geodetic measurements of coseismic deformation of the 1989 M S=7.1 Loma Prieta earthquake to determine its source mechanism. The result indicates that the slip on the fault plane is very heterogeneous. The maximum slip and shear stress are located about 10 km to northwest of the earthquake source; the stress drop is about more than 1 MPa.
Mechanics of finger-tip electronics
NASA Astrophysics Data System (ADS)
Su, Yewang; Li, Rui; Cheng, Huanyu; Ying, Ming; Bonifas, Andrew P.; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang
2013-10-01
Tactile sensors and electrotactile stimulators can provide important links between humans and virtual environments, through the sensation of touch. Soft materials, such as low modulus silicones, are attractive as platforms and support matrices for arrays sensors and actuators that laminate directly onto the fingertips. Analytic models for the mechanics of three dimensional, form-fitting finger cuffs based on such designs are presented here, along with quantitative validation using the finite element method. The results indicate that the maximum strains in the silicone and the embedded devices are inversely proportional to the square root of radius of curvature of the cuff. These and other findings can be useful in formulating designs for these and related classes of body-worn, three dimensional devices.
Simplified computational methods for elastic and elastic-plastic fracture problems
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
Nomura, Tsutomu; Ushio, Munetaka; Kondo, Kenji; Yamasoba, Tatsuya
2015-11-01
The purpose of this research is to determine the cause of nasal perforation symptoms and to predict post-operative function after nasal perforation repair surgery. A realistic three-dimensional (3D) model of the nose with a septal perforation was reconstructed using a computed tomography (CT) scan from a patient with nasal septal defect. The numerical simulation was carried out using ANSYS CFX V13.0. Pre- and post-operative models were compared by their velocity, pressure gradient (PG), wall shear (WS), shear strain rate (SSR) and turbulence kinetic energy in three plains. In the post-operative state, the crossflows had disappeared, and stream lines bound to the olfactory cleft area had appeared. After surgery, almost all of high-shear stress areas were disappeared comparing pre-operative model. In conclusion, the effects of surgery to correct nasal septal perforation were evaluated using a three-dimensional airflow evaluation. Following the surgery, crossflows disappeared, and WS, PG and SSR rate were decreased. A high WS.PG and SSR were suspected as causes of nasal perforation symptoms.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea
2017-10-19
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin
2017-01-01
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength. PMID:29048347
Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, W.H.; Kumar, Rajay; Bushmaker, Adam
The authors report a method for creating three-dimensional carbon nanotube structures, whereby a focused laser beam is used to selectively burn local regions of a dense forest of multiwalled carbon nanotubes. Raman spectroscopy and scanning electron microscopy are used to quantify the threshold for laser burnout and depth of burnout. The minimum power density for burning carbon nanotubes in air is found to be 244 {mu}W/{mu}m{sup 2}. We create various three-dimensional patterns using this method, illustrating its potential use for the rapid prototyping of carbon nanotube microstructures. Undercut profiles, changes in nanotube density, and nanoparticle formation are observed after lasermore » surface treatment and provide insight into the dynamic process of the burnout mechanism.« less
Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork
NASA Astrophysics Data System (ADS)
Levine, L. E.; Long, G. G.; Ilavsky, J.; Gerhardt, R. A.; Ou, R.; Parker, C. A.
2007-01-01
The authors have used mechanical self-assembly of carbon-black nanoparticles to fabricate a three dimensional, electrically connected micronetwork of nanowires embedded within an insulating, supporting matrix of poly(methyl methacrylate). The electrical connectivity, mean wire diameter, and morphological transitions were characterized as a function of the carbon-black mass fraction. Conductive wires were produced with mean diameters as low as 24nm with lengths up to 100μm.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.
2000-01-01
This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.
Energy transfer in turbulence under rotation
NASA Astrophysics Data System (ADS)
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
NASA Astrophysics Data System (ADS)
Joslin, R. D.
1991-04-01
The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.
Three-Dimensional Printing Surgical Applications.
AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E
2015-01-01
Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.
Bhadri, Prashant R; Rowley, Adrian P; Khurana, Rahul N; Deboer, Charles M; Kerns, Ralph M; Chong, Lawrence P; Humayun, Mark S
2007-05-01
To evaluate the effectiveness of a prototype stereoscopic camera-based viewing system (Digital Microsurgical Workstation, three-dimensional (3D) Vision Systems, Irvine, California, USA) for anterior and posterior segment ophthalmic surgery. Institutional-based prospective study. Anterior and posterior segment surgeons performed designated standardized tasks on porcine eyes after training on prosthetic plastic eyes. Both anterior and posterior segment surgeons were able to complete tasks requiring minimal or moderate stereoscopic viewing. The results indicate that the system provides improved ergonomics. Improvements in key viewing performance areas would further enhance the value over a conventional operating microscope. The performance of the prototype system is not at par with the planned commercial system. With continued development of this technology, the three- dimensional system may be a novel viewing system in ophthalmic surgery with improved ergonomics with respect to traditional microscopic viewing.
Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping
NASA Astrophysics Data System (ADS)
Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.
2018-05-01
Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.
NASA Astrophysics Data System (ADS)
Sandoval, J. H.; Bellotti, F. F.; Yamashita, M. T.; Frederico, T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.
2018-03-01
The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.
NASA Astrophysics Data System (ADS)
Evans, Conor
2015-03-01
Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.
Faulting of Rocks in a Three-Dimensional Stress Field by Micro-Anticracks
Ghaffari, H. O.; Nasseri, M. H. B.; Young, R. Paul
2014-01-01
Nucleation and propagation of a shear fault is known to be the result of interaction and coalescence of many microcracks. Yet the character and rate of the microcracks' interactions, and their dependence on the three-dimensional stress state are poorly understood. Here we investigate formation of microcracks during sandstone faulting under 3D-polyaxial stress fields by analyzing multi-stationary acoustic waveforms. We show that in a true three-dimensional stress state (a) faulting forms in a orthorhombic pattern, and (b) the emitted acoustic waveforms from microcracking carry a shorter rapid slip phase. The later is associated with microcracking that dominantly develops parallel to the minimum stress direction. Our results imply that due to inducing the micro-anticracks, the three-dimensional (3D) stress state can quicken dynamic weakening and rupture propagation by a factor of two relatively to simpler stress states. The results suggest a new nucleation mechanism of 3D-faulting with implications for earthquakes' instabilities, as well as the understanding of avalanches associated with dislocations. PMID:24862447
Huang, Chih-Hao; Brunsvold, Michael A
2006-01-01
Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.
Biomechanical analysis of titanium fixation plates and screws in sagittal split ramus osteotomies.
Atik, F; Atac, M S; Özkan, A; Kılınc, Y; Arslan, M
2016-01-01
The aim of the study was to evaluate the mechanical behavior of three different fixation methods used in the bilateral sagittal split ramus osteotomy. Three different three-dimensional finite element models were created, each corresponding to three different fixation methods. The mandibles were fixed with double straight 4-hole, square 4-hole, and 5-hole Y plates. 150 N incisal occlusal loads were simulated on the distal segments. ANSYS software ((v 10; ANSYS Inc., Canonsburg, PA) was used to calculate the Von Mises stresses on fixative appliances. The highest Von Mises stress values were found in Y plate. The lowest values were isolated in double straight plate group. It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study.
NASA Technical Reports Server (NTRS)
Watanabe, M.; Actor, G.; Gatos, H. C.
1977-01-01
Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.
Linearized compressible-flow theory for sonic flight speeds
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard; Spreiter, John R
1950-01-01
The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)
ERIC Educational Resources Information Center
Müller-Kalthoff, Hanno; Helm, Friederike; Möller, Jens
2017-01-01
Students evaluate their domain-specific abilities by comparing their own achievement in one domain to that of others (social comparison), to their own previous achievement (temporal comparison), as well as their own achievement in another domain (dimensional comparison). The theories underlying these three comparison processes each assume an…
ERIC Educational Resources Information Center
Nussli, Natalie; Oh, Kevin; McCandless, Kevin
2014-01-01
The purpose of this mixed methods study was to help pre-service teachers experience and evaluate the potential of Second Life, a three-dimensional immersive virtual environment, for potential integration into their future teaching. By completing collaborative assignments in Second Life, nineteen pre-service general education teachers explored an…
USDA-ARS?s Scientific Manuscript database
A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Rashev, P Z; Mintchev, M P; Bowes, K L
2000-09-01
The aim of this study was to develop a novel three-dimensional (3-D) object-oriented modeling approach incorporating knowledge of the anatomy, electrophysiology, and mechanics of externally stimulated excitable gastrointestinal (GI) tissues and emphasizing the "stimulus-response" principle of extracting the modeling parameters. The modeling method used clusters of class hierarchies representing GI tissues from three perspectives: 1) anatomical; 2) electrophysiological; and 3) mechanical. We elaborated on the first four phases of the object-oriented system development life-cycle: 1) analysis; 2) design; 3) implementation; and 4) testing. Generalized cylinders were used for the implementation of 3-D tissue objects modeling the cecum, the descending colon, and the colonic circular smooth muscle tissue. The model was tested using external neural electrical tissue excitation of the descending colon with virtual implanted electrodes and the stimulating current density distributions over the modeled surfaces were calculated. Finally, the tissue deformations invoked by electrical stimulation were estimated and represented by a mesh-surface visualization technique.
Bonneau, Noémie; Bouhallier, July; Baylac, Michel; Tardieu, Christine; Gagey, Olivier
2012-01-01
Understanding the three-dimensional orientation of the coxo-femoral joint remains a challenge as an accurate three-dimensional orientation ensure an efficient bipedal gait and posture. The quantification of the orientation of the acetabulum can be performed using the three-dimensional axis perpendicular to the plane that passes along the edge of the acetabular rim. However, the acetabular rim is not regular as an important indentation in the anterior rim was observed. An innovative cadaver study of the labrum was developed to shed light on the proper quantification of the three-dimensional orientation of the acetabulum. Dissections on 17 non-embalmed corpses were performed. Our results suggest that the acetabular rim is better represented by an anterior plane and a posterior plane rather than a single plane along the entire rim as it is currently assumed. The development of the socket from the Y-shaped cartilage was suggested to explain the different orientations in these anterior and posterior planes. The labrum forms a plane that takes an orientation in between the anterior and posterior parts of the acetabular rim, filling up inequalities of the bony rim. The vectors VL, VA2 and VP, representing the three-dimensional orientation of the labrum, the anterior rim and the posterior rim, are situated in a unique plane that appears biomechanically dependent. The three-dimensional orientation of the acetabulum is a fundamental parameter to understand the hip joint mechanism. Important applications for hip surgery and rehabilitation, as well as for physical anthropology, were discussed. PMID:22360458
The three-dimensional structure of swirl-switching in bent pipe flow
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...
2017-11-27
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The three-dimensional structure of swirl-switching in bent pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The role of viscous fluid flow in cochlear partition transduction
NASA Astrophysics Data System (ADS)
Svobodny, Thomas
2002-11-01
Sound transduction occurs via the forcing of the basilar membrane by a wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number. The actual transduction occurs through the mechanism of stereocilia of hair cells. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection due to the influence of the dynamics of the endothelial fluid. This talk will emphasis the results of two-dimensional and three-dimensional simulations and will relate these to the analytical solutions previously reported.
Organization of the cytokeratin network in an epithelial cell.
Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien
2003-08-07
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Barlow, Paul M.
1997-01-01
Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.
NASA Astrophysics Data System (ADS)
Zhou, H.; Yu, X.; Chen, C.; Zeng, L.; Lu, S.; Wu, L.
2016-12-01
In this research, we combined synchrotron-based X-ray micro-computed tomography (SR-mCT), with three-dimensional lattice Bolzmann (LB) method, to quantify how the change in pore space architecture affected macroscopic hydraulic of two clayey soils amended with biochar. SR-mCT was used to characterize pore structures of the soils before and after biochar addition. The high-resolution soil pore structures were then directly used as internal boundary conditions for three-dimensional water flow simulations with the LB method, which was accelerated by graphics processing unit (GPU) parallel computing. It was shown that, due to the changes in soil pore geometry, the application of biochar increased the soil permeability by at least 1 order of magnitude, and decreased the tortuosity by 20-30%. This work was the first physics based modeling study on the effect of biochar amendment on soil hydraulic properties. The developed theories and techniques have promising potential in understanding the mechanisms of water and nutrient transport in soil at the pore scale.
Damage in fatigue: A new outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, K.J.
1995-12-01
This paper concentrates on the difficulties produced by linear elastic fracture mechanics (LEFM) and how recent research has removed many of these difficulties thereby permitting the design engineer to have a much improved basis for solving complex problems of engineering plant subjected to cyclic loading. This paper intends to show that: (1) In polycrystalline materials the period of initiation is in reality, zero and fatigue lifetime is entirely composed of crack propagation. (2) The fatigue limit of a metal, component or structure is related to whether or not a crack can propagate. (3) Elastic Fracture Mechanics is only a beginningmore » in the science of, and application of, fracture mechanics. (4) Fatigue Damage is current crack length and the rate of damage accumulation is the rate of crack growth. (5) Only two basic forms of crack extension occur when any combination of the three loading mode mechanisms (Modes 1, 2, and 3) are applied, namely Stage 1 (shear crack growth) and Stage 2 (tensile crack growth). (6) Three fundamentally different fatigue crack growth thresholds exist. (7) The fatigue resistance of a metal is predominantly concerned with a crack changing its crack-growth direction, ie from Stage 1 to Stage 2, or vice versa. (8) Notches fall into two clearly defined categories; sharp notches where failure is related to the mechanical threshold condition, and shallow notches where failure is related to the material threshold condition. (9) Complex three-dimensional cyclic stress systems should be evaluated with respect to the possible Stage 1 and Stage 2 crack growth planes. (10) Barriers to fatigue crack growth can have origins in the microstructure (eg: grain boundaries) and in the mechanical state (eg: other crack systems). (11) The removal of a fatigue limit by a corrosive environment can be evaluated by the interface conditions between the Elastic-Plastic Fracture Mechanics (EPFM) and Microstructural Fracture Mechanics (MFM) regimes.« less
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2013-10-01
Acoustically induced vibrations of the tympanic membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and three-dimensional (3-D) displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. Sound-induced 3-D displacements of the TM are estimated from shape and one-dimensional displacements measured in cadaveric chinchillas using a lensless dual-wavelength digital holography system (DWDHS). The DWDHS consists of laser delivery, optical head, and computing platform subsystems. Shape measurements are performed in double-exposure mode with the use of two wavelengths of a tunable laser, while nanometer-scale displacements are measured along a single sensitivity direction with a constant wavelength. Taking into consideration the geometrical and dimensional constrains imposed by the anatomy of the TM, we combine principles of thin-shell theory together with displacement measurements along a single sensitivity vector and TM surface shape to extract the three principal components of displacement in the full-field-of-view. We test, validate, and identify limitations of this approach via the application of finite element method to artificial geometries.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Nakano, Tomoyuki; Kanai, Yoshihiko; Amano, Yusuke; Yoshimoto, Taichiro; Matsubara, Daisuke; Shibano, Tomoki; Tamura, Tomoko; Oguni, Sachiko; Katashiba, Shizuka; Ito, Takeshi; Murakami, Yoshinori; Fukayama, Masashi; Murakami, Takashi; Endo, Shunsuke; Niki, Toshiro
2017-01-01
Decreased cell-substratum adhesion is crucially involved in metastasis. Previous studies demonstrated that lung cancer with floating cell clusters in histology is more likely to develop metastasis. In the present study, we investigated whether cancer cells in long-term, three-dimensional low attachment cultures acquire high metastatic potential; these cells were then used to examine the mechanisms underlying metastasis. Two KRAS-mutated adenocarcinoma cell lines (A549 and H441) were cultured and selected on ultra-low attachment culture dishes, and the resulting cells were defined as FL (for floating) sublines. Cancer cells were inoculated into NOD/SCID mice via an intracardiac injection, and metastasis was evaluated using luciferase-based imaging and histopathology. In vitro cell growth (in attachment or suspension cultures), migration, and invasion were assayed. A whole genomic analysis was performed to identify key molecular alterations in FL sublines. Upon detachment on low-binding dishes, parental cells initially formed rounded spheroids with limited growth activity. However, over time in cultures, cells gradually formed smaller spheroids that grew slowly, and, after 3–4 months, we obtained FL sublines that regained prominent growth potential in suspension cultures. On ordinary dishes, FL cells reattached and exhibited a more spindle-shaped morphology than parental cells. No marked differences were observed in cell growth with attachment, migration, or invasion between FL sublines and parental cell lines; however, FL cells exhibited markedly increased growth potential under suspended conditions in vitro and stronger metastatic abilities in vivo. A genomic analysis identified epithelial-mesenchymal transition (EMT) and c-Myc amplification in A549-FL and H441-FL cells, respectively, as candidate mechanisms for metastasis. The growth potential of FL cells was markedly inhibited by lentiviral ZEB1 knockdown in A549-FL cells and by the inhibition of c-Myc through lentiviral knockdown or the pharmacological inhibitor JQ1 in H441-FL cells. Long-term three-dimensional low attachment cultures may become a useful method for investigating the mechanisms underlying metastasis mediated by decreased cell-substratum adhesion. PMID:28786996
Fluid Structure Interaction in a Turbine Blade
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.
2004-01-01
An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.
Three-dimensional high-definition flow in the diagnosis of placental lakes.
Inubashiri, Eisuke; Deguchi, Keizou; Abe, Kiyotaka; Saitou, Atushi; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko
2014-10-01
Placental lakes are sonolucent areas often found in the normal placenta. Most of them are asymptomatic. They are sometimes related to placenta accreta or intrauterine fetal growth restriction, among other conditions. Although Doppler sonography is useful for evaluating noxious placental lakes, it is not easy to adapt Doppler studies to conventional two-dimensional color Doppler sonography because of the low-velocity blood flow and high vascularity in the placenta. Here, we demonstrate how three-dimensional high-definition imaging of flow provides a novel visual depiction of placental lakes, which helps substantially with the differential diagnosis. As far as we know, there have been no previous reports of observation of placental lakes using three-dimensional high-definition imaging of flow.
Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L
2011-10-01
Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.
A three-dimensional kinematic analysis of tongue flicking in Python molurus.
de Groot, Jurriaan H; van der Sluijs, Inke; Snelderwaard, Peter Ch; van Leeuwen, Johan L
2004-02-01
The forked snake tongue is a muscular organ without hard skeletal support. A functional interpretation of the variable arrangement of the intrinsic muscles along the tongue requires a quantitative analysis of the motion performance during tongue protrusion and flicking. Therefore, high-speed fluoroscopy and high-speed stereo photogrammetry were used to analyse the three-dimensional shape changes of the tongue in Python molurus bivittatus (Boidae). The posterior protruding part of the tongue elongated up to 130% while the flicking anterior portion elongated maximally 60%. The differences in tongue strains relate to the absence or presence, respectively, of longitudinal muscle fibres in the peripheral tongue. Maximum overall protrusion velocity (4.3 m s(-1)) occurred initially when the tongue tip left the mouth. Maximum tongue length of approximately 0.01 body length (20 mm) was reached during the first tongue flick. These observations are discussed within the scope of the biomechanical constraints of hydrostatic tongue protrusion: a negative forward pressure gradient, longitudinal tongue compliance and axial tongue stiffness. The three-dimensional deformation varied along the tongue with a mean curvature of 0.06 mm(-1) and a maximum value of 0.5 mm(-1). At the basis of the anterior forked portion of the tongue tips, extreme curvatures up to 2.0 mm(-1) were observed. These quantitative results support previously proposed inferences about a hydrostatic elongation mechanism and may serve to evaluate future dynamic models of tongue flicking.
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre, Janis; Seraidarian, Paulo Isaías
2009-01-01
Objectives: This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. Material and Methods: A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the intermental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks® software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. Results: The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. Conclusion: The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture. PMID:19936535
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre Junior, Janis; Seraidarian, Paulo Isaías
2009-01-01
This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the inter-mental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture.
NASA Technical Reports Server (NTRS)
Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K.W.
1996-01-01
The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.
2008-05-01
4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure
Perfect Undetectable Acoustic Device from Fabry-Pérot Resonances
NASA Astrophysics Data System (ADS)
Chen, Huanyang; Zhou, Yangyang; Zhou, Mengying; Xu, Lin; Liu, Qing Huo
2018-02-01
Transformation acoustics is a method to design novel acoustic devices, while the complexity of the material parameters hinders its progress. In this paper, we analytically present a three-dimensional perfect undetectable acoustic device from Fabry-Pérot resonances and confirm its functionality from Mie theory. Such a mechanism goes beyond the traditional transformation acoustics. In addition, such a reduced version can be realized by holey-structured metamaterials. Our theory paves a way to the implementation of three-dimensional transformation acoustic devices.
Prompt Radiation Protection Factors
2018-02-01
dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat
Zeng, Canjun; Xiao, Jidong; Wu, Zhanglin; Huang, Wenhua
2015-01-01
The aim of this study is to evaluate the efficacy and feasibility of three-dimensional printing (3D printing) assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach. A total of 38 patients with unstable pelvic fractures were analyzed retrospectively from August 2012 to February 2014. All cases were treated operatively with internal fixation assisted by three-dimensional printing from minimal invasive para-rectus abdominis approach. Both preoperative CT and three-dimensional reconstruction were performed. Pelvic model was created by 3D printing. Data including the best entry points, plate position and direction and length of screw were obtained from simulated operation based on 3D printing pelvic model. The diaplasis and internal fixation were performed by minimal invasive para-rectus abdominis approach according to the optimized dada in real surgical procedure. Matta and Majeed score were used to evaluate currative effects after operation. According to the Matta standard, the outcome of the diaplasis achieved 97.37% with excellent and good. Majeed assessment showed 94.4% with excellent and good. The imageological examination showed consistency of internal fixation and simulated operation. The mean operation time was 110 minutes, mean intraoperative blood loss 320 ml, and mean incision length 6.5 cm. All patients have achieved clinical healing, with mean healing time of 8 weeks. Three-dimensional printing assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach is feasible and effective. This method has the advantages of trauma minimally, bleeding less, healing rapidly and satisfactory reduction, and worthwhile for spreading in clinical practice.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos
2015-06-01
The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhao, Dan; Liu, Wei; Cai, Ailu; Li, Jingyu; Chen, Lizhu; Wang, Bing
2013-02-01
The purpose of this study was to investigate the effectiveness for quantitative evaluation of cerebellar vermis using three-dimensional (3D) ultrasound and to establish a nomogram for Chinese fetal vermis measurements during gestation. Sonographic examinations were performed in normal fetuses and in cases suspected of the diagnosis of vermian rotation. 3D median planes were obtained with both OMNIVIEW and tomographic ultrasound imaging. Measurements of the cerebellar vermis were highly correlated between two-dimensional and 3D median planes. The diameter of the cerebellar vermis follows growth approximately predicted by the quadratic regression equation. The normal vermis was almost parallel to the brain stem, with the average angle degree to be <2° in normal fetuses. The average angle degree of the 9 cases of vermian rotation was >5°. Three-dimensional median planes are obtained more easily than two-dimensional ones, and allow accurate measurements of the cerebellar vermis. The 3D approach may enable rapid assessment of fetal cerebral anatomy in standard examination. Measurements of cerebellar vermis may provide a quantitative index for prenatal diagnosis of posterior fossa malformations. © 2012 John Wiley & Sons, Ltd.
Reenalda, Jasper; Maartens, Erik; Homan, Lotte; Buurke, J H Jaap
2016-10-03
Recent developments in wearable and wireless sensor technology allow for a continuous three dimensional analysis of running mechanics in the sport specific setting. The present study is the first to demonstrate the possibility of analyzing three dimensional (3D) running mechanics continuously, by means of inertial magnetic measurement units, to objectify changes in mechanics over the course of a marathon. Three well trained male distance runners ran a marathon while equipped with inertial magnetic measurement units on trunk, pelvis, upper legs, lower legs and feet to obtain a 3D view of running mechanics and to asses changes in running mechanics over the course of a marathon. Data were continuously recorded during the entire 42.2km (26.2Miles) of the Marathon. Data from the individual sensors were transmitted wirelessly to a receiver, mounted on the handlebar of an accompanying cyclist. Anatomical calibration was performed using both static and dynamic procedures and sensor orientations were thus converted to body segment orientations by means of transformation matrices obtained from the segment calibration. Joint angle (hip, knee and ankle) trajectories as well as center of mass (COM) trajectory and acceleration were derived from the sensor data after segment calibration. Data were collected and repeated measures one way ANOVA׳s, with Tukey post-hoc test, were used to statistically analyze differences between the defined kinematic parameters (max hip angle, peak knee flexion at mid-stance and at mid-swing, ankle angle at initial contact and COM vertical displacement and acceleration), averaged over 100 strides, between the first and the last stages (8 and 40km) of the marathon. Significant changes in running mechanics were witnessed between the first and the last stage of the marathon. This study showed the possibility of performing a 3D kinematic analysis of the running technique, in the sport specific setting, by using inertial magnetic measurement units. For the three runners analyzed, significant changes were observed in running mechanics over the course of a marathon. The present measurement technique therefore allows for more in-depth study of running mechanics outside the laboratory setting. Copyright © 2016 Elsevier Ltd. All rights reserved.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-01-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738
Identification of Defects in Piles Through Dynamic Testing
NASA Astrophysics Data System (ADS)
Liao, Shutao T.; Roesset, Jose M.
1997-04-01
The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)
Yao, Z; Peng, Y; Bi, J; Xie, C; Chen, X; Li, Y; Ye, X; Zhou, J
2016-03-01
Multidrug-resistant Pseudomonas aeruginosa (MDRPA) infections are major threats to healthcare-associated infection control and the intrinsic molecular mechanisms of MDRPA are also unclear. We examined 348 isolates of P. aeruginosa, including 188 MDRPA and 160 non-MDRPA, obtained from five tertiary-care hospitals in Guangzhou, China. Significant correlations were found between gene/enzyme carriage and increased rates of antimicrobial resistance (P < 0·01). gyrA mutation, OprD loss and metallo-β-lactamase (MBL) presence were identified as crucial molecular risk factors for MDRPA acquisition by a combination of univariate logistic regression and a multifactor dimensionality reduction approach. The MDRPA rate was also elevated with the increase in positive numbers of those three determinants (P < 0·001). Thus, gyrA mutation, OprD loss and MBL presence may serve as predictors for early screening of MDRPA infections in clinical settings.
Huang, N; Chu, F; Guo, Z
1998-06-01
Retinoids (Vitamin A, its metabolites and synthetic analogues) play important roles in a variety of biological processes, including cellular differentiation, proliferation and apoptosis. The many diverse actions of retinoids attribute to the ability of regulating transcription of different target genes through activation of multiple retinoid nuclear receptors (RAR of RXR). So, retinoids with selective binding ability to specific receptor may not only have improved therapeutic indices, but may also be invaluable for elucidating the molecular mechanism of retinoidal transcriptional activation. Based on the two dimensional and three dimensional quantitative structure-activity relationships of specific ligands of RXR, we carried out mimesis of environment of ligands interacting with their receptor and, to some extent, mapping the topological and physico-chemical characteristics of receptor. The knowledge of the QSAR study will offer detailed molecular information for design, synthesis and biological evaluation in drug research and development.
Evaluation of cast creep occurring during simulated clubfoot correction
Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F
2016-01-01
The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764
Prognostic value of three-dimensional ultrasound for fetal hydronephrosis
WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING
2015-01-01
The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626
Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner
Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars
2012-01-01
Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel; ...
2016-09-01
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
Toward a Trust Evaluation Mechanism in the Social Internet of Things.
Truong, Nguyen Binh; Lee, Hyunwoo; Askwith, Bob; Lee, Gyu Myoung
2017-06-09
In the blooming era of the Internet of Things (IoT), trust has been accepted as a vital factor for provisioning secure, reliable, seamless communications and services. However, a large number of challenges still remain unsolved due to the ambiguity of the concept of trust as well as the variety of divergent trust models in different contexts. In this research, we augment the trust concept, the trust definition and provide a general conceptual model in the context of the Social IoT (SIoT) environment by breaking down all attributes influencing trust. Then, we propose a trust evaluation model called REK, comprised of the triad of trust indicators (TIs) Reputation, Experience and Knowledge. The REK model covers multi-dimensional aspects of trust by incorporating heterogeneous information from direct observation (as Knowledge TI), personal experiences (as Experience TI) to global opinions (as Reputation TI). The associated evaluation models for the three TIs are also proposed and provisioned. We then come up with an aggregation mechanism for deriving trust values as the final outcome of the REK evaluation model. We believe this article offers better understandings on trust as well as provides several prospective approaches for the trust evaluation in the SIoT environment.
Toward a Trust Evaluation Mechanism in the Social Internet of Things
Truong, Nguyen Binh; Lee, Hyunwoo; Askwith, Bob; Lee, Gyu Myoung
2017-01-01
In the blooming era of the Internet of Things (IoT), trust has been accepted as a vital factor for provisioning secure, reliable, seamless communications and services. However, a large number of challenges still remain unsolved due to the ambiguity of the concept of trust as well as the variety of divergent trust models in different contexts. In this research, we augment the trust concept, the trust definition and provide a general conceptual model in the context of the Social IoT (SIoT) environment by breaking down all attributes influencing trust. Then, we propose a trust evaluation model called REK, comprised of the triad of trust indicators (TIs) Reputation, Experience and Knowledge. The REK model covers multi-dimensional aspects of trust by incorporating heterogeneous information from direct observation (as Knowledge TI), personal experiences (as Experience TI) to global opinions (as Reputation TI). The associated evaluation models for the three TIs are also proposed and provisioned. We then come up with an aggregation mechanism for deriving trust values as the final outcome of the REK evaluation model. We believe this article offers better understandings on trust as well as provides several prospective approaches for the trust evaluation in the SIoT environment. PMID:28598401
Ultrasound imaging of the anal sphincter complex: a review
Abdool, Z; Sultan, A H; Thakar, R
2012-01-01
Endoanal ultrasound is now regarded as the gold standard for evaluating anal sphincter pathology in the investigation of anal incontinence. The advent of three-dimensional ultrasound has further improved our understanding of the two-dimensional technique. Endoanal ultrasound requires specialised equipment and its relative invasiveness has prompted clinicians to explore alternative imaging techniques. Transvaginal and transperineal ultrasound have been recently evaluated as alternative imaging modalities. However, the need for technique standardisation, validation and reporting is of paramount importance. We conducted a MEDLINE search (1950 to February 2010) and critically reviewed studies using the three imaging techniques in evaluating anal sphincter integrity. PMID:22374273
Nabavizadeh, Behnam; Mozafarpour, Sarah; Hosseini Sharifi, Seyed Hossein; Nabavizadeh, Reza; Abbasioun, Reza; Kajbafzadeh, Abdol-Mohammad
2018-03-01
Ureterocele is a sac-like dilatation of terminal ureter. Precise anatomic delineation is of utmost importance to proceed with the surgical plan, particularly in the ectopic subtype. However, the level of ureterocele extension is not always elucidated by the existing imaging modalities and even by conventional cystoscopy, which is considered as the gold standard for evaluation of ureterocele. This study aims to evaluate the accuracy of three-dimensional virtual sonographic cystoscopy (VSC) in the characterization of ureterocele in duplex collecting systems. Sixteen children with a mean age of 5.1 (standard deviation 1.96) years with transabdominal ultrasonography-proven duplex system and ureterocele were included. They underwent VSC by a single pediatric radiologist. All of them subsequently had conventional cystoscopy, and the results were compared in terms of ureterocele features including anatomy, number, size, location, and extension. Three-dimensional VSC was well tolerated in all cases without any complication. Image quality was suboptimal in 2 of 16 patients. Out of the remaining 14 cases, VSC had a high accuracy in characterization of the ureterocele features (93%). Only the extension of one ureterocele was not precisely detected by VSC. The results of this study suggest three-dimensional sonography as a promising noninvasive diagnostic modality in the evaluation of ectopic ureterocele in children. © 2017 by the American Institute of Ultrasound in Medicine.
Topological dynamics of vortex-line networks in hexagonal manganites
NASA Astrophysics Data System (ADS)
Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing
2018-01-01
The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.
2018-04-01
Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.
Nucifora, Gaetano; Badano, Luigi P; Allocca, Giuseppe; Gianfagna, Pasquale; Proclemer, Alessandro; Cinello, Margherita; Fioretti, Paolo M
2007-07-01
Pacemaker leads may impair tricuspid valve coaptation and they are a well-known cause of mild tricuspid regurgitation. Occasionally, right ventricular leads worsen tricuspid regurgitation over time and patients develop late-onset symptoms of right-sided heart failure. The exact mechanism of this clinical entity is rarely identifiable by 2D-echocardiography only. This case report details a patient with severe tricuspid regurgitation secondary to immobilization of the anterior leaflet of the tricuspid valve by a permanent ventricular pacing lead. The mechanism of regurgitation was clarified by real time three-dimensional echocardiography that showed the location of the ventricular lead and its interference with the tricuspid valve.
ELECTRONIC BIVANE WIND DIRECTION INDICATOR
Moses, H.
1961-05-01
An apparatus is described for determining and recording three dimensional wind vectors. The apparatus comprises a rotatably mounted azimuthal wind component sensing head and an elevational wind component sensing head mounted to the azimuthal head and adapted to rotate therewith in the azimuthal plane and independently in the elevational plane. A heat source and thermocouples disposed thereabout are mounted within each of the sensing heads, the thermocouples providing electrical signals responsive to the temperature differential created by the passage of air through the sensing tuhes. The thermocouple signals are applied to drive mechanisms which position the sensing heads to a null wind position. Recording means are provided responsive to positional data from the drive mechanisms which are a measurement of the three dimensional wind vectors.
A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies
NASA Astrophysics Data System (ADS)
Belokar, R. M.; Banga, H. K.; Kumar, R.
2017-12-01
This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.
Biologically Inspired Synthesis Route to Three-Dimensionally Structured Inorganic Thin Films
Schwenzer, Birgit; Morse, Daniel E.
2008-01-01
Inorganic thin films (hydroxide, oxide, and phosphate materials) that are textured on a submicron scale have been prepared from aqueous metal salt solutions at room temperature using vapor-diffusion catalysis. This generic synthesis approach mimics the essential advantages of the catalytic and structure-directing mechanisms observed for the formation of silica skeletons of marine sponges. Chemical composition, crystallinity, and the three-dimensional morphology of films prepared by this method are extremely sensitive to changes in the synthesis conditions, such as concentrations, reaction times, and the presence and nature of substrate materials. Focusing on different materials systems, the reaction mechanism for the formation ofmore » these thin films and the influence of different reaction parameters on the product are explained.« less
Detailed model for practical pulverized coal furnaces and gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.
1989-08-01
This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report:more » (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.« less
Harley, Brendan A; Freyman, Toby M; Wong, Matthew Q; Gibson, Lorna J
2007-10-15
Cell-mediated contraction plays a critical role in many physiological and pathological processes, notably organized contraction during wound healing. Implantation of an appropriately formulated (i.e., mean pore size, chemical composition, degradation rate) three-dimensional scaffold into an in vivo wound site effectively blocks the majority of organized wound contraction and results in induced regeneration rather than scar formation. Improved understanding of cell contraction within three-dimensional constructs therefore represents an important area of study in tissue engineering. Studies of cell contraction within three-dimensional constructs typically calculate an average contractile force from the gross deformation of a macroscopic substrate by a large cell population. In this study, cellular solids theory has been applied to conventional column buckling relationships to quantify the magnitude of individual cell contraction events within a three-dimensional, collagen-glycosaminoglycan scaffold. This new technique can be used for studying cell mechanics with a wide variety of porous scaffolds that resemble low-density, open-cell foams. It extends previous methods for analyzing cell buckling of two-dimensional substrates to three-dimensional constructs. From data available in the literature, the mean contractile force (Fc) generated by individual dermal fibroblasts within the collagen-glycosaminoglycan scaffold was calculated to range between 11 and 41 nN (Fc=26+/-13 nN, mean+/-SD), with an upper bound of cell contractility estimated at 450 nN.
Mahmoud, Amr; Bennett, Michael
2015-08-01
Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.
Teaching Anatomy and Physiology Using Computer-Based, Stereoscopic Images
ERIC Educational Resources Information Center
Perry, Jamie; Kuehn, David; Langlois, Rick
2007-01-01
Learning real three-dimensional (3D) anatomy for the first time can be challenging. Two-dimensional drawings and plastic models tend to over-simplify the complexity of anatomy. The approach described uses stereoscopy to create 3D images of the process of cadaver dissection and to demonstrate the underlying anatomy related to the speech mechanisms.…
Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn
2016-08-01
Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.
Wang, Xin-Gang; You, Chuan-Gang; Sun, Hua-Feng; Hu, Xin-Lei; Han, Chun-Mao; Zhang, Li-Ping; Zheng, Yu-Rong; Li, Qi-Yin
2011-02-01
To design and construct a kind of dermal regeneration template with mesh, and to preliminarily evaluate its biological characteristics. PLGA mesh was integrated into CCS with freeze-drying method for constructing PLGA mesh/CCS composite (PCCS). The micromorphologies and mechanical properties among PLGA mesh, CCS, and PCCS were compared. PCCS and CCS was respectively implanted into subcutaneous tissue of SD rats (PCCS and CCS groups, 9 rats in each group). The tissue samples were collected at post operation week (POW) 1, 2, and 4 for histopathological and immunohistochemical observation. Protein levels of CD68, MPO, IL-1beta, IL-10 were examined by Western blot, with expression of gray value. Data were processed with one-way analysis of variance and t test. Three-dimensional porous structure of PCCS was similar to that of CCS. Mechanical property of PLGA mesh and PCCS was respectively (3.07 +/- 0.10), (3.26 +/- 0.15) MPa, and they were higher than that of CCS [(0.42 +/- 0.21) MPa, F = 592.3, P < 0.0001)]. The scaffolds were filled with newly formed tissue in PCCS group at POW 2, while those in CCS group were observed at POW 4. A large accumulation of macrophages was observed in both groups, especially at POW 2, and more macrophage infiltration was observed in CCS group. The protein level of IL-10 in PCCS group at POW 2 was obviously higher than that in CCS group, while the protein levels of CD68, MPO, IL-1beta were significantly decreased as compared with those in CCS group (with t value from -4.06 to 2.89, P < 0.05 or P < 0.01). PCCS has excellent mechanical property with appropriate three-dimensional porous structure. Meanwhile, it can rapidly induce formation of new tissue and vascularization, and it has a prospect of serving as a dermal substitute.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
NASA Astrophysics Data System (ADS)
Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.
2017-02-01
The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.
Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M
2018-05-04
Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.
Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth
Jackson, Stuart; Blake, Randolph
2010-01-01
Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892
Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.
Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D
2009-01-01
Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Results- Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.
Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak
2014-06-01
The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.
Study of high speed complex number algorithms. [for determining antenna for field radiation patterns
NASA Technical Reports Server (NTRS)
Heisler, R.
1981-01-01
A method of evaluating the radiation integral on the curved surface of a reflecting antenna is presented. A three dimensional Fourier transform approach is used to generate a two dimensional radiation cross-section along a planer cut at any angle phi through the far field pattern. Salient to the method is an algorithm for evaluating a subset of the total three dimensional discrete Fourier transform results. The subset elements are selectively evaluated to yield data along a geometric plane of constant. The algorithm is extremely efficient so that computation of the induced surface currents via the physical optics approximation dominates the computer time required to compute a radiation pattern. Application to paraboloid reflectors with off-focus feeds in presented, but the method is easily extended to offset antenna systems and reflectors of arbitrary shapes. Numerical results were computed for both gain and phase and are compared with other published work.
Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice
NASA Astrophysics Data System (ADS)
Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.
2016-08-01
Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.
Fabrication of 3D nano-structures using reverse imprint lithography
NASA Astrophysics Data System (ADS)
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Fabrication of 3D nano-structures using reverse imprint lithography.
Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon
2013-02-01
In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.
Three-Particle Complexes in Two-Dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Ganchev, Bogdan; Drummond, Neil; Aleiner, Igor; Fal'ko, Vladimir
2015-03-01
We evaluate binding energies of trions X±, excitons bound by a donor or acceptor charge XD (A ) , and overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the dissociation energy of X± is typically much larger than that of localized exciton complexes, so that trions are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from the exciton line than the line of XD (A ) .
Near-field three-dimensional radar imaging techniques and applications.
Sheen, David; McMakin, Douglas; Hall, Thomas
2010-07-01
Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.
Axisymmetry breaking instabilities of natural convection in a vertical bridgman growth configuration
NASA Astrophysics Data System (ADS)
Gelfgat, A. Yu.; Bar-Yoseph, P. Z.; Solan, A.
2000-12-01
A study of the three-dimensional axisymmetry-breaking instability of an axisymmetric convective flow associated with crystal growth from bulk of melt is presented. Convection in a vertical cylinder with a parabolic temperature profile on the sidewall is considered as a representative model. The main objective is the calculation of critical parameters corresponding to a transition from the steady axisymmetric to the three-dimensional non-axisymmetric (steady or oscillatory) flow pattern. A parametric study of the dependence of the critical Grashof number Gr cr on the Prandtl number 0⩽Pr⩽0.05 (characteristic for semiconductor melts) and the aspect ratio of the cylinder 1⩽ A⩽4 ( A=height/radius) is carried out. The stability diagram Grcr(Pr, A) corresponding to the axisymmetric — three-dimensional transition is reported for the first time. The calculations are done using the spectral Galerkin method allowing an effective and accurate three-dimensional stability analysis. It is shown that the axisymmetric flow in relatively low cylinders tends to be oscillatory unstable, while in tall cylinders the instability sets in due to a steady bifurcation caused by the Rayleigh-Benard mechanism. The calculated neutral curves are non-monotonous and contain hysteresis loops. The strong dependence of the critical Grashof number and the azimuthal periodicity of the resulting three-dimensional flow indicate the importance of a comprehensive parametric stability analysis in different crystal growth configurations. In particular, it is shown that the first instability of the flow considered is always three-dimensional.
Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T
2017-08-01
DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.
Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao
2016-06-01
In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W
2011-09-01
In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.
Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section
NASA Astrophysics Data System (ADS)
Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli
2017-12-01
Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.
NASA Astrophysics Data System (ADS)
Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che
2018-03-01
This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng
2016-01-01
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.
Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng
2016-01-01
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.
Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes
NASA Astrophysics Data System (ADS)
Xie, Chong; Liu, Jia; Fu, Tian-Ming; Dai, Xiaochuan; Zhou, Wei; Lieber, Charles M.
2015-12-01
Direct electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron-device contact. Here, we demonstrate the realization of a three-dimensional macroporous nanoelectronic brain probe that combines ultra-flexibility and subcellular feature sizes to overcome these limitations. Built-in strains controlling the local geometry of the macroporous devices are designed to optimize the neuron/probe interface and to promote integration with the brain tissue while introducing minimal mechanical perturbation. The ultra-flexible probes were implanted frozen into rodent brains and used to record multiplexed local field potentials and single-unit action potentials from the somatosensory cortex. Significantly, histology analysis revealed filling-in of neural tissue through the macroporous network and attractive neuron-probe interactions, consistent with long-term biocompatibility of the device.
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.
Escribano, J; Sánchez, M T; García-Aznar, J M
2015-11-07
Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.
From Three-Dimensional Cell Culture to Organs-on-Chips
Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.
2014-01-01
Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These ‘organs-on-chips’ permit study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing. PMID:22033488
Shakir'yanova, Yu P; Leonov, S V; Pinchuk, P V; Sukhareva, M A
This article was designed to share the experience gained with the three-dimensional modeling for the purpose of situational expertise intended to reconstruct the occurrence circumstances and check up the alternative investigative leads concerning formation of potential injuries to a concrete person. Simulation was performed with the use of the dimensionally scaled model of the place of occurrence as well as the models of the human head and body totally consistent with the anthropometric characteristics of the victim. The results of this work made it possible to reject several potential opportunities for the formation of injuries to the victim and identify the most probable version.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1987-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1989-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Srirekha, A; Bashetty, Kusum
2013-01-01
Objectives: The present comparative analysis aimed at evaluating the mechanical behavior of various restorative materials in abfraction lesion in the presence and absence of occlusal restoration. Materials and Methods: A three-dimensional finite-element analysis was performed. Six experimental models of mandibular first premolar were generated and divided into two groups (groups A and B) of three each. All the groups had cervical abfraction lesion restored with materials and in addition group A had class I occlusal restoration. A load of 90 N, 200 N, and 400 N were applied at 45° loading angle on the buccal inclines of buccal cusp and Von Mises stresses was chosen for analysis. Results: In all the models, the values of stress recorded at the cervical margin of the restorations were at their maxima. Irrespective of the occlusal restoration, all the materials performed well at 90 N and 200 N. At 400 N, only low-shrink composite showed stresses lesser than its tensile strength indicating its success even at higher load. Conclusion: Irrespective of occlusal restoration, restorative materials with low modulus of elasticity are successful in abfraction lesions at moderate tensile stresses; whereas materials with higher modulus of elasticity and mechanical properties can support higher loads and resist wear. Significance: The model allows comparison of different restorative materials for restoration of abfraction lesions in the presence and absence of occlusal restoration. The model can be used to validate more sophisticated computational models as well as to conduct various optimization studies. PMID:23716970
Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque
NASA Astrophysics Data System (ADS)
Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.
Graphic kinematics, visual virtual work and elastographics
Konstantatou, Marina; Athanasopoulos, Georgios; Hannigan, Laura
2017-01-01
In this paper, recent progress in graphic statics is combined with Williot displacement diagrams to create a graphical description of both statics and kinematics for two- and three-dimensional pin-jointed trusses. We begin with reciprocal form and force diagrams. The force diagram is dissected into its component cells which are then translated relative to each other. This defines a displacement diagram which is topologically equivalent to the form diagram (the structure). The various contributions to the overall Virtual Work appear as parallelograms (for two-dimensional trusses) or parallelopipeds (for three-dimensional trusses) that separate the force and the displacement pieces. Structural mechanisms can be identified by translating the force cells such that their shared faces slide across each other without separating. Elastic solutions can be obtained by choosing parallelograms or parallelopipeds of the appropriate aspect ratio. Finally, a new type of ‘elastographic’ diagram—termed a deformed Maxwell–Williot diagram (two-dimensional) or a deformed Rankine–Williot diagram (three-dimensional)—is presented which combines the deflected structure with the forces carried by its members. PMID:28573030
NASA Astrophysics Data System (ADS)
Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz
2017-10-01
A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-01-01
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775
A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-03-11
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
NASA Astrophysics Data System (ADS)
Song, Won-Seok; Kim, Seung-Gyu; Kim, Young-Cheon; Kwon, Dongil
2015-03-01
In this paper we propose a novel method, spherical indentation, for evaluation of the plastic properties of combined structures. Three-dimensional (3D) printed products, for example gradient metal alloys consisting of different kinds of material, contain interfaces that can act as weak points and threaten the mechanical reliability of products. Combined structures containing an interface between Cu alloy and Ag were prepared for testing. Samples were heat-treated at 100°C and 200°C for 3 h to optimize processing conditions. The indentation tensile properties of the samples were estimated by analyzing multiple loading-unloading curves obtained by use of the representative stress and strain method. A continuous increase in both yield strength and tensile strength was observed for the Cu alloy and the Cu/Ag interface after heat treatment at up to 200°C, because of precipitation hardening. These experimental results show that mechanical characterization of combined structures by spherical indentation is highly useful on the nano and micro scales.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
NASA Astrophysics Data System (ADS)
Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko
2015-11-01
To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.
Ogihara, Takuo; Kano, Takashi; Kakinuma, Chihaya
2009-01-01
Currently, a new type of calcium channel blockers, which can inhibit not only L-type calcium channels abundantly expressed in vascular smooth muscles, but also N-type calcium channels that abound in the sympathetic nerve endings, have been developed. In this study, analysis on a like-for-like basis of the L- and N-type calcium channel-inhibitory activity of typical dihydropyridine-type calcium-channel blockers (DHPs) was performed. Moreover, to understand the differences of N-type calcium channel inhibition among DHPs, the binding of DHPs to the channel was investigated by means of hypothetical three-dimensional pharmacophore modeling using multiple calculated low-energy conformers of the DHPs. All of the tested compounds, i.e. cilnidipine (CAS 132203-70-4), efonidipine (CAS 111011-76-8), amlodipine (CAS 111470-99-6), benidipine (CAS 85387-35-5), azelnidipine (CAS 123524-52-7) and nifedipine (CAS 21829-25-4), potently inhibited the L-type calcium channel, whereas only cilnidipine inhibited the N-type calcium channel (IC50 value: 51.2 nM). A virtual three-dimensional structure of the N-type calcium channel was generated by using the structure of the peptide omega-conotoxin GVIA, a standard inhibitor of the channel, and cilnidipine was found to fit well into this pharmacophore model. Lipophilic potential maps of omega-conotoxin GVIA and cilnidipine supported this finding. Conformational overlay of cilnidipine and the other DHPs indicated that amlodipine and nifedipine were not compatible with the pharmacophore model because they did not contain an aromatic ring that was functionally equivalent to Tyr13 of omega-conotoxin GVIA. Azelnidipine, benidipine, and efonidipine, which have this type of aromatic ring, were not positively identified due to intrusions into the excluded volume. Estimation of virtual three-dimensional structures of proteins, such as ion channels, by using standard substrates and/or inhibitors may be a useful method to explore the mechanisms of pharmacological and toxicological effects of substrates and/or inhibitors, and to discover new drugs.
Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.
2014-01-01
Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733
Bai, Y X
2016-06-01
Three-dimensional(3D)digital technology has been widely used in the field of orthodontics in clinical examination, diagnosis, treatment and curative effect evaluation. 3D digital technology greatly improves the accuracy of diagnosis and treatment, and provides effective means for personalized orthodontic treatment. This review focuses on the application of 3D digital technology in the field of orthodontics.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang
2012-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program,…
Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernow, V. F., E-mail: vchernow@caltech.edu; Alaeian, H.; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
2015-09-07
Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained.more » We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.« less
Influence of the medium's dimensionality on defect-mediated turbulence.
St-Yves, Ghislain; Davidsen, Jörn
2015-03-01
Spatiotemporal chaos in oscillatory and excitable media is often characterized by the presence of phase singularities called defects. Understanding such defect-mediated turbulence and its dependence on the dimensionality of a given system is an important challenge in nonlinear dynamics. This is especially true in the context of ventricular fibrillation in the heart, where the importance of the thickness of the ventricular wall is contentious. Here, we study defect-mediated turbulence arising in two different regimes in a conceptual model of excitable media and investigate how the statistical character of the turbulence changes if the thickness of the medium is changed from (quasi-) two- dimensional to three dimensional. We find that the thickness of the medium does not have a significant influence in, far from onset, fully developed turbulence while there is a clear transition if the system is close to a spiral instability. We provide clear evidence that the observed transition and change in the mechanism that drives the turbulent behavior is purely a consequence of the dimensionality of the medium. Using filament tracking, we further show that the statistical properties in the three-dimensional medium are different from those in turbulent regimes arising from filament instabilities like the negative line tension instability. Simulations also show that the presence of this unique three-dimensional turbulent dynamics is not model specific.
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao
2018-04-01
The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.
Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N
2016-09-01
Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy
Withers, P. J.
2015-01-01
To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Eye Movements, Visual Search and Scene Memory, in an Immersive Virtual Environment
Sullivan, Brian; Snyder, Kat; Ballard, Dana; Hayhoe, Mary
2014-01-01
Visual memory has been demonstrated to play a role in both visual search and attentional prioritization in natural scenes. However, it has been studied predominantly in experimental paradigms using multiple two-dimensional images. Natural experience, however, entails prolonged immersion in a limited number of three-dimensional environments. The goal of the present experiment was to recreate circumstances comparable to natural visual experience in order to evaluate the role of scene memory in guiding eye movements in a natural environment. Subjects performed a continuous visual-search task within an immersive virtual-reality environment over three days. We found that, similar to two-dimensional contexts, viewers rapidly learn the location of objects in the environment over time, and use spatial memory to guide search. Incidental fixations did not provide obvious benefit to subsequent search, suggesting that semantic contextual cues may often be just as efficient, or that many incidentally fixated items are not held in memory in the absence of a specific task. On the third day of the experience in the environment, previous search items changed in color. These items were fixated upon with increased probability relative to control objects, suggesting that memory-guided prioritization (or Surprise) may be a robust mechanisms for attracting gaze to novel features of natural environments, in addition to task factors and simple spatial saliency. PMID:24759905
Ajami, Shabnam; Mina, Ahmad; Nabavizadeh, Seyed Amin
2016-01-01
Objectives: To evaluate the effect of moments and the combination of forces and moments on the mechanical properties of a bracket type miniscrew, resembling engagement of a rectangular wire by three-dimensional (3D) finite element study. Materials and Methods: By solid work software (Dassaunlt systems solid works, concord, Mass), a 3D miniscrew model of 6, 8, 10 mm lengths was designed and inserted in the osseous block, consisted of the cortical, and cancellous bones. The stress distributions, maximum stresses, and deflections of the miniscrew were evaluated for all parts using ANSYS (Work Bench, 2014). Results: As the magnitudes of the load increased from 100 to 200, 400 and 800 grf-mm, the peak of stresses in the 6 mm long miniscrew were increased from 7.7 to 61.5 Mpa. The maximum values of Von Mises in the cancellous bone were tremendously lower in comparison to the cortical bone by one hundredth. As the length of the miniscrew in contact with the bone was increased, the amounts and patterns of stress distribution in the cortical bone and the miniscrew did not change significantly. Conclusions: As the moment magnitude increased, the pick stresses increased linearly. The existence of cancellous bone was not significantly responsible for the stress distribution. The pattern of stress distribution did not change by the length of the miniscrew. PMID:27127753
Venkatesan, Jagadeesh Kumar; Moutos, Franklin T; Rey-Rico, Ana; Estes, Bradley T; Frisch, Janina; Schmitt, Gertrud; Madry, Henning; Guilak, Farshid; Cucchiarini, Magali
2018-05-02
Combining gene therapy approaches with tissue engineering procedures is an active area of translational research for the effective treatment of articular cartilage lesions, especially to target chondrogenic progenitor cells such as those derived from the bone marrow. Here, we evaluated the effect of genetically modifying concentrated human mesenchymal stem cells from bone marrow to induce chondrogenesis by recombinant adeno-associated viral (rAAV) vector gene transfer of the sex-determining region Y-type high-mobility group box 9 (SOX9) factor upon seeding in three-dimensional (3D) woven poly(ε-caprolactone) (PCL) scaffolds that provide mechanical properties mimicking those of native articular cartilage. Prolonged, effective SOX9 expression was reported in the constructs for at least 21 days, the longest time point evaluated, leading to enhanced metabolic and chondrogenic activities relative to the control conditions (reporter lacZ gene transfer or absence of vector treatment) but without affecting the proliferative activities in the samples. The application of the rAAV SOX9 vector also prevented undesirable hypertrophic and terminal differentiation in the seeded concentrates. As bone marrow is readily accessible during surgery, such findings reveal the therapeutic potential of providing rAAV-modified marrow concentrates within 3D woven PCL scaffolds for repair of focal cartilage lesions.
In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers.
Arani, Arvin; Glaser, Kevin L; Arunachalam, Shivaram P; Rossman, Phillip J; Lake, David S; Trzasko, Joshua D; Manduca, Armando; McGee, Kiaran P; Ehman, Richard L; Araoz, Philip A
2017-01-01
Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The craniomandibular mechanics of being human
Wroe, Stephen; Ferrara, Toni L.; McHenry, Colin R.; Curnoe, Darren; Chamoli, Uphar
2010-01-01
Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible. PMID:20554545
NASA Astrophysics Data System (ADS)
Dahlin, J. T.; Drake, J. F.; Swisdak, M.
2017-09-01
Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.
Roy, Jean-Sébastien; Moffet, Hélène; Hébert, Luc J; St-Vincent, Guy; McFadyen, Bradford J
2007-06-21
Abnormal scapular displacements during arm elevation have been observed in people with shoulder impingement syndrome. These abnormal scapular displacements were evaluated using different methods and instruments allowing a 3-dimensional representation of the scapular kinematics. The validity and the intrasession reliability have been shown for the majority of these methods for healthy people. However, the intersession reliability on healthy people and people with impaired shoulders is not well documented. This measurement property needs to be assessed before using such methods in longitudinal comparative studies. The objective of this study is to evaluate the intra and intersession reliability of 3-dimensional scapular attitudes measured at different arm positions in healthy people and to explore the same measurement properties in people with shoulder impingement syndrome using the Optotrak Probing System. Three-dimensional scapular attitudes were measured twice (test and retest interspaced by one week) on fifteen healthy subjects (mean age 37.3 years) and eight subjects with subacromial shoulder impingement syndrome (mean age 46.1 years) in three arm positions (arm at rest, 70 degrees of humerothoracic flexion and 90 degrees of humerothoracic abduction) using the Optotrak Probing System. Two different methods of calculation of 3-dimensional scapular attitudes were used: relative to the position of the scapula at rest and relative to the trunk. Intraclass correlation coefficient (ICC) and standard error of measure (SEM) were used to estimate intra and intersession reliability. For both groups, the reliability of the three-dimensional scapular attitudes for elevation positions was very good during the same session (ICCs from 0.84 to 0.99; SEM from 0.6 degrees to 1.9 degrees ) and good to very good between sessions (ICCs from 0.62 to 0.97; SEM from 1.2 degrees to 4.2 degrees ) when using the method of calculation relative to the trunk. Higher levels of intersession reliability were found for the method of calculation relative to the trunk in anterior-posterior tilting at 70 degrees of flexion compared to the method of calculation relative to the scapula at rest. The estimation of three-dimensional scapular attitudes using the method of calculation relative to the trunk is reproducible in the three arm positions evaluated and can be used to document the scapular behavior.
Roy, Jean-Sébastien; Moffet, Hélène; Hébert, Luc J; St-Vincent, Guy; McFadyen, Bradford J
2007-01-01
Background Abnormal scapular displacements during arm elevation have been observed in people with shoulder impingement syndrome. These abnormal scapular displacements were evaluated using different methods and instruments allowing a 3-dimensional representation of the scapular kinematics. The validity and the intrasession reliability have been shown for the majority of these methods for healthy people. However, the intersession reliability on healthy people and people with impaired shoulders is not well documented. This measurement property needs to be assessed before using such methods in longitudinal comparative studies. The objective of this study is to evaluate the intra and intersession reliability of 3-dimensional scapular attitudes measured at different arm positions in healthy people and to explore the same measurement properties in people with shoulder impingement syndrome using the Optotrak Probing System. Methods Three-dimensional scapular attitudes were measured twice (test and retest interspaced by one week) on fifteen healthy subjects (mean age 37.3 years) and eight subjects with subacromial shoulder impingement syndrome (mean age 46.1 years) in three arm positions (arm at rest, 70° of humerothoracic flexion and 90° of humerothoracic abduction) using the Optotrak Probing System. Two different methods of calculation of 3-dimensional scapular attitudes were used: relative to the position of the scapula at rest and relative to the trunk. Intraclass correlation coefficient (ICC) and standard error of measure (SEM) were used to estimate intra and intersession reliability. Results For both groups, the reliability of the three-dimensional scapular attitudes for elevation positions was very good during the same session (ICCs from 0.84 to 0.99; SEM from 0.6° to 1.9°) and good to very good between sessions (ICCs from 0.62 to 0.97; SEM from 1.2° to 4.2°) when using the method of calculation relative to the trunk. Higher levels of intersession reliability were found for the method of calculation relative to the trunk in anterior-posterior tilting at 70° of flexion compared to the method of calculation relative to the scapula at rest. Conclusion The estimation of three-dimensional scapular attitudes using the method of calculation relative to the trunk is reproducible in the three arm positions evaluated and can be used to document the scapular behavior. PMID:17584933
Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review
NASA Astrophysics Data System (ADS)
Yang, Xuetong; Xia, Ling; Song, Shaoxian
2017-07-01
Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.
Application and Analysis on Graphene Materials
NASA Astrophysics Data System (ADS)
Li, Guogang; Qi, Jiaojiao
2018-01-01
Graphene is made up of carbon six-member ring cycle of two dimensional honeycomb lattice structure, it can warp as zero dimension of fullerenes, roll into a one-dimensional of carbon nanotubes or stack into a three dimensional graphite. Because of this kind of structure makes it not only have excellent electrical and mechanical properties, but also can be used as reinforced metal matrix composites, which can be used in catalyst carrier, energy storage and environmental protection. It has become a hot topic in recent years. Based on the existing research both at home and abroad, this paper focuses on the importance of the choice of graphene dispersion method to improve the mechanical properties of graphene materials, and summarizes the existing problems of graphene reinforced metal matrix composites.
Durand, Marc; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Talebi, Shirin Ataei; Graner, François
2011-10-14
We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.
NASA Astrophysics Data System (ADS)
Fei, Xiang; Shao, Zhengzhong; Chen, Xin
2013-08-01
Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process.Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process. Electronic supplementary information (ESI) available: SEM image of the synthesized CuO without silk fibroin addition, and TEM images of the synthesized CuO with different silk fibroin concentrations. See DOI: 10.1039/c3nr01872e
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
NASA Astrophysics Data System (ADS)
Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao
2018-01-01
Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.
Density functional study of molecular interactions in secondary structures of proteins.
Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki
2016-01-01
Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.
Concentration data and dimensionality in groundwater models: evaluation using inverse modelling
Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.
1998-01-01
A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.
Miura, Masahiro; Hong, Young-Joo; Yasuno, Yoshiaki; Muramatsu, Daisuke; Iwasaki, Takuya; Goto, Hiroshi
2015-03-01
To evaluate the 3-dimensional architecture of neovascularization in proliferative diabetic retinopathy using Doppler optical coherence tomography (OCT). Prospective, nonrandomized clinical trial. Seventeen eyes of 14 patients with proliferative diabetic retinopathy were prospectively studied. Prototype Doppler OCT was used to evaluate the 3-dimensional vascular architecture at vitreoretinal adhesions. Proliferative membranes were detected in all eyes with proliferative diabetic retinopathy by standard OCT images. Doppler OCT images detected blood flow by neovascularization of the disc in 12 eyes and neovascularization elsewhere in 11 eyes. Doppler OCT images showed the 3-dimensional extent of new vessels at various stages of neovascularization, and the extent of new vessels could be clearly confirmed at vitreoretinal adhesions. Doppler OCT is useful for the detection and evaluation of the 3-dimensional vascular structure of neovascularization, and can assist in the noninvasive assessment of proliferative diabetic retinopathy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
1981-09-01
organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square
NASA Astrophysics Data System (ADS)
Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.
2018-03-01
Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbelaez, D.; Prestemon, S. O.; Ferracin, P.
2009-09-13
Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb{sub 3}Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic,more » and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.« less
Self-assembly of three-dimensional open structures using patchy colloidal particles.
Rocklin, D Zeb; Mao, Xiaoming
2014-10-14
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
Hendrikson, Wim. J.; van Blitterswijk, Clemens. A.; Rouwkema, Jeroen; Moroni, Lorenzo
2017-01-01
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration. PMID:28567371
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Salmingo, Remel A; Tadano, Shigeru; Fujisaki, Kazuhiro; Abe, Yuichiro; Ito, Manabu
2012-05-01
Scoliosis is defined as a spinal pathology characterized as a three-dimensional deformity of the spine combined with vertebral rotation. Treatment for severe scoliosis is achieved when the scoliotic spine is surgically corrected and fixed using implanted rods and screws. Several studies performed biomechanical modeling and corrective forces measurements of scoliosis correction. These studies were able to predict the clinical outcome and measured the corrective forces acting on screws, however, they were not able to measure the intraoperative three-dimensional geometry of the spinal rod. In effect, the results of biomechanical modeling might not be so realistic and the corrective forces during the surgical correction procedure were intra-operatively difficult to measure. Projective geometry has been shown to be successful in the reconstruction of a three-dimensional structure using a series of images obtained from different views. In this study, we propose a new method to measure the three-dimensional geometry of an implant rod using two cameras. The reconstruction method requires only a few parameters, the included angle θ between the two cameras, the actual length of the rod in mm, and the location of points for curve fitting. The implant rod utilized in spine surgery was used to evaluate the accuracy of the current method. The three-dimensional geometry of the rod was measured from the image obtained by a scanner and compared to the proposed method using two cameras. The mean error in the reconstruction measurements ranged from 0.32 to 0.45 mm. The method presented here demonstrated the possibility of intra-operatively measuring the three-dimensional geometry of spinal rod. The proposed method could be used in surgical procedures to better understand the biomechanics of scoliosis correction through real-time measurement of three-dimensional implant rod geometry in vivo.
Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun
2016-03-01
Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27-0.90) and 0.41 (95% confidential interval, 0.21-0.78), respectively. For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.
Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.
1988-01-01
The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan
2018-06-14
Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.
Liu, Qiong; Liu, Jun; Wang, Pengqian; Zhang, Yingying; Li, Bing; Yu, Yanan; Dang, Haixia; Li, Haixia; Zhang, Xiaoxu; Wang, Zhong
2017-07-01
This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis. Copyright © 2017. Published by Elsevier B.V.
Antibacterial peptides from plants: what they are and how they probably work.
Barbosa Pelegrini, Patrícia; Del Sarto, Rafael Perseghini; Silva, Osmar Nascimento; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima
2011-01-01
Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.
[Advances on biomechanics and kinematics of sprain of ankle joint].
Zhao, Yong; Wang, Gang
2015-04-01
Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.
The effective compliance of spatially evolving planar wing-cracks
NASA Astrophysics Data System (ADS)
Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.
2018-02-01
We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
González-Domínguez, Raúl; Santos, Hugo Miguel; Bebianno, Maria João; García-Barrera, Tamara; Gómez-Ariza, José Luis; Capelo, José Luis
2016-12-15
Estuaries are very important ecosystems with great ecological and economic value, but usually highly impacted by anthropogenic pressure. Thus, the assessment of pollution levels in these habitats is critical in order to evaluate their environmental quality. In this work, we combined complementary metallomic and proteomic approaches with the aim to monitor the effects of environmental pollution on Scrobicularia plana clams captured in three estuarine systems from the south coast of Portugal; Arade estuary, Ria Formosa and Guadiana estuary. Multi-elemental profiling of digestive glands was carried out to evaluate the differential pollution levels in the three study areas. Then, proteomic analysis by means of two-dimensional gel electrophoresis and mass spectrometry revealed twenty-one differential proteins, which could be associated with multiple toxicological mechanisms induced in environmentally stressed organisms. Accordingly, it could be concluded that the combination of different omic approaches presents a great potential in environmental research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doğan, Mehmet-Sinan; Callea, Michele; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayşe; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki
2015-01-01
Background This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clincal examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. Material and Methods In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. Results The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Conclusions Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved. Key words: Ectodermal dysplasia, three-dimensional dental tomography. PMID:25662550
1975-10-08
m AD-A020 796 A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY Thomas E. Bearden Army...TITLE fand Subtlll») A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY S. TYPE OF REPORT... Antigravity 1 Three-dimensional space Photon Orthogonal frames i I
2005-11-01
101 Task 6 - Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM numerical simulator...hydrogen sparging in a bench scale three-dimensional sand pack model. (6) Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM ...Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM numerical simulator. Simulation model for foam in porous media and
NASA Technical Reports Server (NTRS)
Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.
1989-01-01
The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.
Dimensional stability in composite cone beam computed tomography
Kopp, S; Ottl, P
2010-01-01
An automated increase in the field of view (FOV) for multipurpose cone beam CT (CBCT) by “stitching” (joining) up to three component volumes to yield a larger composite volume must still ensure dimensional stability, especially if the image is to form the basis for a surgical splint. Dimensional stability, image discrepancies and the influence of movement artefacts between exposures were evaluated. The first consumer installation of the Kodak 9000 three-dimensional (3D) extraoral imaging system with stitching software was used for the evaluation of a human mandible with three endodontic instruments as markers. The distances between several reproducible points were measured directly and the results compared with the values measured on screen. Displacements of the mandible along all axes between exposures as well as angular displacements were conducted to test the capability of the system. The standard deviations (SD) of the results for the vertical distances varied between 0.212 mm and 0.409 mm (approximately 1–2 voxels; range, 0.6–1.3 mm) and may be considered the systematic error. The SD of the results for the horizontal and diagonal distances varied between 0.195 mm and 0.571 mm (approximately 1–3 voxels; range, 0.6–1.7 mm) if the group with overall horizontal angulations of 10° and a central rotation of 20° was omitted. In conclusion, the evaluated stitching software is a useful tool to expand the options of combined CBCT with an initial small FOV by allowing a merger of up to three component volumes to yield a larger FOV of about 80 × 80 × 37 mm. The dimensional stability was acceptable when seen in relation to the induced disturbance. Further evaluation of this composite CBCT/digital imaging and communications in medicine system for subsequent splint fabrication may yield promising results. PMID:21062945
Pulmonary tumor measurements from x-ray computed tomography in one, two, and three dimensions.
Villemaire, Lauren; Owrangi, Amir M; Etemad-Rezai, Roya; Wilson, Laura; O'Riordan, Elaine; Keller, Harry; Driscoll, Brandon; Bauman, Glenn; Fenster, Aaron; Parraga, Grace
2011-11-01
We evaluated the accuracy and reproducibility of three-dimensional (3D) measurements of lung phantoms and patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D) measurements. CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each. Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of variation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor response was descriptively compared. For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measurements were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interobserver reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response classifications based on 3D measurements and those generated using 1D and 2D measurements. Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements provide higher sensitivity to tumor response. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W
2011-10-15
Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load magnitudes experienced by opossums are lower than those of most mammals. Thus, the evolutionary transition from crouched to upright posture in mammalian ancestors may have been accompanied by an increase in limb bone load magnitudes.
Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico
2017-12-08
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Arendasy, Martin E.; Sommer, Markus
2010-01-01
In complex three-dimensional mental rotation tasks males have been reported to score up to one standard deviation higher than females. However, this effect size estimate could be compromised by the presence of gender bias at the item level, which calls the validity of purely quantitative performance comparisons into question. We hypothesized that…
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.
2010-04-01
Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.
Gjorevski, Nikolce; Nelson, Celeste M.
2012-01-01
Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes. PMID:22828342
Li, Mei; Yang, Xuan; Wang, Weidan; Zhang, Yu; Wan, Peng; Yang, Ke; Han, Yong
2017-04-01
Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (MgSr) devices for grafting with their clinical demands. The microstructure and performance of MgSr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our MgSr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our MgSr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional MgSr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamb, Richard L.
2016-02-01
Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.
Active noise control: a review of the field.
Gordon, R T; Vining, W D
1992-11-01
Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.
Electron Surfing Acceleration in High Mach Number Shocks
NASA Astrophysics Data System (ADS)
Hoshino, M.; Amano, T.; Matsumoto, Y.
2016-12-01
Many energetic events associated with shock waves have been argued in this context of the diffusive shock acceleration (DSA), and the origin of high-energy particles observed in astrophysical shocks are believed to be attributed to DSA. However, electron nonthermal acceleration still remains an unresolved issue of considerable interest. While cosmic rays of supernova remnant shocks with power-law spectra are believed to be produced by DSA, energetic electrons with a power-law energy spectrum are rarely ever observed at interplanetary shocks and at planetary bow shocks (e.g., Lario et al. 2003), and the diffusive-type acceleration seems to be necessarily malfunctioning in the heliosphere. The malfunctioning reason is thought to be a lack of pre-acceleration mechanism of supra-thermal electrons.In this presentation, we propose that the supra-thermal electrons can be generated by the mechanism of shock surfing acceleration (SSA) in a high Mach number magnetosonic shock. In the surfing mechanism, a series of large-amplitude electrostatic waves are excited by Buneman instability in the foot region under the interaction between the reflected ions and the incoming electrons, and it is argued that the electrons trapped in the electrostatic waves can be accelerated up to a relativistic energy (Hoshino and Shimada, 2002). Since the electron SSA has been studied based on one- or two-dimensional PIC simulations so far, SSA in three-dimensional system is questionable and remains an open question. We discuss based on our theoretical model and three-dimensional PIC simulation with a high-performance computing that the efficiency of SSA in three-dimensional system remains amazingly strong and plays an important role on the electron pre-acceleration/injection problem.
Shih, Wenting; Yamada, Soichiro
2011-12-22
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Three-dimensional echocardiographic assessment of the repaired mitral valve.
Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun
2014-02-01
This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.
1986-12-01
A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.
Analysis of the Radar Reflectivity of Aircraft Vortex Wakes
NASA Technical Reports Server (NTRS)
Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)
2000-01-01
Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.
Naghieh, Saman; Karamooz-Ravari, Mohammad Reza; Sarker, M D; Karki, Eva; Chen, Xiongbiao
2018-04-01
Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl 2 ) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Evaluation of Binding Effects in Wood Flour Board Containing Ligno-Cellulose Nanofibers
Kojima, Yoichi; Isa, Akiko; Kobori, Hikaru; Suzuki, Shigehiko; Ito, Hirokazu; Makise, Rie; Okamoto, Masaki
2014-01-01
Wood-based materials are used extensively in residual construction worldwide. Most of the adhesives used in wood-based materials are derived from fossil resources, and some are not environmentally friendly. This study explores nanofiber technology as an alternative to such adhesives. Previous studies have shown that the three-dimensional binding effects of cellulose nanofiber (CNF), when mixed with wood flour, can significantly improve the physical and mechanical properties of wood flour board. In this study, ligno-cellulose nanofibers (LCNF) were fabricated by wet disk milling of wood flour. Composite boards of wood flour and LCNF were produced to investigate the binding effect(s) of LCNF. The fabrication of LCNF by disk milling was simple and effective, and its incorporation into wood flour board significantly enhanced the physical and mechanical properties of the board. PMID:28788217
Finite state modeling of aeroelastic systems
NASA Technical Reports Server (NTRS)
Vepa, R.
1977-01-01
A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.
Dynamo transition in low-dimensional models.
Verma, Mahendra K; Lessinnes, Thomas; Carati, Daniele; Sarris, Ioannis; Kumar, Krishna; Singh, Meenakshi
2008-09-01
Two low-dimensional magnetohydrodynamic models containing three velocity and three magnetic modes are described. One of them (nonhelical model) has zero kinetic and current helicity, while the other model (helical) has nonzero kinetic and current helicity. The velocity modes are forced in both these models. These low-dimensional models exhibit a dynamo transition at a critical forcing amplitude that depends on the Prandtl number. In the nonhelical model, dynamo exists only for magnetic Prandtl number beyond 1, while the helical model exhibits dynamo for all magnetic Prandtl number. Although the model is far from reproducing all the possible features of dynamo mechanisms, its simplicity allows a very detailed study and the observed dynamo transition is shown to bear similarities with recent numerical and experimental results.
Improved numerical methods for turbulent viscous recirculating flows
NASA Technical Reports Server (NTRS)
Vandoormaal, J. P.; Turan, A.; Raithby, G. D.
1986-01-01
The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Matthew; Yin, Shengjun; Stevens, Gary
2012-01-01
In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperaturemore » (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.« less
NASA Astrophysics Data System (ADS)
Boal, David
2012-01-01
Preface; List of symbols; 1. Introduction to the cell; 2. Soft materials and fluids; Part I. Rods and Ropes: 3. Polymers; 4. Complex filaments; 5. Two-dimensional networks; 6. Three-dimensional networks; Part II. Membranes: 7. Biomembranes; 8. Membrane undulations; 9. Intermembrane and electrostatic forces; Part III. The Whole Cell: 10. Structure of the simplest cells; 11. Dynamic filaments; 12. Growth and division; 13. Signals and switches; Appendixes; Glossary; References; Index.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Malik, M.
2000-01-01
A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.
Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D; Wickline, Samuel A; Chen, Junjie
2013-01-15
Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.
Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D.; Wickline, Samuel A.
2013-01-01
Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (αh). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial αh decreased by ∼30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function. PMID:23161881
A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis.
Marini, Cecilia; Cistaro, Angelina; Campi, Cristina; Calvo, Andrea; Caponnetto, Claudia; Nobili, Flavio Mariano; Fania, Piercarlo; Beltrametti, Mauro C; Moglia, Cristina; Novi, Giovanni; Buschiazzo, Ambra; Perasso, Annalisa; Canosa, Antonio; Scialò, Carlo; Pomposelli, Elena; Massone, Anna Maria; Bagnara, Maria Caludia; Cammarosano, Stefania; Bruzzi, Paolo; Morbelli, Silvia; Sambuceti, Gianmario; Mancardi, Gianluigi; Piana, Michele; Chiò, Adriano
2016-10-01
In amyotrophic lateral sclerosis, functional alterations within the brain have been intensively assessed, while progression of lower motor neuron damage has scarcely been defined. The aim of the present study was to develop a computational method to systematically evaluate spinal cord metabolism as a tool to monitor disease mechanisms. A new computational three-dimensional method to extract the spinal cord from (18)F-FDG PET/CT images was evaluated in 30 patients with spinal onset amyotrophic lateral sclerosis and 30 controls. The algorithm identified the skeleton on the CT images by using an extension of the Hough transform and then extracted the spinal canal and the spinal cord. In these regions, (18)F-FDG standardized uptake values were measured to estimate the metabolic activity of the spinal canal and cord. Measurements were performed in the cervical and dorsal spine and normalized to the corresponding value in the liver. Uptake of (18)F-FDG in the spinal cord was significantly higher in patients than in controls (p < 0.05). By contrast, no significant differences were observed in spinal cord and spinal canal volumes between the two groups. (18)F-FDG uptake was completely independent of age, gender, degree of functional impairment, disease duration and riluzole treatment. Kaplan-Meier analysis showed a higher mortality rate in patients with standardized uptake values above the fifth decile at the 3-year follow-up evaluation (log-rank test, p < 0.01). The independence of this value was confirmed by multivariate Cox analysis. Our computational three-dimensional method enabled the evaluation of spinal cord metabolism and volume and might represent a potential new window onto the pathophysiology of amyotrophic lateral sclerosis.
Surányi, A; Kozinszky, Z; Molnár, A; Nyári, T; Bitó, T; Pál, A
2013-10-01
The aim of our study was to evaluate placental three-dimensional power Doppler indices in diabetic pregnancies in the second and third trimesters and to compare them with those of the normal controls. Placental vascularization of pregnant women was determined by three-dimensional power Doppler ultrasound technique. The calculated indices included vascularization index (VI), flow index (FI), and vascularization flow index (VFI). Uncomplicated pregnancies (n = 113) were compared with pregnancies complicated by gestational diabetes mellitus (n = 56) and diabetes mellitus (n = 43). The three-dimensional power Doppler indices were not significantly different between the two diabetic subgroups. All the indices in diabetic patients were significantly reduced compared with those in non-diabetic individuals (p < 0.001). Placental three-dimensional power Doppler indices are slightly diminished throughout diabetic pregnancy [regression coefficients: -0.23 (FI), -0.06 (VI), and -0.04 (VFI)] and normal pregnancy [regression coefficients: -0.13 (FI), -0.20 (VI), and -0.11 (VFI)]. The uteroplacental circulation (umbilical and uterine artery) was not correlated significantly to the three-dimensional power Doppler indices. If all placental indices are low during late pregnancy, then the odds of the diabetes are significantly high (adjusted odds ratio: 1.10). A decreased placental vascularization could be an adjunct sonographic marker in the diagnosis of diabetic pregnancy in mid-gestation and late gestation. © 2013 John Wiley & Sons, Ltd.
Application of a laser scanner to three dimensional visual sensing tasks
NASA Technical Reports Server (NTRS)
Ryan, Arthur M.
1992-01-01
The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.
Development and verification of local/global analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.
1989-01-01
Analysis and design methods for laminated composite materials have been the subject of considerable research over the past 20 years, and are currently well developed. In performing the detailed three-dimensional analyses which are often required in proximity to discontinuities, however, analysts often encounter difficulties due to large models. Even with the current availability of powerful computers, models which are too large to run, either from a resource or time standpoint, are often required. There are several approaches which can permit such analyses, including substructuring, use of superelements or transition elements, and the global/local approach. This effort is based on the so-called zoom technique to global/local analysis, where a global analysis is run, with the results of that analysis applied to a smaller region as boundary conditions, in as many iterations as is required to attain an analysis of the desired region. Before beginning the global/local analyses, it was necessary to evaluate the accuracy of the three-dimensional elements currently implemented in the Computational Structural Mechanics (CSM) Testbed. It was also desired to install, using the Experimental Element Capability, a number of displacement formulation elements which have well known behavior when used for analysis of laminated composites.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Bin; Kong, Ling-Bin; Ma, Xue-Jing; Luo, Yong-Chun; Kang, Long
2014-12-01
A novel self-supported electrode of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on the conductive substrate of nickel foam have been designed and synthesized by the combination of hydrothermal synthesis and subsequent annealing treatment. Based on the morphology, a possible mechanism is proposed. The unique nanostructure has been served as an "ion reservoir" to infiltrate between the electrode surface area and the electrolyte, which can ensure the ion/electron transfer. And the powerful distribution of electric field on nanorods makes the surface in response the electrode reaction as completely as possible. The electrode manifests satisfying capacitance of 847.2 F g-1, outstanding rate capability and excellent cycling stability. Also, an asymmetric supercapacitor has been assembled, where Co3O4/Co3(VO4)2 and activated carbon acted as the positive and negative electrodes respectively, and the maximum specific capacitance of 105 F g-1 and the specific energy of 38 Wh kg-1 are demonstrated at a cell voltage between 0 and 1.6 V, exhibiting a high energy density and stable power characteristic.
Pelvic form and locomotor adaptation in strepsirrhine primates.
Lewton, Kristi L
2015-01-01
The pelvic girdle is a complex structure with a critical role in locomotion, but efforts to model the mechanical effects of locomotion on its shape remain difficult. Traditional approaches to understanding form and function include univariate adaptive hypothesis-testing derived from mechanical models. Geometric morphometric (GM) methods can yield novel insight into overall three-dimensional shape similarities and differences across groups, although the utility of GM in assessing functional differences has been questioned. This study evaluates the contributions of both univariate and GM approaches to unraveling the trait-function associations between pelvic form and locomotion. Three-dimensional landmarks were collected on a phylogenetically-broad sample of 180 pelves from nine primate taxa. Euclidean interlandmark distances were calculated to facilitate testing of biomechanical hypotheses, and a principal components (PC) analysis was performed on Procrustes coordinates to examine overall shape differences. Both linear dimensions and PC scores were subjected to phylogenetic ANOVA. Many of the null hypotheses relating linear dimensions to locomotor loading were not rejected. Although both analytical approaches suggest that ilium width and robusticity differ among locomotor groups, the GM analysis also suggests that ischiopubic shape differentiates groups. Although GM provides additional quantitative results beyond the univariate analyses, this study highlights the need for new GM methods to more specifically address functional shape differences among species. Until these methods are developed, it would be prudent to accompany tests of directional biomechanical hypotheses with current GM methods for a more nuanced understanding of shape and function. © 2014 Wiley Periodicals, Inc.
CAMD studies of coal structure and coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulon, J.L.; Carlson, G.A.
The macromolecular structure of coal is essential to understand the mechanisms occurring during coal liquefaction. Many attempts to model coal structure can be found in the literature. More specifically for high volatile bituminous coal, the subject of interest the most commonly quoted models are the models of Given, Wiser, Solomon, and Shinn. In past work, the authors`s have used computer-aided molecular design (CAMD) to develop three-dimensional representations for the above coal models. The three-dimensional structures were energy minimized using molecular mechanics and molecular dynamics. True density and micopore volume were evaluated for each model. With the exception of Given`s model,more » the computed density values were found to be in agreement with the corresponding experimental results. The above coal models were constructed by a trial and error technique consisting of a manual fitting of the-analytical data. It is obvious that for each model the amount of data is small compared to the actual complexity of coal, and for all of the models more than one structure can be built. Hence, the process by which one structure is chosen instead of another is not clear. In fact, all the authors agree that the structure they derived was only intended to represent an {open_quotes}average{close_quotes} coal model rather than a unique correct structure. The purpose of this program is further develop CAMD techniques to increase the understanding of coal structure and its relationship to coal liquefaction.« less
Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang
2006-01-01
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D
Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors
Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan
2015-01-01
Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385
Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.
Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan
2015-01-01
Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.
Vibration Analysis of a Tire in Ground Contact under Varied Conditions
NASA Astrophysics Data System (ADS)
Karakus, Murat; Cavus, Aydin; Colakoglu, Mehmet
2017-03-01
The effect of three different factors, which are inflation pressure, vertical load and coefficient of friction on the natural frequencies of a tire (175/70 R13) has been studied. A three dimensional tire model is constructed, using four different material properties and parts in the tire. Mechanical properties of the composite parts are evaluated. After investigating the free vibration, contact analysis is carried out. A concrete block and the tire are modelled together, using three different coefficients of friction. Experiments are run under certain conditions to check the accuracy of the numerical model. The natural frequencies are measured to describe free vibration and vibration of the tire contacted by ground, using a damping monitoring method. It is seen, that experimental and numerical results are in good agreement. On the other hand, investigating the impact of three different factors together is quite difficult on the natural frequencies. When some of these factors are assumed to be constant and the variables are taken one by one, it is easier to assess the effects.
Mixed-mode fracture mechanics parameters of elliptical interface cracks in anisotropic bimaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Y.; Qu, J.
1999-07-01
Two-dimensional interface cracks in anisotropic bimaterials have been studied extensively in the literature. However, solutions to three-dimensional interface cracks in anisotropic bimaterials are not available, except for circular (penny-shaped) cracks. In this paper, an elliptical crack on the interface between two anisotropic elastic half-spaces is considered. A formal solution is obtained by using the Stroh method in two dimensional elasticity in conjunction with the Fourier transform method. To illustrate the solution procedure, an elliptical delamination in a cross-ply composite is solved. Numerical results of the stress intensity factors and energy release rate along the crack front are obtained terms ofmore » the interfacial matrix M. It is found that the fields near the crack front are often in mixed mode, due to material anisotropy and the three dimensional nature of the crack front.« less
Chen, Jinxiang; Xie, Juan; Wu, Zhishen; Elbashiry, Elsafi Mohamed Adam; Lu, Yun
2015-10-01
This paper discusses the progress made in China in terms of the structural colors, microstructure and mechanical properties of the beetle forewing. 1) The forewing microstructures can be classified into six phases, the first three of which are characterized by sandwich, multilayer and fiber layer structures, respectively. The fracture behaviors resulting from these three phases suggest that different scale microstructures or coupled adjacent scale microstructures can determine the macroscopic mechanical behavior of the forewing. 2) The forewing colors are derived from three features: regulation of the structural parameters of the internal optical structures, i.e., a sculpted multilayer composite two-dimensional nanopillar structure grating system; scattering on the three-dimensional surface of the bowl-shaped structure; and reversible color changes due to changes in the physical microstructure of fluffs. Their formation mechanisms were clarified, and fibers with ecological biomimetic structural colors have been developed. 3) Beetles exhibit a lightweight sectional frame structure with a trabecular core structure. Both of the joints on the left and right are concave-convex butt-joint structures with burrs, which provide an efficient docking mechanism with high intensity. The forewing of dichotoma exhibits a non-equiangular layered structure, which results in anisotropy in its tensile strength. Finally, the authors propose potential new research directions for the next 20 years. Copyright © 2015 Elsevier B.V. All rights reserved.
A three dimensional finite element formulation for thermoviscoelastic orthotropic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocher, M.A.
1997-12-31
A numerical algorithm for the efficient solution of the uncoupled quasistatic initial/boundary value problem involving orthotropic linear viscoelastic media undergoing thermal and/or mechanical deformation is briefly outlined.