Real-time marker-free motion capture system using blob feature analysis
NASA Astrophysics Data System (ADS)
Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho
2005-02-01
This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.
Watanabe, Toshiki; Omata, Sadao; Odamura, Motoki; Okada, Masahumi; Nakamura, Yoshihiko; Yokoyama, Hitoshi
2006-11-01
This study aimed to evaluate our newly developed 3-dimensional digital motion-capture and reconstruction system in an animal experiment setting and to characterize quantitatively the three regional cardiac surface motions, in the left anterior descending artery, right coronary artery, and left circumflex artery, before and after stabilization using a stabilizer. Six pigs underwent a full sternotomy. Three tiny metallic markers (diameter 2 mm) coated with a reflective material were attached on three regional cardiac surfaces (left anterior descending, right coronary, and left circumflex coronary artery regions). These markers were captured by two high-speed digital video cameras (955 frames per second) as 2-dimensional coordinates and reconstructed to 3-dimensional data points (about 480 xyz-position data per second) by a newly developed computer program. The remaining motion after stabilization ranged from 0.4 to 1.01 mm at the left anterior descending, 0.91 to 1.52 mm at the right coronary artery, and 0.53 to 1.14 mm at the left circumflex regions. Significant differences before and after stabilization were evaluated in maximum moving velocity (left anterior descending 456.7 +/- 178.7 vs 306.5 +/- 207.4 mm/s; right coronary artery 574.9 +/- 161.7 vs 446.9 +/- 170.7 mm/s; left circumflex 578.7 +/- 226.7 vs 398.9 +/- 192.6 mm/s; P < .0001) and maximum acceleration (left anterior descending 238.8 +/- 137.4 vs 169.4 +/- 132.7 m/s2; right coronary artery 315.0 +/- 123.9 vs 242.9 +/- 120.6 m/s2; left circumflex 307.9 +/- 151.0 vs 217.2 +/- 132.3 m/s2; P < .0001). This system is useful for a precise quantification of the heart surface movement. This helps us better understand the complexity of the heart, its motion, and the need for developing a better stabilizer for beating heart surgery.
A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2018-04-01
We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.
Three-dimensional finite element modelling of muscle forces during mastication.
Röhrle, Oliver; Pullan, Andrew J
2007-01-01
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles
NASA Astrophysics Data System (ADS)
Zhang, Jun; Simeonov, Anthony; Yip, Michael C.
2018-03-01
Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Jinguo
2018-07-01
Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.
Motion Analysis System for Instruction of Nihon Buyo using Motion Capture
NASA Astrophysics Data System (ADS)
Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko
The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.
Computational simulation of extravehicular activity dynamics during a satellite capture attempt.
Schaffner, G; Newman, D J; Robinson, S K
2000-01-01
A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.
NASA Technical Reports Server (NTRS)
Lee, Mun Wai
2015-01-01
Crew exercise is important during long-duration space flight not only for maintaining health and fitness but also for preventing adverse health problems, such as losses in muscle strength and bone density. Monitoring crew exercise via motion capture and kinematic analysis aids understanding of the effects of microgravity on exercise and helps ensure that exercise prescriptions are effective. Intelligent Automation, Inc., has developed ESPRIT to monitor exercise activities, detect body markers, extract image features, and recover three-dimensional (3D) kinematic body poses. The system relies on prior knowledge and modeling of the human body and on advanced statistical inference techniques to achieve robust and accurate motion capture. In Phase I, the company demonstrated motion capture of several exercises, including walking, curling, and dead lifting. Phase II efforts focused on enhancing algorithms and delivering an ESPRIT prototype for testing and demonstration.
A low cost real-time motion tracking approach using webcam technology.
Krishnan, Chandramouli; Washabaugh, Edward P; Seetharaman, Yogesh
2015-02-05
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. Copyright © 2014 Elsevier Ltd. All rights reserved.
A low cost real-time motion tracking approach using webcam technology
Krishnan, Chandramouli; Washabaugh, Edward P.; Seetharaman, Yogesh
2014-01-01
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject’s limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training. PMID:25555306
Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.
Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo
2013-08-01
This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.
A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System
Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum
2017-01-01
In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414
System and Method for Measuring Skin Movement and Strain and Related Techniques
NASA Technical Reports Server (NTRS)
Newman, Dava J. (Inventor); Wessendorf, Ashley M. (Inventor)
2015-01-01
Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.
A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.
2001-01-01
The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.
Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi
2013-01-01
The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.
Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L
2009-06-15
Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.
3D reconstruction based on light field images
NASA Astrophysics Data System (ADS)
Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei
2018-04-01
This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.
Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory
ERIC Educational Resources Information Center
Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.
2009-01-01
Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…
Stavrakakis, S; Guy, J H; Syranidis, I; Johnson, G R; Edwards, S A
2015-07-01
Gait profiles were investigated in a cohort of female pigs experiencing a lameness period prevalence of 29% over 17 months. Gait alterations before and during visually diagnosed lameness were evaluated to identify the best quantitative clinical lameness indicators and early predictors for lameness. Pre-breeding gilts (n= 84) were recruited to the study over a period of 6 months, underwent motion capture every 5 weeks and, depending on their age at entry to the study, were followed for up to three successive gestations. Animals were subject to motion capture in each parity at 8 weeks of gestation and on the day of weaning (28 days postpartum). During kinematic motion capture, the pigs walked on the same concrete walkway and an array of infra-red cameras was used to collect three dimensional coordinate data of reflective skin markers attached to the head, trunk and limb anatomical landmarks. Of 24 pigs diagnosed with lameness, 19 had preclinical gait records, whilst 18 had a motion capture while lame. Depending on availability, data from one or two preclinical motion capture 1-11 months prior to lameness and on the day of lameness were analysed. Lameness was best detected and evaluated using relative spatiotemporal gait parameters, especially vertical head displacement and asymmetric stride phase timing. Irregularity in the step-to-stride length ratio was elevated (deviation ≥ 0.03) in young pigs which presented lameness in later life (odds ratio 7.2-10.8). Copyright © 2015 Elsevier Ltd. All rights reserved.
Using automatic generation of Labanotation to protect folk dance
NASA Astrophysics Data System (ADS)
Wang, Jiaji; Miao, Zhenjiang; Guo, Hao; Zhou, Ziming; Wu, Hao
2017-01-01
Labanotation uses symbols to describe human motion and is an effective means of protecting folk dance. We use motion capture data to automatically generate Labanotation. First, we convert the motion capture data of the biovision hierarchy file into three-dimensional coordinate data. Second, we divide human motion into element movements. Finally, we analyze each movement and find the corresponding notation. Our work has been supervised by an expert in Labanotation to ensure the correctness of the results. At present, the work deals with a subset of symbols in Labanotation that correspond to several basic movements. Labanotation contains many symbols and several new symbols may be introduced for improvement in the future. We will refine our work to handle more symbols. The automatic generation of Labanotation can greatly improve the work efficiency of documenting movements. Thus, our work will significantly contribute to the protection of folk dance and other action arts.
NASA Astrophysics Data System (ADS)
Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu
2018-05-01
The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.
Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael
2015-01-01
Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485
Evaluation of a Gait Assessment Module Using 3D Motion Capture Technology
Baskwill, Amanda J.; Belli, Patricia; Kelleher, Leila
2017-01-01
Background Gait analysis is the study of human locomotion. In massage therapy, this observation is part of an assessment process that informs treatment planning. Massage therapy students must apply the theory of gait assessment to simulated patients. At Humber College, the gait assessment module traditionally consists of a textbook reading and a three-hour, in-class session in which students perform gait assessment on each other. In 2015, Humber College acquired a three-dimensional motion capture system. Purpose The purpose was to evaluate the use of 3D motion capture in a gait assessment module compared to the traditional gait assessment module. Participants Semester 2 massage therapy students who were enrolled in Massage Theory 2 (n = 38). Research Design Quasi-experimental, wait-list comparison study. Intervention The intervention group participated in an in-class session with a Qualisys motion capture system. Main Outcome Measure(s) The outcomes included knowledge and application of gait assessment theory as measured by quizzes, and students’ satisfaction as measured through a questionnaire. Results There were no statistically significant differences in baseline and post-module knowledge between both groups (pre-module: p = .46; post-module: p = .63). There was also no difference between groups on the final application question (p = .13). The intervention group enjoyed the in-class session because they could visualize the content, whereas the comparison group enjoyed the interactivity of the session. The intervention group recommended adding the assessment of gait on their classmates to their experience. Both groups noted more time was needed for the gait assessment module. Conclusions Based on the results of this study, it is recommended that the gait assessment module combine both the traditional in-class session and the 3D motion capture system. PMID:28293329
Matsushima, Kyoji; Sonobe, Noriaki
2018-01-01
Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.
Fatone, Stefania; Johnson, William Brett; Tucker, Kerice
2016-04-01
Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.
NASA Astrophysics Data System (ADS)
Jebeli, Mahvash; Bilesan, Alireza; Arshi, Ahmadreza
2017-06-01
The currently available commercial motion capture systems are constrained by space requirement and thus pose difficulties when used in developing kinematic description of human movements within the existing manufacturing and production cells. The Kinect sensor does not share similar limitations but it is not as accurate. The proposition made in this article is to adopt the Kinect sensor in to facilitate implementation of Health Engineering concepts to industrial environments. This article is an evaluation of the Kinect sensor accuracy when providing three dimensional kinematic data. The sensor is thus utilized to assist in modeling and simulation of worker performance within an industrial cell. For this purpose, Kinect 3D data was compared to that of Vicon motion capture system in a gait analysis laboratory. Results indicated that the Kinect sensor exhibited a coefficient of determination of 0.9996 on the depth axis and 0.9849 along the horizontal axis and 0.2767 on vertical axis. The results prove the competency of the Kinect sensor to be used in the industrial environments.
Enciso, R; Memon, A; Mah, J
2003-01-01
The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
A proposal for a new definition of the axial rotation angle of the shoulder joint.
Masuda, Tadashi; Ishida, Akimasa; Cao, Lili; Morita, Sadao
2008-02-01
The Euler/Cardan angles are commonly used to define the motions of the upper arm with respect to the trunk. This definition, however, has a problem in that the angles of both the horizontal flexion/extension and the axial rotation of the shoulder joint become unstable at the gimbal-lock positions. In this paper, a new definition of the axial rotation angle was proposed. The proposed angle was stable over the entire range of the shoulder motion. With the new definition, the neutral position of the axial rotation agreed with that in the conventional anatomy. The advantage of the new definition was demonstrated by measuring actual complex motions of the shoulder with a three-dimensional motion capture system.
A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye
2017-02-01
Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.
A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.
Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Wedeen, Van J; Fakhri, Georges El; Woo, Jonghye
2017-01-01
Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.
AMUC: Associated Motion capture User Categories.
Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G
2009-07-13
The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.
The aerodynamics of free-flight maneuvers in Drosophila.
Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H
2003-04-18
Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.
Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.
Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam
2014-07-01
Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.
Evans, Kerrie; Horan, Sean A; Neal, Robert J; Barrett, Rod S; Mills, Peter M
2012-06-01
Field-based methods of evaluating three-dimensional (3D) swing kinematics offer coaches and researchers the opportunity to assess golfers in context-specific environments. The purpose of this study was to establish the inter-trial, between-tester, between-location, and between-day repeatability of thorax and pelvis kinematics during the downswing using an electromagnetic motion capture system. Two experienced testers measured swing kinematics in 20 golfers (handicap < or =14 strokes) on consecutive days in an indoor and outdoor location. Participants performed five swings with each of two clubs (five-iron and driver) at each test condition. Repeatability of 3D kinematic data was evaluated by computing the coefficient of multiple determination (CMD) and the systematic error (SE). With the exception of pelvis forward bend for between-day and between-tester conditions, CMDs exceeded 0.854 for all variables, indicating high levels of overall waveform repeatability across conditions. When repeatability was compared across conditions using MANOVA, the lowest CMDs and highest SEs were found for the between-tester and between-day conditions. The highest CMDs were for the inter-trial and between-location conditions. The absence of significant differences in CMDs between these two conditions supports this method of analysing pelvis and thorax kinematics in different environmental settings without unduly affecting repeatability.
Combining EEG, MIDI, and motion capture techniques for investigating musical performance.
Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi
2014-03-01
This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.
In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.
Brigstocke, G H O; Hearnden, A; Holt, C; Whatling, G
2014-05-01
The dart thrower's motion is a wrist rotation along an oblique plane from radial extension to ulnar flexion. We report an in-vivo study to confirm the use of the dart thrower's motion during activities of daily living. Global wrist motion in ten volunteers was recorded using a three-dimensional optoelectronic motion capture system, in which digital infra-red cameras track the movement of retro-reflective marker clusters. Global wrist motion has been approximated to the dart thrower's motion when hammering a nail, throwing a ball, drinking from a glass, pouring from a jug and twisting the lid of a jar, but not when combing hair or manipulating buttons. The dart thrower's motion is the plane of global wrist motion used during most activities of daily living. Arthrodesis of the radiocarpal joint instead of the midcarpal joint will allow better wrist function during most activities of daily living by preserving the dart thrower's motion.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.
Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu
2017-07-18
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
NASA Astrophysics Data System (ADS)
Ishimoto, Kenta
2017-10-01
The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.
A three-dimensional spin-diffusion model for micromagnetics
Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter
2015-01-01
We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796
Quantitative evaluation of toothbrush and arm-joint motion during tooth brushing.
Inada, Emi; Saitoh, Issei; Yu, Yong; Tomiyama, Daisuke; Murakami, Daisuke; Takemoto, Yoshihiko; Morizono, Ken; Iwasaki, Tomonori; Iwase, Yoko; Yamasaki, Youichi
2015-07-01
It is very difficult for dental professionals to objectively assess tooth brushing skill of patients, because an obvious index to assess the brushing motion of patients has not been established. The purpose of this study was to quantitatively evaluate toothbrush and arm-joint motion during tooth brushing. Tooth brushing motion, performed by dental hygienists for 15 s, was captured using a motion-capture system that continuously calculates the three-dimensional coordinates of object's motion relative to the floor. The dental hygienists performed the tooth brushing on the buccal and palatal sides of their right and left upper molars. The frequencies and power spectra of toothbrush motion and joint angles of the shoulder, elbow, and wrist were calculated and analyzed statistically. The frequency of toothbrush motion was higher on the left side (both buccal and palatal areas) than on the right side. There were no significant differences among joint angle frequencies within each brushing area. The inter- and intra-individual variations of the power spectrum of the elbow flexion angle when brushing were smaller than for any of the other angles. This study quantitatively confirmed that dental hygienists have individual distinctive rhythms during tooth brushing. All arm joints moved synchronously during brushing, and tooth brushing motion was controlled by coordinated movement of the joints. The elbow generated an individual's frequency through a stabilizing movement. The shoulder and wrist control the hand motion, and the elbow generates the cyclic rhythm during tooth brushing.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image
Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping
2016-01-01
Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289
Holographic turbulence in a large number of dimensions
NASA Astrophysics Data System (ADS)
Rozali, Moshe; Sabag, Evyatar; Yarom, Amos
2018-04-01
We consider relativistic hydrodynamics in the limit where the number of spatial dimensions is very large. We show that under certain restrictions, the resulting equations of motion simplify significantly. Holographic theories in a large number of dimensions satisfy the aforementioned restrictions and their dynamics are captured by hydrodynamics with a naturally truncated derivative expansion. Using analytic and numerical techniques we analyze two and three-dimensional turbulent flow of such fluids in various regimes and its relation to geometric data.
Creating stimuli for the study of biological-motion perception.
Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan
2002-08-01
In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).
Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.
Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi
2014-10-20
We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.
Parallax scanning methods for stereoscopic three-dimensional imaging
NASA Astrophysics Data System (ADS)
Mayhew, Christopher A.; Mayhew, Craig M.
2012-03-01
Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.
[Advances on biomechanics and kinematics of sprain of ankle joint].
Zhao, Yong; Wang, Gang
2015-04-01
Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.
Interjoint coordination of the lower extremities in short-track speed skating.
Khuyagbaatar, Batbayar; Purevsuren, Tserenchimed; Park, Won Man; Kim, Kyungsoo; Kim, Yoon Hyuk
2017-10-01
In short-track speed skating, the three-dimensional kinematics of the lower extremities during the whole skating cycle have not been studied. Kinematic parameters of the lower extremities during skating are presented as joint angles versus time. However, the angle-time presentation is not sufficient to describe the relationship between multi-joint movement patterns. Thus, angle-angle presentations were developed and used to describe interjoint coordination in sport activities. In this study, 15 professional male skaters' full body motion data were recorded using a wearable motion capture system during short-track speed skating. We investigated the three-dimensional kinematics of the lower extremities and then established the interjoint coordination between hip-knee and knee-ankle for both legs during the whole skating cycle. The results demonstrate the relationship between multi-joint movements during different phases of short-track speed skating. This study provides fundamentals of the movement mechanism of the lower extremities that can be integrated with physiotherapy to improve skating posture and prevent injuries from repetitive stress since physiological characteristics play an important role in skating performance.
Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Ball, Kevin
2013-06-01
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 +/- 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p < or = 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7-66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.
Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media
NASA Astrophysics Data System (ADS)
Morales, V. L.; Dentz, M.; Willmann, M.; Holzner, M.
2017-12-01
A proper understanding of velocity dynamics is key for making transport predictions through porous media at any scale. We study the velocity evolution process from particle dynamics at the pore-scale with particular interest in preasymptotic (non-Fickian) behavior. Experimental measurements from 3-dimensional particle tracking velocimetry are used to obtain Lagrangian velocity statistics for three different types of media heterogeneity. Particle velocities are found to be intermittent in nature, log-normally distributed and non-stationary. We show that these velocity characteristics can be captured with a correlated Ornstein-Uhlenbeck process for a random walk in space that is parameterized from velocity distributions. Our simple model is rigorously tested for accurate reproduction of velocity variability in magnitude and frequency. We further show that it captures exceptionally well the preasymptotic mean and mean squared displacement in the ballistic and superdiffusive regimes, and can be extended to determine if and when Fickian behavior will be reached. Our approach reproduces both preasymptotic and asymptotic transport behavior with a single transport model, demonstrating correct description of the fundamental controls of anomalous transport.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
Brown, Susan J; Selbie, W Scott; Wallace, Eric S
2013-01-01
A common biomechanical feature of a golf swing, described in various ways in the literature, is the interaction between the thorax and pelvis, often termed the X-Factor. There is no consistent method used within golf biomechanics literature however to calculate these segment interactions. The purpose of this study was to examine X-factor data calculated using three reported methods in order to determine the similarity or otherwise of the data calculated using each method. A twelve-camera three-dimensional motion capture system was used to capture the driver swings of 19 participants and a subject specific three-dimensional biomechanical model was created with the position and orientation of each model estimated using a global optimisation algorithm. Comparison of the X-Factor methods showed significant differences for events during the swing (P < 0.05). Data for each kinematic measure were derived as a times series for all three methods and regression analysis of these data showed that whilst one method could be successfully mapped to another, the mappings between methods are subject dependent (P <0.05). Findings suggest that a consistent methodology considering the X-Factor from a joint angle approach is most insightful in describing a golf swing.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
NASA Astrophysics Data System (ADS)
Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro
2003-01-01
Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.
Example-based human motion denoising.
Lou, Hui; Chai, Jinxiang
2010-01-01
With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.
The impact of body fat on three dimensional motion of the paediatric foot during walking.
Mahaffey, Ryan; Morrison, Stewart C; Bassett, Paul; Drechsler, Wendy I; Cramp, Mary C
2016-02-01
Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7-11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active. Copyright © 2015 Elsevier B.V. All rights reserved.
Gleadhill, Sam; Lee, James Bruce; James, Daniel
2016-05-03
This research presented and validated a method of assessing postural changes during resistance exercise using inertial sensors. A simple lifting task was broken down to a series of well-defined tasks, which could be examined and measured in a controlled environment. The purpose of this research was to determine whether timing measures obtained from inertial sensor accelerometer outputs are able to provide accurate, quantifiable information of resistance exercise movement patterns. The aim was to complete a timing measure validation of inertial sensor outputs. Eleven participants completed five repetitions of 15 different deadlift variations. Participants were monitored with inertial sensors and an infrared three dimensional motion capture system. Validation was undertaken using a Will Hopkins Typical Error of the Estimate, with a Pearson׳s correlation and a Bland Altman Limits of Agreement analysis. Statistical validation measured the timing agreement during deadlifts, from inertial sensor outputs and the motion capture system. Timing validation results demonstrated a Pearson׳s correlation of 0.9997, with trivial standardised error (0.026) and standardised bias (0.002). Inertial sensors can now be used in practical settings with as much confidence as motion capture systems, for accelerometer timing measurements of resistance exercise. This research provides foundations for inertial sensors to be applied for qualitative activity recognition of resistance exercise and safe lifting practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
A three-dimensional quality-guided phase unwrapping method for MR elastography
NASA Astrophysics Data System (ADS)
Wang, Huifang; Weaver, John B.; Perreard, Irina I.; Doyley, Marvin M.; Paulsen, Keith D.
2011-07-01
Magnetic resonance elastography (MRE) uses accumulated phases that are acquired at multiple, uniformly spaced relative phase offsets, to estimate harmonic motion information. Heavily wrapped phase occurs when the motion is large and unwrapping procedures are necessary to estimate the displacements required by MRE. Two unwrapping methods were developed and compared in this paper. The first method is a sequentially applied approach. The three-dimensional MRE phase image block for each slice was processed by two-dimensional unwrapping followed by a one-dimensional phase unwrapping approach along the phase-offset direction. This unwrapping approach generally works well for low noise data. However, there are still cases where the two-dimensional unwrapping method fails when noise is high. In this case, the baseline of the corrupted regions within an unwrapped image will not be consistent. Instead of separating the two-dimensional and one-dimensional unwrapping in a sequential approach, an interleaved three-dimensional quality-guided unwrapping method was developed to combine both the two-dimensional phase image continuity and one-dimensional harmonic motion information. The quality of one-dimensional harmonic motion unwrapping was used to guide the three-dimensional unwrapping procedures and it resulted in stronger guidance than in the sequential method. In this work, in vivo results generated by the two methods were compared.
High-resolution Doppler model of the human gait
NASA Astrophysics Data System (ADS)
Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.
2002-07-01
A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.
Male dance moves that catch a woman's eye
Neave, Nick; McCarty, Kristofor; Freynik, Jeanette; Caplan, Nicholas; Hönekopp, Johannes; Fink, Bernhard
2011-01-01
Male movements serve as courtship signals in many animal species, and may honestly reflect the genotypic and/or phenotypic quality of the individual. Attractive human dance moves, particularly those of males, have been reported to show associations with measures of physical strength, prenatal androgenization and symmetry. Here we use advanced three-dimensional motion-capture technology to identify possible biomechanical differences between women's perceptions of ‘good’ and ‘bad’ male dancers. Nineteen males were recorded using the ‘Vicon’ motion-capture system while dancing to a basic rhythm; controlled stimuli in the form of avatars were then created in the form of 15 s video clips, and rated by 39 females for dance quality. Initial analyses showed that 11 movement variables were significantly positively correlated with perceived dance quality. Linear regression subsequently revealed that three movement measures were key predictors of dance quality; these were variability and amplitude of movements of the neck and trunk, and speed of movements of the right knee. In summary, we have identified specific movements within men's dance that influence women's perceptions of dancing ability. We suggest that such movements may form honest signals of male quality in terms of health, vigour or strength, though this remains to be confirmed. PMID:20826469
The MicronEye Motion Monitor: A New Tool for Class and Laboratory Demonstrations.
ERIC Educational Resources Information Center
Nissan, M.; And Others
1988-01-01
Describes a special camera that can be directly linked to a computer that has been adapted for studying movement. Discusses capture, processing, and analysis of two-dimensional data with either IBM PC or Apple II computers. Gives examples of a variety of mechanical tests including pendulum motion, air track, and air table. (CW)
Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects
Lu, Shin-Yee
1998-01-01
A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360.degree. all around coverage of theobject-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120.degree. apart from one another.
Image system for three dimensional, 360{degree}, time sequence surface mapping of moving objects
Lu, S.Y.
1998-12-22
A three-dimensional motion camera system comprises a light projector placed between two synchronous video cameras all focused on an object-of-interest. The light projector shines a sharp pattern of vertical lines (Ronchi ruling) on the object-of-interest that appear to be bent differently to each camera by virtue of the surface shape of the object-of-interest and the relative geometry of the cameras, light projector and object-of-interest. Each video frame is captured in a computer memory and analyzed. Since the relative geometry is known and the system pre-calibrated, the unknown three-dimensional shape of the object-of-interest can be solved for by matching the intersections of the projected light lines with orthogonal epipolar lines corresponding to horizontal rows in the video camera frames. A surface reconstruction is made and displayed on a monitor screen. For 360{degree} all around coverage of the object-of-interest, two additional sets of light projectors and corresponding cameras are distributed about 120{degree} apart from one another. 20 figs.
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images
Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.
2016-01-01
Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies. PMID:27295428
A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.
Noh, Dong K; Lee, Nam G; You, Joshua H
2014-01-01
This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).
Teasing Apart Complex Motions using VideoPoint
NASA Astrophysics Data System (ADS)
Fischer, Mark
2002-10-01
Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.
A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.
Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin
2017-11-07
Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P < .001), and multiplanar method by 24.2%BW/LL (P < .001). Leg stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P < .001). The inclusion of medial-lateral components significantly increased leg deformation magnitude, accounting for the reduction in leg stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach
NASA Astrophysics Data System (ADS)
Liu, Wenyang; Sawant, Amit; Ruan, Dan
2016-07-01
The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.
Vitali, Rachel V.; Cain, Stephen M.; Zaferiou, Antonia M.; Ojeda, Lauro V.; Perkins, Noel C.
2017-01-01
Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4° and correlation coefficient r≥0.94). PMID:28846613
Roach, Koren E; Wang, Bibo; Kapron, Ashley L; Fiorentino, Niccolo M; Saltzman, Charles L; Bo Foreman, K; Anderson, Andrew E
2016-09-01
Measurements of joint kinematics are essential to understand the pathomechanics of ankle disease and the effects of treatment. Traditional motion capture techniques do not provide measurements of independent tibiotalar and subtalar joint motion. In this study, high-speed dual fluoroscopy images of ten asymptomatic adults were acquired during treadmill walking at 0.5 m/s and 1.0 m/s and a single-leg, balanced heel-rise. Three-dimensional (3D) CT models of each bone and dual fluoroscopy images were used to quantify in vivo kinematics for the tibiotalar and subtalar joints. Dynamic tibiotalar and subtalar mean joint angles often exhibited opposing trends during captured stance. During both speeds of walking, the tibiotalar joint had significantly greater dorsi/plantarflexion (D/P) angular ROM than the subtalar joint while the subtalar joint demonstrated greater inversion/eversion (In/Ev) and internal/external rotation (IR/ER) than the tibiotalar joint. During balanced heel-rise, only D/P and In/Ev were significantly different between the tibiotalar and subtalar joints. Translational ROM in the anterior/posterior (AP) direction was significantly greater in the subtalar than the tibiotalar joint during walking at 0.5 m/s. Overall, our results support the long-held belief that the tibiotalar joint is primarily responsible for D/P, while the subtalar joint facilitates In/Ev and IR/ER. However, the subtalar joint provided considerable D/P rotation, and the tibiotalar joint rotated about all three axes, which, along with translational motion, suggests that each joint undergoes complex, 3D motion.
Depth-tunable three-dimensional display with interactive light field control
NASA Astrophysics Data System (ADS)
Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan
2016-07-01
A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.
Validity and Reliability Study of the Korean Tinetti Mobility Test for Parkinson's Disease.
Park, Jinse; Koh, Seong-Beom; Kim, Hee Jin; Oh, Eungseok; Kim, Joong-Seok; Yun, Ji Young; Kwon, Do-Young; Kim, Younsoo; Kim, Ji Seon; Kwon, Kyum-Yil; Park, Jeong-Ho; Youn, Jinyoung; Jang, Wooyoung
2018-01-01
Postural instability and gait disturbance are the cardinal symptoms associated with falling among patients with Parkinson's disease (PD). The Tinetti mobility test (TMT) is a well-established measurement tool used to predict falls among elderly people. However, the TMT has not been established or widely used among PD patients in Korea. The purpose of this study was to evaluate the reliability and validity of the Korean version of the TMT for PD patients. Twenty-four patients diagnosed with PD were enrolled in this study. For the interrater reliability test, thirteen clinicians scored the TMT after watching a video clip. We also used the test-retest method to determine intrarater reliability. For concurrent validation, the unified Parkinson's disease rating scale, Hoehn and Yahr staging, Berg Balance Scale, Timed-Up and Go test, 10-m walk test, and gait analysis by three-dimensional motion capture were also used. We analyzed receiver operating characteristic curve to predict falling. The interrater reliability and intrarater reliability of the Korean Tinetti balance scale were 0.97 and 0.98, respectively. The interrater reliability and intra-rater reliability of the Korean Tinetti gait scale were 0.94 and 0.96, respectively. The Korean TMT scores were significantly correlated with the other clinical scales and three-dimensional motion capture. The cutoff values for predicting falling were 14 points (balance subscale) and 10 points (gait subscale). We found that the Korean version of the TMT showed excellent validity and reliability for gait and balance and had high sensitivity and specificity for predicting falls among patients with PD.
Relationships between clubshaft motions and clubface orientation during the golf swing.
Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi
2017-09-01
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.
A three-dimensional printed patient-specific scaphoid replacement: a cadaveric study.
Honigmann, Philipp; Schumacher, Ralf; Marek, Romy; Büttner, Franz; Thieringer, Florian; Haefeli, Mathias
2018-05-01
We present our first cadaveric test results of a three-dimensional printed patient-specific scaphoid replacement with tendon suspension, which showed normal motion behaviour and preservation of a stable scapholunate interval during physiological range of motion.
High Frequency Ground Motion from Finite Fault Rupture Simulations
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.
There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.
Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L
2015-08-01
Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.
The Role of Motion Concepts in Understanding Non-Motion Concepts
Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando
2017-01-01
This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715
The application of holography as a real-time three-dimensional motion picture camera
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1973-01-01
A historical introduction to holography is presented, as well as a basic description of sideband holography for stationary objects. A brief theoretical development of both time-dependent and time-independent holography is also provided, along with an analytical and intuitive discussion of a unique holographic arrangement which allows the resolution of front surface detail from an object moving at high speeds. As an application of such a system, a real-time three-dimensional motion picture camera system is discussed and the results of a recent demonstration of the world's first true three-dimensional motion picture are given.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.
Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-03-08
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.
Symmetry breaking motion of a vortex pair in a driven cavity
NASA Astrophysics Data System (ADS)
McHugh, John; Osman, Kahar; Farias, Jason
2002-11-01
The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
NASA Astrophysics Data System (ADS)
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
[Effect of calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint].
Chen, Yanxi; Yu, Guangrong; Ding, Zhuquan
2007-03-01
To discuss the effect of the calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint and its clinical significance. Ten fresh-frozen foot specimens, three-dimensional kinematics of talonavicular joint were determined in the case of neutral position, dorsiflexion. plantoflexion, adduction, abduction, inversion and eversion motion by means of three-dimensional coordinate instrument (Immersion MicroScribe G2X) before and after calcaneocuboid arthrodesis under non-weight with moment of couple, bending moment, equilibrium dynamic loading. Calcaneocuboid arthrodesis was performed on these feet in neutral position and the lateral column of normal length. A significant decrease in the three-dimensional kinematics of talonavicular joint was observed (P < 0.01) in cadaver model following calcaneocuboid arthrodesis. Talonavicular joint motion was diminished by 31.21% +/- 6.08% in sagittal plane; by 51.46% +/- 7.91% in coronal plane; by 36.98% +/- 4.12% in transverse plane; and averagely by 41.25% +/- 6.02%. Calcancocuboid arthrodesis could limite motion of the talonavicular joints, and the disadvantage of calcaneocuboid arthrodesis shouldn't be neglected.
Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap
NASA Technical Reports Server (NTRS)
Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu
1996-01-01
The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.
Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.
Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte
2017-09-01
Many aspects of chimpanzee ankle and midfoot joint morphology are believed to reflect adaptations for arboreal locomotion. However, terrestrial travel also constitutes a significant component of chimpanzee locomotion, complicating functional interpretations of chimpanzee and fossil hominin foot morphology. Here we tested hypotheses of foot motion and, in keeping with general assumptions, we predicted that chimpanzees would use greater ankle and midfoot joint ranges of motion during travel on arboreal supports than on the ground. We used a high-speed motion capture system to measure three-dimensional kinematics of the ankle and midfoot joints in two male chimpanzees during three locomotor modes: terrestrial quadrupedalism on a flat runway, arboreal quadrupedalism on a horizontally oriented tree trunk, and climbing on a vertically oriented tree trunk. Chimpanzees used relatively high ankle joint dorsiflexion angles during all three locomotor modes, although dorsiflexion was greatest in arboreal modes. They used higher subtalar joint coronal plane ranges of motion during terrestrial and arboreal quadrupedalism than during climbing, due in part to their use of high eversion angles in the former. Finally, they used high midfoot inversion angles during arboreal locomotor modes, but used similar midfoot sagittal plane kinematics across all locomotor modes. The results indicate that chimpanzees use large ranges of motion at their various ankle and midfoot joints during both terrestrial and arboreal locomotion. Therefore, we argue that chimpanzee foot anatomy enables a versatile locomotor repertoire, and urge caution when using foot joint morphology to reconstruct arboreal behavior in fossil hominins. © 2017 Wiley Periodicals, Inc.
Astronomy Demonstrations and Models.
ERIC Educational Resources Information Center
Eckroth, Charles A.
Demonstrations in astronomy classes seem to be more necessary than in physics classes for three reasons. First, many of the events are very large scale and impossibly remote from human senses. Secondly, while physics courses use discussions of one- and two-dimensional motion, three-dimensional motion is the normal situation in astronomy; thus,…
Apparent motion determined by surface layout not by disparity or three-dimensional distance.
He, Z J; Nakayama, K
1994-01-13
The most meaningful events ecologically, including the motion of objects, occur in relation to or on surfaces. We run along the ground, cars travel on roads, balls roll across lawns, and so on. Even though there are other motions, such as flying of birds, it is likely that motion along surfaces is more frequent and more significant biologically. To examine whether events occurring in relation to surfaces have a preferred status in terms of visual representation, we asked whether the phenomenon of apparent motion would show a preference for motion attached to surfaces. We used a competitive three-dimensional motion paradigm and found that there is a preference to see motion between tokens placed within the same disparity as opposed to different planes. Supporting our surface-layout hypothesis, the effect of disparity was eliminated either by slanting the tokens so that they were all seen within the same surface plane or by inserting a single slanted background surface upon which the tokens could rest. Additionally, a highly curved stereoscopic surface led to the perception of a more circuitous motion path defined by that surface, instead of the shortest path in three-dimensional space.
Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.
Ding, Meng; Fan, Guolian
2015-11-01
We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg
2015-08-15
Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less
Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images
Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.
2013-01-01
Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342
Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis
NASA Astrophysics Data System (ADS)
Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min
2012-01-01
We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2015-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).
Childs, Bronwen A; Pugliese, Brenna R; Carballo, Cristina T; Miranda, Daniel L; Brainerd, Elizabeth L; Kirker-Head, Carl A
2017-07-20
X-ray reconstruction of moving morphology (XROMM) uses biplanar videoradiography and computed tomography (CT) scanning to capture three-dimensional (3D) bone motion. In XROMM, morphologically accurate 3D bone models derived from CT are animated with motion from videoradiography, yielding a highly accurate and precise reconstruction of skeletal kinematics. We employ this motion analysis technique to characterize metacarpophalangeal joint (MCPJ) motion in the absence and presence of protective legwear in a healthy pony. Our in vivo marker tracking precision was 0.09 mm for walk and trot, and 0.10 mm during jump down exercises. We report MCPJ maximum extension (walk: -27.70 ± 2.78° [standard deviation]; trot: -33.84 ± 4.94°), abduction/adduction (walk: 0.04 ± 0.24°; trot: -0.23 ± 0.35°) and external/internal rotations (walk: 0.30 ± 0.32°; trot: -0.49 ± 1.05°) indicating that the MCPJ in this pony is a stable hinge joint with negligible extra-sagittal rotations. No substantial change in MCPJ maximum extension angles or vertical ground reaction forces (GRFv) were observed upon application of legwear during jump down exercise. Neoprene boot application yielded -65.20 ± 2.06° extension (GRFv = 11.97 ± 0.67 N/kg) and fleece polo wrap application yielded -64.23 ± 1.68° extension (GRFv = 11.36 ± 1.66 N/kg), when compared to naked control (-66.11 ± 0.96°; GRFv = 12.02 ± 0.53 N/kg). Collectively, this proof of concept study illustrates the benefits and practical limitations of using XROMM to document equine MCPJ kinematics in the presence and absence of legwear.
Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2004-01-01
This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid
Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-01-01
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474
Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum
ERIC Educational Resources Information Center
Findley, T.; Yoshida, S.; Norwood, D. P.
2007-01-01
A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…
Phenomenological theory of laser-plasma interaction in ``bubble'' regime
NASA Astrophysics Data System (ADS)
Kostyukov, I.; Pukhov, A.; Kiselev, S.
2004-11-01
The electron trapping in the "bubble" regime of laser-plasma interaction as proposed by Pukhov and Meyer-ter-Vehn [A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)] is studied. In this regime the laser pulse generates a solitary plasma electron cavity: the bubble. It is free from the cold plasma electrons and runs with nearly light velocity. The present work discusses the form of the bubble and the spatial distribution of electromagnetic fields within the cavity. We extend the one-dimensional electron capture theory to the three-dimensional case. It is shown that the bubble can trap plasma electrons. The trapping condition is derived and the trapping cross section is estimated. Electron motion in the self-generated electron bunch is investigated. Estimates for the maximum of electron bunch energy and the bunch density are provided.
Fedosov, D. A.; Caswell, B.; Suresh, S.; Karniadakis, G. E.
2011-01-01
The pathogenicity of Plasmodium falciparum (Pf) malaria results from the stiffening of red blood cells (RBCs) and its ability to adhere to endothelial cells (cytoadherence). The dynamics of Pf-parasitized RBCs is studied by three-dimensional mesoscopic simulations of flow in cylindrical capillaries in order to predict the flow resistance enhancement at different parasitemia levels. In addition, the adhesive dynamics of Pf-RBCs is explored for various parameters revealing several types of cell dynamics such as firm adhesion, very slow slipping along the wall, and intermittent flipping. The parasite inside the RBC is modeled explicitly in order to capture phenomena such as “hindered tumbling” motion of the RBC and the sudden transition from firm RBC cytoadherence to flipping on the endothelial surface. These predictions are in quantitative agreement with recent experimental observations, and thus the three-dimensional modeling method presented here provides new capabilities for guiding and interpreting future in vitro and in vivo studies of malaria. PMID:21173269
Vakanski, A; Ferguson, JM; Lee, S
2016-01-01
Objective The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient’s physician with recommendations for improvement. Methods The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. Results The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. Conclusion The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons. PMID:28111643
Vakanski, A; Ferguson, J M; Lee, S
2016-12-01
The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons.
NASA Astrophysics Data System (ADS)
Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara
2018-01-01
Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
Grandison, Scott; Roberts, Carl; Morris, Richard J
2009-03-01
Protein structures are not static entities consisting of equally well-determined atomic coordinates. Proteins undergo continuous motion, and as catalytic machines, these movements can be of high relevance for understanding function. In addition to this strong biological motivation for considering shape changes is the necessity to correctly capture different levels of detail and error in protein structures. Some parts of a structural model are often poorly defined, and the atomic displacement parameters provide an excellent means to characterize the confidence in an atom's spatial coordinates. A mathematical framework for studying these shape changes, and handling positional variance is therefore of high importance. We present an approach for capturing various protein structure properties in a concise mathematical framework that allows us to compare features in a highly efficient manner. We demonstrate how three-dimensional Zernike moments can be employed to describe functions, not only on the surface of a protein but throughout the entire molecule. A number of proof-of-principle examples are given which demonstrate how this approach may be used in practice for the representation of movement and uncertainty.
Two-Dimensional Motions of Rockets
ERIC Educational Resources Information Center
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
NASA Technical Reports Server (NTRS)
Dorsey, D. R., Jr.
1975-01-01
A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.
A trillion frames per second: the techniques and applications of light-in-flight photography.
Faccio, Daniele; Velten, Andreas
2018-06-14
Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.
Seo, Joonho; Koizumi, Norihiro; Funamoto, Takakazu; Sugita, Naohiko; Yoshinaka, Kiyoshi; Nomiya, Akira; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru
2011-06-01
Applying ultrasound (US)-guided high-intensity focused ultrasound (HIFU) therapy for kidney tumours is currently very difficult, due to the unclearly observed tumour area and renal motion induced by human respiration. In this research, we propose new methods by which to track the indistinct tumour area and to compensate the respiratory tumour motion for US-guided HIFU treatment. For tracking indistinct tumour areas, we detect the US speckle change created by HIFU irradiation. In other words, HIFU thermal ablation can coagulate tissue in the tumour area and an intraoperatively created coagulated lesion (CL) is used as a spatial landmark for US visual tracking. Specifically, the condensation algorithm was applied to robust and real-time CL speckle pattern tracking in the sequence of US images. Moreover, biplanar US imaging was used to locate the three-dimensional position of the CL, and a three-actuator system drives the end-effector to compensate for the motion. Finally, we tested the proposed method by using a newly devised phantom model that enables both visual tracking and a thermal response by HIFU irradiation. In the experiment, after generation of the CL in the phantom kidney, the end-effector successfully synchronized with the phantom motion, which was modelled by the captured motion data for the human kidney. The accuracy of the motion compensation was evaluated by the error between the end-effector and the respiratory motion, the RMS error of which was approximately 2 mm. This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system. Copyright © 2011 John Wiley & Sons, Ltd.
Spatial Disorientation in Gondola Centrifuges Predicted by the Form of Motion as a Whole in 3-D
Holly, Jan E.; Harmon, Katharine J.
2009-01-01
INTRODUCTION During a coordinated turn, subjects can misperceive tilts. Subjects accelerating in tilting-gondola centrifuges without external visual reference underestimate the roll angle, and underestimate more when backward-facing than when forward-facing. In addition, during centrifuge deceleration, the perception of pitch can include tumble while paradoxically maintaining a fixed perceived pitch angle. The goal of the present research was to test two competing hypotheses: (1) that components of motion are perceived relatively independently and then combined to form a three-dimensional perception, and (2) that perception is governed by familiarity of motions as a whole in three dimensions, with components depending more strongly on the overall shape of the motion. METHODS Published experimental data were used from existing tilting-gondola centrifuge studies. The two hypotheses were implemented formally in computer models, and centrifuge acceleration and deceleration were simulated. RESULTS The second, whole-motion oriented, hypothesis better predicted subjects' perceptions, including the forward-backward asymmetry and the paradoxical tumble upon deceleration. Important was the predominant stimulus at the beginning of the motion as well as the familiarity of centripetal acceleration. CONCLUSION Three-dimensional perception is better predicted by taking into account familiarity with the form of three-dimensional motion. PMID:19198199
NASA Astrophysics Data System (ADS)
Booth, Adam M.; McCarley, Justin; Hinkle, Jason; Shaw, Susan; Ampuero, Jean-Paul; Lamb, Michael P.
2018-05-01
Landslides reactivate due to external environmental forcing or internal mass redistribution, but the process is rarely documented quantitatively. We capture the three-dimensional, 1-m resolution surface deformation field of a transiently reactivated landslide with image correlation of repeat airborne lidar. Undrained loading by two debris flows in the landslide's head, rather than external forcing, triggered reactivation. After that loading, the lower 2 km of the landslide advanced by up to 14 m in 2 years before completely stopping. The displacement field over those 2 years implies that the slip surface gained 1 kPa of shear strength, which was likely accomplished by a negative dilatancy-pore pressure feedback as material deformed around basal roughness elements. Thus, landslide motion can be decoupled from external environmental forcing in cases, motivating the need to better understand internal perturbations to the stress field to predict hazards and sediment fluxes as landscapes evolve.
Three-dimensional analysis of cervical spine segmental motion in rotation.
Zhao, Xiong; Wu, Zi-Xiang; Han, Bao-Jun; Yan, Ya-Bo; Zhang, Yang; Lei, Wei
2013-06-20
The movements of the cervical spine during head rotation are too complicated to measure using conventional radiography or computed tomography (CT) techniques. In this study, we measure three-dimensional segmental motion of cervical spine rotation in vivo using a non-invasive measurement technique. Sixteen healthy volunteers underwent three-dimensional CT of the cervical spine during head rotation. Occiput (Oc) - T1 reconstructions were created of volunteers in each of 3 positions: supine and maximum left and right rotations of the head with respect to the bosom. Segmental motions were calculated using Euler angles and volume merge methods in three major planes. Mean maximum axial rotation of the cervical spine to one side was 1.6° to 38.5° at each level. Coupled lateral bending opposite to lateral bending was observed in the upper cervical levels, while in the subaxial cervical levels, it was observed in the same direction as axial rotation. Coupled extension was observed in the cervical levels of C5-T1, while coupled flexion was observed in the cervical levels of Oc-C5. The three-dimensional cervical segmental motions in rotation were accurately measured with the non-invasive measure. These findings will be helpful as the basis for understanding cervical spine movement in rotation and abnormal conditions. The presented data also provide baseline segmental motions for the design of prostheses for the cervical spine.
Dimensional coordinate measurements: application in characterizing cervical spine motion
NASA Astrophysics Data System (ADS)
Zheng, Weilong; Li, Linan; Wang, Shibin; Wang, Zhiyong; Shi, Nianke; Xue, Yuan
2014-06-01
Cervical spine as a complicated part in the human body, the form of its movement is diverse. The movements of the segments of vertebrae are three-dimensional, and it is reflected in the changes of the angle between two joint and the displacement in different directions. Under normal conditions, cervical can flex, extend, lateral flex and rotate. For there is no relative motion between measuring marks fixed on one segment of cervical vertebra, the cervical vertebrae with three marked points can be seen as a body. Body's motion in space can be decomposed into translational movement and rotational movement around a base point .This study concerns the calculation of dimensional coordinate of the marked points pasted to the human body's cervical spine by an optical method. Afterward, these measures will allow the calculation of motion parameters for every spine segment. For this study, we choose a three-dimensional measurement method based on binocular stereo vision. The object with marked points is placed in front of the CCD camera. Through each shot, we will get there two parallax images taken from different cameras. According to the principle of binocular vision we can be realized three-dimensional measurements. Cameras are erected parallelly. This paper describes the layout of experimental system and a mathematical model to get the coordinates.
Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu
2017-04-01
The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.
NASA Astrophysics Data System (ADS)
Bediz, Bekir; Aksoy, Serdar
2018-01-01
This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.
Motion visualization and estimation for flapping wing systems
NASA Astrophysics Data System (ADS)
Hsu, Tzu-Sheng Shane; Fitzgerald, Timothy; Nguyen, Vincent Phuc; Patel, Trisha; Balachandran, Balakumar
2017-04-01
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.
Dawes, Timothy J W; de Marvao, Antonio; Shi, Wenzhe; Fletcher, Tristan; Watson, Geoffrey M J; Wharton, John; Rhodes, Christopher J; Howard, Luke S G E; Gibbs, J Simon R; Rueckert, Daniel; Cook, Stuart A; Wilkins, Martin R; O'Regan, Declan P
2017-05-01
Purpose To determine if patient survival and mechanisms of right ventricular failure in pulmonary hypertension could be predicted by using supervised machine learning of three-dimensional patterns of systolic cardiac motion. Materials and Methods The study was approved by a research ethics committee, and participants gave written informed consent. Two hundred fifty-six patients (143 women; mean age ± standard deviation, 63 years ± 17) with newly diagnosed pulmonary hypertension underwent cardiac magnetic resonance (MR) imaging, right-sided heart catheterization, and 6-minute walk testing with a median follow-up of 4.0 years. Semiautomated segmentation of short-axis cine images was used to create a three-dimensional model of right ventricular motion. Supervised principal components analysis was used to identify patterns of systolic motion that were most strongly predictive of survival. Survival prediction was assessed by using difference in median survival time and area under the curve with time-dependent receiver operating characteristic analysis for 1-year survival. Results At the end of follow-up, 36% of patients (93 of 256) died, and one underwent lung transplantation. Poor outcome was predicted by a loss of effective contraction in the septum and free wall, coupled with reduced basal longitudinal motion. When added to conventional imaging and hemodynamic, functional, and clinical markers, three-dimensional cardiac motion improved survival prediction (area under the receiver operating characteristic curve, 0.73 vs 0.60, respectively; P < .001) and provided greater differentiation according to difference in median survival time between high- and low-risk groups (13.8 vs 10.7 years, respectively; P < .001). Conclusion A machine-learning survival model that uses three-dimensional cardiac motion predicts outcome independent of conventional risk factors in patients with newly diagnosed pulmonary hypertension. Online supplemental material is available for this article.
Human action recognition based on point context tensor shape descriptor
NASA Astrophysics Data System (ADS)
Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan
2017-07-01
Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.
The shape and motion of gas bubbles in a liquid flowing through a thin annulus
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle
2017-11-01
We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka
2014-03-01
There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.
Lip Movement Exaggerations during Infant-Directed Speech
ERIC Educational Resources Information Center
Green, Jordan R.; Nip, Ignatius S. B.; Wilson, Erin M.; Mefferd, Antje S.; Yunusova, Yana
2010-01-01
Purpose: Although a growing body of literature has identified the positive effects of visual speech on speech and language learning, oral movements of infant-directed speech (IDS) have rarely been studied. This investigation used 3-dimensional motion capture technology to describe how mothers modify their lip movements when talking to their…
Zhang, Yanxin; Ma, Ye; Liu, Guangyu
2016-01-01
The objective of the study was to evaluate two types of cricket bowling techniques by comparing the lumbar spinal loading using a musculoskeletal modelling approach. Three-dimensional kinematic data were recorded by a Vicon motion capture system under two cricket bowling conditions: (1) participants bowled at their absolute maximal speeds (max condition), and (2) participants bowled at their absolute maximal speeds while simultaneously forcing their navel down towards their thighs starting just prior to ball release (max-trunk condition). A three-dimensional musculoskeletal model comprised of the pelvis, sacrum, lumbar vertebrae and torso segments, which enabled the motion of the individual lumbar vertebrae in the sagittal, frontal and coronal planes to be actuated by 210 muscle-tendon units, was used to simulate spinal loading based on the recorded kinematic data. The maximal lumbar spine compressive force is 4.89 ± 0.88BW for the max condition and 4.58 ± 0.54BW for the max-trunk condition. Results showed that there was no significant difference between the two techniques in trunk moments and lumbar spine forces. This indicates that the max-trunk technique may not increase lower back injury risks. The method proposed in this study could be served as a tool to evaluate lower back injury risks for cricket bowling as well as other throwing activities.
Fish Pectoral Fin Hydrodynamics; Part III: Low Dimensional Models via POD Analysis
NASA Astrophysics Data System (ADS)
Bozkurttas, M.; Madden, P.
2005-11-01
The highly complex kinematics of the pectoral fin and the resulting hydrodynamics does not lend itself easily to analysis based on simple notions of pitching/heaving/paddling kinematics or lift/drag based propulsive mechanisms. A more inventive approach is needed to dissect the fin gait and gain insight into the hydrodynamic performance of the pectoral fin. The focus of the current work is on the hydrodynamics of the pectoral fin of a bluegill sunfish in steady forward motion. The 3D, time-dependent fin kinematics is obtained via a stereo-videographic technique. We employ proper orthogonal decomposition to extract the essential features of the fin gait and then use CFD to examine the hydrodynamics of simplified gaits synthesized from the POD modes. The POD spectrum shows that the first two, three and five POD modes capture 55%, 67%, and 80% of the motion respectively. The first three modes are in particular highly distinct: Mode-1 is a ``cupping'' motion where the fin cups forward as it is abducted; Mode-2 is an ``expansion'' motion where the fin expands to present a larger area during adduction and finally Mode-3 involves a ``spanwise flick'' of the dorsal edge of the fin. Numerical simulation of flow past fin gaits synthesized from these modes lead to insights into the mechanisms of thrust production; these are discussed in detail.
THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David
2015-07-20
We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
NASA Astrophysics Data System (ADS)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
DNS of droplet motion in a turbulent flow
NASA Astrophysics Data System (ADS)
Rosso, Michele; Elghobashi, S.
2013-11-01
The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.
Zebrafish response to a robotic replica in three dimensions
Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele
2016-01-01
As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
NASA Astrophysics Data System (ADS)
Rab, George T.
1988-02-01
Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.
A method of measuring three-dimensional scapular attitudes using the optotrak probing system.
Hébert, L J; Moffet, H; McFadyen, B J; St-Vincent, G
2000-01-01
To develop a method to obtain accurate three-dimensional scapular attitudes and to assess their concurrent validity and reliability. In this methodological study, the three-dimensional scapular attitudes were calculated in degrees, using a rotation matrix (cyclic Cardanic sequence), from spatial coordinates obtained with the probing of three non colinear landmarks first on an anatomical model and second on a healthy subject. Although abnormal movement of the scapula is related to shoulder impingement syndrome, it is not clearly understood whether or not scapular motion impairment is a predisposing factor. Characterization of three-dimensional scapular attitudes in planes and at joint angles for which sub-acromial impingement is more likely to occur is not known. The Optotrak probing system was used. An anatomical model of the scapula was built and allowed us to impose scapular attitudes of known direction and magnitude. A local coordinate reference system was defined with three non colinear anatomical landmarks to assess accuracy and concurrent validity of the probing method with fixed markers. Axial rotation angles were calculated from a rotation matrix using a cyclic Cardanic sequence of rotations. The same three non colinear body landmarks were digitized on one healthy subject and the three dimensional scapular attitudes obtained were compared between sessions in order to assess the reliability. The measure of three dimensional scapular attitudes calculated from data using the Optotrak probing system was accurate with means of the differences between imposed and calculated rotation angles ranging from 1.5 degrees to 4.2 degrees. Greatest variations were observed around the third axis of the Cardanic sequence associated with posterior-anterior transverse rotations. The mean difference between the Optotrak probing system method and fixed markers was 1.73 degrees showing a good concurrent validity. Differences between the two methods were generally very low for one and two direction displacements and the largest discrepancies were observed for imposed displacements combining movement about the three axes. The between sessions variation of three dimensional scapular attitudes was less than 10% for most of the arm positions adopted by a healthy subject suggesting a good reliability. The Optotrak probing system used with a standardized protocol lead to accurate, valid and reliable measures of scapular attitudes. Although abnormal range of motion of the scapula is often related to shoulder pathologies, reliable outcome measures to quantify three-dimensional scapular motion on subjects are not available. It is important to establish a standardized protocol to characterize three-dimensional scapular motion on subjects using a method for which the accuracy and validity are known. The method used in the present study has provided such a protocol and will now allow to verify to what extent, scapular motion impairment is linked to the development of specific shoulder pathologies.
Low-cost human motion capture system for postural analysis onboard ships
NASA Astrophysics Data System (ADS)
Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore
2011-07-01
The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.
Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique
NASA Technical Reports Server (NTRS)
Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Williams, C; Ionascu, D
2016-06-15
Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap
NASA Astrophysics Data System (ADS)
Spiwok, Vojtěch; Králová, Blanka
2011-12-01
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
Mom's shadow: structure-from-motion in newly hatched chicks as revealed by an imprinting procedure.
Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio
2009-03-01
The ability to recognize three-dimensional objects from two-dimensional (2-D) displays was investigated in domestic chicks, focusing on the role of the object's motion. In Experiment 1 newly hatched chicks, imprinted on a three-dimensional (3-D) object, were allowed to choose between the shadows of the familiar object and of an object never seen before. In Experiments 2 and 3 random-dot displays were used to produce the perception of a solid shape only when set in motion. Overall, the results showed that domestic chicks were able to recognize familiar shapes from 2-D motion stimuli. It is likely that similar general mechanisms underlying the perception of structure-from-motion and the extraction of 3-D information are shared by humans and animals. The present data shows that they occur similarly in birds as known for mammals, two separate vertebrate classes; this possibly indicates a common phylogenetic origin of these processes.
Sinclair, Jonathan; Fewtrell, David; Taylor, Paul John; Bottoms, Lindsay; Atkins, Stephen; Hobbs, Sarah Jane
2014-01-01
Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R(2) = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.
Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors
Nakamoto, Hiroyuki; Yamaji, Tokiya; Ootaka, Hideo; Bessho, Yusuke; Nakamura, Ryo; Ono, Rei
2017-01-01
Background Body movements, such as trunk flexion and rotation, are risk factors for low back pain in occupational settings, especially in healthcare workers. Wearable motion capture systems are potentially useful to monitor lower back movement in healthcare workers to help avoid the risk factors. In this study, we propose a novel system using sheet stretch sensors and investigate the system validity for estimating lower back movement. Methods Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg) participated in test protocols that involved executing seven types of movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-extension, trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flexion + rotation, flexion + side-bending, side-bending + rotation, and moving around the cranial–caudal axis). Each trial lasted for approximately 30 s. Four stretch sensors were attached to each participant’s lower back. The lumbar motion angles were estimated using simple linear regression analysis based on the stretch sensor outputs and compared with those obtained by the optical motion capture system. Results The estimated lumbar motion angles showed a good correlation with the actual angles, with correlation values of r = 0.68 (SD = 0.35), r = 0.60 (SD = 0.19), and r = 0.72 (SD = 0.18) for the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05). The estimation errors in all three directions were less than 3°. Conclusion The stretch sensors mounted on the back provided reasonable estimates of the lumbar motion angles. The novel motion capture system provided three directional angles without capture space limits. The wearable system possessed great potential to monitor the lower back movement in healthcare workers and helping prevent low back pain. PMID:29020053
Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed
2015-12-01
Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Perceiving environmental properties from motion information: Minimal conditions
NASA Technical Reports Server (NTRS)
Proffitt, Dennis R.; Kaiser, Mary K.
1989-01-01
The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.
SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn
2013-04-01
Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Chou, Jifan; Cheng, Jianbo
2018-04-01
In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.
Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether
NASA Astrophysics Data System (ADS)
Ismail, N. A.; Cartmell, M. P.
2016-03-01
This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.
Bösch, Nadja; Hofstetter, Martin; Bürki, Alexander; Vidondo, Beatriz; Davies, Fenella; Forterre, Franck
2017-11-01
Objective To study the biomechanical effect of facetectomy in 10 large breed dogs (>24 kg body weight) on the fourth canine cervical functional spinal unit. Methods Canine cervical spines were freed from all muscles. Spines were mounted on a six-degrees-of-freedom spine testing machine for three-dimensional motion analysis. Data were recorded with an optoelectronic motion analysis system. The range of motion was determined in all three primary motions as well as range of motion of coupled motions on the intact specimen, after unilateral and after bilateral facetectomy. Repeated-measures analysis of variance models were used to assess the changes of the biomechanical properties in the three treatment groups considered. Results Facetectomy increased range of motion of primary motions in all directions. Axial rotation was significantly influenced by facetectomy. Coupled motion was not influenced by facetectomy except for lateral bending with coupled motion axial rotation. The coupling factor (coupled motion/primary motion) decreased after facetectomy. Symmetry of motion was influenced by facetectomy in flexion-extension and axial rotation, but not in lateral bending. Clinical Significance Facet joints play a significant role in the stability of the cervical spine and act to maintain spatial integrity. Therefore, cervical spinal treatments requiring a facetectomy should be carefully planned and if an excessive increase in range of motion is expected, complications should be anticipated and reduced via spinal stabilization. Schattauer GmbH Stuttgart.
Capture by colour: evidence for dimension-specific singleton capture.
Harris, Anthony M; Becker, Stefanie I; Remington, Roger W
2015-10-01
Previous work on attentional capture has shown the attentional system to be quite flexible in the stimulus properties it can be set to respond to. Several different attentional "modes" have been identified. Feature search mode allows attention to be set for specific features of a target (e.g., red). Singleton detection mode sets attention to respond to any discrepant item ("singleton") in the display. Relational search sets attention for the relative properties of the target in relation to the distractors (e.g., redder, larger). Recently, a new attentional mode was proposed that sets attention to respond to any singleton within a particular feature dimension (e.g., colour; Folk & Anderson, 2010). We tested this proposal against the predictions of previously established attentional modes. In a spatial cueing paradigm, participants searched for a colour target that was randomly either red or green. The nature of the attentional control setting was probed by presenting an irrelevant singleton cue prior to the target display and assessing whether it attracted attention. In all experiments, the cues were red, green, blue, or a white stimulus rapidly rotated (motion cue). The results of three experiments support the existence of a "colour singleton set," finding that all colour cues captured attention strongly, while motion cues captured attention only weakly or not at all. Notably, we also found that capture by motion cues in search for colour targets was moderated by their frequency; rare motion cues captured attention (weakly), while frequent motion cues did not.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A
2015-05-01
Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap.
Spiwok, Vojtěch; Králová, Blanka
2011-12-14
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling. © 2011 American Institute of Physics
A new 4-dimensional imaging system for jaw tracking.
Lauren, Mark
2014-01-01
A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.
Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques
Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.
2016-01-01
Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition
2017-01-01
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.
Choi, Hyo-Rim; Kim, TaeYong
2017-08-17
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.
Biomechanics of Pediatric Manual Wheelchair Mobility
Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.
2015-01-01
Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251
Biomechanics of Pediatric Manual Wheelchair Mobility.
Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F
2015-01-01
Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.
Turchini, John; Buckland, Michael E; Gill, Anthony J; Battye, Shane
2018-05-30
- Three-dimensional (3D) photogrammetry is a method of image-based modeling in which data points in digital images, taken from offset viewpoints, are analyzed to generate a 3D model. This modeling technique has been widely used in the context of geomorphology and artificial imagery, but has yet to be used within the realm of anatomic pathology. - To describe the application of a 3D photogrammetry system capable of producing high-quality 3D digital models and its uses in routine surgical pathology practice as well as medical education. - We modeled specimens received in the 2 participating laboratories. The capture and photogrammetry process was automated using user control software, a digital single-lens reflex camera, and digital turntable, to generate a 3D model with the output in a PDF file. - The entity demonstrated in each specimen was well demarcated and easily identified. Adjacent normal tissue could also be easily distinguished. Colors were preserved. The concave shapes of any cystic structures or normal convex rounded structures were discernable. Surgically important regions were identifiable. - Macroscopic 3D modeling of specimens can be achieved through Structure-From-Motion photogrammetry technology and can be applied quickly and easily in routine laboratory practice. There are numerous advantages to the use of 3D photogrammetry in pathology, including improved clinicopathologic correlation for the surgeon and enhanced medical education, revolutionizing the digital pathology museum with virtual reality environments and 3D-printing specimen models.
Bias to experience approaching motion in a three-dimensional virtual environment.
Lewis, Clifford F; McBeath, Michael K
2004-01-01
We used two-frame apparent motion in a three-dimensional virtual environment to test whether observers had biases to experience approaching or receding motion in depth. Observers viewed a tunnel of tiles receding in depth, that moved ambiguously either toward or away from them. We found that observers exhibited biases to experience approaching motion. The strengths of the biases were decreased when stimuli pointed away, but size of the display screen had no effect. Tests with diamond-shaped tiles that varied in the degree of pointing asymmetry resulted in a linear trend in which the bias was strongest for stimuli pointing toward the viewer, and weakest for stimuli pointing away. We show that the overall bias to experience approaching motion is consistent with a computational strategy of matching corresponding features between adjacent foreshortened stimuli in consecutive visual frames. We conclude that there are both adaptational and geometric reasons to favor the experience of approaching motion.
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.
Dynamics and interactions of particles in a thermophoretic trap
NASA Astrophysics Data System (ADS)
Foster, Benjamin; Fung, Frankie; Fieweger, Connor; Usatyuk, Mykhaylo; Gaj, Anita; DeSalvo, B. J.; Chin, Cheng
2017-08-01
We investigate dynamics and interactions of particles levitated and trapped by the thermophoretic force in a vacuum cell. Our analysis is based on footage taken by orthogonal cameras that are able to capture the three dimensional trajectories of the particles. In contrast to spherical particles, which remain stationary at the center of the cell, here we report new qualitative features of the motion of particles with non-spherical geometry. Singly levitated particles exhibit steady spinning around their body axis and rotation around the symmetry axis of the cell. When two levitated particles approach each other, repulsive or attractive interactions between the particles are observed. Our levitation system offers a wonderful platform to study interaction between particles in a microgravity environment.
Do Performers' Experience and Sex Affect Their Performance?
Emmanuel, Jacobs; Nathalie, Roussel; Van Caekenberghe, Ine; Cassiers, Edith; Van den Dries, Luc; Rutgeerts, Jonas; Gielen, Jan; Hallemans, Ann
2017-04-01
This cross-sectional study aimed at developing a biomechanical method to objectify voluntary and unpredictable movements, using an automated three-dimensional motion capture system and surface electromyography. Fourteen experienced theater performers were tested while executing the old man exercise, wherein they have to walk like an old man, building up a sustained high intensive muscular activity and tremor. Less experienced performed showed a different kinematics of movement, a slower speed of progression and more variable EMG signals at higher intensity. Female performers also differed from males in movement kinematics and muscular activity. The number of the trial only influenced the speed of progression. The performers showed results which could be well placed within the stages of learning and the degrees of freedom problem.
Kinesthetic information disambiguates visual motion signals.
Hu, Bo; Knill, David C
2010-05-25
Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian
2005-01-01
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.
3D surface pressure measurement with single light-field camera and pressure-sensitive paint
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Xu, Shengming; Zhao, Zhou; Niu, Xiaofu; Quinn, Mark Kenneth
2018-05-01
A novel technique that simultaneously measures three-dimensional model geometry, as well as surface pressure distribution, with single camera is demonstrated in this study. The technique takes the advantage of light-field photography which can capture three-dimensional information with single light-field camera, and combines it with the intensity-based pressure-sensitive paint method. The proposed single camera light-field three-dimensional pressure measurement technique (LF-3DPSP) utilises a similar hardware setup to the traditional two-dimensional pressure measurement technique, with exception that the wind-on, wind-off and model geometry images are captured via an in-house-constructed light-field camera. The proposed LF-3DPSP technique was validated with a Mach 5 flared cone model test. Results show that the technique is capable of measuring three-dimensional geometry with high accuracy for relatively large curvature models, and the pressure results compare well with the Schlieren tests, analytical calculations, and numerical simulations.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence
NASA Technical Reports Server (NTRS)
Thess, A.; Zikanov, Oleg
2004-01-01
We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.
A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing
Milanovich, Monica; Nesbit, Steven M.
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623
A three-dimensional kinematic and kinetic study of the college-level female softball swing.
Milanovich, Monica; Nesbit, Steven M
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key PointsThe female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities.The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing.The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter.Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two.
Derivation of capture probabilities for the corotation eccentric mean motion resonances
NASA Astrophysics Data System (ADS)
El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan
2017-08-01
We study in this paper the capture of a massless particle into an isolated, first-order corotation eccentric resonance (CER), in the framework of the planar, eccentric and restricted three-body problem near a m + 1: m mean motion commensurability (m integer). While capture into Lindblad eccentric resonances (where the perturber's orbit is circular) has been investigated years ago, capture into CER (where the perturber's orbit is elliptic) has not yet been investigated in detail. Here, we derive the generic equations of motion near a CER in the general case where both the perturber and the test particle migrate. We derive the probability of capture in that context, and we examine more closely two particular cases: (I) if only the perturber is migrating, capture is possible only if the migration is outward from the primary. Notably, the probability of capture is independent of the way the perturber migrates outward; (II) if only the test particle is migrating, then capture is possible only if the algebraic value of its migration rate is a decreasing function of orbital radius. In this case, the probability of capture is proportional to the radial gradient of migration. These results differ from the capture into Lindblad eccentric resonance (LER), where it is necessary that the orbits of the perturber and the test particle converge for capture to be possible.
Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro
2017-07-01
We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W
2012-06-01
There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (p<0.001). AOFAS hallux score increased from 62 to 81 (p<0.007). As demonstrated through gait anaylsis, a significant increase in postoperative peak sagittal plane ankle push-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (p<0.04). In addition to clinically increased range of motion and improved AOFAS Hallux score, first MTP joint cheilectomy produced objective improvement in gait, as measured by increased peak sagittal-plane ankle push-off power.
A level set approach for shock-induced α-γ phase transition of RDX
NASA Astrophysics Data System (ADS)
Josyula, Kartik; Rahul; De, Suvranu
2018-02-01
We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.
Discriminating Rigid from Nonrigid Motion
1989-07-31
motion can be given a three-dimensional interpretation using a constraint of rigidity. Kruppa’s result and others (Faugeras & Maybank , 1989; Huang...Experimental Psychology: Human Perception and Performance, 10, 1-11. Faugeras, 0., & Maybank , S. (1989). Motion from point matches: multiplicity of
Synchronized metronome training induces changes in the kinematic properties of the golf swing.
Sommer, Marius; Häger, Charlotte; Rönnqvist, Louise
2014-03-01
The purpose of this study was to evaluate possible effects of synchronized metronome training (SMT) on movement dynamics during golf-swing performance, as captured by kinematic analysis. A one-group, between-test design was applied on 13 male golfers (27.5 +/- 4.6 years old, 12.7 +/- 4.9 handicap) who completed 12 sessions of SMT over a four-week period. Pre- and post-assessments of golf swings with three different clubs (4-iron, 7-iron, and pitching wedge) were performed using a three-dimensional motion capture system. Club velocity at three different swing phases (backswing, downswing, and follow-through) was measured and cross-correlation analysis of time-series signals were made on joint couplings (wrist-elbow-shoulder) of both arms, and between joints and the club, during the full golf swing. There were significantly higher cross-correlations between joint-couplings and concomitant changes of the associated phase-shift differences, as well as reduced phase-shift variability at post-test. No significant effect of SMT was found for the club velocities. We suggest that domain-general influences of SMT on the underlying brain-based motor control strategies lead to a more coordinated movement pattern of the golf-swing performance, which may explain previous observations of significantly improved golf-shot accuracy and decreased variability after SMT.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Beyer, M.; Hess, B. J.
2000-01-01
During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.
Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
Nicholas, Kevin; Sparkes, Valerie; Sheeran, Liba; Davies, Jennifer L
2018-01-01
The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements. PMID:29495600
Study of journal bearing dynamics using 3-dimensional motion picture graphics
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Sosoka, D. J.
1985-01-01
Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.
A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems
This document describes a systematic approach for performing capture zone analysis associated with ground water pump and treat systems. A “capture zone” refers to the three-dimensional region that contributes the ground water extracted by one or more wells or drains. A capture ...
Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.
Holly, Jan E
2004-01-01
The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.
Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi
2015-01-01
We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Krause, E.
Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036
NASA Astrophysics Data System (ADS)
Quan, Wei-cai; Zhang, Zhu-ying; Zhang, Ai-qun; Zhang, Qi-feng; Tian, Yu
2015-04-01
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- α implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.
NASA Technical Reports Server (NTRS)
Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.
2017-01-01
Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)
GN/C translation and rotation control parameters for AR/C (category 2)
NASA Technical Reports Server (NTRS)
Henderson, David M.
1991-01-01
Detailed analysis of the Automatic Rendezvous and Capture problem indicate a need for three different regions of mathematical description for the GN&C algorithms: (1) multi-vehicle orbital mechanics to the rendezvous interface point, i.e., within 100 n.; (2) relative motion solutions (such as Clohessy-Wiltshire type) from the far-field to the near-field interface, i.e., within 1 nm; and (3) close proximity motion, the nearfield motion where the relative differences in the gravitational and orbit inertial accelerations can be neglected from the equations of motion. This paper defines the reference coordinate frames and control parameters necessary to model the relative motion and attitude of spacecraft in the close proximity of another space system (Region 2 and 3) during the Automatic Rendezvous and Capture phase of an orbit operation.
Towards building a team of intelligent robots
NASA Technical Reports Server (NTRS)
Varanasi, Murali R.; Mehrotra, R.
1987-01-01
Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
Holographic motion picture camera with Doppler shift compensation
NASA Technical Reports Server (NTRS)
Kurtz, R. L. (Inventor)
1976-01-01
A holographic motion picture camera is reported for producing three dimensional images by employing an elliptical optical system. There is provided in one of the beam paths (the object or reference beam path) a motion compensator which enables the camera to photograph faster moving objects.
Fujiwara, Shohei; Komamura, Kazuo; Nakabo, Ayumi; Masaki, Mitsuru; Fukui, Miho; Sugahara, Masataka; Itohara, Kanako; Soyama, Yuko; Goda, Akiko; Hirotani, Shinichi; Mano, Toshiaki; Masuyama, Tohru
2016-02-01
Left ventricular (LV) dyssynchrony is a causal factor in LV dysfunction and thought to be associated with LV twisting motion. We tested whether three-dimensional speckle tracking (3DT) can be used to evaluate the relationship between LV twisting motion and dyssynchrony. We examined 25 patients with sick sinus syndrome who had received dual chamber pacemakers. The acute effects of ventricular pacing on LV wall motion after the switch from atrial to ventricular pacing were assessed. LV twisting motion and dyssynchrony during each pacing mode were measured using 3DT. LV dyssynchrony was calculated from the time to the minimum peak systolic area strain of 16 LV imaging segments. Ventricular pacing increased LV dyssynchrony and decreased twist and torsion. A significant correlation was observed between changes in LV dyssynchrony and changes in torsion (r = -0.65, p < 0.01). Evaluation of LV twisting motion can potentially be used for diagnosing LV dyssynchrony.
Trapping of drops by wetting defects
't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder
2014-01-01
Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Comparisons Of Two- And Three-Dimensional Convection In Type I X-Ray Bursts
Zingale, M.; Malone, C. M.; Nonaka, A.; ...
2015-07-01
We perform the first detailed three-dimensional simulation of low Mach number convection preceding runaway thermonuclear ignition in a mixed H/He X-ray burst. Our simulations include a moderate-sized, approximate network that captures hydrogen and helium burning up through rp-process breakout. We look at the difference between two- and three-dimensional convective fields, including the details of the turbulent convection.
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1986-01-01
In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.
Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo
2017-08-01
The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
Chang, Ryan; Rodrigues, Pedro A; Van Emmerik, Richard E A; Hamill, Joseph
2014-08-22
Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF). We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.05). Retro-reflective skin markers were fixed according to a multi-segment foot and shank model. Ground reaction forces and three dimensional kinematics of the shank, rearfoot, medial forefoot, and hallux segment were captured as individuals walked at 1.35 ms(-1). Despite similarities in foot anthropometrics, when compared to healthy individuals, individuals with PF exhibited significantly (p<0.05) (1) greater total rearfoot eversion, (2) greater forefoot plantar flexion at initial contact, (3) greater total sagittal plane forefoot motion, (4) greater maximum FMPJ dorsiflexion, and (5) decreased vertical GRF during propulsion. These data suggest that compared to healthy individuals, individuals with PF exhibit significant differences in foot kinematics and kinetics. Consistent with the theoretical injury mechanisms of PF, we found these individuals to have greater total rearfoot eversion and peak FMPJ dorsiflexion, which may put undue loads on the plantar fascia. Meanwhile, increased medial forefoot plantar flexion at initial contact and decreased propulsive GRF are suggestive of compensatory responses, perhaps to manage pain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced mixing and spatial instability in concentrated bacterial suspensions
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Goldstein, Raymond E.; Feldchtein, Felix I.; Aranson, Igor S.
2009-09-01
High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.
A functional video-based anthropometric measuring system
NASA Technical Reports Server (NTRS)
Nixon, J. H.; Cater, J. P.
1982-01-01
A high-speed anthropometric three dimensional measurement system using the Selcom Selspot motion tracking instrument for visual data acquisition is discussed. A three-dimensional scanning system was created which collects video, audio, and performance data on a single standard video cassette recorder. Recording rates of 1 megabit per second for periods of up to two hours are possible with the system design. A high-speed off-the-shelf motion analysis system for collecting optical information as used. The video recording adapter (VRA) is interfaced to the Selspot data acquisition system.
The recovery and utilization of space suit range-of-motion data
NASA Technical Reports Server (NTRS)
Reinhardt, AL; Walton, James S.
1988-01-01
A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.
Passage of a star by a massive black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noltenius, R.A.; Katz, J.I.
1982-12-01
We have calculated the effects on a 1 M/sub sun/ star of passage by a 10/sup 4/ M/sub sun/ point mass (black hole) in an intially parabolic orbit with a variety of pericenter distances. Because this problem is three-dimensional, we use the gridless smoothed particle hydrodynamic method of Lucy, Gingold, and Monaghan. The tidal forces are found to induce rotation and radial and nonradial pulsations of the star. The loss of orbital energy to these internal motions leads to capture of the star by the black hole. For small pericenter distances, the outer layers of the star are disrupted, whilemore » at still smaller distances, the entire star is destroyed. These results may be applied to some X-ray sources, active galactic nuclei, and quasars.« less
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi
2018-04-01
In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.
Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion
NASA Technical Reports Server (NTRS)
Gates, R. M.; Graves, D. L.
1974-01-01
The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.
3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading
2011-01-01
Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533
Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth
Jackson, Stuart; Blake, Randolph
2010-01-01
Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892
Depth measurements through controlled aberrations of projected patterns.
Birch, Gabriel C; Tyo, J Scott; Schwiegerling, Jim
2012-03-12
Three-dimensional displays have become increasingly present in consumer markets. However, the ability to capture three-dimensional images in space confined environments and without major modifications to current cameras is uncommon. Our goal is to create a simple modification to a conventional camera that allows for three dimensional reconstruction. We require such an imaging system have imaging and illumination paths coincident. Furthermore, we require that any three-dimensional modification to a camera also permits full resolution 2D image capture.Here we present a method of extracting depth information with a single camera and aberrated projected pattern. A commercial digital camera is used in conjunction with a projector system with astigmatic focus to capture images of a scene. By using an astigmatic projected pattern we can create two different focus depths for horizontal and vertical features of a projected pattern, thereby encoding depth. By designing an aberrated projected pattern, we are able to exploit this differential focus in post-processing designed to exploit the projected pattern and optical system. We are able to correlate the distance of an object at a particular transverse position from the camera to ratios of particular wavelet coefficients.We present our information regarding construction, calibration, and images produced by this system. The nature of linking a projected pattern design and image processing algorithms will be discussed.
Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong
2016-12-28
Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.
Maclachlan, Liam; White, Steven G; Reid, Duncan
2015-08-01
Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor (< 50%) to excellent (> 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee flexion) were found in the results of those assessing running and side-step cutting manoeuvres. Variables such as the speed of movement, the methods of rating, the profiles of participants and the experience levels of observers may have influenced the outcomes of functional testing. The small number of studies used limits generalizability. Furthermore, this review used two dimensional video-playback for the majority of observations. If the movements had been rated in real-time three dimensional video, the results may have been different. Slower, speed controlled movements using dichotomous ratings reach target sensitivity and demonstrate higher overall levels of agreement. As a result, their utilization in functional screening is advocated. 1A.
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-09-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.
Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke
2016-01-01
[Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Jiajia; Santanam, Lakshmi; Noel, Camille
2013-03-15
Purpose: To evaluate whether planning 4-dimensional computed tomography (4DCT) can adequately represent daily motion of abdominal tumors in regularly fractionated and stereotactic body radiation therapy (SBRT) patients. Methods and Materials: Intrafractional tumor motion of 10 patients with abdominal tumors (4 pancreas-fractionated and 6 liver-stereotactic patients) with implanted fiducials was measured based on daily orthogonal fluoroscopic movies over 38 treatment fractions. The needed internal margin for at least 90% of tumor coverage was calculated based on a 95th and fifth percentile of daily 3-dimensional tumor motion. The planning internal margin was generated by fusing 4DCT motion from all phase bins. The disagreementmore » between needed and planning internal margin was analyzed fraction by fraction in 3 motion axes (superior-inferior [SI], anterior-posterior [AP], and left-right [LR]). The 4DCT margin was considered as an overestimation/underestimation of daily motion when disagreement exceeded at least 3 mm in the SI axis and/or 1.2 mm in the AP and LR axes (4DCT image resolution). The underlying reasons for this disagreement were evaluated based on interfractional and intrafractional breathing variation. Results: The 4DCT overestimated daily 3-dimensional motion in 39% of the fractions in 7 of 10 patients and underestimated it in 53% of the fractions in 8 of 10 patients. Median underestimation was 3.9 mm, 3.0 mm, and 1.7 mm in the SI axis, AP axis, and LR axis, respectively. The 4DCT was found to capture irregular deep breaths in 3 of 10 patients, with 4DCT motion larger than mean daily amplitude by 18 to 21 mm. The breathing pattern varied from breath to breath and day to day. The intrafractional variation of amplitude was significantly larger than intrafractional variation (2.7 mm vs 1.3 mm) in the primary motion axis (ie, SI axis). The SBRT patients showed significantly larger intrafractional amplitude variation than fractionated patients (3.0 mm vs 2.1 mm, P<.05). Conclusions: It may not be appropriate to use 4DCT without monitoring of patient motion on a regular basis for patients with abdominal tumors, especially SBRT patients.« less
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.
Modeling Tsunami Wave Generation Using a Two-layer Granular Landslide Model
NASA Astrophysics Data System (ADS)
Ma, G.; Kirby, J. T., Jr.; Shi, F.; Grilli, S. T.; Hsu, T. J.
2016-12-01
Tsunamis can be generated by subaerial or submarine landslides in reservoirs, lakes, fjords, bays and oceans. Compared to seismogenic tsunamis, landslide or submarine mass failure (SMF) tsunamis are normally characterized by relatively shorter wave lengths and stronger wave dispersion, and potentially may generate large wave amplitudes locally and high run-up along adjacent coastlines. Due to a complex interplay between the landslide and tsunami waves, accurate simulation of landslide motion as well as tsunami generation is a challenging task. We develop and test a new two-layer model for granular landslide motion and tsunami wave generation. The landslide is described as a saturated granular flow, accounting for intergranular stresses governed by Coulomb friction. Tsunami wave generation is simulated by the three-dimensional non-hydrostatic wave model NHWAVE, which is capable of capturing wave dispersion efficiently using a small number of discretized vertical levels. Depth-averaged governing equations for the granular landslide are derived in a slope-oriented coordinate system, taking into account the dynamic interaction between the lower-layer granular landslide and upper-layer water motion. The model is tested against laboratory experiments on impulsive wave generation by subaerial granular landslides. Model results illustrate a complex interplay between the granular landslide and tsunami waves, and they reasonably predict not only the tsunami wave generation but also the granular landslide motion from initiation to deposition.
Kinematic response of the spine during simulated aircraft ejections.
Damon, Andrew M; Lessley, David J; Salzar, Robert S; Bass, Cameron R; Shen, Francis H; Paskoff, Glenn R; Shender, Barry S
2010-05-01
Military aviators are susceptible to spinal injuries during high-speed ejection scenarios. These injuries commonly arise as a result of strains induced by extreme flexion or compression of the spinal column. This study characterizes the vertebral motion of two postmortem human surrogates (PMHS) during a simulated catapult phase of ejection on a horizontal decelerator sled. During testing, the PMHS were restrained supinely to a mock ejection seat and subjected to a horizontal deceleration profile directed along the local z-axis. Two midsized males (175.3 cm, 77.1 kg; 185.4 cm, 72.6 kg) were tested. High-rate motion capture equipment was used to measure the three-dimensional displacement of the head, vertebrae, and pelvis during the ejection event. The two PMHS showed generally similar kinematic motion. Head injury criterion (HIC) results were well below injury threshold levels for both specimens. The specimens both showed compression of the spine, with a reduction in length of 23.9 mm and 45.7 mm. Post-test autopsies revealed fractures in the C5, T1, and L1 vertebrae. This paper provides an analysis of spinal motion during an aircraft ejection.The injuries observed in the test subjects were consistent with those seen in epidemiological studies. Future studies should examine the effects of gender, muscle tensing, out-of-position (of head from neutral position) occupants, and external forces (e.g., windblast) on spinal kinematics during aircraft ejection.
Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras
NASA Astrophysics Data System (ADS)
Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro
2018-03-01
Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.
Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho
2018-06-01
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2009-01-01
The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.
Depth and thermal sensor fusion to enhance 3D thermographic reconstruction.
Cao, Yanpeng; Xu, Baobei; Ye, Zhangyu; Yang, Jiangxin; Cao, Yanlong; Tisse, Christel-Loic; Li, Xin
2018-04-02
Three-dimensional geometrical models with incorporated surface temperature data provide important information for various applications such as medical imaging, energy auditing, and intelligent robots. In this paper we present a robust method for mobile and real-time 3D thermographic reconstruction through depth and thermal sensor fusion. A multimodal imaging device consisting of a thermal camera and a RGB-D sensor is calibrated geometrically and used for data capturing. Based on the underlying principle that temperature information remains robust against illumination and viewpoint changes, we present a Thermal-guided Iterative Closest Point (T-ICP) methodology to facilitate reliable 3D thermal scanning applications. The pose of sensing device is initially estimated using correspondences found through maximizing the thermal consistency between consecutive infrared images. The coarse pose estimate is further refined by finding the motion parameters that minimize a combined geometric and thermographic loss function. Experimental results demonstrate that complimentary information captured by multimodal sensors can be utilized to improve performance of 3D thermographic reconstruction. Through effective fusion of thermal and depth data, the proposed approach generates more accurate 3D thermal models using significantly less scanning data.
Palsbo, Susan E; Hood-Szivek, Pamela
2012-01-01
We explored the efficacy of robotic technology in improving handwriting in children with impaired motor skills. Eighteen participants had impairments arising from cerebral palsy (CP), autism spectrum disorder (ASD), attention deficit disorder (ADD), attention deficit hyperactivity disorder (ADHD), or other disorders. The intervention was robotic-guided three-dimensional repetitive motion in 15-20 daily sessions of 25-30 min each over 4-8 wk. Fine motor control improved for the children with learning disabilities and those ages 9 or older but not for those with CP or under age 9. All children with ASD or ADHD referred for slow writing speed were able to increase speed while maintaining legibility. Three-dimensional, robot-assisted, repetitive motion training improved handwriting fluidity in children with mild to moderate fine motor deficits associated with ASD or ADHD within 10 hr of training. This dosage may not be sufficient for children with CP. Copyright © 2012 by the American Occupational Therapy Association, Inc.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Three-dimensional compact explicit-finite difference time domain scheme with density variation
NASA Astrophysics Data System (ADS)
Tsuchiya, Takao; Maruta, Naoki
2018-07-01
In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Sawant, A; Ruan, D
Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less
Serrien, Ben; Clijsen, Ron; Blondeel, Jonathan; Goossens, Maggy; Baeyens, Jean-Pierre
2015-01-01
The purpose of this paper was to examine differences in ball release speed and throwing kinematics between male and female team-handball players in a standing throw with run-up. Other research has shown that this throwing type produces the highest ball release speeds and comparing groups with differences in ball release speed can suggest where this difference might come from. If throwing technique differs, perhaps gender-specific coordination- and strength-training guidelines are in order. Measurements of three-dimensional kinematics were performed with a seven-camera VICON motion capture system and subsequent joint angles and angular velocities calculations were executed in Mathcad. Data-analysis with Statistical Parametric Mapping allowed us to examine the entire time-series of every variable without having to reduce the data to certain scalar values such as minima/maxima extracted from the time-series. Statistical Parametric Mapping enabled us to detect several differences in the throwing kinematics (12 out of 20 variables had one or more differences somewhere during the motion). The results indicated two distinct strategies in generating and transferring momentum through the kinematic chain. Male team-handball players showed more activity in the transverse plane (pelvis and trunk rotation and shoulder horizontal abduction) whereas female team-handball players showed more activity in the sagital plane (trunk flexion). Also the arm cocking maneuver was quite different. The observed differences between male and female team handball players in the motions of pelvis, trunk and throwing arm can be important information for coaches to give feedback to athletes. Whether these differences contribute to the observed difference in ball release speed is at the present unclear and more research on the relation with anthropometric profile needs to be done. Kinematic differences might suggest gender-specific training guidelines in team-handball.
Computer program for assessing the theoretical performance of a three dimensional inlet
NASA Technical Reports Server (NTRS)
Agnone, A. M.; Kung, F.
1972-01-01
A computer program for determining the theoretical performance of a three dimensional inlet is presented. An analysis for determining the capture area, ram force, spillage force, and surface pressure force is presented, along with the necessary computer program. A sample calculation is also included.
Atmospheric Science Data Center
2013-04-19
... cloud-tracked winds at the different cloud levels. The wind vectors, shown in the right panel, reveal cyclonic motion associated with ... of cloud height and motions globally will help us monitor the effects of climate change on the three-dimensional distribution of ...
Equations of motion for train derailment dynamics
DOT National Transportation Integrated Search
2007-09-11
This paper describes a planar or two-dimensional model to : examine the gross motions of rail cars in a generalized train : derailment. Three coupled, second-order differential equations : are derived from Newton's Laws to calculate rigid-body car : ...
The V-Scope: An "Oscilloscope" for Motion.
ERIC Educational Resources Information Center
Ronen, Miky; Lipman, Aharon
1991-01-01
Proposes the V-Scope as a teaching aid to measure, analyze, and display three-dimensional multibody motion. Describes experiment setup considerations, how measurements are calculated, graphic representation capabilities, and modes of operation of this microcomputer-based system. (MDH)
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
Effects of Wheelchair Seat-height Settings on Alternating Lower Limb Propulsion With Both Legs.
Murata, Tomoyuki; Asami, Toyoko; Matsuo, Kiyomi; Kubo, Atsuko; Okigawa, Etsumi
2014-01-01
This study investigated the effects of seat-height settings of wheelchairs with alternating propulsion with both legs. Seven healthy individuals with no orthopedic disease participated. Flexion angles at initial contact (FA-IC) of each joint, range of motion during propulsion period (ROM-PP), and ground reaction force (GRF) were measured using a three dimensional motion capture system and force plates, and compared with different seat-height settings. Statistically significant relationships were found between seat-height and speed, stride length, knee FA-IC, ankle FA-IC, hip ROM-PP, vertical ground reaction force (VGRF), and anterior posterior ground reaction force (APGRF). Speed, hip ROM-PP, VGRF and APGRF increased as the seat-height was lowered. This effect diminished when the seat-height was set below -40 mm. VGRF increased as the seat-height was lowered. The results suggest that the seat-height effect can be attributed to hip ROM-PP; therefore, optimal foot propulsion cannot be achieved when the seat height is set either too high or too low. Efficient foot propulsion of the wheelchair can be achieved by setting the seat height to lower leg length according to a combination of physical characteristics, such as the user's physical functions, leg muscles, and range of motion.
MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS
NASA Technical Reports Server (NTRS)
Kutler, P.
1994-01-01
This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.
Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.
Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan
2018-03-01
Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.
A new position measurement system using a motion-capture camera for wind tunnel tests.
Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok
2013-09-13
Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements.
A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests
Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok
2013-01-01
Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements. PMID:24064600
Determining loads acting on the pelvis in upright and recumbent birthing positions: A case study.
Hemmerich, Andrea; Geens, Emily; Diesbourg, Tara; Dumas, Geneviève A
2018-05-24
The biomechanics of mothers' birthing positions and their impact on maternal and newborn health outcomes are poorly understood. Our objectives were to determine the loads applied to the female pelvis during dynamic movement that may occur during childbirth; findings are intended to inform clinical understanding and further research on birth positioning mechanics. An optical motion capture system and force platforms were used to collect upright and supine movement data from two pregnant and three non-pregnant participants. Using an inverse dynamics approach, normalized three-dimensional hip and sagittal plane lumbosacral joint moments were estimated during squatting, all-fours, and supine activities. During squatting, peak hip abduction moments were greater for our pregnant (compared with non-pregnant) participants and lumbosacral extension moments substantially exceeded those during walking. The all-fours activity, conversely, generated flexion moments at the L5/S1 joint throughout most of the cycle. In supine, the magnitude of the ground reaction force reached 100% body weight with legs and upper body raised (McRoberts' position); the centre of pressure remained cranial to the sacrum. Squatting generated appreciable moments at the hip and lumbosacral joints that could potentially affect pelvic motion during childbirth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K
2015-01-01
To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.
ERIC Educational Resources Information Center
Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas
2018-01-01
Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…
Mighty Math[TM] Zoo Zillions[TM]. [CD-ROM].
ERIC Educational Resources Information Center
1996
Zoo Zillions contains five activities for grades K-2: Annie's Jungle Trail, 3D Gallery, Number Line Express, Gnu Ewe Boutique, and Fish Stories. These activities enable children to review and practice basic mathematics skills; identify three-dimensional shapes, watch them in motion, and create their own three-dimensional designs; locate numbers…
Scholtes, Sara A; Salsich, Gretchen B
2017-06-01
Two=dimensional motion analysis of lower=extremity movement typically focuses on the knee frontal plane projection angle, which considers the position of the femur and the tibia. A measure that includes the pelvis may provide a more comprehensive and accurate indicator of lower=extremity movement. Hypothesis/Purpose: The purpose of the study was to describe the utility of a two=dimensional dynamic valgus index (DVI) in females with patellofemoral pain. The hypothesis was that the DVI would be more reliable and valid than the knee frontal plane projection angle, be greater in females with patellofemoral pain during a single=limb squat than in females without patellofemoral pain, and decrease in females with patellofemoral pain following instruction. Study Design: Controlled Laboratory Study. Data were captured while participants performed single limb squats under two conditions: usual and corrected. Two=dimensional hip and knee angles and a DVI that combined the hip and knee angles were calculated. Three=dimensional sagittal, frontal, and transverse plane angles of the hip and knee and a DVI combining the frontal and transverse plane angles were calculated. The two=dimensional DVI demonstrated moderate reliability (ICC=0.74). The correlation between the two=dimensional and three=dimensional DVI's was 0.635 (p<0001). Females with patellofemoral pain demonstrated a greater two=dimensional DVI (31.14 °±13.36 °) than females without patellofemoral pain (18.30 °±14.97 °; p=0.010). Females with patellofemoral pain demonstrated a decreased DVI in the corrected (19.04 °±13.70 °) versus usual (31.14 °±13.36 °) condition (p=0.001). The DVI is a reliable and valid measure that may provide a more comprehensive assessment of lower=extremity movement patterns than the knee frontal plane projection angle in individuals with lower=extremity musculoskeletal pain problems. 2b.
Orthogonal-blendshape-based editing system for facial motion capture data.
Li, Qing; Deng, Zhigang
2008-01-01
The authors present a novel data-driven 3D facial motion capture data editing system using automated construction of an orthogonal blendshape face model and constrained weight propagation, aiming to bridge the popular facial motion capture technique and blendshape approach. In this work, a 3D facial-motion-capture-editing problem is transformed to a blendshape-animation-editing problem. Given a collected facial motion capture data set, we construct a truncated PCA space spanned by the greatest retained eigenvectors and a corresponding blendshape face model for each anatomical region of the human face. As such, modifying blendshape weights (PCA coefficients) is equivalent to editing their corresponding motion capture sequence. In addition, a constrained weight propagation technique allows animators to balance automation and flexible controls.
NASA Astrophysics Data System (ADS)
Shaw, Mike
2012-11-01
Would you like to build an inexpensive, highly visible, quickly assembled device that dramatically illustrates Newton's three laws of motion? This model incorporates sturdiness, high-profile visibility, and a student interest component that is sure to capture and hold their attention.
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh
2017-01-01
Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka.
Nakayasu, Tomohiro; Yasugi, Masaki; Shiraishi, Soma; Uchida, Seiichi; Watanabe, Eiji
2017-01-01
We studied social approach behaviour in medaka fish using three-dimensional computer graphic (3DCG) animations based on the morphological features and motion characteristics obtained from real fish. This is the first study which used 3DCG animations and examined the relative effects of morphological and motion cues on social approach behaviour in medaka. Various visual stimuli, e.g., lack of motion, lack of colour, alternation in shape, lack of locomotion, lack of body motion, and normal virtual fish in which all four features (colour, shape, locomotion, and body motion) were reconstructed, were created and presented to fish using a computer display. Medaka fish presented with normal virtual fish spent a long time in proximity to the display, whereas time spent near the display was decreased in other groups when compared with normal virtual medaka group. The results suggested that the naturalness of visual cues contributes to the induction of social approach behaviour. Differential effects between body motion and locomotion were also detected. 3DCG animations can be a useful tool to study the mechanisms of visual processing and social behaviour in medaka. PMID:28399163
NASA Astrophysics Data System (ADS)
Walton, James S.; Hodgson, Peter; Hallamasek, Karen; Palmer, Jake
2003-07-01
4DVideo is creating a general purpose capability for capturing and analyzing kinematic data from video sequences in near real-time. The core element of this capability is a software package designed for the PC platform. The software ("4DCapture") is designed to capture and manipulate customized AVI files that can contain a variety of synchronized data streams -- including audio, video, centroid locations -- and signals acquired from more traditional sources (such as accelerometers and strain gauges.) The code includes simultaneous capture or playback of multiple video streams, and linear editing of the images (together with the ancilliary data embedded in the files). Corresponding landmarks seen from two or more views are matched automatically, and photogrammetric algorithms permit multiple landmarks to be tracked in two- and three-dimensions -- with or without lens calibrations. Trajectory data can be processed within the main application or they can be exported to a spreadsheet where they can be processed or passed along to a more sophisticated, stand-alone, data analysis application. Previous attempts to develop such applications for high-speed imaging have been limited in their scope, or by the complexity of the application itself. 4DVideo has devised a friendly ("FlowStack") user interface that assists the end-user to capture and treat image sequences in a natural progression. 4DCapture employs the AVI 2.0 standard and DirectX technology which effectively eliminates the file size limitations found in older applications. In early tests, 4DVideo has streamed three RS-170 video sources to disk for more than an hour without loss of data. At this time, the software can acquire video sequences in three ways: (1) directly, from up to three hard-wired cameras supplying RS-170 (monochrome) signals; (2) directly, from a single camera or video recorder supplying an NTSC (color) signal; and (3) by importing existing video streams in the AVI 1.0 or AVI 2.0 formats. The latter is particularly useful for high-speed applications where the raw images are often captured and stored by the camera before being downloaded. Provision has been made to synchronize data acquired from any combination of these video sources using audio and visual "tags." Additional "front-ends," designed for digital cameras, are anticipated.
Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis
NASA Technical Reports Server (NTRS)
Cai, Jinsheng; Sirignano, William A.
2001-01-01
A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.
Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo
2013-05-06
A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.
Non-verbal communication through sensor fusion
NASA Astrophysics Data System (ADS)
Tairych, Andreas; Xu, Daniel; O'Brien, Benjamin M.; Anderson, Iain A.
2016-04-01
When we communicate face to face, we subconsciously engage our whole body to convey our message. In telecommunication, e.g. during phone calls, this powerful information channel cannot be used. Capturing nonverbal information from body motion and transmitting it to the receiver parallel to speech would make these conversations feel much more natural. This requires a sensing device that is capable of capturing different types of movements, such as the flexion and extension of joints, and the rotation of limbs. In a first embodiment, we developed a sensing glove that is used to control a computer game. Capacitive dielectric elastomer (DE) sensors measure finger positions, and an inertial measurement unit (IMU) detects hand roll. These two sensor technologies complement each other, with the IMU allowing the player to move an avatar through a three-dimensional maze, and the DE sensors detecting finger flexion to fire weapons or open doors. After demonstrating the potential of sensor fusion in human-computer interaction, we take this concept to the next level and apply it in nonverbal communication between humans. The current fingerspelling glove prototype uses capacitive DE sensors to detect finger gestures performed by the sending person. These gestures are mapped to corresponding messages and transmitted wirelessly to another person. A concept for integrating an IMU into this system is presented. The fusion of the DE sensor and the IMU combines the strengths of both sensor types, and therefore enables very comprehensive body motion sensing, which makes a large repertoire of gestures available to nonverbal communication over distances.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry
NASA Astrophysics Data System (ADS)
Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua
2018-04-01
Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.
Fixation not required: characterizing oculomotor attention capture for looming stimuli.
Lewis, Joanna E; Neider, Mark B
2015-10-01
A stimulus moving toward us, such as a ball being thrown in our direction or a vehicle braking suddenly in front of ours, often represents a stimulus that requires a rapid response. Using a visual search task in which target and distractor items were systematically associated with a looming object, we explored whether this sort of looming motion captures attention, the nature of such capture using eye movement measures (overt/covert), and the extent to which such capture effects are more closely tied to motion onset or the motion itself. We replicated previous findings indicating that looming motion induces response time benefits and costs during visual search Lin, Franconeri, & Enns(Psychological Science 19(7): 686-693, 2008). These differences in response times were independent of fixation, indicating that these capture effects did not necessitate overt attentional shifts to a looming object for search benefits or costs to occur. Interestingly, we found no differences in capture benefits and costs associated with differences in looming motion type. Combined, our results suggest that capture effects associated with looming motion are more likely subserved by covert attentional mechanisms rather than overt mechanisms, and attention capture for looming motion is likely related to motion itself rather than the onset of motion.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Optimizing the physical ergonomics indices for the use of partial pressure suits.
Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang
2015-03-01
This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Three-dimensional manipulation of single cells using surface acoustic waves.
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-02-09
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.
ERIC Educational Resources Information Center
Tambade, Popat S.
2011-01-01
The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…
Validation of the Leap Motion Controller using markered motion capture technology.
Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David
2016-06-14
The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observation of the wing deformation and the CFD study of cicada
NASA Astrophysics Data System (ADS)
Dai, Hu; Mohd Adam Das, Shahrizan; Luo, Haoxiang
2011-11-01
We studied the wing properties and kinematics of cicada when the 13-year species emerged in amazingly large numbers in middle Tennessee during May 2011. Using a high-speed camera, we recorded the wing motion of the insect and then reconstructed the three-dimensional wing kinematics using a video digitization software. Like many other insects, the deformation of the cicada wing is asymmetric between the downstroke and upstroke half cycles, and this particular deformation pattern would benefit production of the lift and propulsive forces. Both two-dimensional and three-dimensional CFD studies are carried out based on the reconstructed wing motion. The implication of the study on the role of the aerodynamic force in the wing deformation will be discussed. This work is sponsored by the NSF.
Computer aided photographic engineering
NASA Technical Reports Server (NTRS)
Hixson, Jeffrey A.; Rieckhoff, Tom
1988-01-01
High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Brasseur, James G.
2017-06-01
We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.
Three-dimensional mapping of microcircuit correlation structure
Cotton, R. James; Froudarakis, Emmanouil; Storer, Patrick; Saggau, Peter; Tolias, Andreas S.
2013-01-01
Great progress has been made toward understanding the properties of single neurons, yet the principles underlying interactions between neurons remain poorly understood. Given that connectivity in the neocortex is locally dense through both horizontal and vertical connections, it is of particular importance to characterize the activity structure of local populations of neurons arranged in three dimensions. However, techniques for simultaneously measuring microcircuit activity are lacking. We developed an in vivo 3D high-speed, random-access two-photon microscope that is capable of simultaneous 3D motion tracking. This allows imaging from hundreds of neurons at several hundred Hz, while monitoring tissue movement. Given that motion will induce common artifacts across the population, accurate motion tracking is absolutely necessary for studying population activity with random-access based imaging methods. We demonstrate the potential of this imaging technique by measuring the correlation structure of large populations of nearby neurons in the mouse visual cortex, and find that the microcircuit correlation structure is stimulus-dependent. Three-dimensional random access multiphoton imaging with concurrent motion tracking provides a novel, powerful method to characterize the microcircuit activity in vivo. PMID:24133414
Coarse-grained mechanics of viral shells
NASA Astrophysics Data System (ADS)
Klug, William S.; Gibbons, Melissa M.
2008-03-01
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.
Three-dimensional imaging of cultural heritage artifacts with holographic printers
NASA Astrophysics Data System (ADS)
Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola
2016-01-01
Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.
Eriksrud, Ola; Federolf, Peter; Anderson, Patrick; Cabri, Jan
2018-01-01
Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a systematic manner are scarce. The well-established star excursion balance test (SEBT) elicits primarily three-dimensional lower extremity joint movements with minimal trunk and no upper extremity joint movements. In response to these shortcomings we created the hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare joint movements elicited by the HSEBT to both SEBT joint movements and normative range of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot were obtained while capturing full-body kinematics in twenty recreationally active healthy male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total, anterior and posterior subsections and individual reaches were correlated. Total reach score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Individual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and posterior reaches demonstrated the lowest correlations (r = -.182 to .510). The HSEBT elicited more and significantly greater joint movements than the SEBT, except for hip external rotation, knee extension and plantarflexion. Comparisons to normative range of motion values showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were within normative values. The findings suggest that the HSEBT can be used for the assessment of dynamic postural control and is particularly suitable for examining full-body functional mobility.
A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour
Lin, Yi; Lin, Han; Lin, Qiuping; Zhang, Jinxin; Zhu, Ping; Lu, Yao; Zhao, Zhi; Lv, Jiahong; Lee, Mln Kyeong; Xu, Yue
2016-01-01
The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and unstable points on the smile contour using facial motion capture and curve fitting, before analyzing the correlation between soft tissue coordinates and hard tissue counterparts of the screened points. Our finding suggests that the mouth corner region was the most mobile area characterizing smile expression, while the other areas remained relatively stable. Therefore, the perioral area should be evaluated dynamically while the static assessment outcome of other parts of the smile contour contribute partially to their dynamic esthetics. Moreover, different from the end piece, morphologies of the zygomatic area and the superior part of the nasolabial crease were determined largely by the skeleton in rest, implying the latter can be altered by orthopedic or orthodontic correction and the former better improved by cosmetic procedures to improve the beauty of smile. PMID:26911450
A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour
NASA Astrophysics Data System (ADS)
Lin, Yi; Lin, Han; Lin, Qiuping; Zhang, Jinxin; Zhu, Ping; Lu, Yao; Zhao, Zhi; Lv, Jiahong; Lee, Mln Kyeong; Xu, Yue
2016-02-01
The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and unstable points on the smile contour using facial motion capture and curve fitting, before analyzing the correlation between soft tissue coordinates and hard tissue counterparts of the screened points. Our finding suggests that the mouth corner region was the most mobile area characterizing smile expression, while the other areas remained relatively stable. Therefore, the perioral area should be evaluated dynamically while the static assessment outcome of other parts of the smile contour contribute partially to their dynamic esthetics. Moreover, different from the end piece, morphologies of the zygomatic area and the superior part of the nasolabial crease were determined largely by the skeleton in rest, implying the latter can be altered by orthopedic or orthodontic correction and the former better improved by cosmetic procedures to improve the beauty of smile.
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351
Markerless 3D motion capture for animal locomotion studies
Sellers, William Irvin; Hirasaki, Eishi
2014-01-01
ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.
Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing
2010-03-01
because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may
2008-07-02
CAPE CANAVERAL, Fla. – Professor Peter Voci, NYIT MOCAP (Motion Capture) team director, (left) hands a component of the Orion Crew Module mockup to one of three technicians inside the mockup. The technicians wear motion capture suits. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.
Three-Dimensional Motion Estimation Using Shading Information in Multiple Frames
1989-09-01
j. Threle-D.imensionai GO Motion Estimation U sing, Shadin g Ilnformation in Multiple Frames- IJean-Pierre Schotf MIT Artifi -cial intelligence...vision 3-D structure 3-D vision- shape from shading multiple frames 20. ABSTRACT (Cofrn11,00 an reysrf* OWd Of Rssss00n7 Ad 4111111& F~ block f)nseq See...motion and shading have been treated as two disjoint problems. On the one hand, researchers studying motion or structure from motion often assume
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
NASA Astrophysics Data System (ADS)
Joshi, A.; LAL, S.
2017-12-01
Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.
Entanglement, holography and causal diamonds
NASA Astrophysics Data System (ADS)
de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.
2016-08-01
We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.
Cereatti, Andrea; Bonci, Tecla; Akbarshahi, Massoud; Aminian, Kamiar; Barré, Arnaud; Begon, Mickael; Benoit, Daniel L; Charbonnier, Caecilia; Dal Maso, Fabien; Fantozzi, Silvia; Lin, Cheng-Chung; Lu, Tung-Wu; Pandy, Marcus G; Stagni, Rita; van den Bogert, Antonie J; Camomilla, Valentina
2017-09-06
Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Menon, Samir; Quigley, Paul; Yu, Michelle; Khatib, Oussama
2014-01-01
Neuroimaging artifacts in haptic functional magnetic resonance imaging (Haptic fMRI) experiments have the potential to induce spurious fMRI activation where there is none, or to make neural activation measurements appear correlated across brain regions when they are actually not. Here, we demonstrate that performing three-dimensional goal-directed reaching motions while operating Haptic fMRI Interface (HFI) does not create confounding motion artifacts. To test for artifacts, we simultaneously scanned a subject's brain with a customized soft phantom placed a few centimeters away from the subject's left motor cortex. The phantom captured task-related motion and haptic noise, but did not contain associated neural activation measurements. We quantified the task-related information present in fMRI measurements taken from the brain and the phantom by using a linear max-margin classifier to predict whether raw time series data could differentiate between motion planning or reaching. fMRI measurements in the phantom were uninformative (2σ, 45-73%; chance=50%), while those in primary motor, visual, and somatosensory cortex accurately classified task-conditions (2σ, 90-96%). We also localized artifacts due to the haptic interface alone by scanning a stand-alone fBIRN phantom, while an operator performed haptic tasks outside the scanner's bore with the interface at the same location. The stand-alone phantom had lower temporal noise and had similar mean classification but a tighter distribution (bootstrap Gaussian fit) than the brain phantom. Our results suggest that any fMRI measurement artifacts for Haptic fMRI reaching experiments are dominated by actual neural responses.
Ancillao, Andrea; Savastano, Bernardo; Galli, Manuela; Albertini, Giorgio
2017-10-01
Playing string instruments requires advanced motor skills and a long training that is often spent in uncomfortable postures that may lead to injuries or musculoskeletal disorders. Thus, it is interesting to objectively characterize the motor strategy adopted by the players. In this work, we implemented a method for the quantitative analysis of the motor performance of a violin player. The proposed protocol takes advantage of an optoelectronic system and some infra-red reflecting markers in order to track player's motion. The method was tested on a professional violin player performing a legato bowing task. The biomechanical strategy of the upper limb and bow positioning were described by means of quantitative parameters and motion profiles. Measured quantities were: bow trajectory, angles, tracks, velocity, acceleration and jerk. A good repeatability of the bowing motion (CV < 2%) and high smoothness (jerk < 5 m/s 3 ) were observed. Motion profiles of shoulder, elbow and wrist were repeatable (CV < 7%) and comparable to the curves observed in other studies. Jerk and acceleration profiles demonstrated high smoothness in the ascending and descending phases of bowing. High variability was instead observed for the neck angle (CV ∼56%). "Quantitative" measurements, instead of "qualitative" observation, can support the diagnosis of motor disorders and the accurate evaluation of musicians' skills. The proposed protocol is a powerful tool for the description of musician's performance, that may be useful to document improvements in playing abilities and to adjust training strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
NASA Astrophysics Data System (ADS)
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
Animation control of surface motion capture.
Tejera, Margara; Casas, Dan; Hilton, Adrian
2013-12-01
Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.
NASA Astrophysics Data System (ADS)
Burns, J. H. R.; Delparte, D.
2017-02-01
Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.
The Dynamics of Flow and Three-dimensional Motion Around a Morphologically Complex Aquatic Plant
NASA Astrophysics Data System (ADS)
Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.
2016-12-01
Aquatic vegetation has a significant impact on the hydraulic functioning of river systems. The morphology of an individual plant can influence the mean and turbulent properties of the flow, and the plant posture reconfigures to minimise drag. We report findings from a flume and numerical experiment investigating the dynamics of motion and three-dimensional flow around an isolated Hebe odora plant over a range of flow conditions. In the flume experiment, a high definition video camera recorded plant motion dynamics and three-dimensional velocity profiles were measured using an acoustic Doppler velocimeter. By producing a binary image of the plant in each frame, the plant dynamics can be quantified. Zones of greatest plant motion are on the upper and leeward sides of the plant. With increasing flow the plant is compressed and deflected downwards by up to 18% of the unstressed height. Plant tip motions are tracked and shown to lengthen with increasing flow, transitioning from horizontally dominated to vertically dominated motion. The plant acts as a porous blockage to flow, producing spatially heterogeneous downstream velocity fields with the measured wake length decreasing by 20% with increasing flow. These measurements are then used as boundary conditions and to validate a computational fluid dynamics (CFD) model. By explicitly accounting for the time-averaged plant posture, good agreement is found between flume measurements and model predictions. The flow structures demonstrate characteristics of a junction vortex system, with plant shear layer turbulence dominated by Kelvin-Helmholtz and Görtler-type vortices generated through shear instability. With increasing flow, drag coefficients decrease by up to 8%, from 1.45 to 1.34. This is equivalent to a change in the Manning's n term from 0.086 to 0.078.
Direct Measurement of Lung Motion Using Hyperpolarized Helium-3 MR Tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Jing; Miller, G. Wilson; Altes, Talissa A.
2007-07-01
Purpose: To measure lung motion between end-inhalation and end-exhalation using a hyperpolarized helium-3 (HP {sup 3}He) magnetic resonance (MR) tagging technique. Methods and Materials: Three healthy volunteers underwent MR tagging studies after inhalation of 1 L HP {sup 3}He gas diluted with nitrogen. Multiple-slice two-dimensional and volumetric three-dimensional MR tagged images of the lungs were obtained at end-inhalation and end-exhalation, and displacement vector maps were computed. Results: The grids of tag lines in the HP {sup 3}He MR images were well defined at end-inhalation and remained evident at end-exhalation. Displacement vector maps clearly demonstrated the regional lung motion and deformationmore » that occurred during exhalation. Discontinuity and differences in motion pattern between two adjacent lung lobes were readily resolved. Conclusions: Hyperpolarized helium-3 MR tagging technique can be used for direct in vivo measurement of respiratory lung motion on a regional basis. This technique may lend new insights into the regional pulmonary biomechanics and thus provide valuable information for the deformable registration of lung.« less
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-03-11
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
Motion onset does not capture attention when subsequent motion is "smooth".
Sunny, Meera Mary; von Mühlenen, Adrian
2011-12-01
Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.
On a modified form of navier-stokes equations for three-dimensional flows.
Venetis, J
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
Heikkilä, Janne; Hynynen, Kullervo
2006-04-01
Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.
Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs
Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.
2009-01-01
Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962
Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing
2010-01-01
partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic = position 1, etc. ) and within each collection...movement was modeled by a Brownian motion 3 dimensional random walk. The one dimensional diffusion coefficient D for the ellipsoid shape with 3...temperature, kB is Boltzmann’s constant, and η is the viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three
NASA Astrophysics Data System (ADS)
Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.
2009-06-01
Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.
Trajectory of coronary motion and its significance in robotic motion cancellation.
Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor
2004-05-01
To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (<50 microm/s in the lateral plane) were observed during the P wave and the ST segment. The trajectories of the points of interest during consecutive cardiac cycles as well as during cardiac cycles minutes apart remained comparable (the differences were negligible), provided the hemodynamics remained stable. Inotrope-induced changes in cardiac contractility influenced not only the maximum excursion, but also the shape of the trajectory. Normal positive pressure ventilation displacing the heart in the thoracic cage was evident by the displacement of the reference point of the trajectory. The movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.
Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios
2017-02-01
Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.
Encounter complexes and dimensionality reduction in protein-protein association.
Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor
2014-04-08
An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.
Encounter complexes and dimensionality reduction in protein–protein association
Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor
2014-01-01
An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491
The effects of water depth on prey detection and capture by juvenile coho salmon and steelhead
J.J. Piccolo; N.F. Hughes; M.D. Bryant
2007-01-01
We used three-dimensional video analysis of feeding experiments to determine the effects of water depth on prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (0. mykiss irideus). Depth treatments were 0.15, 0.30, 0.45 and 0.60 m. Mean prey capture probabilities for both species...
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Differences in kinematic control of ankle joint motions in people with chronic ankle instability.
Kipp, Kristof; Palmieri-Smith, Riann M
2013-06-01
People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.
A supersonic, three-dimensional code for flow over blunt bodies: User's manual
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Mcmillan, O. J.
1980-01-01
A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.
Simulations of heart valves by thin shells with non-linear material properties
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali
2016-11-01
The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
Collective dynamics during cell division
NASA Astrophysics Data System (ADS)
Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina A. M.
In order to correctly divide, cells have to move all their chromosomes at the center, a process known as congression. This task is performed by the combined action of molecular motors and randomly growing and shrinking microtubules. Chromosomes are captured by growing microtubules and transported by motors using the same microtubules as tracks. Coherent motion occurs as a result of a large collection of random and deterministic dynamical events. Understanding this process is important since a failure in chromosome segregation can lead to chromosomal instability one of the hallmarks of cancer. We describe this complex process in a three dimensional computational model involving thousands of microtubules. The results show that coherent and robust chromosome congression can only happen if the total number of microtubules is neither too small, nor too large. Our results allow for a coherent interpretation a variety of biological factors already associated in the past with chromosomal instability and related pathological conditions.
Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers
NASA Astrophysics Data System (ADS)
Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik
2011-12-01
Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.
Accurate estimation of object location in an image sequence using helicopter flight data
NASA Technical Reports Server (NTRS)
Tang, Yuan-Liang; Kasturi, Rangachar
1994-01-01
In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.
Emergent dynamics of laboratory insect swarms
NASA Astrophysics Data System (ADS)
Kelley, Douglas H.; Ouellette, Nicholas T.
2013-01-01
Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been difficult to obtain. Here, we report three-dimensional, time-resolved measurements of the positions, velocities, and accelerations of individual insects in laboratory swarms of the midge Chironomus riparius. Even though the swarms do not show an overall polarisation, we find statistical evidence for local clusters of correlated motion. We also show that the swarms display an effective large-scale potential that keeps individuals bound together, and we characterize the shape of this potential. Our results provide quantitative data against which the emergent characteristics of animal aggregation models can be benchmarked.
An extended Lagrangian method for subsonic flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Loh, Ching Y.
1992-01-01
It is well known that fluid motion can be specified by either the Eulerian of Lagrangian description. Most of Computational Fluid Dynamics (CFD) developments over the last three decades have been based on the Eulerian description and considerable progress has been made. In particular, the upwind methods, inspired and guided by the work of Gudonov, have met with many successes in dealing with complex flows, especially where discontinuities exist. However, this shock capturing property has proven to be accurate only when the discontinuity is aligned with one of the grid lines since most upwind methods are strictly formulated in 1-D framework and only formally extended to multi-dimensions. Consequently, the attractive property of crisp resolution of these discontinuities is lost and research on genuine multi-dimensional approach has just been undertaken by several leading researchers. Nevertheless they are still based on the Eulerian description.
Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing
NASA Astrophysics Data System (ADS)
Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel
The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.
Holly, Jan E.; Masood, M. Arjumand; Bhandari, Chiran S.
2017-01-01
Head movements during sustained rotation can cause angular cross-coupling which leads to tumbling illusions. Even though angular vectors predict equal magnitude illusions for head movements in opposite directions, the magnitudes of the illusions are often surprisingly asymmetric, such as during leftward versus rightward yaw while horizontal in a centrifuge. This paper presents a comprehensive investigation of the angular-linear stimulus combinations from eight different published papers in which asymmetries were found. Interactions between all angular and linear vectors, including gravity, are taken into account to model the three-dimensional consequences of the stimuli. Three main results followed. First, for every pair of head yaw movements, an asymmetry was found in the stimulus itself when considered in a fully three-dimensional manner, and the direction of the asymmetry matched the subjectively reported magnitude asymmetry. Second, for pitch and roll head movements for which motion sickness was measured, the stimulus was found symmetric in every case except one, and motion sickness generally aligned with other factors such as the existence of a head rest. Third, three-dimensional modeling predicted subjective inconsistency in the direction of perceived rotation when linear and angular components were oppositely-directed, and predicted surplus illusory rotation in the direction of head movement. PMID:27814310
Simulating an Exploding Fission-Bomb Core
NASA Astrophysics Data System (ADS)
Reed, Cameron
2016-03-01
A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.
Shell, Jaymee R; Robbins, Shawn M K; Dixon, Philippe C; Renaud, Philippe J; Turcotte, René A; Wu, Tom; Pearsall, David J
2017-09-01
The forward skating start is a fundamental skill for male and female ice hockey players. However, performance differences by athlete's sex cannot be fully explained by physiological variables; hence, other factors such as skating technique warrant examination. Therefore, the purpose of this study was to evaluate the body movement kinematics of ice hockey skating starts between elite male and female ice hockey participants. Male (n = 9) and female (n = 10) elite ice hockey players performed five forward skating start accelerations. An 18-camera motion capture system placed on the arena ice surface captured full-body kinematics during the first seven skating start steps within 15 meters. Males' maximum skating speeds were greater than females. Skating technique sex differences were noted: in particular, females presented ~10° lower hip abduction throughout skating stance as well as ~10° greater knee extension at initial ice stance contact, conspicuously followed by a brief cessation in knee extension at the moment of ice contact, not evident in male skaters. Further study is warranted to explain why these skating technique differences exist in relation to factors such as differences in training, equipment, performance level, and anthropometrics.
Lubaba, Caesar H; Hidano, Arata; Welburn, Susan C; Revie, Crawford W; Eisler, Mark C
2015-01-01
Two-dimensional motion sensors use electronic accelerometers to record the lying, standing and walking activity of cattle. Movement behaviour data collected automatically using these sensors over prolonged periods of time could be of use to stakeholders making management and disease control decisions in rural sub-Saharan Africa leading to potential improvements in animal health and production. Motion sensors were used in this study with the aim of monitoring and quantifying the movement behaviour of traditionally managed Angoni cattle in Petauke District in the Eastern Province of Zambia. This study was designed to assess whether motion sensors were suitable for use on traditionally managed cattle in two veterinary camps in Petauke District in the Eastern Province of Zambia. In each veterinary camp, twenty cattle were selected for study. Each animal had a motion sensor placed on its hind leg to continuously measure and record its movement behaviour over a two week period. Analysing the sensor data using principal components analysis (PCA) revealed that the majority of variability in behaviour among studied cattle could be attributed to their behaviour at night and in the morning. The behaviour at night was markedly different between veterinary camps; while differences in the morning appeared to reflect varying behaviour across all animals. The study results validate the use of such motion sensors in the chosen setting and highlight the importance of appropriate data summarisation techniques to adequately describe and compare animal movement behaviours if association to other factors, such as location, breed or health status are to be assessed.
Multiple object, three-dimensional motion tracking using the Xbox Kinect sensor
NASA Astrophysics Data System (ADS)
Rosi, T.; Onorato, P.; Oss, S.
2017-11-01
In this article we discuss the capability of the Xbox Kinect sensor to acquire three-dimensional motion data of multiple objects. Two experiments regarding fundamental features of Newtonian mechanics are performed to test the tracking abilities of our setup. Particular attention is paid to check and visualise the conservation of linear momentum, angular momentum and energy. In both experiments, two objects are tracked while falling in the gravitational field. The obtained data is visualised in a 3D virtual environment to help students understand the physics behind the performed experiments. The proposed experiments were analysed with a group of university students who are aspirant physics and mathematics teachers. Their comments are presented in this paper.
Motion capture for human motion measuring by using single camera with triangle markers
NASA Astrophysics Data System (ADS)
Takahashi, Hidenori; Tanaka, Takayuki; Kaneko, Shun'ichi
2005-12-01
This study aims to realize a motion capture for measuring 3D human motions by using single camera. Although motion capture by using multiple cameras is widely used in sports field, medical field, engineering field and so on, optical motion capture method with one camera is not established. In this paper, the authors achieved a 3D motion capture by using one camera, named as Mono-MoCap (MMC), on the basis of two calibration methods and triangle markers which each length of side is given. The camera calibration methods made 3D coordinates transformation parameter and a lens distortion parameter with Modified DLT method. The triangle markers enabled to calculate a coordinate value of a depth direction on a camera coordinate. Experiments of 3D position measurement by using the MMC on a measurement space of cubic 2 m on each side show an average error of measurement of a center of gravity of a triangle marker was less than 2 mm. As compared with conventional motion capture method by using multiple cameras, the MMC has enough accuracy for 3D measurement. Also, by putting a triangle marker on each human joint, the MMC was able to capture a walking motion, a standing-up motion and a bending and stretching motion. In addition, a method using a triangle marker together with conventional spherical markers was proposed. Finally, a method to estimate a position of a marker by measuring the velocity of the marker was proposed in order to improve the accuracy of MMC.
Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms
NASA Astrophysics Data System (ADS)
Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji
2018-06-01
An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.
Interface of Augmented Reality Game Using Face Tracking and Its Application to Advertising
NASA Astrophysics Data System (ADS)
Lee, Young Jae; Lee, Yong Jae
This paper proposes the face interface method which can be used in recognizing gamer's movements in the real world for application in the cyber space so that we could make three-dimensional space recognition motion-based game. The proposed algorithm is the new face recognition technology which incorporates the strengths of two existing algorithms, CBCH and CAMSHIFT and its validity has been proved through a series of experiments. Moreover, for the purpose of the interdisciplinary studies, concepts of advertising have been introduced into the three-dimensional motion-based game to look into the possible new beneficiary models for the game industry. This kind of attempt may be significant in that it tried to see if the advertising brand when placed in the game could play the role of the game item or quest. The proposed method can provide the basic references for developing motion-based game development.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Evans, K. S.
1974-01-01
The three dimensional equations of motion for a cable connected space station--counterweight system are developed using a Lagrangian formulation. The system model employed allows for cable and end body damping and restoring effects. The equations are then linearized about the equilibrium motion and nondimensionalized. To first degree, the out-of-plane equations uncouple from the inplane equations. Therefore, the characteristic polynomials for the in-plane and out-of-plane equations are developed and treated separately. From the general in-plane characteristic equation, necessary conditions for stability are obtained. The Routh-Hurwitz necessary and sufficient conditions for stability are derived for the general out-of-plane characteristic equation. Special cases of the in-plane and out-of-plane equations (such as identical end masses, and when the cable is attached to the centers of mass of the two end bodies) are then examined for stability criteria.
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-01-01
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372
Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
Stereoscopic 3D entertainment and its effect on viewing comfort: comparison of children and adults.
Pölönen, Monika; Järvenpää, Toni; Bilcu, Beatrice
2013-01-01
Children's and adults' viewing comfort during stereoscopic three-dimensional film viewing and computer game playing was studied. Certain mild changes in visual function, heterophoria and near point of accommodation values, as well as eyestrain and visually induced motion sickness levels were found when single setups were compared. The viewing system had an influence on viewing comfort, in particular for eyestrain levels, but no clear difference between two- and three-dimensional systems was found. Additionally, certain mild changes in visual functions and visually induced motion sickness levels between adults and children were found. In general, all of the system-task combinations caused mild eyestrain and possible changes in visual functions, but these changes in magnitude were small. According to subjective opinions that further support these measurements, using a stereoscopic three-dimensional system for up to 2 h was acceptable for most of the users regardless of their age. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel
2015-03-01
Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.
The "Collisions Cube" Molecular Dynamics Simulator.
ERIC Educational Resources Information Center
Nash, John J.; Smith, Paul E.
1995-01-01
Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Human body motion capture from multi-image video sequences
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2003-01-01
In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.
NASA Astrophysics Data System (ADS)
Xu, Yong; Dong, Wen-Cai
2013-08-01
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
Active elastic dimers: cells moving on rigid tracks.
Lopez, J H; Das, Moumita; Schwarz, J M
2014-09-01
Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability, while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility (and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not require Arp2/3 actin filament nucleation for net motion.
Quantized vortices and superflow in arbitrary dimensions: structure, energetics and dynamics
NASA Astrophysics Data System (ADS)
Goldbart, Paul M.; Bora, Florin
2009-05-01
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of codimension 2, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between the vortical superflow and Ampère-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension 4 and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three-dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.
Samba: a real-time motion capture system using wireless camera sensor networks.
Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai
2014-03-20
There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.
Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks
Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai
2014-01-01
There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618
Robust object tracking techniques for vision-based 3D motion analysis applications
NASA Astrophysics Data System (ADS)
Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.
2016-04-01
Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
This document is the user's manual of 3DFATMIC, a 3-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals Model using a Lagrangian-Eulerian adapted zooming and peak capturing (LEZOOMPC) algorithm.
Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin
2015-09-01
The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. © 2015 Wiley Periodicals, Inc.
Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339
A two-dimensional solution of the FW-H equation for rectilinear motion of sources
NASA Astrophysics Data System (ADS)
Bozorgi, Alireza; Siozos-Rousoulis, Leonidas; Nourbakhsh, Seyyed Ahmad; Ghorbaniasl, Ghader
2017-02-01
In this paper, a subsonic solution of the two-dimensional Ffowcs Williams and Hawkings (FW-H) equation is presented for calculation of noise generated by sources moving with constant velocity in a medium at rest or in a moving medium. The solution is represented in the frequency domain and is valid for observers located far from the noise sources. In order to verify the validity of the derived formula, three test cases are considered, namely a monopole, a dipole, and a quadrupole source in a medium at rest or in motion. The calculated results well coincide with the analytical solutions, validating the applicability of the formula to rectilinear subsonic motion problems.
NASA Technical Reports Server (NTRS)
Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.
1992-01-01
A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Y.; Dutta, P.; Schupp, P.E.
1995-12-31
Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.
Wædegaard, Kristian J; Balling, Peter
2011-02-14
An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.
Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Olson, Erik D.
2016-01-01
Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.
Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task
ERIC Educational Resources Information Center
Keller, Peter E.; Dalla Bella, Simone; Koch, Iring
2010-01-01
The role of anticipatory auditory imagery in music-like sequential action was investigated by examining timing accuracy and kinematics using a motion capture system. Musicians responded to metronomic pacing signals by producing three unpaced taps on three vertically aligned keys at the given tempo. Taps triggered tones in two out of three blocked…
Mao, Ling-Feng; Ning, Huansheng; Li, Xijun
2015-12-01
We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.
Daniele Tonina; John M. Buffington
2009-01-01
A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era
NASA Astrophysics Data System (ADS)
Massari, D.; Breddels, M. A.; Helmi, A.; Posti, L.; Brown, A. G. A.; Tolstoy, E.
2018-02-01
The three-dimensional motions of stars in small galaxies beyond our own are minute, yet they are crucial for understanding the nature of gravity and dark matter1,2. Even for the dwarf galaxy Sculptor—one of the best-studied systems, which is inferred to be strongly dark matter dominated3,4—there are conflicting reports5-7 on its mean motion around the Milky Way, and the three-dimensional internal motions of its stars have never been measured. Here, we present precise proper motions of Sculptor's stars based on data from the Gaia mission8 and Hubble Space Telescope. Our measurements show that Sculptor moves around the Milky Way on a high-inclination elongated orbit that takes it much further out than previously thought. For Sculptor's internal velocity dispersions, we find σR = 11.5 ± 4.3 km s-1 and σT = 8.5 ± 3.2 km s-1 along the projected radial and tangential directions. Thus, the stars in our sample move preferentially on radial orbits as quantified by the anisotropy parameter, which we find to be β
Charbonnier, Caecilia; Kolo, Frank C; Duthon, Victoria B; Magnenat-Thalmann, Nadia; Becker, Christoph D; Hoffmeyer, Pierre; Menetrey, Jacques
2011-03-01
Early hip osteoarthritis in dancers could be explained by femoroacetabular impingements. However, there is a lack of validated noninvasive methods and dynamic studies to ascertain impingement during motion. Moreover, it is unknown whether the femoral head and acetabulum are congruent in typical dancing positions. The practice of some dancing movements could cause a loss of hip joint congruence and recurrent impingements, which could lead to early osteoarthritis. Descriptive laboratory study. Eleven pairs of female dancer's hips were motion captured with an optical tracking system while performing 6 different dancing movements. The resulting computed motions were applied to patient-specific hip joint 3-dimensional models based on magnetic resonance images. While visualizing the dancer's hip in motion, the authors detected impingements using computer-assisted techniques. The range of motion and congruence of the hip joint were also quantified in those 6 recorded dancing movements. The frequency of impingement and subluxation varied with the type of movement. Four dancing movements (développé à la seconde, grand écart facial, grand écart latéral, and grand plié) seem to induce significant stress in the hip joint, according to the observed high frequency of impingement and amount of subluxation. The femoroacetabular translations were high (range, 0.93 to 6.35 mm). For almost all movements, the computed zones of impingement were mainly located in the superior or posterosuperior quadrant of the acetabulum, which was relevant with respect to radiologically diagnosed damaged zones in the labrum. All dancers' hips were morphologically normal. Impingements and subluxations are frequently observed in typical ballet movements, causing cartilage hypercompression. These movements should be limited in frequency. The present study indicates that some dancing movements could damage the hip joint, which could lead to early osteoarthritis.
NASA Astrophysics Data System (ADS)
Amalia, E.; Moelyadi, M. A.; Ihsan, M.
2018-04-01
The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.
Tangle-Free Finite Element Mesh Motion for Ablation Problems
NASA Technical Reports Server (NTRS)
Droba, Justin
2016-01-01
In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.
Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T
2009-01-01
Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P
The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model
Zhang, Zhaoyan
2014-01-01
Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284
Unsteady flow motions in the supraglottal region during phonation
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Dai, Hu
2008-11-01
The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.
Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K
2011-08-01
With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs more development to make it clinically efficacious. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamrouni, Sameh; Rougon, Nicolas; Pr"teux, Françoise
2011-03-01
In perfusion MRI (p-MRI) exams, short-axis (SA) image sequences are captured at multiple slice levels along the long-axis of the heart during the transit of a vascular contrast agent (Gd-DTPA) through the cardiac chambers and muscle. Compensating cardio-thoracic motions is a requirement for enabling computer-aided quantitative assessment of myocardial ischaemia from contrast-enhanced p-MRI sequences. The classical paradigm consists of registering each sequence frame on a reference image using some intensity-based matching criterion. In this paper, we introduce a novel unsupervised method for the spatio-temporal groupwise registration of cardiac p-MRI exams based on normalized mutual information (NMI) between high-dimensional feature distributions. Here, local contrast enhancement curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization to a target feature distribution derived from a registered reference template. The hard issue of probability density estimation in high-dimensional state spaces is bypassed by using consistent geometric entropy estimators, allowing NMI to be computed directly from feature samples. Specifically, a computationally efficient kth-nearest neighbor (kNN) estimation framework is retained, leading to closed-form expressions for the gradient flow of NMI over finite- and infinite-dimensional motion spaces. This approach is applied to the groupwise alignment of cardiac p-MRI exams using a free-form Deformation (FFD) model for cardio-thoracic motions. Experiments on simulated and natural datasets suggest its accuracy and robustness for registering p-MRI exams comprising more than 30 frames.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
Concept verification of three dimensional free motion simulator for space robot
NASA Technical Reports Server (NTRS)
Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett
1994-01-01
In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.
Real-time stylistic prediction for whole-body human motions.
Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun
2012-01-01
The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hydroelastic behaviour of a structure exposed to an underwater explosion
Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.
2015-01-01
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585
Ubiquitous human upper-limb motion estimation using wearable sensors.
Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang
2011-07-01
Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Settling dynamics of asymmetric rigid fibers
E.J. Tozzi; C Tim Scott; David Vahey; D.J. Klingenberg
2011-01-01
The three-dimensional motion of asymmetric rigid fibers settling under gravity in a quiescent fluid was experimentally measured using a pair of cameras located on a movable platform. The particle motion typically consisted of an initial transient after which the particle approached a steady rate of rotation about an axis parallel to the acceleration of gravity, with...
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung
2012-10-08
Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.
Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C
2018-03-01
Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder internal rotation, and elbow flexion. However, digital photography was only more precise than goniometry for measurements of elbow flexion. Overall digital photography shows equivalent accuracy to visual estimation and goniometry, but with higher precision than visual estimation. Copyright © 2017. Published by Elsevier B.V.
Identification of aerodynamic models for maneuvering aircraft
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Hu, C. C.
1992-01-01
A Fourier analysis method was developed to analyze harmonic forced-oscillation data at high angles of attack as functions of the angle of attack and its time rate of change. The resulting aerodynamic responses at different frequencies are used to build up the aerodynamic models involving time integrals of the indicial type. An efficient numerical method was also developed to evaluate these time integrals for arbitrary motions based on a concept of equivalent harmonic motion. The method was verified by first using results from two-dimensional and three-dimensional linear theories. The developed models for C sub L, C sub D, and C sub M based on high-alpha data for a 70 deg delta wing in harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic models are further verified by comparing with test data using ramp-type motions.
NASA Astrophysics Data System (ADS)
Shao, Xinxing; Zhu, Feipeng; Su, Zhilong; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan
2018-03-01
The strain errors in stereo-digital image correlation (DIC) due to camera calibration were investigated using precisely controlled numerical experiments and real experiments. Three-dimensional rigid body motion tests were conducted to examine the effects of camera calibration on the measured results. For a fully accurate calibration, rigid body motion causes negligible strain errors. However, for inaccurately calibrated camera parameters and a short working distance, rigid body motion will lead to more than 50-μɛ strain errors, which significantly affects the measurement. In practical measurements, it is impossible to obtain a fully accurate calibration; therefore, considerable attention should be focused on attempting to avoid these types of errors, especially for high-accuracy strain measurements. It is necessary to avoid large rigid body motions in both two-dimensional DIC and stereo-DIC.
Differences in wrist mechanics during the golf swing based on golf handicap.
Fedorcik, Gregory G; Queen, Robin M; Abbey, Alicia N; Moorman, Claude T; Ruch, David S
2012-05-01
Variation in swing mechanics between golfers of different skill levels has been previously reported. To investigate if differences in three-dimensional wrist kinematics and the angle of golf club descent between low and high handicap golfers. A descriptive laboratory study was performed with twenty-eight male golfers divided into two groups, low handicap golfers (handicap = 0-5, n = 15) and high handicap golfers (handicap ≥ 10, n = 13). Bilateral peak three-dimensional wrist mechanics, bilateral wrist mechanics at ball contact (BC), peak angle of descent from the end of the backswing to ball contact, and the angle of descent when the forearm was parallel to the ground (DEC-PAR) were determined using an 8 camera motion capture system. Independent t-tests were completed for each study variable (α = 0.05). Pearson correlation coefficients were determined between golf handicap and each of the study variables. The peak lead arm radial deviation (5.7 degrees, p = 0.008), lead arm radial deviation at ball contact (7.1 degrees, p = 0.001), and DEC-PAR (15.8 degrees, p = 0.002) were significantly greater in the high handicap group. In comparison with golfers with a low handicap, golfers with a high handicap have increased radial deviation during the golf swing and at ball contact. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, A., E-mail: davidsoa@physics.ucla.edu; Tableman, A., E-mail: Tableman@physics.ucla.edu; An, W., E-mail: anweiming@ucla.edu
2015-01-15
For many plasma physics problems, three-dimensional and kinetic effects are very important. However, such simulations are very computationally intensive. Fortunately, there is a class of problems for which there is nearly azimuthal symmetry and the dominant three-dimensional physics is captured by the inclusion of only a few azimuthal harmonics. Recently, it was proposed [1] to model one such problem, laser wakefield acceleration, by expanding the fields and currents in azimuthal harmonics and truncating the expansion. The complex amplitudes of the fundamental and first harmonic for the fields were solved on an r–z grid and a procedure for calculating the complexmore » current amplitudes for each particle based on its motion in Cartesian geometry was presented using a Marder's correction to maintain the validity of Gauss's law. In this paper, we describe an implementation of this algorithm into OSIRIS using a rigorous charge conserving current deposition method to maintain the validity of Gauss's law. We show that this algorithm is a hybrid method which uses a particles-in-cell description in r–z and a gridless description in ϕ. We include the ability to keep an arbitrary number of harmonics and higher order particle shapes. Examples for laser wakefield acceleration, plasma wakefield acceleration, and beam loading are also presented and directions for future work are discussed.« less
Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System
NASA Astrophysics Data System (ADS)
Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.
2017-01-01
‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.
NASA Astrophysics Data System (ADS)
Hu, X.; Lu, Z.; Pierson, T. C.; Kramer, R.
2017-12-01
Understanding the precipitation triggering mechanism and quantifying the creeping landslide thickness are important to conduct early warnings and estimate potential failure volume and runout extent. However, it is problematic to use traditional geodetic methods to identify the active landslide boundaries and capture the transient mobility over hilly and vegetated landslide landscape. Here we present a novel InSAR processing strategy to characterize the spatial distribution and temporal behavior of the landslide movement in response to precipitation over Crescent lake landslide, WA using spaceborne SAR data of ALOS-1 PALSAR-1, ALOS-2 PALSAR-2 and Sentinel-1A. Time-series measurements reveal the seasonal deformation of landslide lobe, showing a much larger magnitude compared to the motion at lower elevated terrain expressed by an off-slide GPS station, suggesting an amplified hydrological loading effect associated with thick unconsolidated zone. Thanks to the high temporal resolution of Sentinel-1A and on-slide GPS data, we capture the progressive incipient motions in the wet season, characterized by the elastic slope-normal contraction due to loading during antecedent rainfall, followed by downslope slip and lateral propagation in less than one-month intense precipitation, because the elevated pore pressure and the reduced friction at the basal instigate the shear motion. The proposed threshold precipitation concept, in terms of the intensity and duration, can be an integral part of the landslide warning system. The active thickness can be inverted using three-dimensional (3D) displacement map based on the principle of mass conservation. We extract quasi-3D displacements using two independent (ascending and descending) InSAR measurements assuming that the targets move exclusively along the aspect direction on the slope-parallel plane. This routine of the extraction of quasi-3D displacement and the inversion of active lobe thickness can be utilized in the study of landslides, glaciers, volcanos, dams, etc.
Reading, Stacey A; Prickett, Karel
2013-06-01
New-generation active videogames (AVGs) use motion-capture video cameras to connect a player's arm, leg, and body movements through three-dimensional space to on-screen activity. We sought to determine if the whole-body movements required to play the AVG elicited moderate-intensity physical activity (PA) in children. A secondary aim was to examine the utility of using accelerometry to measure the activity intensity of AVG play in this age group. The PA levels of boys (n=26) and girls (n=15) 5-12 years of age were measured by triaxial accelerometry (n=25) or accelerometry and indirect calorimetry (IC) (n=16) while playing the "Kinect Adventures!" videogame for the Xbox Kinect (Microsoft(®), Redmond, WA) gaming system. The experiment simulated a typical 20-minute in-home free-play gaming session. Using 10-second recording epochs, the average (mean±standard deviation) PA intensity over 20 minutes was 4.4±0.9, 3.2±0.7, and 3.3±0.6 metabolic equivalents (METs) when estimated by IC or vertical axis (Crouter et al. intermittent lifestyle equation for vertical axis counts/10 seconds [Cva2RM]) and vector magnitude (Crouter et al. intermittent lifestyle equation for vector magnitude counts/10 seconds [Cvm2RM]) accelerometry. In total, 16.9±3.2 (IC), 10.6±4.5 (Cva2RM), and 11.1±3.9 (Cvm2RM) minutes of game playing time were at a 3 MET intensity or higher. In this study, children played the Xbox Kinect AVG at moderate-intensity PA levels. The study also showed that current accelerometry-based methods underestimated the PA of AVG play compared with IC. With proper guidance and recommendations for use, video motion-capture AVG systems could reduce sedentary screen time and increase total daily moderate PA levels for children. Further study of these AVG systems is warranted.
Analysis of 3D vortex motion in a dusty plasma
NASA Astrophysics Data System (ADS)
Mulsow, M.; Himpel, M.; Melzer, A.
2017-12-01
Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.
Microstructured block copolymer surfaces for control of microbe capture and aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.
2014-01-01
The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less
Inertial Motion Capture Costume Design Study
Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad
2017-01-01
The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337
Three-dimensional modeling and animation of two carpal bones: a technique.
Green, Jason K; Werner, Frederick W; Wang, Haoyu; Weiner, Marsha M; Sacks, Jonathan M; Short, Walter H
2004-05-01
The objectives of this study were to (a). create 3D reconstructions of two carpal bones from single CT data sets and animate these bones with experimental in vitro motion data collected during dynamic loading of the wrist joint, (b). develop a technique to calculate the minimum interbone distance between the two carpal bones, and (c). validate the interbone distance calculation process. This method utilized commercial software to create the animations and an in-house program to interface with three-dimensional CAD software to calculate the minimum distance between the irregular geometries of the bones. This interbone minimum distance provides quantitative information regarding the motion of the bones studied and may help to understand and quantify the effects of ligamentous injury.
Three-dimensional ballistocardiography and respiratory motion in sustained microgravity
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Verhaeghe, S.; Padeken, D.; Hamacher, H.; Paiva, M.; West, J. B. (Principal Investigator)
2001-01-01
BACKGROUND: We measured the three-dimensional ballistocardiogram (BCG) in a free-floating subject in sustained microgravity during spaceflight to test the usefulness of such measurements for future non-invasive monitoring of cardiac function, and to examine the effects of respiratory movement on the BCG in three axes. METHODS: Acceleration was measured using a three-axis accelerometer fastened to the lumbar region of the subject while simultaneous recordings of ECG, and respiratory motion via impedance plethysmography were also made. Data were recorded during a 146-s period of inactivity on the part of the subject during which time there was no contact with the spacecraft. RESULTS: Total body motion due to respiratory activity was consistent with that calculated from the known action of the diaphragm and conservation of momentum. The accelerations due to cardiac activity, ensemble averaged over the R-R interval, were greatest along the head-to-foot axis. Maximum amplitude of the HIJK complex of the BCG generated by ventricular ejection was greatest in the head to foot axis (approximately 70 x 10(-3) m x s(-2)), but there were also substantial accelerations along the dorsoventral axis of up to 43 10(-3) m x s(-2), that are not measured interrestrial two-dimensional studies. The amplitude of the BCG was strongly affected by lung volume, with accelerations being reduced 50 to 70% between end-inspiration and end-expiration. CONCLUSIONS: These data suggest a greatly reduced transmission of the cardiac motion to the body at end-expiration (FRC) than at higher lung volumes. The BCG might be further developed as a non-invasive means of monitoring parameters such as stroke volume in microgravity.
Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.
Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli
2017-07-01
Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (<5°) for most of the parameters. The Bland-Altman plots indicated that there was no systematic error or bias in kinematic measurements and showed good agreement between measurements obtained on two different days. These results indicate that kinematic gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul
2013-01-01
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling. PMID:24204763
Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul
2013-01-01
It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.
Wasser, Joseph G; Chen, Cong; Vincent, Heather K
2016-07-01
Low back pain (LBP) and motion alterations can occur in athletes who engage in high-speed throwing motions. The relationship between LBP and shooting motion in lacrosse players is not yet known. To quantify the effects of LBP on key kinematic parameters of the lacrosse shot and determine the contribution of the severity of LBP on specific kinematic parameters of the shooting motion. Controlled laboratory study. High school and collegiate players (N = 24) were stratified into 2 groups based on back pain symptoms (LBP or no pain). Three-dimensional motion capture of overhead throws was used to collect data on knee, pelvis, trunk, and shoulder kinematics as well as crosse stick (the stick capped with a strung net) and ball speed. Mean low back numeric pain rating scale (NRSpain) score was 2.9. Knee flexion at ball release was greater in the LBP than no pain group, indicating a more bent knee (P = .04). The LBP group demonstrated less angular velocity transfer from pelvis to trunk than the no pain group (P = .05). Total range of motion of the pelvis and shoulders during the shot and follow-through were less in the LBP group than the no pain group (83.6° ± 24.5° vs 75.9° ± 24.5°, P = .05). Age- and sex-adjusted regression analyses revealed that the low back NRSpain rating contributed 6.3% to 25.0% of the variance to the models of shoulder transverse rotation range of motion, trunk and shoulder rotation angular velocities, and knee flexion angle (P < .05). LBP severity significantly contributes to trunk and shoulder motion restriction during lacrosse shooting. Inclusion of lumbopelvic and core training and prehabilitation programs for high school and collegiate players may reduce pain in affected players as well as help them to attain appropriate motion parameters and avoid secondary musculoskeletal injuries. This research identified a prehabilitation need in the understudied lacrosse population. Therapeutic strategies can be developed to strengthen the throwing motion, which could control mechanical loading patterns on the low back and minimize pain symptoms in players with chronic LBP.
Lorenz, N D; Channon, S; Pettitt, R; Smirthwaite, P; Innes, J F
2015-01-01
Introduction of the Sirius® canine total elbow arthroplasty system, and presentation of the results of a passive range-of-motion analysis based on ex vivo kinematic studies pre-and post-implantation. Thoracic limbs (n = 4) of medium sized dogs were harvested by forequarter amputation. Plain orthogonal radiographs of each limb were obtained pre- and post-implantation. Limbs were prepared by placement of external fixator pins and Kirschner wires into the humerus and radius. Each limb was secured into a custom-made box frame and retro-reflective markers were placed on the exposed ends of the pins and wires. Each elbow was manually moved through five ranges-of-motion manoeuvres. Data collected included six trials of i) full extension to full flexion and ii) pronation and supination in 90° flexion; a three-dimensional motion capture system was used to collect and analyse the data. The Sirius elbow prosthesis was subsequently implanted and the same measurements were repeated. Data sets were tested for normality. Paired t-tests were used for comparison of pre- and post-implantation motion parameters. Kinematic analysis showed that the range-of-motion (mean and SD) for flexion and extension pre-implantation was 115° ± 6 (range: 25° to 140°). The range-of-motion in the sagittal plane post-implantation was 90° ± 4 (range: 36° to 130°) and this reduction was significant (p = 0.0001). The ranges-of-motion (mean and SD) for supination and pronation at 90° were 50° ± 5, whereas the corresponding mean ranges-of-motion post-implantation were 38° ± 6 (p = 0.0188). Compared to a normal elbow, the range-of-motion was reduced. Post-implantation, supination and pronation range-of-motion was significantly reduced at 90° over pre-implantation values. These results provide valuable information regarding the effect of the Sirius system on ex vivo kinematics of the normal canine elbow joint. Further, this particular ex vivo model allowed for satisfactory and repeatable kinematic analysis.
Single camera volumetric velocimetry in aortic sinus with a percutaneous valve
NASA Astrophysics Data System (ADS)
Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit
2016-11-01
Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.
Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R
2017-12-01
The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the vacuum-mattress splint compared with the rigid backboard in varying sized equipped or nonequipped athletes. Cervical spine motion occurs when removing a football helmet and shoulder pads, at an unknown risk to the injured athlete. In athletes who weighed more than 250 lb, immobilization with the rigid board helped to reduce cervical spine motion. Athletic trainers and team physicians should consider immobilization of athletes who weigh more than 250 lb with a rigid board.
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J.; Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400
2015-06-11
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J., E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: matthewj@nu.ac.th
2015-06-01
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
Analytical and multibody modeling for the power analysis of standing jumps.
Palmieri, G; Callegari, M; Fioretti, S
2015-01-01
Two methods for the power analysis of standing jumps are proposed and compared in this article. The first method is based on a simple analytical formulation which requires as input the coordinates of the center of gravity in three specified instants of the jump. The second method is based on a multibody model that simulates the jumps processing the data obtained by a three-dimensional (3D) motion capture system and the dynamometric measurements obtained by the force platforms. The multibody model is developed with OpenSim, an open-source software which provides tools for the kinematic and dynamic analyses of 3D human body models. The study is focused on two of the typical tests used to evaluate the muscular activity of lower limbs, which are the counter movement jump and the standing long jump. The comparison between the results obtained by the two methods confirms that the proposed analytical formulation is correct and represents a simple tool suitable for a preliminary analysis of total mechanical work and the mean power exerted in standing jumps.
Three-dimensional manipulation of single cells using surface acoustic waves
Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2016-01-01
The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.
Multi-segmental movement patterns reflect juggling complexity and skill level.
Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella
2017-08-01
The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.
A priori motion models for four-dimensional reconstruction in gated cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalush, D.S.; Tsui, B.M.W.; Cui, Lin
1996-12-31
We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these {open_quotes}most likely{close_quotes} motion vectors.more » To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies.« less
Does the Powers™ strap influence the lower limb biomechanics during running?
Greuel, Henrike; Herrington, Lee; Liu, Anmin; Jones, Richard K
2017-09-01
Previous research has reported a prevalence of running related injuries in 25.9% to 72% of all runners. A greater hip internal rotation and adduction during the stance phase in running has been associated with many running related injuries, such as patellofemoral pain. Researchers in the USA designed a treatment device 'the Powers™ strap' to facilitate an external rotation of the femur and to thereby control abnormal hip and knee motion during leisure and sport activities. However, to date no literature exists to demonstrate whether the Powers™ strap is able to reduce hip internal rotation during running. 22 healthy participants, 11 males and 11 females (age: 27.45±4.43 years, height: 1.73±0.06m, mass: 66.77±9.24kg) were asked to run on a 22m track under two conditions: without and with the Powers™ strap. Three-dimensional motion analysis was conducted using ten Qualisys OQUS 7 cameras (Qualisys AB, Sweden) and force data was captured with three AMTI force plates (BP600900, Advanced Mechanical Technology, Inc.USA). Paired sample t-tests were performed at the 95% confidence interval on all lower limb kinematic and kinetic data. The Powers™ strap significantly reduced hip and knee internal rotation throughout the stance phase of running. These results showed that the Powers™ strap has the potential to influence hip motion during running related activities, in doing so this might be beneficial for patients with lower limb injuries. Future research should investigate the influence of the Powers™ strap in subjects who suffer from running related injuries, such as patellofemoral pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Gonjo, Tomohiro; McCabe, Carla; Sousa, Ana; Ribeiro, João; Fernandes, Ricardo J; Vilas-Boas, João Paulo; Sanders, Ross
2018-06-01
The purpose of this study was to determine kinematic and energetic differences between front crawl and backstroke performed at the same aerobic speeds. Ten male competitive swimmers performed front crawl and backstroke at a pre-determined sub-anaerobic threshold speed to assess energy cost (through oxygen uptake measurement) and kinematics (using three-dimensional videography to determine stroke frequency and length, intra-cycle velocity fluctuation, three-dimensional wrist and ankle speeds, and vertical and lateral ankle range of motion). For detailed kinematic analysis, resultant displacement, the duration, and three-dimensional speed of the wrist during the entry, pull, push, and release phases were also investigated. There were no differences in stroke frequency/length and intra-cycle velocity fluctuation between the swimming techniques, however, swimmers had lower energy cost in front crawl than in backstroke (0.77 ± 0.08 vs 0.91 ± 0.12 kJ m -1 , p < 0.01). Slower three-dimensional wrist and ankle speeds under the water (1.29 ± 0.10 vs 1.55 ± 0.10 and 0.80 ± 0.16 vs 0.97 ± 0.13 m s -1 , both p < 0.01) and smaller ankle vertical range of motion (0.36 ± 0.06 vs 0.47 ± 0.07 m, p < 0.01) in front crawl than in backstroke were also observed, which indirectly suggested higher propulsive efficiency in front crawl. Front crawl is less costly than backstroke, and limbs motion in front crawl is more effective than in backstroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.
A new software tool for 3D motion analyses of the musculo-skeletal system.
Leardini, A; Belvedere, C; Astolfi, L; Fantozzi, S; Viceconti, M; Taddei, F; Ensini, A; Benedetti, M G; Catani, F
2006-10-01
Many clinical and biomechanical research studies, particularly in orthopaedics, nowadays involve forms of movement analysis. Gait analysis, video-fluoroscopy of joint replacement, pre-operative planning, surgical navigation, and standard radiostereometry would require tools for easy access to three-dimensional graphical representations of rigid segment motion. Relevant data from this variety of sources need to be organised in structured forms. Registration, integration, and synchronisation of segment position data are additional necessities. With this aim, the present work exploits the features of a software tool recently developed within a EU-funded project ('Multimod') in a series of different research studies. Standard and advanced gait analysis on a normal subject, in vivo fluoroscopy-based three-dimensional motion of a replaced knee joint, patellar and ligament tracking on a knee specimen by a surgical navigation system, stem-to-femur migration pattern on a patient operated on total hip replacement, were analysed with standard techniques and all represented by this innovative software tool. Segment pose data were eventually obtained from these different techniques, and were successfully imported and organised in a hierarchical tree within the tool. Skeletal bony segments, prosthesis component models and ligament links were registered successfully to corresponding marker position data for effective three-dimensional animations. These were shown in various combinations, in different views, from different perspectives, according to possible specific research interests. Bioengineering and medical professionals would be much facilitated in the interpretation of the motion analysis measurements necessary in their research fields, and would benefit therefore from this software tool.
Kinematic discrimination of ataxia in horses is facilitated by blindfolding.
Olsen, E; FouchÉ, N; Jordan, H; Pfau, T; Piercy, R J
2018-03-01
Agreement among experienced clinicians is poor when assessing the presence and severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might be beneficial for assessment of horses with neurological diseases. To assess diagnostic criteria using motion capture to measure variability in spatial gait-characteristics and swing duration derived from ataxic and non-ataxic horses, and to assess if variability increases with blindfolding. Cross-sectional. A total of 21 horses underwent measurements in a gait laboratory and live neurological grading by multiple raters. In the gait laboratory, the horses were made to walk across a runway surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were made to walk normally and with a blindfold in at least three trials each. Displacements of reflective markers on head, fetlock, hoof, fourth lumbar vertebra, tuber coxae and sacrum derived from three to four consecutive strides were processed and descriptive statistics, receiver operator characteristics (ROC) to determine the diagnostic sensitivity, specificity and area under the curve (AUC), and correlation between median ataxia grade and gait parameters were determined. For horses with a median ataxia grade ≥2, coefficient of variation for the location of maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof marker having an AUC of 0.89 with 82% sensitivity and 90% specificity. The low number of consecutive strides per horse obtained with motion capture could decrease diagnostic utility. Motion capture can objectively aid the assessment of horses with ataxia. Furthermore, blindfolding increases variation in distal pelvic limb kinematics making it a useful clinical tool. © 2017 EVJ Ltd.
Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike.
Wagner, H; Pfusterschmied, J; Tilp, M; Landlinger, J; von Duvillard, S P; Müller, E
2014-04-01
Overarm movements are essential skills in many different sport games; however, the adaptations to different sports are not well understood. The aim of the study was to analyze upper-body kinematics in the team-handball throw, tennis serve, and volleyball spike, and to calculate differences in the proximal-to-distal sequencing and joint movements. Three-dimensional kinematic data were analyzed via the Vicon motion capturing system. The subjects (elite players) were instructed to perform a team-handball jump throw, tennis serve, and volleyball spike with a maximal ball velocity and to hit a specific target. Significant differences (P < 0.05) between the three overarm movements were found in 17 of 24 variables. The order of the proximal-to-distal sequencing was equal in the three analyzed overarm movements. Equal order of the proximal-to-distal sequencing and similar angles in the acceleration phase suggest there is a general motor pattern in overarm movements. However, overarm movements appear to be modifiable in situations such as for throwing or hitting a ball with or without a racket, and due to differences at takeoff (with one or two legs). © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, D; Kang, S; Kim, D
2016-06-15
Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by amore » 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm{sup 3} tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm{sup 3} tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm{sup 3} tumor, the tumor motion was larger than the 90 cm{sup 3} tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2015-11-01
Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.
How many atoms are required to characterize accurately trajectory fluctuations of a protein?
NASA Astrophysics Data System (ADS)
Cukier, Robert I.
2010-06-01
Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.
Composite ultrasound imaging apparatus and method
Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.
1998-01-01
An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.
Composite ultrasound imaging apparatus and method
Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.
1998-09-15
An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.
Oh, Hyun Seung; Kim, Eun Joo; Kim, Doo Young; Kim, Soo Jeong
2016-06-01
To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.
Wachs, K; Fischer, M S; Schilling, N
2016-04-01
Current knowledge of the physiological range of motion (ROM) in the canine axial system during locomotion is relatively limited. This is particularly problematic because dogs with back-related dysfunction frequently present for routine consultations. To collect detailed kinematic information and describe the three-dimensional motions of the pelvis and the lumbar spine (i.e. intervertebral joints S1/L7-L2/L1), we recorded ventro-dorsal and latero-lateral X-ray videos of three walking and trotting dogs and reconstructed their pelvic and intervertebral motions using X-ray reconstruction of moving morphology and scientific rotoscoping. Pelvic roll displayed a monophasic motion pattern and the largest ROM with on average 13° and 11° during walking and trotting, respectively. Pelvic yaw had the smallest ROM with on average 5° (walk) and 6° (trot). A biphasic pattern was observed for pelvic pitch with a mean ROM of 8°. At both gaits, the greatest intervertebral motions occurred either in S1/L7 or L7/L6. The intervertebral motions were mono- or biphasic in the horizontal and the transverse body planes and biphasic in the sagittal plane. Cranial to L6/5, the ROM tended to decrease from 3° to <1.5° in all three planes. Our results confirm that pelvic displacement and intervertebral joint movements are tightly linked with pelvic limb action at symmetrical gaits. The overall small movements, particularly cranial to L5, are consistent with the epaxial musculature globally stabilising the spine against the external and internal limb forces acting on the pelvis and the trunk during walking and trotting. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
Using the Graphing Calculator--in Two-Dimensional Motion Plots.
ERIC Educational Resources Information Center
Brueningsen, Chris; Bower, William
1995-01-01
Presents a series of simple activities involving generalized two-dimensional motion topics to prepare students to study projectile motion. Uses a pair of motion detectors, each connected to a calculator-based-laboratory (CBL) unit interfaced with a standard graphics calculator, to explore two-dimensional motion. (JRH)
Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto
2013-11-01
The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.
The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.
Validation of enhanced kinect sensor based motion capturing for gait assessment
Müller, Björn; Ilg, Winfried; Giese, Martin A.
2017-01-01
Optical motion capturing systems are expensive and require substantial dedicated space to be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations however flexibility is required and the motion capturing system can only temporarily be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis promising results have been published. We here present a motion capturing system that is easy to set up, flexible with respect to the sensor locations and delivers high accuracy in gait parameters comparable to a gold standard motion capturing system (VICON). Further, we demonstrate that sensor setups which track the person only from one-side are less accurate and should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, especially step width, our system shows higher agreement with the VICON system than previous reports. PMID:28410413
Shultz, Rebecca; Jenkyn, Thomas
2012-01-01
Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-01-01
Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479
Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko
2010-04-21
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms
Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.
2014-01-01
Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141
Beginning Introductory Physics with Two-Dimensional Motion
ERIC Educational Resources Information Center
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition
NASA Technical Reports Server (NTRS)
Smart, M. K.
1998-01-01
A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.
A tool for simulating collision probabilities of animals with marine renewable energy devices.
Schmitt, Pál; Culloch, Ross; Lieber, Lilian; Molander, Sverker; Hammar, Linus; Kregting, Louise
2017-01-01
The mathematical problem of establishing a collision probability distribution is often not trivial. The shape and motion of the animal as well as of the the device must be evaluated in a four-dimensional space (3D motion over time). Earlier work on wind and tidal turbines was limited to a simplified two-dimensional representation, which cannot be applied to many new structures. We present a numerical algorithm to obtain such probability distributions using transient, three-dimensional numerical simulations. The method is demonstrated using a sub-surface tidal kite as an example. Necessary pre- and post-processing of the data created by the model is explained, numerical details and potential issues and limitations in the application of resulting probability distributions are highlighted.
Cha, Jungwon; Farhangi, Mohammad Mehdi; Dunlap, Neal; Amini, Amir A
2018-01-01
We have developed a robust tool for performing volumetric and temporal analysis of nodules from respiratory gated four-dimensional (4D) CT. The method could prove useful in IMRT of lung cancer. We modified the conventional graph-cuts method by adding an adaptive shape prior as well as motion information within a signed distance function representation to permit more accurate and automated segmentation and tracking of lung nodules in 4D CT data. Active shape models (ASM) with signed distance function were used to capture the shape prior information, preventing unwanted surrounding tissues from becoming part of the segmented object. The optical flow method was used to estimate the local motion and to extend three-dimensional (3D) segmentation to 4D by warping a prior shape model through time. The algorithm has been applied to segmentation of well-circumscribed, vascularized, and juxtapleural lung nodules from respiratory gated CT data. In all cases, 4D segmentation and tracking for five phases of high-resolution CT data took approximately 10 min on a PC workstation with AMD Phenom II and 32 GB of memory. The method was trained based on 500 breath-held 3D CT data from the LIDC data base and was tested on 17 4D lung nodule CT datasets consisting of 85 volumetric frames. The validation tests resulted in an average Dice Similarity Coefficient (DSC) = 0.68 for all test data. An important by-product of the method is quantitative volume measurement from 4D CT from end-inspiration to end-expiration which will also have important diagnostic value. The algorithm performs robust segmentation of lung nodules from 4D CT data. Signed distance ASM provides the shape prior information which based on the iterative graph-cuts framework is adaptively refined to best fit the input data, preventing unwanted surrounding tissue from merging with the segmented object. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Badler, N. I.
1985-01-01
Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.
The effects of load carriage on joint work at different running velocities.
Liew, Bernard X W; Morris, Susan; Netto, Kevin
2016-10-03
Running with load carriage has become increasingly prevalent in sport, as well as many field-based occupations. However, the "sources" of mechanical work during load carriage running are not yet completely understood. The purpose of this study was to determine the influence of load magnitudes on the mechanical joint work during running, across different velocities. Thirty-one participants performed overground running at three load magnitudes (0%, 10%, 20% body weight), and at three velocities (3, 4, 5m/s). Three dimensional motion capture was performed, with synchronised force plate data captured. Inverse dynamics was used to quantify joint work in the stance phase of running. Joint work was normalized to a unit proportion of body weight and leg length (one dimensionless work unit=532.45J). Load significantly increased total joint work and total positive work and this effect was greater at faster velocities. Load carriage increased ankle positive work (β coefficient=rate of 6.95×10 -4 unit work per 1% BW carried), and knee positive (β=1.12×10 -3 unit) and negative work (β=-2.47×10 -4 unit), and hip negative work (β=-7.79×10 -4 unit). Load carriage reduced hip positive work and this effect was smaller at faster velocities. Inter-joint redistribution did not contribute significantly to altered mechanical work within the spectrum of load and velocity investigated. Hence, the ankle joint contributed to the greatest extent in work production, whilst that of the knee contributed to the greatest extent to work absorption when running with load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios
NASA Astrophysics Data System (ADS)
Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed
2017-09-01
The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.
Superintegrability of geodesic motion on the sausage model
NASA Astrophysics Data System (ADS)
Arutyunov, Gleb; Heinze, Martin; Medina-Rincon, Daniel
2017-06-01
Reduction of the η-deformed sigma model on AdS_5× S5 to the two-dimensional squashed sphere (S^2)η can be viewed as a special case of the Fateev sausage model where the coupling constant ν is imaginary. We show that geodesic motion in this model is described by a certain superintegrable mechanical system with four-dimensional phase space. This is done by means of explicitly constructing three integrals of motion which satisfy the sl(2) Poisson algebra relations, albeit being non-polynomial in momenta. Further, we find a canonical transformation which transforms the Hamiltonian of this mechanical system to the one describing the geodesic motion on the usual two-sphere. By inverting this transformation we map geodesics on this auxiliary two-sphere back to the sausage model. This paper is a tribute to the memory of Prof Petr Kulish.
Visualizing the ground motions of the 1906 San Francisco earthquake
Chourasia, A.; Cutchin, S.; Aagaard, Brad T.
2008-01-01
With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.
Numerical Simulation of Forced and Free-to-Roll Delta-Wing Motions
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
1996-01-01
The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65-deg sweep delta wing at 30-deg angle of attack. Two large-amplitude, high-rate, forced-roll motions, and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are in good agreement with the forces, moments, and roll-angle time histories. Vortex breakdown is present in each case. Significant time lags in the vortex breakdown motions relative to the body motions strongly influence the dynamic forces and moments.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less
Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo
2016-02-01
To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.
Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K.; Otazo, Ricardo
2015-01-01
Purpose To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Methods Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting under-sampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. Results XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. Conclusion XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. PMID:25809847
Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S
2013-01-01
The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.
Blind retrospective motion correction of MR images.
Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard
2013-12-01
Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J.
2015-05-01
The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions' components.
NASA Astrophysics Data System (ADS)
Kurt, Melike; Moored, Keith
2016-11-01
Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.
Swimming trajectories of a three-sphere microswimmer near a wall
NASA Astrophysics Data System (ADS)
Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut
2018-04-01
The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.
Large perturbation flow field analysis and simulation for supersonic inlets
NASA Technical Reports Server (NTRS)
Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.
1984-01-01
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Hydroelastic behaviour of a structure exposed to an underwater explosion.
Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M
2015-01-28
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Zhang, Quan Bin; Sun, Jing Ping; Gao, Rui Feng; Lee, Alex Pui-Wai; Feng, Yan Lin; Liu, Xiao Rong; Sheng, Wei; Liu, Feng; Yang, Xing Sheng; Fang, Fang; Yu, Cheuk-Man
2013-10-09
The lack of an accurate noninvasive method for assessing right ventricular (RV) volume and function has been a major deficiency of two-dimensional (2D) echocardiography. The aim of our study was to test the feasibility of single-beat full-volume capture with real-time three-dimensional echo (3DE) imaging system for the evaluation of RV volumes and function validated by cardiac magnetic resonance imaging (CMRI). Sixty-one subjects (16 normal subjects, 20 patients with hypertension, 16 patients with pulmonary heart disease and 9 patients with coronary heart disease) were studied. RV volume and function assessments using 3DE were compared with manual tracing with CMRI as the reference method. Fifty-nine of 61 patients (96.7%; 36 male, mean age, 62 ± 15 years) had adequate three-dimensional echocardiographic data sets for analysis. The mean RV end diastolic volume (EDV) was 105 ± 38 ml, end-systolic volume (ESV) was 60 ± 30 and RV ejection fraction (EF) was 44 ± 11% by CMRI; and EDV 103 ± 38 ml, ESV 60 ± 28 ml and RV EF 41 ± 13% by 3DE. The correlations and agreements between measurements estimated by two methods were acceptable. RV volumes and function can be analyzed with 3DE software in most of subjects with or without heart diseases, which is able to be estimated with single-beat full-volume capture with real-time 3DE compared with CMRI. © 2013.
The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.
Ballantyne, Garth H; Moll, Fred
2003-12-01
The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.
Temporal Control and Hand Movement Efficiency in Skilled Music Performance
Goebl, Werner; Palmer, Caroline
2013-01-01
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946
Comparison of crossover and jab step start techniques for base stealing in baseball.
Miyanishi, Tomohisa; Endo, So; Nagahara, Ryu
2017-11-01
Base stealing is an important tactic for increasing the chance of scoring in baseball. This study aimed to compare the crossover step (CS) and jab step (JS) starts for base stealing start performance and to clarify the differences between CS and JS starts in terms of three-dimensional lower extremity joint kinetics. Twelve male baseball players performed CS and JS starts, during which their motion and the force they applied to the ground were simultaneously recorded using a motion-capture system and two force platforms. The results showed that the normalised average forward external power, the average forward-backward force exerted by the left leg, and the forward velocities of the whole body centre of gravity generated by both legs and the left leg were significantly higher for the JS start than for the CS start. Moreover, the positive work done by hip extension during the left leg push-off was two-times greater for the JS start than the CS start. In conclusion, this study has demonstrated that the jab step start may be the better technique for a base stealing start and that greater positive work produced by left hip extension is probably responsible for producing its larger forward ground reaction force.
Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte
2017-03-01
The longitudinal arch of the human foot is commonly thought to reduce midfoot joint motion to convert the foot into a rigid lever during push off in bipedal walking. In contrast, African apes have been observed to exhibit midfoot dorsiflexion following heel lift during terrestrial locomotion, presumably due to their possession of highly mobile midfoot joints. This assumed dichotomy between human and African ape midfoot mobility has recently been questioned based on indirect assessments of in vivo midfoot motion, such as plantar pressure and cadaver studies; however, direct quantitative analyses of African ape midfoot kinematics during locomotion remain scarce. Here, we used high-speed motion capture to measure three-dimensional foot kinematics in two male chimpanzees and five male humans walking bipedally at similar dimensionless speeds. We analyzed 10 steps per chimpanzee subject and five steps per human subject, and compared ranges of midfoot motion between species over stance phase, as well as within double- and single-limb support periods. Contrary to expectations, humans used a greater average range of midfoot motion than chimpanzees over the full duration of stance. This difference was driven by humans' dramatic plantarflexion and adduction of the midfoot joints during the second double-limb support period, which likely helps the foot generate power during push off. However, chimpanzees did use slightly but significantly more midfoot dorsiflexion than humans in the single limb-support period, during which heel lift begins. These results indicate that both stiffness and mobility are important to longitudinal arch function, and that the human foot evolved to utilize both during push off in bipedal walking. Thus, the presence of human-like midfoot joint morphology in fossil hominins should not be taken as indicating foot rigidity, but may signify the evolution of pedal anatomy conferring enhanced push off mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Foss, K.; da Costa, R.C.; Moore, S.
2014-01-01
Background The optimal treatment of cervical spondylomyelopathy (CSM) is controversial, with the owner’s and clinician’s perception of gait improvement often being used as outcome measures. These methods are subjective and suffer from observer bias. Objectives To establish kinematic gait parameters utilizing digital motion capture in normal Doberman Pinschers and compare them with CSM-affected Dobermans. Animals Nineteen Doberman Pinschers; 10 clinically normal and 9 with CSM. Methods All dogs were enrolled prospectively and fitted with a Lycra® body suit, and motion capture was performed and used to reconstruct a 3-D stick diagram representation of each dog based on 32 reflective markers, from which several parameters were measured. These included stride duration, length, and height; maximal and minimal spinal angles; elbow and stifle flexion and extension; and maximum and minimum distances between the thoracic and pelvic limbs. A random-effects linear regression model was used to compare parameters between groups. Results Significant differences between groups included smaller minimum (mean = 116 mm; P = .024) and maximum (mean = 184 mm; P = .001) distance between the thoracic limbs in CSM-affected dogs. Additionally, thoracic limb stride duration was also smaller (P = .009) in CSM-affected dogs (mean = 0.7 seconds) when compared with normal dogs (mean = 0.8 seconds). In the pelvic limbs, the average stifle flexion (mean = 100°; P = .048) and extension (mean = 136°; P = .009), as well as number of strides (mean = 2.7 strides; P = .033) were different between groups. Conclusions and Clinical Importance Our findings suggest that computerized gait analysis reveals more consistent kinematic differences in the thoracic limbs, which can be used as future objective outcome measures. PMID:23194100
Real-time 3D video compression for tele-immersive environments
NASA Astrophysics Data System (ADS)
Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William
2006-01-01
Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.
2011-01-01
Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full three-body problem and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasingmore » levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into-and maintenance of-mean motion resonance depends sensitively on the migration rate, eccentricity damping, and turbulence.« less
McCrory, Patricia A.; Wilson, Douglas S.
2013-01-01
The volcanic basement of the Oregon and Washington Coast ranges has been proposed to represent a pair of tracks of the Yellowstone hotspot formed at a mid-ocean ridge during the early Cenozoic. This interpretation has been questioned on many grounds, especially that the range of ages does not match the offshore spreading rates and that the presence of continental coarse clastic sediments is difficult to reconcile with fast convergence rates between the oceanic plates and North America. Updates to basement geochronology and plate motion history reveal that these objections are much less serious than when they were first raised. Forward plate kinematic modeling reveals that predicted basement ages can be consistent with the observed range of about 55–49 Ma, and that the entire basement terrane can form within about 300 km of continental sources for clastic sediments. This kinematic model indicates that there is no firm reason to reject the near-ridge hotspot hypothesis on the basis of plate motions. A novel element of the model is the Resurrection plate, previously proposed to exist between the Farallon and Kula plates. By including the defunct Resurrection plate in our reconstruction, we are able to model the Farallon hotspot track as docking against the Oregon subduction margin starting about 53 Ma, followed by docking of the Resurrection track to the north starting about 48 Ma. Accretion of the Farallon plate fragment and partial subduction of the Resurrection fragment complicates the three-dimensional structure of the modern Cascadia forearc. We interpret the so-called “E” layer beneath Vancouver Island to be part of the Resurrection fragment. Our new kinematic model of mobile terranes within the Paleogene North American plate boundary allows reinterpretation of the three-dimensional structure of the Cascadia forearc and its relationship to ongoing seismotectonic processes.
Dual function of the pectoral girdle for feeding and locomotion in white-spotted bamboo sharks.
Camp, Ariel L; Scott, Bradley; Brainerd, Elizabeth L; Wilga, Cheryl D
2017-07-26
Positioned at the intersection of the head, body and forelimb, the pectoral girdle has the potential to function in both feeding and locomotor behaviours-although the latter has been studied far more. In ray-finned fishes, the pectoral girdle attaches directly to the skull and is retracted during suction feeding, enabling the ventral body muscles to power rapid mouth expansion. However, in sharks, the pectoral girdle is displaced caudally and entirely separate from the skull (as in tetrapods), raising the question of whether it is mobile during suction feeding and contributing to suction expansion. We measured three-dimensional kinematics of the pectoral girdle in white-spotted bamboo sharks during suction feeding with X-ray reconstruction of moving morphology, and found the pectoral girdle consistently retracted about 11° by rotating caudoventrally about the dorsal scapular processes. This motion occurred mostly after peak gape, so it likely contributed more to accelerating captured prey through the oral cavity and pharynx, than to prey capture as in ray-finned fishes. Our results emphasize the multiple roles of the pectoral girdle in feeding and locomotion, both of which should be considered in studying the functional and evolutionary morphology of this structure. © 2017 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccles, Cynthia L.; Patel, Ritesh; Simeonov, Anna K.
2011-02-01
Purpose: Abdominal compression (AC) can be used to reduce respiratory liver motion in patients undergoing liver stereotactic body radiotherapy. The purpose of the present study was to measure the changes in three-dimensional liver tumor motion with and without compression using cine-magnetic resonance imaging. Patients and Methods: A total of 60 patients treated as a part of an institutional research ethics board-approved liver stereotactic body radiotherapy protocol underwent cine T2-weighted magnetic resonance imaging through the tumor centroid in the coronal and sagittal planes. A total of 240 cine-magnetic resonance imaging sequences acquired at one to three images each second for 30-60more » s were evaluated using an in-house-developed template matching tool (based on the coefficient correlation) to measure the magnitude of the tumor motion. The average tumor edge displacements were used to determine the magnitude of changes in the caudal-cranial (CC) and anteroposterior (AP) directions, with and without AC. Results: The mean tumor motion without AC of 11.7 mm (range, 4.8-23.3) in the CC direction was reduced to 9.4 mm (range, 1.6-23.4) with AC. The tumor motion was reduced in both directions (CC and AP) in 52% of the patients and in a single direction (CC or AP) in 90% of the patients. The mean decrease in tumor motion with AC was 2.3 and 0.6 mm in the CC and AP direction, respectively. Increased motion occurred in one or more directions in 28% of patients. Clinically significant (>3 mm) decreases were observed in 40% and increases in <2% of patients in the CC direction. Conclusion: AC can significantly reduce three-dimensional liver tumor motion in most patients, although the magnitude of the reduction was smaller than previously reported.« less
Kinematic and Kinetic Analysis of Repeated and Static Elevé in Adolescent Female Dance Students.
Abraham, Amit; Dunsky, Ayelet; Hackney, Madeleine E; Dickstein, Ruth
2018-03-15
Elevé is a fundamental dance movement practiced routinely by dance students and serving as an integral component of screening in dance. It consists of ankle plantar flexion (PF) movement and is considered to be a frequent cause of foot and ankle injuries among dancers, with adolescent female dance students being at greatest risk for such injuries. Therefore, gaining additional knowledge regarding elevé functional range of motion (ROM) and inter-leg weightbearing distribution (WBD) properties among adolescent dance students is warranted for pedagogic, screening, injury prevention, and rehabilitation purposes. The aims of this study were three-fold: 1. to report and compare dance-specific, functional kinematic (ankle PF maximum angle and ankle PF ROM), kinetic (inter-leg WBD), and self-reported level of difficulty (balance, muscular force, and concentration) properties of repeated and static elevé among adolescent female dance students; 2. to look for correlations between elevé properties and participants' demographics (age, height, weight, dance experience, and leg dominance); and 3. to describe the relationships between the two kinematic properties in both elevé tasks. Twenty-three adolescent female dance students (mean age 13.57 ± 0.50 years) were measured while performing two elevé tasks: 10 repetitions ("repeated elevé task") and 10 consecutive seconds hold ("static elevé task"). Data regarding ankle motion and WBD were collected and analyzed using three-dimensional motion capture and two force plates. The data gained from this study expand our current understanding of elevé dance movement and may contribute to clinical relevancy and applicability of screening procedures being conducted in pre-professional dance settings. This may help to identify adolescent dance students with the potential to undertake a career in professional dance as well as to investigate the parameters associated with risk of ankle injuries in this population.
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
Three-dimensional thermocapillary flow regimes with evaporation
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2017-10-01
A three-dimensional problem of evaporative convection in a system of the immiscible media with a common thermocapillary interface is studied. New exact solution, which is a generalization of the Ostroumov - Birikh solution of the Navier - Stokes equations in the Oberbeck - Boussinesq approximation, is presented in order to describe the joint flows of the liquid and gas - vapor mixture in an infinite channel with a rectangular cross-section. The motion occurs in the bulk force field under action of a constant longitudinal temperature gradient. The velocity components depend only on the transverse coordinates. The functions of pressure, temperature and concentration of vapor in the gas are characterized by the linear dependence on the longitudinal coordinate. In the framework of the problem statement, which takes into account diffusive mass flux through the interface and zero vapor flux at the upper boundary of the channel, the influence of the gravity and intensity of the thermal action on flow structure is studied. The original three-dimensional problem is reduced to a chain of two-dimensional problems which are solved numerically with help of modification of the method of alternating directions. Arising flows can be characterized as a translational-rotational motion, under that the symmetrical double, quadruple or sextuple vortex structures are formed. Quantity, shape and structure of the vortexes also depend on properties of the working media.
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
NASA Astrophysics Data System (ADS)
Bolick, Leslie; Harguess, Josh
2016-05-01
An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.
Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.
Gao, Zhifan; Xiong, Huahua; Liu, Xin; Zhang, Heye; Ghista, Dhanjoo; Wu, Wanqing; Li, Shuo
2017-04-01
The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space approach for accurately measuring the two-dimensional motion of the carotid artery wall from the ultrasound imaging sequences. In our approach, we have employed a linear elasticity model of the carotid artery wall, and converted it into the state space equation. Then, the two-dimensional motion of carotid artery wall is computed by solving this state-space approach using the H ∞ filter and the block matching method. In addition, a parameter training strategy is proposed in this study for dealing with the parameter initialization problem. In our experiment, we have also developed an evaluation function to measure the tracking accuracy of the motion of the carotid artery wall by considering the influence of the sizes of the two blocks (acquired by our approach and the manual tracing) containing the same carotid wall tissue and their overlapping degree. Then, we have compared the performance of our approach with the manual traced results drawn by three medical physicians on 37 healthy subjects and 103 unhealthy subjects. The results have showed that our approach was highly correlated (Pearson's correlation coefficient equals 0.9897 for the radial motion and 0.9536 for the longitudinal motion), and agreed well (width the 95% confidence interval is 89.62 µm for the radial motion and 387.26 µm for the longitudinal motion) with the manual tracing method. We also compared our approach to the three kinds of previous methods, including conventional block matching methods, Kalman-based block matching methods and the optical flow. Altogether, we have been able to successfully demonstrate the efficacy of our elasticity-model based state-space approach (EBS) for more accurate tracking of the 2-dimensional motion of the carotid artery wall, towards more effective assessment of the status of atherosclerotic disease in the preclinical stage. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Eugene; Lee, Seunghee; Jeong, Hwa-Jae; Park, Jai Hyung; Park, Se-Jin; Lee, Jaewook; Kim, Woosub; Park, Hee Jin; Lee, So Yeon; Murase, Tsuyoshi; Sugamoto, Kazuomi; Ikemoto, Sumika
2018-06-01
The purpose of this study is to analyze the 3-dimensional scapular dyskinesis and the kinematics of a hook plate relative to the acromion after hook-plated acromioclavicular dislocation in vivo. Reported complications of acromioclavicular reduction using a hook plate include subacromial erosion and impingement. However, there are few reports of the 3-dimensional kinematics of the hook and scapula after the aforementioned surgical procedure. We studied 15 cases of acromioclavicular dislocation treated with a hook plate and 15 contralateral normal shoulders using computed tomography in the neutral and full forward flexion positions. Three-dimensional motion of the scapula relative to the thorax during arm elevation was analyzed using a computer simulation program. We also measured the distance from the tip of the hook plate to the greater tuberosity, as well as the angular motion of the plate tip in the subacromial space. Decreased posterior tilting (22° ± 10° vs 31° ± 8°) in the sagittal plane and increased external rotation (19° ± 9° vs 7° ± 5°) in the axial plane were evident in the affected shoulders. The mean values of translation of the hook plate and angular motion against the acromion were 4.0 ± 1.6 mm and 15° ± 8°, respectively. The minimum value of the distance from the hook plate to the humeral head tuberosity was 6.9 mm during arm elevation. Acromioclavicular reduction using a hook plate may cause scapular dyskinesis. Translational and angular motion of the hook plate against the acromion could lead to subacromial erosion. However, the hook does not seem to impinge directly on the humeral head. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
A fuzzy-logic antiswing controller for three-dimensional overhead cranes.
Cho, Sung-Kun; Lee, Ho-Hoon
2002-04-01
In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.
Arrays of individually controlled ions suitable for two-dimensional quantum simulations
Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; Hakelberg, Frederick; Warring, Ulrich; Schmied, Roman; Blain, Matthew; Maunz, Peter; Moehring, David L.; Leibfried, Dietrich; Schaetz, Tobias
2016-01-01
A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will. PMID:27291425
Three-dimensional displacement measurement of image point by point-diffraction interferometry
NASA Astrophysics Data System (ADS)
He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei
2018-01-01
This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.
Inertial motion capture system for biomechanical analysis in pressure suits
NASA Astrophysics Data System (ADS)
Di Capua, Massimiliano
A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced. The focus of these evaluations was to quantify the reduction in mobility when operating in any of the evaluated pressure suits. This data should be of value in defining new low cost alternatives for pressure suit performance verification and evaluation. This work demonstrates that the BPMS technology is a viable alternative or companion to optical motion capture; while BPMS is the first motion capture system that has been designed specifically to measure the kinematics of a human in a pressure suit, its capabilities are not constrained to just being a measurement tool. The last section of the manuscript is devoted to future possible uses for the system, with a specific focus on pressure suit applications such in the use of BPMS as a master control interface for robot teleoperation, as well as an input interface for future robotically augmented pressure suits.
Three-dimensional ghost imaging lidar via sparsity constraint
NASA Astrophysics Data System (ADS)
Gong, Wenlin; Zhao, Chengqiang; Yu, Hong; Chen, Mingliang; Xu, Wendong; Han, Shensheng
2016-05-01
Three-dimensional (3D) remote imaging attracts increasing attentions in capturing a target’s characteristics. Although great progress for 3D remote imaging has been made with methods such as scanning imaging lidar and pulsed floodlight-illumination imaging lidar, either the detection range or application mode are limited by present methods. Ghost imaging via sparsity constraint (GISC), enables the reconstruction of a two-dimensional N-pixel image from much fewer than N measurements. By GISC technique and the depth information of targets captured with time-resolved measurements, we report a 3D GISC lidar system and experimentally show that a 3D scene at about 1.0 km range can be stably reconstructed with global measurements even below the Nyquist limit. Compared with existing 3D optical imaging methods, 3D GISC has the capability of both high efficiency in information extraction and high sensitivity in detection. This approach can be generalized in nonvisible wavebands and applied to other 3D imaging areas.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.
2018-03-01
The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten
2012-05-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less
NASA Astrophysics Data System (ADS)
Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo
2011-03-01
Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.
Analysis of facial motion patterns during speech using a matrix factorization algorithm
Lucero, Jorge C.; Munhall, Kevin G.
2008-01-01
This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Cai, W; Hurwitz, M
Purpose: We develop a method to generate time varying volumetric images (3D fluoroscopic images) using patient-specific motion models derived from four-dimensional cone-beam CT (4DCBCT). Methods: Motion models are derived by selecting one 4DCBCT phase as a reference image, and registering the remaining images to it. Principal component analysis (PCA) is performed on the resultant displacement vector fields (DVFs) to create a reduced set of PCA eigenvectors that capture the majority of respiratory motion. 3D fluoroscopic images are generated by optimizing the weights of the PCA eigenvectors iteratively through comparison of measured cone-beam projections and simulated projections generated from the motionmore » model. This method was applied to images from five lung-cancer patients. The spatial accuracy of this method is evaluated by comparing landmark positions in the 3D fluoroscopic images to manually defined ground truth positions in the patient cone-beam projections. Results: 4DCBCT motion models were shown to accurately generate 3D fluoroscopic images when the patient cone-beam projections contained clearly visible structures moving with respiration (e.g., the diaphragm). When no moving anatomical structure was clearly visible in the projections, the 3D fluoroscopic images generated did not capture breathing deformations, and reverted to the reference image. For the subset of 3D fluoroscopic images generated from projections with visibly moving anatomy, the average tumor localization error and the 95th percentile were 1.6 mm and 3.1 mm respectively. Conclusion: This study showed that 4DCBCT-based 3D fluoroscopic images can accurately capture respiratory deformations in a patient dataset, so long as the cone-beam projections used contain visible structures that move with respiration. For clinical implementation of 3D fluoroscopic imaging for treatment verification, an imaging field of view (FOV) that contains visible structures moving with respiration should be selected. If no other appropriate structures are visible, the images should include the diaphragm. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P
2016-01-01
Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.
Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis
Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.
2016-01-01
Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846
Free stream capturing in fluid conservation law for moving coordinates in three dimensions
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.
Gooyers, Chad E; Beach, Tyson A C; Frost, David M; Howarth, Samuel J; Callaghan, Jack P
2018-02-01
This investigation examined interactions between the magnitude of external load, movement speed and (a)symmetry of load placement on estimates of in vivo joint loading in the lumbar spine during simulated occupational lifting. Thirty-two participants with manual materials handling experience were included in the study. Three-dimensional motion data, ground reaction forces, and activation of six bilateral trunk muscle groups were captured while participants performed lifts with two loads at two movement speeds and using two load locations. L4-L5 joint compression and shear force-time histories were estimated using an EMG-assisted musculoskeletal model of the lumbar spine. Results from this investigation provide strong evidence that known mechanical low back injury risk factors should not be viewed in isolation. Rather, injury prevention efforts need to consider the complex interactions that exist between external task demands and their combined influence on internal joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.; Mamaluy, D.; Cyr, E. C.
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
Gao, X.; Mamaluy, D.; Cyr, E. C.; ...
2016-05-10
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
Monitoring the Wall Mechanics During Stent Deployment in a Vessel
Steinert, Brian D.; Zhao, Shijia; Gu, Linxia
2012-01-01
Clinical trials have reported different restenosis rates for various stent designs1. It is speculated that stent-induced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis2-7. This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface8,9. As a mesh stent is deployed into a latex vessel with a random contrasting pattern sprayed or drawn on its outer surface, the surface strain is recorded at every instant of the deformation. The calculated strain distributions can then be used to understand the local lesion response, validate the computational models, and formulate hypotheses for further in vivo study. PMID:22588353
Direct Three-Dimensional Myocardial Strain Tensor Quantification and Tracking using zHARP★
Abd-Elmoniem, Khaled Z.; Stuber, Matthias; Prince, Jerry L.
2008-01-01
Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3-D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3-D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3-D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in-vitro on a phantom and in-vivo in four healthy adult human subjects. PMID:18511332
A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena
Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu
2015-01-01
The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
Macroscopic response in active nonlinear photonic crystals.
Alagappan, Gandhi; John, Sajeev; Li, Er Ping
2013-09-15
We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.
Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.
Quesada, Luis; León, Alejandro J
2012-10-01
Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.
Quantum hydrodynamics: capturing a reactive scattering resonance.
Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K
2005-08-01
The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.
Aerodynamics of a Flapping Airfoil with a Flexible Tail
NASA Astrophysics Data System (ADS)
Lai, Alan Kai San
This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.
Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.
Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen
2017-11-23
Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.
Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo
2014-01-01
We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; p<0.001). In groups A and B the median SD of the tumor position was 1.1 mm and 0.9 mm in the craniocaudal- (p = 0.24) and 0.7 mm and 0.6 mm in the mediolateral direction (p = 0.89), respectively. The median range of the tumor position was 4.0 mm and 3.0 mm in the craniocaudal- (p = 0.21) and 2.0 mm and 1.5 mm in the mediolateral direction (p = 0.20), respectively. Although patients treated with respiratory gating exhibited greater respiratory tumor motion during treatment simulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.
Magma wagging and whirling in volcanic conduits
NASA Astrophysics Data System (ADS)
Liao, Yang; Bercovici, David; Jellinek, Mark
2018-02-01
Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho
2016-07-01
We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.
Czuba, Thaddeus B; Rokers, Bas; Guillet, Kyle; Huk, Alexander C; Cormack, Lawrence K
2011-09-26
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. © ARVO
Czuba, Thaddeus B.; Rokers, Bas; Guillet, Kyle; Huk, Alexander C.; Cormack, Lawrence K.
2013-01-01
Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. PMID:21945967
Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.
Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R
2018-04-25
Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.
Hyperspectral range imaging for transportation systems evaluation
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.
2016-04-01
Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.
Sensor fusion of cameras and a laser for city-scale 3D reconstruction.
Bok, Yunsu; Choi, Dong-Geol; Kweon, In So
2014-11-04
This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.