Dimensional optimization of nanowire--complementary metal oxide--semiconductor inverter.
Hashim, Yasir; Sidek, Othman
2013-01-01
This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.
Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.
Nam, SungWoo; Jiang, Xiaocheng; Xiong, Qihua; Ham, Donhee; Lieber, Charles M
2009-12-15
Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.
A metallo-DNA nanowire with uninterrupted one-dimensional silver array
NASA Astrophysics Data System (ADS)
Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Hattori, Yoshikazu; Saneyoshi, Hisao; Ono, Akira; Tanaka, Yoshiyuki
2017-10-01
The double-helix structure of DNA, in which complementary strands reversibly hybridize to each other, not only explains how genetic information is stored and replicated, but also has proved very attractive for the development of nanomaterials. The discovery of metal-mediated base pairs has prompted the generation of short metal-DNA hybrid duplexes by a bottom-up approach. Here we describe a metallo-DNA nanowire—whose structure was solved by high-resolution X-ray crystallography—that consists of dodecamer duplexes held together by four different metal-mediated base pairs (the previously observed C-Ag-C, as well as G-Ag-G, G-Ag-C and T-Ag-T) and linked to each other through G overhangs involved in interduplex G-Ag-G. The resulting hybrid nanowires are 2 nm wide with a length of the order of micrometres to millimetres, and hold the silver ions in uninterrupted one-dimensional arrays along the DNA helical axis. The hybrid nanowires are further assembled into three-dimensional lattices by interactions between adenine residues, fully bulged out of the double helix.
Three-dimensional representation of curved nanowires.
Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S
2004-12-01
Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.
NASA Astrophysics Data System (ADS)
Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Zhu, Yibo; Sanchez, Ana; Antipina, Liubov; Sorokin, Pavel
Micromechanical exfoliation or wet exfoliation of two-dimensional van der Waals materials has triggered an explosive interest in 2D material research. In our work, we extend this idea to 1D van der Waals material. By using micromechanical exfoliation or wet exfoliation, 1D nanowire with size as small as six molecular ribbons can be readily achieved in the Ta2(Pd or Pt)3Se8 system. The semiconducting properties of exfoliated Ta2Pd3Se8 nanowires show n-type, whereas Ta2Pt3Se8 nanowires are p-type. Our electronic band structure calculation for Ta2Pd3Se8 nanowire reveals that from multi-ribbon to single-ribbon the band gap evolves from indirect 0.5eV in bulk to direct 1eV in single-ribbon. A functional ``NOT'' gate consisting of field-effect transistors based on these two types of complementary nanowires has also been successfully realized. Moreover, the photocurrent response of Ta2Pd3Se8 nanowire transistors has been studied as well. Ta2(Pd or Pt)3Se8 system, as an intrinsic quasi-1D material, provides a viable platform for the study of low dimensional condensed matter physics. We acknowledge the financial support from DOE and BoRSF.
Biorecognition by DNA oligonucleotides after Exposure to Photoresists and Resist Removers
Dean, Stacey L.; Morrow, Thomas J.; Patrick, Sue; Li, Mingwei; Clawson, Gary; Mayer, Theresa S.; Keating, Christine D.
2013-01-01
Combining biological molecules with integrated circuit technology is of considerable interest for next generation sensors and biomedical devices. Current lithographic microfabrication methods, however, were developed for compatibility with silicon technology rather than bioorganic molecules and consequently it cannot be assumed that biomolecules will remain attached and intact during on-chip processing. Here, we evaluate the effects of three common photoresists (Microposit S1800 series, PMGI SF6, and Megaposit SPR 3012) and two photoresist removers (acetone and 1165 remover) on the ability of surface-immobilized DNA oligonucleotides to selectively recognize their reverse-complementary sequence. Two common DNA immobilization methods were compared: adsorption of 5′-thiolated sequences directly to gold nanowires and covalent attachment of 5′-thiolated sequences to surface amines on silica coated nanowires. We found that acetone had deleterious effects on selective hybridization as compared to 1165 remover, presumably due to incomplete resist removal. Use of the PMGI photoresist, which involves a high temperature bake step, was detrimental to the later performance of nanowire-bound DNA in hybridization assays, especially for DNA attached via thiol adsorption. The other three photoresists did not substantially degrade DNA binding capacity or selectivity for complementary DNA sequences. To determine if the lithographic steps caused more subtle damage, we also tested oligonucleotides containing a single base mismatch. Finally, a two-step photolithographic process was developed and used in combination with dielectrophoretic nanowire assembly to produce an array of doubly-contacted, electrically isolated individual nanowire components on a chip. Post-fabrication fluorescence imaging indicated that nanowire-bound DNA was present and able to selectively bind complementary strands. PMID:23952639
Shariati, Mohsen
2018-05-15
In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10µM. The detection limit of the DNA biosensor was about 1fM. The time of the hybridization process for defined single strand was 90min. The switching ratio of the biosensor between "on" and "off" state was ~ 1.1 × 10 5 . For sensing the specificity of the biosensor, non-complementary, mismatch and complementary DNA oligonucleotide sequences were clearly discriminated. The HBV biosensor confirmed the highly satisfied specificity for differentiating complementary sequences from non-complementary and the mismatch oligonucleotides. The response time of the DNA sensor was 37s with a high reproducibility. The stability and repeatability of the DNA biosensor showed that the peak current of the biosensor retained 98% and 96% of its initial response for measurements after three and five weeks, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin
2016-10-01
Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.
Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M
2007-10-01
We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.
Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.
Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi
2015-12-23
Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capacity of 293 mAh·g(-1) at 2.0-3.6 V or 382.2 mAh·g(-1) at 1.0-4.0 V after 50 cycles at 30 mA·g(-1).
Current-induced three-dimensional domain wall propagation in cylindrical NiFe nanowires
NASA Astrophysics Data System (ADS)
Wong, D. W.; Purnama, I.; Lim, G. J.; Gan, W. L.; Murapaka, C.; Lew, W. S.
2016-04-01
We report on the magnetization configurations in single NiFe cylindrical nanowires grown by template-assisted electrodeposition. Angular anisotropic magnetoresistance measurements reveal that a three-dimensional helical domain wall is formed naturally upon relaxation from a saturated state. Micromagnetic simulations support the helical domain wall properties and its reversal process, which involves a splitting of the clockwise and anticlockwise vortices. When a pulsed current is applied to the nanowire, the helical domain wall propagation is observed with a minimum current density needed to overcome its intrinsic pinning.
Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.
Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol
2018-05-18
Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.
NASA Astrophysics Data System (ADS)
Pinion, Christopher William
Precise patterning of semiconductor materials utilizing top-down lithographic techniques is integral to the advanced electronics we use on a daily basis. However, continuing development of these lithographic technologies often results in the trade-off of either high cost or low throughput, and three-dimensional (3D) patterning can be difficult to achieve. Bottom-up, chemical methods to control the 3D nanoscale morphology of semiconductor nanostructures have received significant attention as a complementary technique. Semiconductor nanowires, nanoscale filaments of semiconductor material 10-500 nm in diameter and 1-50 microns in length, are an especially promising platform because the wire composition can be modulated during growth and the high aspect ratio, one-dimensional structure enables integration in a range of devices. In this thesis, we first report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes along the nanowire growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enables morphological features as small as 10 nm to be patterned over wires more than 50 ?m in length. Next, our focus shifts to more fundamental studies of the nanowire synthetic mechanisms. We presented comprehensive experimental measurements on the growth rate of Au catalyzed Si nanowires and developed a kinetic model of vapor-liquid-solid growth. Our analysis revealed an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. While investigating the vapor-liquid-solid mechanism, we noticed instances of unique catalyst behavior. Upon further study, we showed that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst induces a vapor-solid-solid growth mechanism, which provides atomic-level control of dopant atoms in the nanowire. Finally, we explored a promising application of nanowires by investigating the potential for complex silicon nanowires to serve as a platform for next-generation photovoltaic devices. We reviewed the synthesis, electrical, and optical characteristics of core/shell Si nanowires that are sub-wavelength in diameter and contain radial p-n junctions. We highlighted the unique features of these nanowires, such as optical antenna effects that concentrate light and intense built-in electric fields that enable ultrafast charge-carrier separation. Based on these observations we advocate for a paradigm in which nanowires are arranged in periodic horizontal arrays to form ultrathin devices.
Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S
2010-08-01
Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.
Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin
2018-05-11
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.
Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ronggui; Wen, Rongfu; Xu, Shanshan
Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, wemore » experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.« less
Initial Growth of Single-Crystalline Nanowires: From 3D Nucleation to 2D Growth.
Huang, Xh; Li, Gh; Sun, Gz; Dou, Xc; Li, L; Zheng, Lx
2010-04-17
The initial growth stage of the single-crystalline Sb and Co nanowires with preferential orientation was studied, which were synthesized in porous anodic alumina membranes by the pulsed electrodeposition technique. It was revealed that the initial growth of the nanowires is a three-dimensional nucleation process, and then gradually transforms to two-dimensional growth via progressive nucleation mechanism, which resulting in a structure transition from polycrystalline to single crystalline. The competition among the nuclei inside the nanoscaled-confined channel and the growth kinetics is responsible for the structure transition of the initial grown nanowires.
NASA Astrophysics Data System (ADS)
Michailov, Michail; Ranguelov, Bogdan
2018-03-01
We present a model for hole-mediated spontaneous breakdown of ahomoepitaxial two-dimensional (2D) flat nanowire based exclusively on random, thermally-activated motion of atoms. The model suggests a consecutive three-step mechanism driving the rupture and complete disintegration of the nanowire on a crystalline surface. The breakdown scenario includes: (i) local narrowing of a part of the stripe to a monatomic chain, (ii) formation of a recoverable single vacancy or a 2D vacancy cluster that causes temporary nanowire rupture, (iii) formation of a non-recoverable 2D hole leading to permanent nanowire breakdown. These successive events in the temporal evolution of the nanowire morphology bring the nanowire stripe into an irreversible unstable state, leading to a dramatic change in its peculiar physical properties and conductivity. The atomistic simulations also reveal a strong increase of the nanowire lifetime with an enlargement of its width and open up a way for a fine atomic-scale control of the nanowire lifetime and structural, morphological and thermodynamic stability.
Wolfrum, Bernhard; Thierry, Benjamin
2018-01-01
Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma
2018-02-14
Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.
Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes.
Carnevale, Santino D; Yang, Jing; Phillips, Patrick J; Mills, Michael J; Myers, Roberto C
2011-02-09
Bottom-up nanostructure assembly has been a central theme of materials synthesis over the past few decades. Semiconductor quantum dots and nanowires provide additional degrees of freedom for charge confinement, strain engineering, and surface sensitivity-properties that are useful to a wide range of solid state optical and electronic technologies. A central challenge is to understand and manipulate nanostructure assembly to reproducibly generate emergent structures with the desired properties. However, progress is hampered due to the interdependence of nucleation and growth phenomena. Here we show that by dynamically adjusting the growth kinetics, it is possible to separate the nucleation and growth processes in spontaneously formed GaN nanowires using a two-step molecular beam epitaxy technique. First, a growth phase diagram for these nanowires is systematically developed, which allows for control of nanowire density over three orders of magnitude. Next, we show that by first nucleating nanowires at a low temperature and then growing them at a higher temperature, height and density can be independently selected while maintaining the target density over long growth times. GaN nanowires prepared using this two-step procedure are overgrown with three-dimensionally layered and topologically complex heterostructures of (GaN/AlN). By adjusting the growth temperature in the second growth step either vertical or coaxial nanowire superlattices can be formed. These results indicate that a two-step method allows access to a variety of kinetics at which nanowire nucleation and adatom mobility are adjustable.
Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork
NASA Astrophysics Data System (ADS)
Levine, L. E.; Long, G. G.; Ilavsky, J.; Gerhardt, R. A.; Ou, R.; Parker, C. A.
2007-01-01
The authors have used mechanical self-assembly of carbon-black nanoparticles to fabricate a three dimensional, electrically connected micronetwork of nanowires embedded within an insulating, supporting matrix of poly(methyl methacrylate). The electrical connectivity, mean wire diameter, and morphological transitions were characterized as a function of the carbon-black mass fraction. Conductive wires were produced with mean diameters as low as 24nm with lengths up to 100μm.
NASA Astrophysics Data System (ADS)
Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R.; Ringer, Simon P.
2009-02-01
Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO2 layers onto the ITO or ITO/TiO2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO2 core-shell nanowires or pristine TiO2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.
Lee, Young Bum; Kim, Seong Ku; Lim, Yi Rang; Jeon, In Su; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok
2017-05-03
Complementary combination of heterostructures is a crucial factor for the development of 2D materials-based optoelectronic devices. Herein, an appropriate solution for fabricating complementary dimensional-hybrid nanostructures comprising structurally tailored ZnO nanostructures and 2D materials such as graphene and MoS 2 is suggested. Structural features of ZnO nanostructures hydrothermally grown on graphene and MoS 2 are deliberately manipulated by adjusting the pH value of the growing solution, which will result in the formation of ZnO nanowires, nanostars, and nanoflowers. The detailed growth mechanism is further explored for the structurally tailored ZnO nanostructures on the 2D materials. Furthermore, a UV photodetector based on the dimensional-hybrid nanostructures is fabricated, which demonstrates their excellent photocurrent and mechanical durability. This can be understood by the existence of oxygen vacancies and oxygen-vacancies-induced band narrowing in the ZnO nanostructures, which is a decisive factor for determining their photoelectrical properties in the hybrid system.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen
2012-02-01
We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.
Rauber, Markus; Alber, Ina; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Roth, Christina; Schökel, Alexander; Toimil-Molares, Maria Eugenia; Ensinger, Wolfgang
2011-06-08
The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.
Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K
2011-11-01
A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America
Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas
2017-01-01
We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I−V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs. PMID:26348408
Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas
2015-10-06
We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.
Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system
NASA Astrophysics Data System (ADS)
Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim
2017-03-01
The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.
Li, Jing; Wu, Xiaoping
2011-10-10
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.
Li, Jing; Wu, Xiaoping
2011-01-01
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083
Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois
2017-08-09
Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao
2018-05-01
Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.
Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao
2018-05-11
Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.
Epitaxy of advanced nanowire quantum devices
NASA Astrophysics Data System (ADS)
Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.
2017-08-01
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
NASA Astrophysics Data System (ADS)
Gries, Katharina Ines; Schlechtweg, Julian; Hille, Pascal; Schörmann, Jörg; Eickhoff, Martin; Volz, Kerstin
2017-10-01
Scanning transmission electron microscopy is an extremely useful method to image small features with a size in the range of a few nanometers and below. But it must be taken into account that such images are projections of the sample and do not necessarily represent the real three dimensional structure of the specimen. By applying electron tomography this problem can be overcome. In our work GaN nanowires including InGaN nanodisks were investigated. To reduce the effect of the missing wedge a single nanowire was removed from the underlying silicon substrate using a manipulator needle and attached to a tomography holder. Since this sample exhibits the same thickness of few tens of nanometers in all directions normal to the tilt axis, this procedure allows a sample tilt of ±90°. Reconstruction of the received data reveals a split of the InGaN nanodisks into a horizontal continuation of the (0 0 0 1 bar) central facet and a declined {1 0 1 bar l} facet (with l = -2 or -3).
Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc; ...
2018-01-08
III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc
III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less
Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene
Kim, B.; Chiu, C. -Y.; Kang, S. J.; ...
2016-06-01
Here we demonstrate controlled growth of vertical organic crystal nanowires on single layer graphene. Using Scanning Electron Microscopy (SEM), high-resolution transition electron microscopy (TEM), and Grazing Incidence X-ray Diffraction (GIXD), we probe the microstructure and morphology of dibenzotetrathienocoronene (DBTTC) nanowires epitaxially grown on graphene. The investigation is performed at both the ensemble and single nanowire level, and as function of growth parameters, providing insight of and control over the formation mechanism. Finally, the size, density and height of the nanowires can be tuned via growth conditions, opening new avenues for tailoring three-dimensional (3-D) nanostructured architectures for organic electronics with improvedmore » functional performance.« less
Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L
2018-04-26
Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.
2011-01-01
Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication. PMID:21794151
NASA Astrophysics Data System (ADS)
Di Mario, Lorenzo; Otomalo, Tadele Orbula; Catone, Daniele; O'Keeffe, Patrick; Tian, Lin; Turchini, Stefano; Palpant, Bruno; Martelli, Faustino
2018-03-01
We present stationary and transient absorption measurements on 3D Au nanoparticle (NP)-decorated Si O2 nanowire arrays. The 3D NP array has been produced by the dewetting of a thin Au film deposited on silica nanowires produced by oxidation of silicon nanowires. The experimental behaviors of the spectral and temporal dynamics observed in the experiment are accurately described by a two-step, three-temperature model. Using an arbitrary set of Au NPs with different aspect ratios, we demonstrate that the width of the experimental spectra, the energy shift of their position with time, and the asymmetry between the two positive wings in the dynamical variation of absorption can all be attributed to the nonuniform shape distribution of the Au NPs in the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
2017-07-11
The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.
Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires.
Li, Jianye; Wang, Lung-Shen; Buchholz, D Bruce; Chang, Robert P H
2009-05-01
Through a facile and highly repeatable chemical vapor method, pure three-dimensional hyperbranched Zn(3)As(2) structures and ultralong Ga(2)O(3) nanowires were simultaneously grown with controllable locations in the same experiment. The hyperbranched Zn(3)As(2) consists of cone-shaped submicro-/nanowires and has a single-crystalline tetragonal structure. This is the first report of nano Zn(3)As(2) and hyperbranched Zn(3)As(2) structures. The as-grown Ga(2)O(3) nanowires are monoclinic single crystals. A vapor-solid-solid mechanism is suggested for the growth of the Ga(2)O(3) nanowires, and a vapor-solid mechanism, for the Zn(3)As(2) structures.
Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.
Hwang, Yun Jeong; Wu, Cheng Hao; Hahn, Chris; Jeong, Hoon Eui; Yang, Peidong
2012-03-14
Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays increased by 5 times compared to the photocurrent density with InGaN nanowire arrays grown on planar Si (1.23 V vs RHE). High-resolution transmission electron microscopy showed that InGaN nanowires are stable after 15 h of illumination. These measurements show that Si/InGaN hierarchical nanostructures are a viable high surface area electrode geometry for solar water splitting. © 2012 American Chemical Society
Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil
2015-01-07
A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bai, Juan; Fang, Chun-Long; Liu, Zong-Huai; Chen, Yu
2016-01-01
Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black. Electronic supplementary information (ESI) available: Experimental details and additional physical characterization. See DOI: 10.1039/c5nr08150e
A promising routine to fabricate GeSi nanowires via self-assembly on miscut Si (001) substrates.
Zhong, Zhenyang; Gong, Hua; Ma, Yingjie; Fan, Yongliang; Jiang, Zuimin
2011-04-11
: Very small and compactly arranged GeSi nanowires could self-assembled on vicinal Si (001) substrates with ~8° off toward ⟨110⟩ during Ge deposition. The nanowires were all oriented along the miscut direction. The small ration of height over width of the nanowire indicated that the nanowires were bordered partly with {1 0 5} facets. These self-assembled small nanowires were remarkably influenced by the growth conditions and the miscut angle of substrates in comparison with large dome-like islands obtained after sufficient Ge deposition. These results proposed that the formation of the nanowire was energetically driven under growth kinetic assistance. Three-dimensionally self-assembled GeSi nanowires were first realized via multilayer Ge growth separated with Si spacers. These GeSi nanowires were readily embedded in Si matrix and compatible with the sophisticated Si technology, which suggested a feasible strategy to fabricate nanowires for fundamental studies and a wide variety of applications.PACS: 81.07.Gf, 81.16.Dn, 68.65.-k, 68.37.Ps.
Effects of mechanical strain on optical properties of ZnO nanowire
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana
2018-02-01
The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.
Zinc oxide nanowire networks for macroelectronic devices
NASA Astrophysics Data System (ADS)
Unalan, Husnu Emrah; Zhang, Yan; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J.
2009-04-01
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.
Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon
2014-05-21
We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.
Photo-Attachment of Biomolecules for Miniaturization on Wicking Si-Nanowire Platform
Cheng, He; Zheng, Han; Wu, Jia Xin; Xu, Wei; Zhou, Lihan; Leong, Kam Chew; Fitzgerald, Eugene; Rajagopalan, Raj; Too, Heng Phon; Choi, Wee Kiong
2015-01-01
We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes. PMID:25689680
Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; ...
2016-12-26
Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on additionmore » of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.« less
Metallic rare-earth silicide nanowires on silicon surfaces.
Dähne, Mario; Wanke, Martina
2013-01-09
The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).
Fabrication and characterization of Ga-doped ZnO / Si heterojunction nanodiodes
NASA Astrophysics Data System (ADS)
Akgul, Guvenc; Akgul, Funda Aksoy
2017-02-01
In this study, temperature-dependent electrical properties of n-type Ga-doped ZnO thin film / p-type Si nanowire heterojunction diodes were reported. Metal-assisted chemical etching (MACE) process was performed to fabricate Si nanowires. Ga-doped ZnO films were then deposited onto nanowires through chemical bath deposition (CBD) technique to build three-dimensional nanowire-based heterojunction diodes. Fabricated devices revealed significant diode characteristics in the temperature range of 220 - 360 K. Electrical measurements shown that diodes had a well-defined rectifying behavior with a good rectification ratio of 103 ±3 V at room temperature. Ideality factor (n) were changed from 2.2 to 1.2 with increasing temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djavid, Mehrdad; Mi, Zetian, E-mail: zetian.mi@mcgill.ca
The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved bymore » carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.« less
Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire
NASA Astrophysics Data System (ADS)
Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard
2016-10-01
The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.
Nano-soldering of magnetically aligned three-dimensional nanowire networks.
Gao, Fan; Gu, Zhiyong
2010-03-19
It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.
The art of seeing and painting.
Grossberg, Stephen
2008-01-01
The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.
NASA Astrophysics Data System (ADS)
Lu, Haiming; Meng, Xiangkang
2015-06-01
Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
W18O49 nanowires assembled on carbon felt for application to supercapacitors
NASA Astrophysics Data System (ADS)
Jung, Jinjoo; Kim, Do Hyung
2018-03-01
For supercapacitor applications, W18O49 nanowires have been extensively grown on graphitic carbon felt using a facile solvothermal method. The diameter and length of the nanowires are about 7 and 300 nm, respectively. The nanowires consist of monoclinic W18O49 grown along the [010] direction, as shown by TEM and XRD analyses. The W18O49 nanowires, assembled on carbon felt, exhibit a high capacity of 588.33 F/g at a current density of 1 A/g together with an excellent cycle performance, and a low internal resistance during the electrochemical tests. This outstanding performance may originate from the three-dimensional porous nanostructure of these W18O49 nanowires, which leads to a reduction in the resistance and fast reaction kinetics due to the high specific surface area and electrolyte accessibility. Furthermore, sufficient oxygen deficiencies of the substoichiometric tungsten oxide can also contribute to the electrochemical activity, which can be confirmed by comparison of CV and EIS data with WO3 nanowires.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Casanova, A.; Larrieu, G.; Nassiopoulou, A. G.
2018-05-01
Three-dimensional (3D) Si surface nanostructuring is interesting towards increasing the capacitance density of a metal-oxidesemiconductor (MOS) capacitor, while keeping reduced footprint for miniaturization. Si nanowires (SiNWs) can be used in this respect. With the aim of understanding the electrical versus geometrical characteristics of such capacitors, we fabricated and studied a MOS capacitor with highly ordered arrays of vertical Si nanowires of different lengths and thermal silicon oxide dielectric, in comparison to similar flat MOS capacitors. The high homogeneity and ordering of the SiNWs allowed the determination of the single SiNW capacitance and intrinsic series resistance, as well as other electrical characteristics (density of interface states, flat-band voltage and leakage current) in relation to the geometrical characteristics of the SiNWs. The SiNW capacitors demonstrated increased capacitance density compared to the flat case, while maintaining a cutoff frequency above 1 MHz, much higher than in other reports in the literature. Finally, our model system has been shown to constitute an excellent platform for the study of SiNW capacitors with either grown or deposited dielectrics, as for example high-k dielectrics for further increasing the capacitance density. This will be the subject of future work.
Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang
2016-04-20
The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.
NASA Astrophysics Data System (ADS)
Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan
2018-03-01
This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.
Controlling the plasmonic surface waves of metallic nanowires by transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yichao; Yuan, Jun; Yin, Ge
2015-07-06
In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.
Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei
2016-12-01
Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.
Highly flexible, nonflammable and free-standing SiC nanowire paper
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye
2015-03-01
Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00776c
Nonequilibrium optical control of dynamical states in superconducting nanowire circuits.
Madan, Ivan; Buh, Jože; Baranov, Vladimir V; Kabanov, Viktor V; Mrzel, Aleš; Mihailovic, Dragan
2018-03-01
Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ 3 -MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.
Nonequilibrium optical control of dynamical states in superconducting nanowire circuits
Madan, Ivan; Baranov, Vladimir V.
2018-01-01
Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system’s properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing. PMID:29670935
NASA Astrophysics Data System (ADS)
Xu, Guoqing; Liu, Ping; Ren, Yurong; Huang, Xiaobing; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan
2017-09-01
The fabrication of an ideal electrode architecture consisting of robust three dimensional (3D) nanowire networks have gained special interest for energy storage applications owing to the integrated advantages of nanostructures and microstructures. In this work, 3D MoO2 nanotextiles assembled from highly interconnected elongated nanowires are successfully prepared by a facile stirring assisted hydrothermal method and followed by an annealing process. In addition, a methylbenzene/water biphasic reaction system is involved in the hydrothermal process. When used as an anode material in Li ion batteries (LIBs), this robust MoO2 nanotextiles exhibit a high reversible capacity (860.4 mAh g-1 at 300 mA g-1), excellent cycling performance (89% capacity retention after 160 cycles) and rate capability (577 mAh g-1 at 2000 mA g-1). Various synthetic factors to the fabrication of 3D nanotextiles structure are discussed here and this design of 3D network structures may be extended to the preparation of other functional nanomaterials.
Huo, Zheng-Yang; Xie, Xing; Yu, Tong; Lu, Yun; Feng, Chao; Hu, Hong-Ying
2016-07-19
More than 10% of the people in the world still suffer from inadequate access to clean water. Traditional water disinfection methods (e.g., chlorination and ultraviolet radiation) include concerns about the formation of carcinogenic disinfection byproducts (DBPs), pathogen reactivation, and/or excessive energy consumption. Recently, a nanowire-assisted electroporation-disinfection method was introduced as an alternative. Here, we develop a new copper oxide nanowire (CuONW)-modified three-dimensional copper foam electrode using a facile thermal oxidation approach. An electroporation-disinfection cell (EDC) equipped with two such electrodes has achieved superior disinfection performance (>7 log removal and no detectable bacteria in the effluent). The disinfection mechanism of electroporation guarantees an exceedingly low operation voltage (1 V) and level of energy consumption (25 J L(-1)) with a short contact time (7 s). The low operation voltage avoids chlorine generation and thus reduces the potential of DBP formation. Because of irreversible electroporation damage on cell membranes, no regrowth and/or reactivation of bacteria occurs during storage after EDC treatment. Water disinfection using EDCs has great potential for practical applications.
Epitaxial nanowire formation in metamorphic GaAs/GaPAs short-period superlattices
NASA Astrophysics Data System (ADS)
Zheng, Nan; Ahrenkiel, S. Phillip
2017-07-01
Metamorphic growth presents routes to novel nanomaterials with unique properties that may be suitable for a range of applications. We discuss self-assembled, epitaxial nanowires formed during metalorganic chemical vapor deposition of metamorphic GaAs/GaPAs short-period superlattices. The heterostructures incorporate strain-engineered GaPAs compositional grades on 6°-<111>B miscut GaAs substrates. Lateral diffusion within the SPS into vertically aligned, three-dimensional columns results in nanowires extending along <110>A directions with a lateral period of 70-90 nm. The microstructure is probed by transmission electron microscopy to confirm the presence of coherent GaAs nanowires within GaPAs barriers. The compositional profile is inferred from analysis of {200} dark-field image contrast and <210> lattice images.
Optimized efficiency in InP nanowire solar cells with accurate 1D analysis
NASA Astrophysics Data System (ADS)
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2018-01-01
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.
Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2018-01-26
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s -1 , corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.
Ye, Lin; Wen, Zhenhai
2018-06-14
We report the fabrication of self-supported Cu/Cu2O-CuO/rGO nanowire arrays on commercial porous copper foam, which exhibit excellent activity and durability for electrochemical hydrogen evolution, presenting a small onset potential of 84 mV and a low overpotential of 105 mV at a current density of 10 mA cm-2.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
NASA Astrophysics Data System (ADS)
Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José
2017-11-01
The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.
Fabrication routes for one-dimensional nanostructures via block copolymers
NASA Astrophysics Data System (ADS)
Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav
2017-05-01
Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.
NASA Astrophysics Data System (ADS)
Li, Zhenzhen; Chen, Yan; Xin, Yanmei; Zhang, Zhonghai
2015-11-01
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure, and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility, and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications, and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital, and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors.
Li, Zhenzhen; Chen, Yan; Xin, Yanmei; Zhang, Zhonghai
2015-01-01
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure, and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility, and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications, and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital, and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors. PMID:26522446
Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics.
Robel, István; Bunker, Bruce A; Kamat, Prashant V; Kuno, Masaru
2006-07-01
Ultrafast relaxation dynamics of charge carriers in CdSe quantum wires with diameters between 6 and 8 nm are studied as a function of carrier density. At high electron-hole pair densities above 10(19) cm(-3) the dominant process for carrier cooling is the "bimolecular" Auger recombination of one-dimensional (1D) excitons. However, below this excitation level an unexpected transition from a bimolecular (exciton-exciton) to a three-carrier Auger relaxation mechanism occurs. Thus, depending on excitation intensity, electron-hole pair relaxation dynamics in the nanowires exhibit either 1D or 0D (quantum dot) character. This dual nature of the recovery kinetics defines an optimal intensity for achieving optical gain in solution-grown nanowires given the different carrier-density-dependent scaling of relaxation rates in either regime.
Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig
2013-05-01
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
Programmable growth of branched silicon nanowires using a focused ion beam.
Jun, Kimin; Jacobson, Joseph M
2010-08-11
Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.
Construction of 3D Metallic Nanowire Arrays on Arbitrarily-Shaped Substrate.
NASA Astrophysics Data System (ADS)
Chen, Fei; Li, Jingning; Yu, Fangfang; Peng, Ru-Wen; Wang, Mu; Mu Wang Team
Formation of three-dimensional (3D) nanostructures is an important step of advanced manufacture for new concept devices with novel functionality. Despite of great achievements in fabricating nanostructures with state of the art lithography approaches, these nanostructures are normally limited on flat substrates. Up to now it remains challenging to build metallic nanostructures directly on a rough and bumpy surface. Here we demonstrate a unique approach to fabricate metallic nanowire arrays on an arbitrarily-shaped surface by electrodeposition, which is unknown before 2016. Counterintuitively here the growth direction of the nanowires is perpendicular to their longitudinal axis, and the specific geometry of nanowires can be achieved by introducing specially designed shaped substrate. The spatial separation and the width of the nanowires can be tuned by voltage, electrolyte concentration and temperature in electrodeposition. By taking cobalt nanowire array as an example, we demonstrate that head-to-head and tail-to-tail magnetic domain walls can be easily introduced and modulated in the nanowire arrays, which is enlightening to construct new devices such as domain wall racetrack memory. We acknowledge the foundation from MOST and NSF(China).
The impact of nanocontact on nanowire based nanoelectronics.
Lin, Yen-Fu; Jian, Wen-Bin
2008-10-01
Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been considered yet. High quality ZnO nanowires with a small deviation and an average diameter of 38 nm were synthesized to fabricate more than thirty nanowire devices. According to temperature behaviors of current-voltage curves and resistances, the devices could be grouped into three types. Type I devices expose thermally activated transport in ZnO nanowires and they could be considered as two Ohmic nanocontacts of the Ti electrode contacting directly on the nanowire. For those nanowire devices having a high resistance at room temperatures, they can be fitted accurately with the thermionic-emission theory and classified into type II and III devices according to their rectifying and symmetrical current-voltage behaviors. The type II device has only one deteriorated nanocontact and the other one Ohmic contact on single ZnO nanowire. An insulating oxide layer with thickness less than 20 nm should be introduced to describe electron hopping in the nanocontacts, so as to signalize one- and high-dimensional hopping conduction in type II and III devices.
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
Impact of the air gap in nanowire array transistors
NASA Astrophysics Data System (ADS)
Mativetsky, Jeffrey; Yang, Tong; Mehta, Jeremy
Organic and inorganic semiconducting nanowires are promising for flexible electronic, energy harvesting, and sensing applications. Nanowire arrays processed from solution are particularly attractive for their ease of processing coupled with their potential for high performance. Random stacking has been observed, however, to hinder the collective electrical performance of such nanowire arrays. Here, we employ solution-processed organic semiconducting nanowires as a model system to assess the impact of the air gap that exists under a large portion of the active material in nanowire array transistors. Confocal Raman spectroscopy is used to non-invasively quantify the average air gap thickness which is found to be unexpectedly large - two to three times the nanowire diameter. This substantial air gap acts as an additional dielectric layer that diminishes the buildup of charge carriers, and can affect the measured charge carrier mobility and current on/off ratio by more than one order of magnitude. These results establish the importance of taking the air gap into account when fabricating and analyzing the performance of transistors based on one-dimensional nanostructures, such as organic and inorganic nanowires, or carbon nanotubes. NSF CAREER award DMR-1555028, NSF CMMI-1537648 , NSF MRI CMMI-1429176.
A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation
Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong
2015-01-01
One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template TexSey@Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures. PMID:26601137
A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.
Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong
2015-11-01
One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template Te x Se y @Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures.
Thermal stability and reduction of iron oxide nanowires at moderate temperatures.
Paolone, Annalisa; Angelucci, Marco; Panero, Stefania; Betti, Maria Grazia; Mariani, Carlo
2014-01-01
The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry, infrared and photoemission spectroscopy measurements. The chemical state of the nanowires is typical of the Fe2O3 phase and the stoichiometry changes towards a Fe3O4 phase by annealing above 440 K. The shape and morphology of the nanowires is not modified by moderate thermal treatment, as imaged by scanning electron microscopy. This complementary spectroscopy-microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries.
Vertical III-V nanowire device integration on Si(100).
Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike
2014-01-01
We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.
Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying
2015-09-30
In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices.
Wenga, G; Jacques, E; Salaün, A-C; Rogel, R; Pichon, L; Geneste, F
2013-02-15
Currently, detection of DNA hybridization using fluorescence-based detection technique requires expensive optical systems and complex bioinformatics tools. Hence, the development of new low cost devices that enable direct and highly sensitive detection stimulates a lot of research efforts. Particularly, devices based on silicon nanowires are emerging as ultrasensitive electrical sensors for the direct detection of biological species thanks to their high surface to volume ratio. In this study, we propose innovative devices using step-gate polycrystalline silicon nanowire FET (poly-Si NW FETs), achieved with simple and low cost fabrication process, and used as ultrasensitive electronic sensor for DNA hybridization. The poly-SiNWs are synthesized using the sidewall spacer formation technique. The detailed fabrication procedure for a step-gate NWFET sensor is described in this paper. No-complementary and complementary DNA sequences were clearly discriminated and detection limit to 1 fM range is observed. This first result using this nano-device is promising for the development of low cost and ultrasensitive polysilicon nanowires based DNA sensors compatible with the CMOS technology. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yin; Jiang, Yuanwen; Cherukara, Mathew J.
Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. Here, we perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to similarmore » to 5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.« less
Fang, Yin; Jiang, Yuanwen; Cherukara, Mathew J.; ...
2017-12-08
Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. Here, we perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to similarmore » to 5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.« less
Han, Jinkyu; McBean, Coray; Wang, Lei; ...
2015-02-10
As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋ xMo xO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output uponmore » nanowire chemical composition with our 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋ xMo xO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We propose that the PL quenching can be attributed to a photo-induced electron transfer process from CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) to both CdSe and CdS QDs, an assertion supported by complementary NEXAFS measurements.« less
A high efficiency dual-junction solar cell implemented as a nanowire array.
Yu, Shuqing; Witzigmann, Bernd
2013-01-14
In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.
NASA Astrophysics Data System (ADS)
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-01
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; ...
2016-12-14
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yung-Chen; Kim, Dongheun; Li, Zhen
Here we report on strain-induced structural defect formation in core Si nanowire of Si/Ge core/shell nanowire heterostructure and influences of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only Ge shell region or in both Ge shell and Si core regions and is associated with the increase of the shell volume fraction. Themore » relax of misfit strain in [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of cross-over defect formation is of great importance for the understanding of heteroepitaxy in radial heterostructures at nanoscale and building the three dimensional heterostructures for the various applications. In addition, the effect of the defect formation on nanomaterial’s functionality is investigated by electrochemical performance test. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.« less
Zhan, Jiye; Chen, Minghua; Xia, Xinhui
2015-01-01
Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C) and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials. PMID:28347084
NASA Astrophysics Data System (ADS)
Hu, Huan; Liu, Shuwu; Hanif, Muddasir; Chen, Shuiliang; Hou, Haoqing
2014-12-01
The polyaniline (PANI)-based pseudo-supercapacitor has been extensively studied due to its good conductivity, ease of synthesis, low-cost monomer, tunable properties and remarkable specific capacitance. In this work, a three-dimensional cross-linked carbon network (3D-CCN) was used as a contact-resistance-free substrate for PANI-based pseudo-supercapacitors. The ordered PANI nanowires (PaNWs) were grown on the 3D-CCN to form PaNWs/3D-CCN composites by in-situ polymerization. The PaNWs/3D-CCN composites exhibited a specific capacitance (Cs) of 1191.8 F g-1 at a current density of 0.5 A g-1 and a superior rate capability with 66.4% capacitance retention at 100.0 A g-1. The high specific capacitance is attributed to the thin PaNW coating and the spaced PANI nanowire array, which ensure a higher utilization of PANI due to the ease of diffusion of protons through/on the PANI nanowires. In addition, the unique 3D-CCN was used as a high-conductivity platform (or skeleton) with no contact resistance for fast electron transfer and facile charge transport within the composites. Therefore, the binder-free composites can process rapid gains or losses of electrons and ions, even at a high current density. As a result, the specific capacitance and rate capability of our composites are remarkably higher than those of other PANI composites.
NASA Astrophysics Data System (ADS)
Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio
2018-03-01
Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.
Segmented nanowires displaying locally controllable properties
Sutter, Eli Anguelova; Sutter, Peter Werner
2013-03-05
Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.
Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang
2012-01-01
This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording. PMID:22666012
Evolution of Zinc Oxide Nanostructures from Non-Equilibrium Deposition Conditions
2016-07-11
pressure and temperature in the chamber by a rough estimation using PV = nRT. The deposition area is the internal surface of the tubular chamber, D...J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, X.D. Wang “Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide...Andrew, M.S. Arnold, X.D. Wang "Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures" ACS
Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue
2017-02-28
The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.
Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.
Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M
2013-02-13
Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.
Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire
Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; ...
2016-02-25
Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi 1.33Sb 0.67)Se 3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. As a result, we characterize the zero-bias peaks andmore » discuss their origin.« less
Stable and metastable nanowires displaying locally controllable properties
Sutter, Eli Anguelova; Sutter, Peter Werner
2014-11-18
Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.
A superconducting nanowire can be modeled by using SPICE
NASA Astrophysics Data System (ADS)
Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.
2018-05-01
Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.
Zhang, Qi; Xu, Tian-Yi; Zhao, Cai-Xin; Jin, Wei-Hang; Wang, Qian; Qu, Da-Hui
2017-10-05
The design of tunable dynamic self-assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular "glue" for aldehyde-modified Au nanoparticles to reversibly modulate the states of self-assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one-dimensional nanowires to three-dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH-controlled cargo release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bulk nucleation and growth of inorganic nanowires and nanotubes
NASA Astrophysics Data System (ADS)
Sharma, Shashank
The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG technique were single crystalline, defect free, and contained a non uniform, extremely thin oxide sheath (<1.5 nm). The nanowire diameter could be varied from 3 to 100 nm, with lengths up to hundreds of microns. Unique tubular and paintbrush-like morphologies were obtained in gallium oxide (Ga2O3) nanostructures. Small gallium droplets (<100 nm size) allowed Ga2O3 nanowire growth parallel to the substrate, followed by 2-dimensional nanoweb formation. These experiments using small gallium droplets resulted in the growth of crystalline Ga2O3 nanotubes with outer diameters as small as 5 nm and inner diameters as small as 2.5 nm.
Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars
NASA Astrophysics Data System (ADS)
Bran, C.; Ivanov, Yu P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M.
2017-03-01
Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.
Zhaodong Li; Chunhua Yao; Fei Wang; Zhiyong Cai; Xudong Wang
2014-01-01
Three dimensional (3D) nanostructures with extremely large porosity possess a great promise for the development of high-performance energy harvesting storage devices. In this paper, we developed a high-density 3D TiO2 fiber-nanorod (NR) heterostructure for photoelectrochemical (PEC) water splitting. The hierarchical structure was synthesized on a...
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-22
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Saturable absorption in one-dimensional Sb2Se3 nanowires in the visible to near-infrared region.
Yadav, Rajesh Kumar; Sharma, Rituraj; Aneesh, J; Abhiramnath, P; Adarsh, K V
2016-05-01
One-dimensional (1D) free-standing nanowires are particularly important for carrier confinement in two dimensions, which provides a platform to explore the nonlinear optical phenomena at the nanoscale. In this Letter, we demonstrate saturable absorption in the resonant and above-bandgap excitations of both ns and fs pulses in 1D crystalline Sb2Se3 nanowires prepared by the facile hydrothermal method. Impressively, the average length of the nanowires extends to a few micrometers with a high aspect ratio of 300. The excited-state to ground-state absorption cross-section ratio in Sb2Se3 nanowires is ≈0.23, which suggests that they can be utilized as passive mode lockers.
NASA Astrophysics Data System (ADS)
Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie
2014-10-01
Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems. Electronic supplementary information (ESI) available: Electrical characterization of fabricated n- and p-type nanowires, and influence of Debye screening on PSA sensing. See DOI: 10.1039/c4nr03210a
Electron beam assisted field evaporation of insulating nanowires/tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.
2015-05-11
We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.
Integrated nanoscale tools for interrogating living cells
NASA Astrophysics Data System (ADS)
Jorgolli, Marsela
The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.
Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song
2013-09-24
We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.
Bisecting Microfluidic Channels with Metallic Nanowires Fabricated by Nanoskiving.
Kalkman, Gerard A; Zhang, Yanxi; Monachino, Enrico; Mathwig, Klaus; Kamminga, Machteld E; Pourhossein, Parisa; Oomen, Pieter E; Stratmann, Sarah A; Zhao, Zhiyuan; van Oijen, Antoine M; Verpoorte, Elisabeth; Chiechi, Ryan C
2016-02-23
This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced.
Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing
Song, Edward; Choi, Jin-Woo
2013-01-01
One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed. PMID:28348347
Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke
2015-01-13
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
Preparation of nanowire specimens for laser-assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Blumtritt, H.; Isheim, D.; Senz, S.; Seidman, D. N.; Moutanabbir, O.
2014-10-01
The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.
Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.
Wu, Hao; Ai, Zhihui; Zhang, Lizhi
2014-04-01
In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron. Copyright © 2014 Elsevier Ltd. All rights reserved.
Near-Infrared Intersubband Photodetection in GaN/AlN Nanowires.
Lähnemann, Jonas; Ajay, Akhil; Den Hertog, Martien I; Monroy, Eva
2017-11-08
Intersubband optoelectronic devices rely on transitions between quantum-confined electron levels in semiconductor heterostructures, which enables infrared (IR) photodetection in the 1-30 μm wavelength window with picosecond response times. Incorporating nanowires as active media could enable an independent control over the electrical cross-section of the device and the optical absorption cross-section. Furthermore, the three-dimensional carrier confinement in nanowire heterostructures opens new possibilities to tune the carrier relaxation time. However, the generation of structural defects and the surface sensitivity of GaAs nanowires have so far hindered the fabrication of nanowire intersubband devices. Here, we report the first demonstration of intersubband photodetection in a nanowire, using GaN nanowires containing a GaN/AlN superlattice absorbing at 1.55 μm. The combination of spectral photocurrent measurements with 8-band k·p calculations of the electronic structure supports the interpretation of the result as intersubband photodetection in these extremely short-period superlattices. We observe a linear dependence of the photocurrent with the incident illumination power, which confirms the insensitivity of the intersubband process to surface states and highlights how architectures featuring large surface-to-volume ratios are suitable as intersubband photodetectors. Our analysis of the photocurrent characteristics points out routes for an improvement of the device performance. This first nanowire based intersubband photodetector represents a technological breakthrough that paves the way to a powerful device platform with potential for ultrafast, ultrasensitive photodetectors and highly efficient quantum cascade emitters with improved thermal stability.
A deep etching mechanism for trench-bridging silicon nanowires
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.
2016-03-01
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
A deep etching mechanism for trench-bridging silicon nanowires.
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem
2016-03-04
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
Coupling Molecular Beacons to Barcoded Metal Nanowires for Multiplexed, Sealed Chamber DNA Bioassays
Stoermer, Rebecca L.; Cederquist, Kristin B.; McFarland, Sean K.; Sha, Michael Y.; Penn, Sharron G.
2010-01-01
We have combined molecular beacon (MB) probes with barcoded metal nanowires to enable no-wash, sealed chamber, multiplexed detection of nucleic acids. Probe design and experimental parameters important in nanowire-based MB assays are discussed. Loop regions of 24 bases and 5 base pair stem regions in the beacon probes gave optimal performance. Our results suggest that thermodynamic predictions for secondary structure stability of solution-phase MB can guide probe design for nanowire-based assays. Dengue virus-specific probes with predicted solution-phase ΔG of folding in 500 mM buffered NaCl of approximately −4 kcal/mol performed better than those with ΔG > −2 or < −6 kcal/mol. Buffered 300–500 mM NaCl was selected after comparison of several buffers previously reported for similar types of assays, and 200–500 mM NaCl was found to be the optimal ionic strength for the hybridization temperatures (25 and 50 °C) and probe designs used here. Target binding to the surface as a function of solution concentration fit a Sips isotherm with Kd = 1.7 ± 0.3 nM. The detection limit was ∼100 pM, limited by incomplete quenching. Single base mismatches could be discriminated from fully complementary targets. Oligonucleotide target sequences specific for human immunodeficiency, hepatitis C, and severe acute respiratory viruses were assayed simultaneously in a no-wash, sealed chamber, multiplexed experiment in which each of three probe sequences was attached to a different pattern of encoded nanowires. Finally, we demonstrated that probe-coated nanowires retain their selectivity and sensitivity in a triplexed assay after storage for over 3 months. PMID:17177440
Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system
NASA Astrophysics Data System (ADS)
Liu, Yang; Wang, Sheng; Liu, Huaping; Peng, Lian-Mao
2017-06-01
Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.
NASA Astrophysics Data System (ADS)
Foroutan, Shahin; Haghshenas, Amin; Hashemian, Mohammad; Eftekhari, S. Ali; Toghraie, Davood
2018-03-01
In this paper, three-dimensional buckling behavior of nanowires was investigated based on Eringen's Nonlocal Elasticity Theory. The electric current-carrying nanowires were affected by a longitudinal magnetic field based upon the Lorentz force. The nanowires (NWs) were modeled based on Timoshenko beam theory and the Gurtin-Murdoch's surface elasticity theory. Generalized Differential Quadrature (GDQ) method was used to solve the governing equations of the NWs. Two sets of boundary conditions namely simple-simple and clamped-clamped were applied and the obtained results were discussed. Results demonstrated the effect of electric current, magnetic field, small-scale parameter, slenderness ratio, and nanowires diameter on the critical compressive buckling load of nanowires. As a key result, increasing the small-scale parameter decreased the critical load. By the same token, increasing the electric current, magnetic field, and slenderness ratio resulted in a decrease in the critical load. As the slenderness ratio increased, the effect of nonlocal theory decreased. In contrast, by expanding the NWs diameter, the nonlocal effect increased. Moreover, in the present article, the critical values of the magnetic field of strength and slenderness ratio were revealed, and the roles of the magnetic field, slenderness ratio, and NWs diameter on higher buckling loads were discussed.
Muench, Falk; Schaefer, Sandra; Hagelüken, Lorenz; Molina-Luna, Leopoldo; Duerrschnabel, Michael; Kleebe, Hans-Joachim; Brötz, Joachim; Vaskevich, Alexander; Rubinstein, Israel; Ensinger, Wolfgang
2017-09-13
Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang
2017-12-01
Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.
Nanoscale insights on one- and two-dimensional material structures
NASA Astrophysics Data System (ADS)
Floresca, Herman Carlo
The race for smaller, faster and more efficient devices has led researchers to explore the possibilities of utilizing nanostructures for scaling. These one-dimensional and two-dimensional materials have properties that are attractive for this purpose but are still not well controlled. Control comes with a complete understanding of the materials' electrical, thermal, optical and structural characteristics but is difficult to obtain due to their small scale. This work is intended to help researchers overcome the difficulty in studying nanostructures by providing techniques for analysis and insights of nanostructures that have not been previously available. Two nanostructures were studied: silicon nanowires and graphene. The nanowires were prepared for cross-section transmission electron microscopy (TEM) to discover the effects that controlled oxidation has on the dimensions and shape of the nanowires. Since cross-section TEM is not able to provide information about surface structure, a method for manipulating the wires with orientation control was developed. With this ability, all three orthogonal views of the nanowire were compiled for a comprehensive study on its structure in terms of shape and surface roughness. Graphene was used for a two-dimensional analytical technique that took advantage of customized computer programs for data acquisition, measurement and display. With the information provided, distinctions between grain boundary types in polycrystalline graphene were made and supported by statistical information from the software's output. It was also applied to a growth series of graphene samples in conjunction with scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD) maps. The results help point to origins of graphene's polycrystalline nature. This dissertation concludes with a thought towards the future by highlighting a method that can help analyze nanostructures, which may become incorporated into the structures of large devices. The fold-out method is a TEM sample preparation technique utilizing a focused ion beam (FIB) for site specific thinning across a large sample area. Its process is demonstrated along with advantages over conventional methods.
NASA Astrophysics Data System (ADS)
Knoll, L.; Richter, S.; Nichau, A.; Trellenkamp, S.; Schäfer, A.; Wirths, S.; Blaeser, S.; Buca, D.; Bourdelle, K. K.; Zhao, Q.-T.; Mantl, S.
2014-08-01
Electrical characteristics of silicon nanowire tunnel field effect transistors (TFETs) are presented and benchmarked versus other concepts. Particular emphasis is placed on the band to band tunneling (BTBT) junctions, the functional core of the device. Dopant segregation from ion implanted ultrathin silicide contacts is proved as a viable method to achieve steep tunneling junctions. This reduces defect generation by direct implantation into the junction and thus minimizes the risk of trap assisted tunneling. The method is applied to strained silicon, specifically to nanowire array transistors, enabling the realization of n-type and p-type TFETs with fairly high currents and complementary TFET inverters with sharp transitions and good static gain, even at very low drain voltages of VDD = 0.2 V. These achievements suggest a considerable potential of TFETs for ultralow power applications. Gate-all-around Si nanowire array p-type TFETs have been fabricated to demonstrate the impact of electrostatic control on the device performance. A high on-current of 78 μA/μm at VD = VG = 1.1 V is obtained.
Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie
2014-11-07
Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.
NASA Astrophysics Data System (ADS)
Hicks, Jeremy; Li, Junying; Ying, Chen; Ural, Ant
2018-05-01
We study the effect of nanowire curviness on the percolation resistivity of transparent, conductive metal nanowire networks by Monte Carlo simulations. We generate curvy nanowires as one-dimensional sticks using 3rd-order Bézier curves. The degree of curviness in the network is quantified by the concept of curviness angle and curl ratio. We systematically study the interaction between the effect of curviness and five other nanowire/device parameters on the network resistivity, namely nanowire density, nanowire length, device length, device width, and nanowire alignment. We find that the resistivity exhibits a power law dependence on the curl ratio, which is a signature of percolation transport. In each case, we extract the power-law scaling critical exponents and explain the results using geometrical and physical arguments. The value of the curl ratio critical exponent is not universal, but increases as the other nanowire/device parameters drive the network toward the percolation threshold. We find that, for randomly oriented networks, curviness is undesirable since it increases the resistivity. For well-aligned networks, on the other hand, some curviness is highly desirable, since the resistivity minimum occurs for partially curvy nanowires. We explain these results by considering the two competing effects of curviness on the percolation resistivity. The results presented in this work can be extended to any network, film, or nanocomposite consisting of one-dimensional nanoelements. Our results show that Monte Carlo simulations are an essential predictive tool for both studying the percolation transport and optimizing the electronic properties of transparent, conductive nanowire networks for a wide range of applications.
NASA Astrophysics Data System (ADS)
Winey, Karen I.; Mutiso, Rose M.; Sherrott, Michelle C.; Rathmell, Aaron R.; Wiley, Benjamin J.
2013-03-01
Thin-film metal nanowire networks are being pursued as a viable alternative to the expensive and brittle indium tin oxide (ITO) for transparent conductors. For high performance applications, nanowire networks must exhibit high transmittance at low sheet resistance. Previously, we have used complimentary experimental, simulation and theoretical techniques to explore the effects of filler aspect ratio (L/D), orientation, and size-dispersity on the electrical conductivity of three-dimensional rod-networks in bulk polymer nanocomposites. We adapted our 3D simulation approach and analytical percolation model to study the electrical properties of thin-film rod-networks. By fitting our simulation results to experimental results, we determined the average effective contact resistance between silver nanowires. This contact resistance was then used to quantify how the sheet resistance depends on the aspect ratio of the rods and to show that networks made of nanowires with L/D greater than 100 yield sheet resistances lower than the required 100 Ohm/sq. We also report the critical area fraction of rods required to form a percolated network in thin-film networks and provide an analytical expression for the critical area fraction as a function of L/D.
Quantum dot-like emitters formed due to alloy fluctuations in GaNAs-based nanowires.
NASA Astrophysics Data System (ADS)
Buyanova, Irina; Jansson, M.; Filippov, S.; Stehr, J.; Palisaitis, J.; Persson, P.; Ishikawa, F.; Chen, Weimin
Group III-V semiconductor nanowires with embedded quantum dots (QDs) are currently attracting increasing attention as a highly attractive platform for a variety of advanced applications ranging from third generation photovoltaics to quantum information technologies. In this work, we show that local fluctuations in N composition inside coaxial GaAs/GaNAs nanowires induces three-dimensional confining potentials equivalent to that for QDs thus forming optically active and highly localized states inside the GaNAs shell. Principal quantization axis of these states is concluded to mainly coincide with the nanowire axis, based on the strong polarization of the detected emission orthogonal to the nanowire axis revealed from polarization-resolved micro-photoluminescence studies. This is partly attributed to a predominantly uniaxial tensile strain field in the GaNAs shell caused by lattice mismatch with the GaAs core. GaNAs alloys can, therefore, be used as an active material in hybrid QD-NW structures utilized for fabrication of nanoscale polarized-light sources that are efficient within the near-infrared spectral range. Financial support by the Swedish Energy Agency (Grant # P40119-1) and the Swedish Research Council (Grant # 2015-05532) is greatly appreciated.
Nanometer-sized materials for solid-phase extraction of trace elements.
Hu, Bin; He, Man; Chen, Beibei
2015-04-01
This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.
Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires
NASA Astrophysics Data System (ADS)
Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas
One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).
Ma, Shuai-Shuai; Xu, Peng; Cai, Zhi-Lan; Li, Qing; Ye, Zhao-Lian; Zhou, Yu-Ming
2018-07-01
One-dimensional (1D) semiconductor ZnO nanowires have been successfully synthesized by a novel soft-chemical hydrothermal method with allylpolyethoxy amino carboxylate (AA-APEA) at low temperature. Their structure and properties have been characterized by a series of techniques, including X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). It was found that ZnO nanowires with diameters around 50 nm and lengths up to about several micrometers are well-distributed. The photocatalytic activity toward degradation of methylene blue (MB) aqueous solution under ultraviolet (UV) was investigated and the results showed that the ZnO nanowires exhibit a markedly higher photoactivity compared to the ZnO nanoparticles which were obtained without AA-APEA polymer assistant, and it can be ascribed to the special 1D morphology of the ZnO nanowires. In particular, the rate of degradation of the ZnO nanowires was 11 times faster than that of ZnO nanoparticles. In addition, the ZnO nanowires could be easily recycled in UV photocatalytic activity. These observations could promote new applications of photocatalyst for wastewater treatment utilizing oxide semiconductor nanostructures.
Donatini, F; de Luna Bugallo, Andres; Tchoulfian, Pierre; Chicot, Gauthier; Sartel, Corinne; Sallet, Vincent; Pernot, Julien
2016-05-11
Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties.
Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel.
Su, Lei; Wang, Hongjie; Niu, Min; Fan, Xingyu; Ma, Mingbo; Shi, Zhongqi; Guo, Sheng-Wu
2018-04-24
Ultralight ceramic aerogels with the property combination of recoverable compressibility and excellent high-temperature stability are attractive for use in harsh environments. However, conventional ceramic aerogels are usually constructed by oxide ceramic nanoparticles, and their practical applications have always been limited by the brittle nature of ceramics and volume shrinkage at high temperature. Silicon carbide (SiC) nanowire offers the integrated properties of elasticity and flexibility of one-dimensional (1D) nanomaterials and superior high-temperature thermal and chemical stability of SiC ceramics, which makes it a promising building block for compressible ceramic nanowire aerogels (NWAs). Here, we report the fabrication and properties of a highly porous three-dimensional (3D) SiC NWA assembled by a large number of interweaving 3C-SiC nanowires of 20-50 nm diameter and tens to hundreds of micrometers in length. The SiC NWA possesses ultralow density (∼5 mg cm -3 ), excellent mechanical properties of large recoverable compression strain (>70%) and fatigue resistance, refractory property, oxidation and high-temperature resistance, and thermal insulating property (0.026 W m -1 K -1 at room temperature in N 2 ). When used as absorbents, the SiC NWAs exhibit an adsorption selectivity of low-viscosity organic solvents with high absorption capacity (130-237 g g -1 ). The successful fabrication of such an attractive material may provide promising perspectives to the design and fabrication of other compressible and multifunctional ceramic NWAs.
Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode
NASA Astrophysics Data System (ADS)
Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei
2012-08-01
One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Mori, S.; Morioka, N.
2014-12-21
We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependencemore » was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications.« less
Diameter Dependence of Planar Defects in InP Nanowires
Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.
2016-01-01
In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584
Diameter Dependence of Planar Defects in InP Nanowires.
Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C
2016-09-12
In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.
NASA Astrophysics Data System (ADS)
Li, Cai-Zhen; Li, Chuan; Wang, Li-Xian; Wang, Shuo; Liao, Zhi-Min; Brinkman, Alexander; Yu, Da-Peng
2018-03-01
A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb -Cd3As2 nanowire-Nb short and long junctions, respectively. For the ˜1 -μ m -long junction, the Fabry-Pérot interferences-induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still stay coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.
Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A
2018-03-14
Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.
Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide
NASA Astrophysics Data System (ADS)
Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram
2018-05-01
A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.
NASA Astrophysics Data System (ADS)
Samarin, S. N.; Saramad, S.
2018-05-01
The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.
Organic nanowire hierarchy over fabric platform for flexible cold cathode
NASA Astrophysics Data System (ADS)
Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar
2013-11-01
Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.
Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition
NASA Astrophysics Data System (ADS)
Sergelius, Philip; Lee, Ji Hyun; Fruchart, Olivier; Shaker Salem, Mohamed; Allende, Sebastian; Alejandro Escobar, Roberto; Gooth, Johannes; Zierold, Robert; Toussaint, Jean-Christophe; Schneider, Sebastian; Pohl, Darius; Rellinghaus, Bernd; Martin, Sylvain; Garcia, Javier; Reith, Heiko; Spende, Anne; Toimil-Molares, Maria-Eugenia; Altbir, Dora; Cowburn, Russel; Görlitz, Detlef; Nielsch, Kornelius
2017-02-01
Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 μm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.
Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors
NASA Astrophysics Data System (ADS)
Weber, Walter M.; Mikolajick, Thomas
2017-06-01
Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.
Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying
2018-03-05
The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.
Nanowires, nanostructures and devices fabricated therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2005-04-19
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Bending nanowire growth in solution by mechanical disturbance.
Wang, Chao; Wei, Yujie; Jiang, Hongyuan; Sun, Shouheng
2010-06-09
The effect of mechanical disturbance on one-dimensional nanocrystal growth in solution phase is investigated by controlled growth of Au nanowires with and without stirring. While a static growth leads to straight, single-crystal Au nanowires, the mechanic disturbance by stirring tends to bend the nanowire growth, yielding nanowire kinks abundant in various types of crystal defects including dislocations, twin boundaries, and grain boundaries. Mechanical modeling and analysis is introduced to elucidate the nanowire growth mechanisms in these two conditions. The provided fundamental understanding of crystal defect formation at nanoscale could be applied to guide the development of advanced nanomaterials with shape control and unique mechanical properties.
Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, T.-T. D.; Chen, R.; Ng, K. W.
2014-09-15
As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.
Atomistics of vapour–liquid–solid nanowire growth
Wang, Hailong; Zepeda-Ruiz, Luis A.; Gilmer, George H.; Upmanyu, Moneesh
2013-01-01
Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays. PMID:23752586
Tuning and synthesis of semiconductor nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.
One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications
NASA Astrophysics Data System (ADS)
Weintraub, Benjamin A.
As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.
Zhang, Li; Petit, Tristan; Lu, Yang; Kratochvil, Bradley E; Peyer, Kathrin E; Pei, Ryan; Lou, Jun; Nelson, Bradley J
2010-10-26
We show that rotating Ni nanowires are capable of propulsion and transport of colloidal cargo near a complex surface. When dissimilar boundary conditions exist at the two ends of a nanowire, such as when a nanowire is near a wall, tumbling motion can be generated that leads to propulsion of the nanowire. The motion of the nanowire can be precisely controlled using a uniform rotating magnetic field. We investigate the propulsion mechanism and the trajectory of the nanowire during the tumbling motion and demonstrate cargo transport of a polystyrene microbead by the nanowire over a flat surface or across an open microchannel. The results imply that functionalized, ferromagnetic one-dimensional, tumbling nanostructures can be used for cell manipulation and targeted drug delivery in a low Reynolds number aqueous environment.
NASA Astrophysics Data System (ADS)
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-03-01
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.
Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays
2014-01-01
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308
Programmable resistive-switch nanowire transistor logic circuits.
Shim, Wooyoung; Yao, Jun; Lieber, Charles M
2014-09-10
Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.
NASA Astrophysics Data System (ADS)
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-07-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Au-induced deep groove nanowire structure on the Ge(001) surface: DFT calculations
NASA Astrophysics Data System (ADS)
Tsay, Shiow-Fon
2016-09-01
The atomic geometry, stability, and electronic properties of self-organized Au induced nanowires on the Ge(001) surface are investigated based on the density-functional theory in GGA and the stoichiometry of Au. A giant Ge zigzag chain structure is suggested for 0.75 ML Au coverage, which displays c(8 × 2) deep groove zigzag nanowire structure simulated STM images. The top layer Ge and Au atomic disorder introduces the chevron units into the zigzag nanowire structure STM image as per the experimental observations. The zigzag Ge nanowire exhibits a semi-metallic characteristic, and the electric transport occurs in between the Ge zigzag nanowire and the subsurface. The system exhibits obvious electronic correlations among the Ge nanowire, the nano-facet Au trimers and the deeper layer Ge atoms, that play an important role in the electronic structure. At surface Brillouin zone boundaries, an anisotropic two-dimensional upward parabolic surface-state band is consistent with the ARPES spectra reported by Nakatsuji et al. [Phys. Rev. B 80, 081406(R) (2009); Phys. Rev. B 84, 115411 (2011)]; this electronic structure is different from the quasi-one-dimensional energy trough reported by Schäfer et al. [Phys. Rev. Lett. 101, 236802 (2008); Phys. Rev. B 83, 121411(R) (2011)].
EDITORIAL More than a wire More than a wire
NASA Astrophysics Data System (ADS)
Demming, Anna
2010-10-01
Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers from the National Institute of Standards and Technology in the US tackle this challenge by demonstrating a top-down method for fabricating nickel mono-silicide (NiSi) nanowires or nanolines. The work demonstrates a constant room temperature electrical resistivity of the NiSi nanowires as the line widths are reduced to as low as 23 nm [5]. The field effect transistor, the closest device under current research to that comprising the transistor first patented by physicist Julius Edgar Lilienfeld in Canada in 1925, has become the focus of a large proportion of research in nanoscale science and technology. Up to now, most devices have been based on natural n-type transition metal oxides, but synthesis of p-type metal oxide nanowires enables the development of novel complementary nanowire devices and circuits, including LEDs, electrically driven nanolasers and multiplexing biosensors. Doping is the most common means of producing p-type semiconductor nanowires but the stability and reproducibility of these structures are often poor. A collaboration of researchers in China and Singapore has demonstrated that CuO nanowires could be a promising candidate for a p-type field-effect transistor [6]. The sensitivity of nanowires to gases in their surroundings has stimulated considerable interest for applications in sensing, and the CuO nanowires in this report also exhibit a high response to CO gas in air at 200 °C. In this issue, researchers in Korea and the US provide an overview of the use of nanomaterials in memory technology [7]. The review provides details of the current status and future prospects of alternatives that may become available in the near future for phase-change RAM, ferroelectric RAM and magnetic RAM, as well as other novel architectures under investigation such as molecular memory and devices based on carbon nanotubes. Nanowires feature here as well. Although, as pointed out in the review the use of nanowires in phase-change RAM is still far from being at the commercial stages, these one-dimensional structures have a number of advantages including the lower melting point of materials at the nanoscale and the potential for further reductions in size and programming current and power requirements. Investigations of one-dimensional structures have provided an enduring stimulant to both fundamental and applied research in nanoscale science and technology research. William Plomer once described creativity as 'the ability to connect the apparently unconnected'. It could perhaps be said that nanowires bring creativity to the ability to connect. References [1] Joachim C, Rousset B, Schonenberger C, Kerrien A, Druet E and Chevalier J 1991 Nanotechnology 2 96 [2] Brandbyge M, Schiotz J, Sorensen M R, Stpltze P, Jacobsen K W and Norskov J K 1995 Phys. Rev. B 52 8499-514 [3] Dai K and Haynie D T 2006 Nanotechnology 17 R14-R25 [4] Snider G S and Williams R S 2007 Nanotechnology 18 035204 [5] Li B, Luo Z, Shi L, Zhou J, Rabenberg L, Ho P S, Allen R A and Cresswell M W 2009 Nanotechnology 20 085304 [6] Liao L, Zhang Z, Yan B, Zheng Z, Bao Q L, Wu T, Li C M, Shen Z X, Zhang J X, Gong H, Li J C and Yu T 2009 Nanotechnology 20 085203 [7] Chung A, Deen J, Lee J-S and Meyyappan M 2010 Nanotechnology 21 412001
Superconductor-insulator transition in quasi-one-dimensional single-crystal Nb₂PdS₅ nanowires.
Ning, Wei; Yu, Hongyan; Liu, Yequn; Han, Yuyan; Wang, Ning; Yang, Jiyong; Du, Haifeng; Zhang, Changjin; Mao, Zhiqiang; Liu, Ying; Tian, Mingliang; Zhang, Yuheng
2015-02-11
Superconductor-insulator transition (SIT) in one-dimensional (1D) nanowires attracts great attention in the past decade and remains an open question since contrasting results were reported in nanowires with different morphologies (i.e., granular, polycrystalline, or amorphous) or environments. Nb2PdS5 is a recently discovered low-dimensional superconductor with typical quasi-1D chain structure. By decreasing the wire diameter in the range of 100-300 nm, we observed a clear SIT with a 1D transport character driven by both the cross-sectional area and external magnetic field. We also found that the upper critical magnetic field (Hc2) decreases with the reduction of nanowire cross-sectional area. The temperature dependence of the resistance below Tc can be described by the thermally activated phase slip (TAPS) theory without any signature of quantum phase slips (QPS). These findings demonstrated that the enhanced Coulomb interactions with the shrinkage of the wire diameter competes with the interchain Josephson-like coupling may play a crucial role on the SIT in quasi-1D system.
NASA Astrophysics Data System (ADS)
Zhou, Bo; Zhu, Jun-Jie
2006-03-01
A general and template-free 'disproportionation and reversal' route was developed to synthesize one-dimensional (1D) nanostructures of Te, Se and Se-Te alloys directly from Te or/and Se powders. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and scanning electron microscopy (SEM). Te nanorods and nanowires with a width varying from about 40 nm to about 300 nm, Se nanowires with a width of 60-100 nm and a length of 4-6 µm, and SexTe100-x alloy nanorods with x in a wide range, and with a width of 30-70 nm and an aspect ratio of three to five, were prepared. The mechanism of formation of the nanorods and nanowires and the effects of the experimental conditions, such as solution concentration, cooling rate, solvent nature and heating process, on the morphology and size of the products have been discussed. We believe that this general route and some other proper reversible processes between solid state and solution state can be extended to the transformations from various bulk materials into nanosized materials with various morphologies.
Magnetization Ratchet in Cylindrical Nanowires.
Bran, Cristina; Berganza, Eider; Fernandez-Roldan, Jose A; Palmero, Ester M; Meier, Jessica; Calle, Esther; Jaafar, Miriam; Foerster, Michael; Aballe, Lucia; Fraile Rodriguez, Arantxa; P Del Real, Rafael; Asenjo, Agustina; Chubykalo-Fesenko, Oksana; Vazquez, Manuel
2018-05-31
The unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires. The magnetization reversal in neighboring segments propagates sequentially in steps starting from the shorter segments, irrespective of the applied field direction. This natural and efficient ratchet offers alternatives for the design of three-dimensional advanced storage and logic devices.
Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu
2012-02-01
Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.
Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires
NASA Astrophysics Data System (ADS)
Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.
Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.
NASA Astrophysics Data System (ADS)
Wei, Xiongbang; Quan, Yong; Zeng, Hongjuan; Huang, Wen; Li, Weizhi; Liao, Jiaxuan; Chen, Zhi
2018-01-01
The Ag nanowires (AgNWs) were prepared by improved liquid polyol reduction method, and the AgNWs were successfully applied to the capacitive flexible pressure sensors. Firstly, the one-dimensional radial growth conditions of AgNWs were optimized from four aspects of the molecular weight of the protective agent polyvinyl pyrrolidone (PVP), the molar ratio of AgNO3 and PVP, the anion concentration of the metal salt and the reaction temperature. The effect of polymerization degree of protective agent on one-dimensional radial growth of AgNWs was investigated by using three kinds of protective agents PVP-K-30, PVP-K-60 and PVP-K-90. Three different AgNO3 and PVP molar ratios of 1:1, 1:3 and 1:9 were designed, and the effects of PVP adsorption capacity on one-dimensional radial growth of AgNWs were investigated. Three concentrations of 0 mM NaCl, 16 mM NaCl and 32 mM NaCl were designed to study the effects of anion concentration of the metal salt on the nucleation and etching of silver nanoparticles. The effects of reaction temperature on the growth of AgNWs were studied at three different temperatures of 140 °C, 160 °C and 180 °C, and appropriate temperature design was proposed. In this experiment, the products of AgNWs prepared under various conditions were analyzed by UV-vis Spectrum and SEM, and the experimental conditions were optimized from the synthesis mechanism and reaction conditions.
Multisegment nanowire sensors for the detection of DNA molecules.
Wang, Xu; Ozkan, Cengiz S
2008-02-01
We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
Atomic and electronic properties of quasi-one-dimensional MOS2 nanowires
Seivane, Lucas Fernandez; Barron, Hector; Botti, Silvana; Marques, Miguel Alexandre Lopes; Rubio, Ángel; López-Lozano, Xóchitl
2013-01-01
The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition PMID:25429189
Shih, Po-Hsun; Wu, Sheng Yun
2017-07-21
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA
2009-08-04
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2006-02-07
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2010-11-16
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong
2018-01-30
One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
NASA Astrophysics Data System (ADS)
Wang, Andong; Li, Xiaowei; Qu, Lianti; Lu, Yongfeng; Jiang, Lan
2017-03-01
Metal nanowire fabrication has drawn tremendous attention in recent years due to its wide application in electronics, optoelectronics, and plasmonics. However, conventional laser fabrication technologies are limited by diffraction limit thus the fabrication resolution cannot meet the increasingly high demand of modern devices. Herein we report on a novel method for high-resolution high-quality metal nanowire fabrication by using Hermite-Gaussian beam to ablate metal thin film. The nanowire is formed due to the intensity valley in the center of the laser beam while the surrounding film is ablated. Arbitrary nanowire can be generated on the substrate by dynamically adjusting the orientation of the intensity valley. This method shows obvious advantages compared to conventional methods. First, the minimum nanowire has a width of 60 nm (≍1/13 of the laser wavelength), which is much smaller than the diffraction limit. The high resolution is achieved by combining the ultrashort nature of the femtosecond laser and the low thermal conductivity of the thin film. In addition, the fabricated nanowires have good inside qualities. No inner nanopores and particle intervals are generated inside the nanowire, thus endowing the nanowire with good electronic characteristics: the conductivity of the nanowires is as high as 1.2×107 S/m (≍1/4 of buck material), and the maximum current density is up to 1.66×108 A/m2. Last, the nanowire has a good adhesion to the substrates, which can withstand ultrasonic bath for a long time. These advantages make our method a good approach for high-resolution high-quality nanowire fabrication as a complementary method to conventional lithography methods.
The electronic structures of AlN and InN wurtzite nanowires
NASA Astrophysics Data System (ADS)
Xiong, Wen; Li, Dong-Xiao
2017-07-01
We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.
Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian
2017-02-08
Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Chang-Yong; Stein, Aaron
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
Nam, Chang-Yong; Stein, Aaron
2017-11-15
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Lee, Jaehyuk; Kim, Ju Hun; Lee, Byeong Jun; Lee, Jae Sung
2018-02-01
Electrical anodization of Cu foil produces one-dimensional Cu nanowires of high surface areas, which turns to CuIn alloy nanowires by indium electrodeposition replacing edge site Cu atoms. An electrochemical pre-activation forms a highly conformal amorphous In(OH)3 overlayer with oxygen vacancy on the CuIn alloy that facilitates CO2 adsorption to promote selective CO formation suppressing competing H2 adsorption. Thus the activated CuIn alloy nanowires catalyse electrochemical CO2 conversion to CO with high CO selectivity (>68.2%) and high current density (ca. -3.9 mAcm-2) at -0.6 VRHE, which represents the higher partial CO current density (ca. -2.66 mAcm-2) than that of previously reported CuIn alloy powders without nanostructuring. The performance remains stable for more than 15 h without significant degradation.
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value. PMID:25024690
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 10(5) S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Wang, Xianfu; Liu, Bin; Wang, Qiufan; Song, Weifeng; Hou, Xiaojuan; Chen, Di; Cheng, Yi-bing; Shen, Guozhen
2013-03-13
Highly flexible stacked and in-plane all-solid-state supercapacitors are fabricated on 3D hierarchical GeSe2 nanostructures with high performance, and, when configured as a self-powered photodetector nanosystem, can be used to power CdSe nanowire photodetectors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core-Shell Heterostructures.
Lewis, Ryan B; Corfdir, Pierre; Küpers, Hanno; Flissikowski, Timur; Brandt, Oliver; Geelhaar, Lutz
2018-04-11
The flexibility and quasi-one-dimensional nature of nanowires offer wide-ranging possibilities for novel heterostructure design and strain engineering. In this work, we realize arrays of extremely and controllably bent nanowires comprising lattice-mismatched and highly asymmetric core-shell heterostructures. Strain sharing across the nanowire heterostructures is sufficient to bend vertical nanowires over backward to contact either neighboring nanowires or the substrate itself, presenting new possibilities for designing nanowire networks and interconnects. Photoluminescence spectroscopy on bent-nanowire heterostructures reveals that spatially varying strain fields induce charge carrier drift toward the tensile-strained outside of the nanowires, and that the polarization response of absorbed and emitted light is controlled by the bending direction. This unconventional strain field is employed for light emission by placing an active region of quantum dots at the outer side of a bent nanowire to exploit the carrier drift and tensile strain. These results demonstrate how bending in nanoheterostructures opens up new degrees of freedom for strain and device engineering.
Variation in electrical properties of gamma irradiated cadmium selenate nanowires
NASA Astrophysics Data System (ADS)
Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika
2016-07-01
Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.
Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods
M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo
2011-01-01
The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892
Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes
Tan, Guoqiang; Wu, Feng; Yuan, Yifei; ...
2016-06-03
Here, structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core–shell nano-architecture. Cable-like copper oxide/carbon-nitride core–shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays providemore » abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.« less
Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes.
Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil
2016-06-03
Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.
Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.
Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai
2015-12-30
By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.
Structure and Growth of Quasi One-Dimensional YSi2 Nanophases on Si(100)
Iancu, V.; Kent, P.R.C.; Hus, S.; Hu, H.; Zeng, C.G.; Weitering, H.H.
2013-01-01
Quasi one-dimensional YSi2 nanostructures are formed via self-assembly on the Si(100) surface. These epitaxial nanowires are metastable and their formation strongly depends on the growth parameters. Here, we explore the various stages of yttrium silicide formation over a range of metal coverages and growth temperatures, and establish a rudimentary phase diagram for these novel and often coexisting nanophases. In addition to previously identified stoichiometric wires, we identify several new nanowire systems. These nanowires exhibit a variety of surface reconstructions, which sometimes coexist on a single wire. From a comparison of scanning tunneling microcopy images, tunneling spectra, and first-principles density functional theory calculations, we determine that these surface reconstructions arise from local orderings of yttrium vacancies. Nanowires often agglomerate into nanowire bundles, the thinnest of which are formed by single wire pairs. The calculations show that such bundles are energetically favored compared to well-separated single wires. Thicker bundles are formed at slightly higher temperature. They extend over several microns, forming a robust network of conducting wires that could possibly be employed in nanodevice applications. PMID:23221350
Growth and characterization of manganese doped gallium nitride nanowires.
Kumar, V Suresh; Kesavamoorthy, R; Kumar, J
2008-08-01
Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.
Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...
2016-03-02
The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less
Shih, Po-Hsun
2017-01-01
Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030
Observation of Conductance Quantization in InSb Nanowire Networks
2017-01-01
Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior. PMID:28665621
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.
1979-01-01
A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less
NASA Astrophysics Data System (ADS)
Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.
2018-03-01
In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; ...
2017-01-11
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less
NASA Astrophysics Data System (ADS)
Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan
2014-09-01
In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J
2017-01-01
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 19 W cm -2 , we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm -3 , equivalent to a pressure of 0.35 Tbar.
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.
2017-01-01
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218
Split-Channel Ballistic Transport in an InSb Nanowire
NASA Astrophysics Data System (ADS)
Estrada Saldaña, Juan Carlos; Niquet, Yann-Michel; Cleuziou, Jean-Pierre; Lee, Eduardo J. H.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; De Franceschi, Silvano
2018-04-01
We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. Three bottom gates are used to locally deplete the nanowire creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D subbands is revealed by the emergence of conductance plateaus at multiples of $e^2$/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear leaving a first conductance step of 2$e^2/h$, which is indicative of a remarkable two-fold subband degeneracy that can persist up to several Tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the subband structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.
Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching.
Chen, Yun; Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; Wong, Ching-Ping
2017-02-08
Kinked silicon (Si) nanowires (NWs) have many special properties that make them attractive for a number of applications, such as microfluidics devices, microelectronic devices, and biosensors. However, fabricating NWs with controlled three-dimensional (3D) geometry has been challenging. In this work, a novel method called alternating metal-assisted chemical etching is reported for the fabrication of kinked Si NWs with controlled 3D geometry. By the use of multiple etchants with carefully selected composition, one can control the number of kinks, their locations, and their angles by controlling the number of etchant alternations and the time in each etchant. The resulting number of kinks equals the number times the etchant is alternated, the length of each segment separated by kinks has a linear relationship with the etching time, and the kinking angle is related to the surface tension and viscosity of the etchants. This facile method may provide a feasible and economical way to fabricate novel silicon nanowires, nanostructures, and devices for broad applications.
Majorana Kramers pairs in Rashba double nanowires with interactions and disorder
NASA Astrophysics Data System (ADS)
Thakurathi, Manisha; Simon, Pascal; Mandal, Ipsita; Klinovaja, Jelena; Loss, Daniel
2018-01-01
We analyze the effects of electron-electron interactions and disorder on a Rashba double-nanowire setup coupled to an s -wave superconductor, which has been recently proposed as a versatile platform to generate Kramers pairs of Majorana bound states in the absence of magnetic fields. We identify the regime of parameters for which these Kramers pairs are stable against interaction and disorder effects. We use bosonization, perturbative renormalization group, and replica techniques to derive the flow equations for various parameters of the model and evaluate the corresponding phase diagram with topological and disorder-dominated phases. We confirm aforementioned results by considering a more microscopic approach, which starts from the tunneling Hamiltonian between the three-dimensional s -wave superconductor and the nanowires. We find again that the interaction drives the system into the topological phase and, as the strength of the source term coming from the tunneling Hamiltonian increases, strong electron-electron interactions are required to reach the topological phase.
Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall
NASA Astrophysics Data System (ADS)
Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.
2018-01-01
Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.
Remote p-type Doping in GaSb/InAs Core-shell Nanowires
Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu
2015-01-01
By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-03-01
We present an analytical solution to the boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are found in a concise and transparent closed form which is convenient for practical use in theoretical modeling of misfit relaxation processes.
Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua
2018-05-09
The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi
2014-05-07
Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distributionmore » from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 μm and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.« less
Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires
NASA Astrophysics Data System (ADS)
Bologna, Nicolas; Agrawal, Piyush; Campanini, Marco; Knödler, Moritz; Rossell, Marta D.; Erni, Rolf; Passerone, Daniele
2018-01-01
Aberration-corrected scanning transmission electron microscopy and density-functional theory calculations have been used to investigate the atomic and electronic structure of stair-rod dislocations connected via stacking faults in GaAs nanowires. At the apexes, two distinct dislocation cores consisting of single-column pairs of either gallium or arsenic were identified. Ab initio calculations reveal an overall reduction in the energy gap with the development of two bands of filled and empty localized states at the edges of valence and conduction bands in the Ga core and in the As core, respectively. Our results suggest the behavior of stair-rod dislocations along the nanowire as one-dimensional charge channels, which could host free carriers upon appropriate doping.
Sekiguchi, Takashi; Hu, Junqing; Bando, Yoshio
2004-01-01
Luminescence properties of one-dimensional free-standing widegap-semiconductor nanostructures were characterized by means of cathodoluminescence (CL). GaN nanopipes, alpha-Si3N4 nanobelts and ZnS/Si nanowires were fabricated by a catalyst-free method, namely grown in an induction furnace from powders. After the observation of morphology by scanning electron microscopy as well as the confirmation of their crystal structures by transmission electron microscopy, their CL spectra and images were observed. The CL spectra mapping as well as the monochromatic CL imaging revealed the variation of the luminescence spectra of different nanowires as well as that along a single wire. These results revealed the optical features of nanostructures.
Charge Separation at Mixed-Dimensional Single and Multilayer MoS2/Silicon Nanowire Heterojunctions.
Henning, Alex; Sangwan, Vinod K; Bergeron, Hadallia; Balla, Itamar; Sun, Zhiyuan; Hersam, Mark C; Lauhon, Lincoln J
2018-05-16
Layered two-dimensional (2-D) semiconductors can be combined with other low-dimensional semiconductors to form nonplanar mixed-dimensional van der Waals (vdW) heterojunctions whose charge transport behavior is influenced by the heterojunction geometry, providing a new degree of freedom to engineer device functions. Toward that end, we investigated the photoresponse of Si nanowire/MoS 2 heterojunction diodes with scanning photocurrent microscopy and time-resolved photocurrent measurements. Comparison of n-Si/MoS 2 isotype heterojunctions with p-Si/MoS 2 heterojunction diodes under varying biases shows that the depletion region in the p-n heterojunction promotes exciton dissociation and carrier collection. We measure an instrument-limited response time of 1 μs, which is 10 times faster than the previously reported response times for planar Si/MoS 2 devices, highlighting the advantages of the 1-D/2-D heterojunction. Finite element simulations of device models provide a detailed understanding of how the electrostatics affect charge transport in nanowire/vdW heterojunctions and inform the design of future vdW heterojunction photodetectors and transistors.
Transformation of bulk alloys to oxide nanowires
NASA Astrophysics Data System (ADS)
Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb
2017-01-01
One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.
Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J
2011-04-13
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.
Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng
2011-01-01
In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999
Room-temperature lasing in a single nanowire with quantum dots
NASA Astrophysics Data System (ADS)
Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko
2015-08-01
Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-07-05
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A.; Volkov, V. T.; Khodos, I. I.; Brisset, F.; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-01-01
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents. PMID:28677681
Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe
2012-03-09
III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.
Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter.
Hosseini Shokouh, Seyed Hossein; Pezeshki, Atiye; Ali Raza, Syed Raza; Choi, Kyunghee; Min, Sung-Wook; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil
2014-05-27
We demonstrate a hybrid inverter-type nanodevice composed of a MoS2 nanoflake field-effect transistor (FET) and ZnO nanowire Schottky diode on one substrate, aiming at a one-dimensional (1D)-two-dimensional (2D) hybrid integrated electronic circuit with multifunctional capacities of low power consumption, high gain, and photodetection. In the present work, we used a nanotransfer printing method using polydimethylsiloxane for the fabrication of patterned bottom-gate MoS2 nanoflake FETs, so that they could be placed near the ZnO nanowire Schottky diodes that were initially fabricated. The ZnO nanowire Schottky diode and MoS2 FET worked respectively as load and driver for a logic inverter, which exhibits a high voltage gain of ∼50 at a supply voltage of 5 V and also shows a low power consumption of less than 50 nW. Moreover, our inverter effectively operates as a photoinverter, detecting visible photons, since MoS2 FETs appear very photosensitive, while the serially connected ZnO nanowire Schottky diode was blind to visible light. Our 1D-2D hybrid nanoinverter would be quite promising for both logic and photosensing applications due to its performance and simple device configuration as well.
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
Nanocrystal assembly for bottom-up plasmonic materials
NASA Astrophysics Data System (ADS)
Tao, Andrea Rae
2007-12-01
Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Materials that possess sub-wavelength metallic features support either localized or propagating surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. For many of the breakthrough photonic, spectroscopic, and optoelectronic applications of plasmonics, the bottom-up fabrication of these materials from low-dimensional structures has yet to be explored. Because colloidal metal nanostructures can be readily synthesized with controlled shapes and sizes, and because these structures also generate plasmon-mediated evanescent fields near their surfaces when irradiated with light, Ag nanocrystals and nanowires are ideal building blocks for rationally designed plasmonic materials. This dissertation addresses three major challenges: (1) the synthesis of Ag polyhedral nanocrystals and nanowires, (2) the bottom-up organization of these nanostructures into one-, two-, and three-dimensional assemblies, and (3) the application of these assemblies as spectroscopic sensing platforms. Faceted Ag colloids were synthesized in high yield and with remarkable monodispersity using the polyol process, where Ag+ is reduced in the presence of a polymer capping agent that serves to regulate nucleation and crystallographic growth direction. The resulting nanocrystals and nanowires are bound exclusively by {100} and {111} crystal planes, where nanowires possess pentagonal cross-sections and nanocrystals possess octahedral symmetry. Because allowed plasmon modes are explicitly dictated by geometric considerations, each shape exhibits a unique scattering spectrum in the optical wavelengths. These shaped colloidal building blocks were assembled into ordered groupings and superlattices to achieve controlled electromagnetic coupling between individual nanostructures. Of particular note is the use of Langmuir-Blodgett assembly for the construction of two-dimensional nanocrystal superlattices with continuously variable interparticle spacing and density. For the first time, we demonstrate the complete bottom-up fabrication of a macroscopic material with a tunable plasmonic response in the visible wavelengths. Lastly, we show that these nanoscale materials behave as exceptional substrates for surface-enhanced Raman spectroscopy (SERS). Assemblies of Ag nanowires and nanocrystals facilitate intense electromagnetic field enhancement due to charge localization near the sharp corners, edges, and junctions of the nanocrystals. We not only demonstrate that these assemblies can achieve high chemical sensitivity and specificity, but exhibit their utility as portable field sensors for toxins and explosives. For the first time, we demonstrate that SERS can be employed for the facile detection of low-level arsenic concentrations in ground water. In addition, we show the feasibility of integrating these Ag nanocrystals into microfluidic, multiplexed "lab-on-a-chip" devices, where SERS can be used for the in situ sensing of low-volume analytes.
Yamamoto, Yohei
2012-01-01
Electroactive one-dimensional (1D) nano-objects possess inherent unidirectional charge and energy transport capabilities along with anisotropic absorption and emission of light, which are of great advantage for the development of nanometer-scale electronics and optoelectronics. In particular, molecular nanowires formed by self-assembly of π-conjugated molecules attract increasing attention for application in supramolecular electronics. This review introduces recent topics related to electroactive molecular nanowires. The nanowires are classified into four categories with respect to the electronic states of the constituent molecules: electron donors, acceptors, donor–acceptor pairs and miscellaneous molecules that display interesting electronic properties. Although many challenges still remain for practical use, state-of-the-art 1D supramolecular nanomaterials have already brought significant advances to both fundamental chemical sciences and technological applications. PMID:27877488
Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong
2015-03-02
Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.
Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei
2016-10-10
Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.
NASA Astrophysics Data System (ADS)
Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi
2018-05-01
We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs < 111>B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs < 111>A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be < 111>-oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around < 111> directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2016-06-09
We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.
Transformation of bulk alloys to oxide nanowires.
Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb
2017-01-20
One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes. Copyright © 2017, American Association for the Advancement of Science.
Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography
NASA Astrophysics Data System (ADS)
Tang, Ning; Jiang, Yang; Qu, Hemi; Duan, Xuexin
2017-12-01
Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.
Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography.
Tang, Ning; Jiang, Yang; Qu, Hemi; Duan, Xuexin
2017-12-01
Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH 3 and NO 2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.
Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.
Wang, Hsin-Yi; Xiao, Fang-Xing; Yu, Le; Liu, Bin; Lou, Xiong Wen David
2014-08-13
A facile two-step solution-phase method has been developed for the preparation of hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures. Ultralong α-MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1-x Mnx Oy nanoflakes were grown on α-MnO2 nanowires to form core-shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution-phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one-dimensional (1D) α-MnO2 nanowires in hierarchical core-shell nanostructures offer a stable and efficient backbone for charge transport; while the two-dimensional (2D) Ni1-x Mnx Oy nanoflakes on α-MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core-shell α-MnO2 @Ni1-x Mnx Oy nanostructures (x = 0.75) is as high as 657 F g(-1) at a current density of 250 mA g(-1) , and stable charging-discharging cycling over 1000 times at a current density of 2000 mA g(-1) has been realized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoconfinement: an effective way to enhance PVDF piezoelectric properties.
Cauda, Valentina; Stassi, Stefano; Bejtka, Katarzyna; Canavese, Giancarlo
2013-07-10
The dimensional confinement and oriented crystallization are both key factors in determining the piezoelectric properties of a polymeric nanostructured material. Here we prepare arrays of one-dimensional polymeric nanowires showing piezoelectric features by template-wetting two distinct polymers into anodic porous alumina (APA) membranes. In particular, poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride-trifluoroethylene), PVTF, are obtained in commercially available APA, showing a final diameter of about 200 nm and several micrometers in length, reflecting the templating matrix features. We show that the crystallization of both polymers into a ferroelectric phase is directed by the nanotemplate confinement. Interestingly, the PVDF nanowires mainly crystallize into the β-phase in the nanoporous matrix, whereas the reference thin film of PVDF crystallizes in the α nonpolar phase. In the case of the PVTF nanowires, needle-like crystals oriented perpendicularly to the APA channel walls are observed, giving insight on the molecular orientation of the polymer within the nanowire structure. A remarkable piezoelectric behavior of both 1-D polymeric nanowires is observed, upon recording ferroelectric polarization, hysteresis, and displacement loops. In particular, an outstanding piezoelectric effect is observed for the PVDF nanowires with respect to the polymeric thin film, considering that no poling was carried out. Current versus voltage (I-V) characteristics showed a consistent switching behavior of the ferroelectric polar domains, thus revealing the importance of the confined and oriented crystallization of the polymer in monodimensional nanoarchitectures.
Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications
M. N, M. Nuzaihan; Hashim, U.; Md Arshad, M. K.; Ruslinda, A. Rahim; Rahman, S. F. A.; Fathil, M. F. M.; Ismail, Mohd. H.
2016-01-01
A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications. PMID:27022732
Dimensionality tuning of the electronic structure in Fe3Ga4 magnetic materials
NASA Astrophysics Data System (ADS)
Moura, K. O.; de Oliveira, L. A. S.; Rosa, P. F. S.; Jesus, C. B. R.; Saleta, M. E.; Granado, E.; Béron, F.; Pagliuso, P. G.; Pirota, K. R.
2016-06-01
This work reports on the dimensionality effects on the magnetic behavior of Fe3Ga4 compounds by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. Our results show that reducing the Fe3Ga4 dimensionality, via nanowire shape, intriguingly modifies its electronic structure. In particular, the bulk system exhibits two transitions, a ferromagnetic (FM) transition temperature at T1 = 50 K and an antiferromagnetic (AFM) one at T2 = 390 K. On the other hand, nanowires shift these transition temperatures, towards higher and lower temperature for T1 and T2, respectively. Moreover, the dimensionality reduction seems to also modify the microscopic nature of the T1 transition. Instead of a FM to AFM transition, as observed in the 3D system, a transition from FM to ferrimagnetic (FERRI) or to coexistence of FM and AFM phases is found for the nanowires. Our results allowed us to propose the magnetic field-temperature phase diagram for Fe3Ga4 in both bulk and nanostructured forms. The interesting microscopic tuning of the magnetic interactions induced by dimensionality in Fe3Ga4 opens a new route to optimize the use of such materials in nanostructured devices.
Dimensionality tuning of the electronic structure in Fe3Ga4 magnetic materials
Moura, K. O.; de Oliveira, L. A. S.; Rosa, P. F. S.; Jesus, C. B. R.; Saleta, M. E.; Granado, E.; Béron, F.; Pagliuso, P. G.; Pirota, K. R.
2016-01-01
This work reports on the dimensionality effects on the magnetic behavior of Fe3Ga4 compounds by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. Our results show that reducing the Fe3Ga4 dimensionality, via nanowire shape, intriguingly modifies its electronic structure. In particular, the bulk system exhibits two transitions, a ferromagnetic (FM) transition temperature at T1 = 50 K and an antiferromagnetic (AFM) one at T2 = 390 K. On the other hand, nanowires shift these transition temperatures, towards higher and lower temperature for T1 and T2, respectively. Moreover, the dimensionality reduction seems to also modify the microscopic nature of the T1 transition. Instead of a FM to AFM transition, as observed in the 3D system, a transition from FM to ferrimagnetic (FERRI) or to coexistence of FM and AFM phases is found for the nanowires. Our results allowed us to propose the magnetic field-temperature phase diagram for Fe3Ga4 in both bulk and nanostructured forms. The interesting microscopic tuning of the magnetic interactions induced by dimensionality in Fe3Ga4 opens a new route to optimize the use of such materials in nanostructured devices. PMID:27329581
Nanowire systems: technology and design
Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni
2014-01-01
Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471
Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep
2007-10-01
Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.
Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun
2017-05-25
Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.
Investigation of the effect of scattering centers on low dimensional nanowire channel
NASA Astrophysics Data System (ADS)
Cariappa, K. S.; Shukla, Raja; Sarkar, Niladri
2018-05-01
In this work, we studied the effect of scattering centers on the electron density profiles of a one dimensional Nanowire channel. Density Matrix Formalism is used for calculating the local electron densities at room temperature. Various scattering centers have been simulated in the channel. The nearest neighbor tight binding method is applied to construct the Hamiltonian of nanoscale devices. We invoke scattering centers by adding local scattering potentials to the Hamiltonian. This analysis could give an insight into the understanding and utilization of defects for device engineering.
Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui
2013-12-21
Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.
Mandrus, D.; Gai, Zheng; Ward, Thomas Zac; ...
2017-08-02
Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.
Electrical transport properties of epitaxial titanium nitride nanowire
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.
2018-03-01
We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrus, D.; Gai, Zheng; Ward, Thomas Zac
Here, we report the synthesis of single-crystal iron germanium nanowires via chemical vapor deposition without the assistance of any catalysts. The assembly of single-crystal FeGe 2 nanowires with tetragonal C16 crystal structure shows anisotropic magnetic behavior along the radial direction or the growth axial direction, with both antiferromagnetic and ferromagnetic orders. Single FeGe 2 nanowire devices were fabricated using e-beam lithography. Electronic transport measurement in these devices show two resistivity anomalies near 250 K and 200 K which are likely signatures of the two spin density wave states in FeGe 2.
NASA Astrophysics Data System (ADS)
Lee, Jooran; Choi, Sunyoung; Bae, Seon Joo; Yoon, Seok Min; Choi, Joon Sig; Yoon, Minjoong
2013-10-01
Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes. Electronic supplementary information (ESI) available: Synthesis of APTES-modified ZnO nanowires, DNA functionalization and spectroscopic measurements with additional fluorescence image ad fluorescence decay times, cell culture, injection of a single nanowire into living cells, subcellular imaging and determination of cytotoxicity. See DOI: 10.1039/c3nr03042c
In situ biasing and off-axis electron holography of a ZnO nanowire
NASA Astrophysics Data System (ADS)
den Hertog, Martien; Donatini, Fabrice; McLeod, Robert; Monroy, Eva; Sartel, Corinne; Sallet, Vincent; Pernot, Julien
2018-01-01
Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.
Growth of metal oxide nanowires from supercooled liquid nanodroplets.
Kim, Myung Hwa; Lee, Byeongdu; Lee, Sungsik; Larson, Christopher; Baik, Jeong Min; Yavuz, Cafer T; Seifert, Sönke; Vajda, Stefan; Winans, Randall E; Moskovits, Martin; Stucky, Galen D; Wodtke, Alec M
2009-12-01
Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.
Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.
Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng
2017-07-14
Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Zhao, Xingjuan; Yu, Xiaoli; Lee, Yong-Ill; Liu, Hong-Guo
2016-11-15
Composite thin films with well-defined and parallel nanowires were fabricated from the binary blends of a diblock copolymer polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and several homopolystyrenes (h-PSs) at the air/liquid interface through a facile technique, which involves solution self-assembly, interface adsorption, and further self-organization processes. It was confirmed that the nanowires that appeared at the air/water interface came from the cylindrical micelles formed in solution. Interestingly, the diameters of the nanowires are uniform and can be tuned precisely from 45 to 247 nm by incorporating the h-PS molecules into the micellar core. This parallel alignment of the nanowires has potential applications in optical devices and enables the nanowires to be used as templates to prepare functional nanostructures. The extent to which h-PS molecules with different molecular weights are able to influence the diameter control of the nanowires was also systematically investigated.
Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors
Feng, Ping; Shao, Feng; Shi, Yi; Wan, Qing
2014-01-01
One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed. PMID:25232915
Split-Channel Ballistic Transport in an InSb Nanowire.
Estrada Saldaña, Juan Carlos; Niquet, Yann-Michel; Cleuziou, Jean-Pierre; Lee, Eduardo J H; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; De Franceschi, Silvano
2018-04-11
We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. A total of three bottom gates are used to locally deplete the nanowire, creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D sub-bands is revealed by the emergence of conductance plateaus at multiples of e 2 /h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear, leaving a first conductance step of 2 e 2 / h, which is indicative of a remarkable 2-fold sub-band degeneracy that can persist up to several tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the sub-band structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.
Size dependent nanomechanics of coil spring shaped polymer nanowires
NASA Astrophysics Data System (ADS)
Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru
2015-11-01
Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.
Size dependent nanomechanics of coil spring shaped polymer nanowires.
Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru
2015-11-27
Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.
Park, Seok-Hwan; Lee, Wan-Jin
2015-01-01
Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615
NASA Astrophysics Data System (ADS)
Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.
2016-09-01
A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).
Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires.
Erhard, N; Zenger, S; Morkötter, S; Rudolph, D; Weiss, M; Krenner, H J; Karl, H; Abstreiter, G; Finley, J J; Koblmüller, G; Holleitner, A W
2015-10-14
We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs core-shell nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photothermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.
Structure and photoluminescence properties of ZnS-core/In2O3-shell one-dimensional nanowires
NASA Astrophysics Data System (ADS)
Park, Sunghoon; Lee, Jungkeun; Jeong, Bongyong; Lee, Wan In; Lee, Chongmu
2011-12-01
ZnS-core/In2O3-shell nanowires have been prepared by using a two-step process: the thermal evaporation of ZnS powders on Si(100) substrates coated with Au thin films and the sputter-deposition of In2O3. The ZnS nanowires were a few tens to a few hundreds of nanometers in diameter and up to a few hundreds of micrometers in length. ZnS nanowires have an emission band centered at around 570 nm in the yellow region. The yellow emission has been enhanced in intensity by coating the ZnS nanowires with In2O3 and further enhanced by annealing in a reducing atmosphere, but it is degraded by annealing in an oxidative atmosphere.
One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review
NASA Astrophysics Data System (ADS)
Ray, Samit K.; Katiyar, Ajit K.; Raychaudhuri, Arup K.
2017-03-01
Remarkable progress has been made in the field of one-dimensional semiconductor nanostructures for electronic and photonic devices. Group-IV semiconductors and their heterostructures have dominated the years of success in microelectronic industry. However their use in photonic devices is limited since they exhibit poor optical activity due to indirect band gap nature of Si and Ge. Reducing their dimensions below a characteristic length scale of various fundamental parameters like exciton Bohr radius, phonon mean free path, critical size of magnetic domains, exciton diffusion length etc result in the significant modification of bulk properties. In particular, light emission from Si/Ge nanowires due to quantum confinement, strain induced band structure modification and impurity doping may lead to the integration of photonic components with mature silicon CMOS technology in near future. Several promising applications based on Si and Ge nanowires have already been well established and studied, while others are now at the early demonstration stage. The control over various forms of energy and carrier transport through the unconstrained dimension makes Si and Ge nanowires a promising platform to manufacture advanced solid-state devices. This review presents the progress of the research with emphasis on their potential application of Si/Ge nanowires and their heterostructures for electronic, photonic, sensing and energy devices.
Roy, Ahin; Amin, Kazi Rafsanjani; Tripathi, Shalini; Biswas, Sangram; Singh, Abhishek K; Bid, Aveek; Ravishankar, N
2017-06-14
Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO 2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO 2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO 2 supports the appearance of a metallic state in NO 2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO 2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.
Harilal, Midhun; Vidyadharan, Baiju; Misnon, Izan Izwan; Anilkumar, Gopinathan M; Lowe, Adrian; Ismail, Jamil; Yusoff, Mashitah M; Jose, Rajan
2017-03-29
A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co 3 O 4 ), is developed by electrospinning technique. The CuO-Co 3 O 4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co 3 O 4 , and CuO-Co 3 O 4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg -1 at a power density of 14 kW kg -1 is achieved in CuO-Co 3 O 4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.
Photo-assisted hysteresis of electronic transport for ZnO nanowire transistors
NASA Astrophysics Data System (ADS)
Du, Qianqian; Ye, Jiandong; Xu, Zhonghua; Zhu, Shunming; Tang, Kun; Gu, Shulin; Zheng, Youdou
2018-03-01
Recently, ZnO nanowire field effect transistors (FETs) have received renewed interest due to their extraordinary low dimensionality and high sensitivity to external chemical environments and illumination conditions. These prominent properties have promising potential in nanoscale chemical and photo-sensors. In this article, we have fabricated ZnO nanowire FETs and have found hysteresis behavior in their transfer characteristics. The mechanism and dynamics of the hysteresis phenomena have been investigated in detail by varying the sweeping rate and range of the gate bias with and without light irradiation. Significantly, light irradiation is of great importance on charge trapping by regulating adsorption and desorption of oxygen at the interface of ZnO/SiO2. Carriers excited by light irradiation can dramatically promote trapping/detrapping processes. With the assistance of light illumination, we have demonstrated a photon-assisted nonvolatile memory which employs the ZnO nanowire FET. The device exhibits reliable programming/erasing operations and a large on/off ratio. The proposed proto-type memory has thus provided a possible novel path for creating a memory functionality to other low-dimensional material systems.
NASA Astrophysics Data System (ADS)
Liu, Zuwei
Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temperature. In addition to the blackbody emission background, polarized peaks along the nanotube direction are observed in different ranges of the thermal emission spectra for metallic and semiconducting devices. These peaks are attributed to the transitions between Van Hove singularities that are thermally driven under these high applied bias voltages. A theoretical model is developed to calculate the thermal emission spectra based on this conclusion. In Chapter Six, we present some data of single crystal zinc oxide (ZnO) nanowires synthesized by the CVD method, including magneto-resistance measurements, optical-resistance measurements, and scanning-gate measurements. In Chapter Seven, we discuss some future work related to photocatalysis and carbon nanotubes.
Programmable nanowire circuits for nanoprocessors.
Yan, Hao; Choe, Hwan Sung; Nam, SungWoo; Hu, Yongjie; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2011-02-10
A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ∼960 μm(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.
Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure
NASA Astrophysics Data System (ADS)
de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.
2016-06-01
Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au-induced nanowire and subsurface Ge-related states, an anomalous suppression of the density of states at the Fermi level is observed in both the STS and ARPES data, and this phenomenon is discussed in the light of the effects of disorder.
Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA
NASA Astrophysics Data System (ADS)
Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong
2012-02-01
Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2015-07-21
Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.
Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth
NASA Astrophysics Data System (ADS)
Lew, Kok-Keong
There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for the design of Si, Ge, and SiGe nanostructures that will be of importance in nanoscale device applications.
Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
NASA Astrophysics Data System (ADS)
Hu, Jiyu; Qian, Feng; Song, Guosheng; Li, Wenyao; Wang, Linlin
2016-10-01
Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 1000 mA g-1) and good rate capability. Further, the overall capacitance retention is 99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO2 NWA composite may be a promising electrode material for high-performance supercapacitors.
Hua, Wei; Liu, Huanyan; Wang, Jian-Gan; Wei, Bingqing
2017-12-06
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O) x ·MoO x nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O) x and amorphous MoO x , as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm -2 , a low Tafel slope of 54 mV dec -1 , and excellent cycling stability.
Hua, Wei; Liu, Huanyan
2017-01-01
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O)x and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent cycling stability. PMID:29210991
Towards large-scale plasma-assisted synthesis of nanowires
NASA Astrophysics Data System (ADS)
Cvelbar, U.
2011-05-01
Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.
Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors.
Hu, Jiyu; Qian, Feng; Song, Guosheng; Li, Wenyao; Wang, Linlin
2016-12-01
Large-area ultrafine MnO 2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO 2 NWA composite. As an electrode for supercapacitors, the CF@MnO 2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g -1 at 1000 mA g -1 ) and good rate capability. Further, the overall capacitance retention is ~99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO 2 NWA composite may be a promising electrode material for high-performance supercapacitors.
Robust manipulation of light using topologically protected plasmonic modes.
Liu, Chenxu; Gurudev Dutt, M V; Pekker, David
2018-02-05
We propose using a topological plasmonic crystal structure composed of an array of nearly parallel nanowires with unequal spacing for manipulating light. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. Using a full three-dimensional finite difference time domain solution of the Maxwell equations, we verify the existence of topological defect modes, with sub-wavelength localization, bound to domain walls of the plasmonic crystal. We show that by manipulating domain walls we can construct spatial mode filters that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are tolerant to fabrication errors with an inverse length-scale smaller than the topological band gap.
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
NASA Astrophysics Data System (ADS)
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi
2017-12-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan
2017-01-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265
NASA Astrophysics Data System (ADS)
Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo
2016-09-01
Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.
High photoresponse of individual WS2 nanowire-nanoflake hybrid materials
NASA Astrophysics Data System (ADS)
Asres, Georgies Alene; Järvinen, Topias; Lorite, Gabriela S.; Mohl, Melinda; Pitkänen, Olli; Dombovari, Aron; Tóth, Geza; Spetz, Anita Lloyd; Vajtai, Robert; Ajayan, Pulickel M.; Lei, Sidong; Talapatra, Saikat; Kordas, Krisztian
2018-06-01
van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to ˜0.4 AW-1 are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices.
Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures
NASA Astrophysics Data System (ADS)
Yin, Xin
Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.
One-Dimensional Nanostructures and Devices of II–V Group Semiconductors
2009-01-01
The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities. PMID:20596452
Preparation and enhanced infrared response properties of ordered W-doped VO2 nanowire array
NASA Astrophysics Data System (ADS)
Xie, Bing He; Fu, Wen Biao; Fei, Guang Tao; Xu, Shao Hui; Gao, Xu Dong; Zhang, Li De
2018-04-01
In this article, pure and tungsten-doped (W-doped) highly ordered two-dimensional (2D) vanadium dioxide (VO2) nanowire arrays were successfully prepared by a hydrothermal treatment, followed by a self-assembly progress and the in-situ high temperature treatment. The infrared photodetector devices based on monoclinic VO2 (VO2(M)) and W-doped VO2(M) nanowires were comparatively studied . It was found that the device based on W-doped VO2(M) nanowires exhibits a rapid infrared response and an enhanced photoelectric responsivity of 21.4 mA/W under the incident infrared light intensity of 280 mW/cm2, which is nearly two orders of magnitude superior to pure VO2(M) nanowire array. Our experimental results provided a direct and convenient path for design of future high-performance photodetector devices.
Towards Automated Nanomanipulation under Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Ye, Xutao
Robotic Nanomaterial Manipulation inside scanning electron microscopes (SEM) is useful for prototyping functional devices and characterizing one-dimensional nanomaterial's properties. Conventionally, manipulation of nanowires has been performed via teleoperation, which is time-consuming and highly skill-dependent. Manual manipulation also has the limitation of low success rates and poor reproducibility. This research focuses on a robotic system capable of automated pick-place of single nanowires. Through SEM visual detection and vision-based motion control, the system transferred individual silicon nanowires from their growth substrate to a microelectromechanical systems (MEMS) device that characterized the nanowires' electromechanical properties. The performances of the nanorobotic pick-up and placement procedures were quantified by experiments. The system demonstrated automated nanowire pick-up and placement with high reliability. A software system for a load-lock-compatible nanomanipulation system is also designed and developed in this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.
We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperaturemore » variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm{sup 2}.« less
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson; ...
2017-01-24
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
Control of the ZnO nanowires nucleation site using microfluidic channels.
Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi
2006-03-09
We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.
NASA Astrophysics Data System (ADS)
Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue
2015-12-01
A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.
Asteroid models from photometry and complementary data sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaasalainen, Mikko
I discuss inversion methods for asteroid shape and spin reconstruction with photometry (lightcurves) and complementary data sources such as adaptive optics or other images, occultation timings, interferometry, and range-Doppler radar data. These are essentially different sampling modes (generalized projections) of plane-of-sky images. An important concept in this approach is the optimal weighting of the various data modes. The maximum compatibility estimate, a multi-modal generalization of the maximum likelihood estimate, can be used for this purpose. I discuss the fundamental properties of lightcurve inversion by examining the two-dimensional case that, though not usable in our three-dimensional world, is simple to analyze,more » and it shares essentially the same uniqueness and stability properties as the 3-D case. After this, I review the main aspects of 3-D shape representations, lightcurve inversion, and the inclusion of complementary data.« less
Recent progress in boron nanomaterials
Kondo, Takahiro
2017-01-01
Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014
Thermophysical properties study of micro/nanoscale materials
NASA Astrophysics Data System (ADS)
Feng, Xuhui
Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.
Studies of Silicon Nanowires with Different Parameters — By PECVD
NASA Astrophysics Data System (ADS)
Leela, S.; Abirami, T.; Bhattacharya, Sekhar; Ahmed, Nafis; Monika, S.; Priya, R. Nivedha
2016-10-01
One-dimensional nanostructures such as nanowires have a wide range of applications. Silicon is the best competitive material for the carbon nanotubes (CNTs). Carbon and silicon have some similar and peculiar properties. Silicon nanowires (SiNWs) were synthesized using plasma enhanced chemical vapor deposition (PECVD) on p-Si (111) wafer. Gold is used as a catalyst for the growth of the SiNWs. Based on our fundamental understanding of vapor-liquid-solid (VLS) nanowire growth mechanism, different levels of growth controls have been achieved. Gold catalyst deposited and annealed at different temperatures with different thicknesses (450∘C, 500∘C and 550∘C, 600∘C, 650∘C for 4min and 8min and 3nm, 5nm, 30nm Au thickness). SiNW grown by PECVD with different carrier gases varies with flow rate. We observed the different dimensions of Si nanowires by FESEM and optimized the growth parameters to get the vertical aligned and singular Si nanowires. Optical phonon of the Si nanowires and crystallinity nature were identified by Raman spectral studies.
Ramachandran, K.; Raj kumar, T.; Babu, K. Justice; Gnana kumar, G.
2016-01-01
The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM−1 cm−2, low detection limit of 1.2 μM, a wide linear range from 5 μM–10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability. PMID:27833123
Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan
2016-09-29
Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.
NASA Astrophysics Data System (ADS)
Ramachandran, K.; Raj Kumar, T.; Babu, K. Justice; Gnana Kumar, G.
2016-11-01
The facile, time and cost efficient and environmental benign approach has been developed for the preparation of Nickel (Ni)-Cobalt (Co) alloy nanowires filled multiwalled carbon nanotubes (MWCNTs) with the aid of mesoporous silica nanoparticles (MSN)/Ni-Co catalyst. The controlled incorporation of Ni-Co nanostructures in the three dimensional (3D) pore structures of MSN yielded the catalytically active system for the MWCNT growth. The inner surface of MWCNTs was quasi-continuously filled with face-centered cubic (fcc) structured Ni-Co nanowires. The as-prepared nanostructures were exploited as non-enzymatic electrochemical sensor probes for the reliable detection of glucose. The electrochemical measurements illustrated that the fabricated sensor exhibited an excellent electrochemical performance toward glucose oxidation with a high sensitivity of 0.695 mA mM-1 cm-2, low detection limit of 1.2 μM, a wide linear range from 5 μM-10 mM and good selectivity. The unprecedented electrochemical performances obtained for the prepared nanocomposite are purely attributed to the synergistic effects of Ni-Co nanowires and MWCNTs. The constructed facile, selective and sensitive glucose sensor has also endowed its reliability in analyzing the human serum samples, which wide opened the new findings for exploring the novel nanostructures based glucose sensor devices with affordable cost and good stability.
Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.
Liu, Jia; Xie, Chong; Dai, Xiaochuan; Jin, Lihua; Zhou, Wei; Lieber, Charles M
2013-04-23
Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precursors, which are fabricated by conventional lithography. The 3D networks have porosities larger than 99%, contain approximately hundreds of addressable nanowire devices, and have feature sizes from the 10-μm scale (for electrical and structural interconnections) to the 10-nm scale (for device elements). The macroporous nanoelectronic networks were merged with organic gels and polymers to form hybrid materials in which the basic physical and chemical properties of the host were not substantially altered, and electrical measurements further showed a >90% yield of active devices in the hybrid materials. The positions of the nanowire devices were located within 3D hybrid materials with ∼14-nm resolution through simultaneous nanowire device photocurrent/confocal microscopy imaging measurements. In addition, we explored functional properties of these hybrid materials, including (i) mapping time-dependent pH changes throughout a nanowire network/agarose gel sample during external solution pH changes, and (ii) characterizing the strain field in a hybrid nanoelectronic elastomer structures subject to uniaxial and bending forces. The seamless incorporation of active nanoelectronic networks within 3D materials reveals a powerful approach to smart materials in which the capabilities of multifunctional nanoelectronics allow for active monitoring and control of host systems.
NASA Astrophysics Data System (ADS)
Mo, Zhao-Jun; Chen, Jin-Peng; Lin, Jing; Fan, Ying; Liang, Chun-Yong; Wang, Hong-Shui; Xu, Xue-Wen; Hu, Long; Tang, Cheng-Chun
2014-05-01
Highly pure magnesium borate (Mg2B2O5) nanowires with an average diameter of ~ 30 nm, an average length of ~ 15 μm, and a high aspect ratio of ~ 500 have been synthesized on a large scale via a two-step method. MgBO2(OH) nanowires with high aspect ratios were first prepared via a PVP-assisted hydrothermal technique. Using these nanowires as precursors, single crystalline Mg2B2O5 nanowires were synthesized by post-annealing treatment at a relatively low temperature of 700 °C. The important effect of the MgBO2(OH)—Mg2B2O5 conversion process on the morphology of the Mg2B2O5 nanowires was investigated and it was indicated that the recrystallization process plays an important role in the protection of the one-dimensional (1D) nanostructure. Moreover, the rigidity and the toughness of the Mg2B2O5 nanowire-reinforced PHA composites were tremendously improved compared to those of the pure PHA. Our results demonstrate the effectiveness of Mg2B2O5 nanowires for reinforcement applications in polymer composites.
Park, Jin-Sung; Kim, Kyoung-Ho; Hwang, Min-Soo; Zhang, Xing; Lee, Jung Min; Kim, Jungkil; Song, Kyung-Deok; No, You-Shin; Jeong, Kwang-Yong; Cahoon, James F; Kim, Sun-Kyung; Park, Hong-Gyu
2017-12-13
We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si 3 N 4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si 3 N 4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.
Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong
2015-01-01
We propose a ‘weaving’ evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based ‘microflowers’ which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO ‘microflower’ is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g−1, and an energy density of 15.9 Wh kg−1 at a current density of 0.5 A g−1. This research not only contributes to understanding the formation mechanism of such ‘microflower’ structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability. PMID:26165386
Kinetic Model of the Initial Stage of the Nanowire Growth
NASA Astrophysics Data System (ADS)
Filimonov, S. N.; Hervieu, Yu. Yu.
2018-03-01
A kinetic model of the formation of pyramid-like bulges (pedestals) at the bases of vertical nanowires is proposed. The formation of the pedestals at the early stage of the nanowire growth is assumed to be induced by a higher nucleation rate of two-dimensional islands under the catalyst droplet, as compared to the nucleation rate at the non-activated surface areas. Kinetics of the nucleation and propagation of the steps in the pyramid is described with a model of the multilayer growth, taking into account that the catalyst droplet at the nanowire top is a strong sink for adatoms. It is shown that the transition from the growth of the pyramid to the axial growth of the nanowire is possible if the appearance of a nucleus of the new layer under the catalyst droplet results in a partial dissolution of the underlying layer. In this case a segment of the nanowire sidewall is formed, preventing the lateral growth of the layers generated by the droplet.
Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia
2016-07-13
Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.
Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin
2018-04-25
A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.
NASA Astrophysics Data System (ADS)
Sun, Bo; Sun, Yong; Wang, Chengxin
2017-11-01
Due to the coexistence of metal- and ionic-bonds in a hexagonal tungsten carbide (WC) lattice, disparate electron behaviors were found in the basal plane and along the c-axial direction, which may create an interesting anisotropic mechanical and electrical performance. To demonstrate this, low-dimensional nanostructures such as nanowires and nanosheets are suitable for investigation because they usually grow in single crystals with special orientations. Herein, we report the experimental research regarding the anisotropic conductivity of [0001] grown WC nanowires and basal plane-expanded nanosheets, which resulted in a conductivity of 7.86 × 103 Ω-1 · m-1 and 7.68 × 104 Ω-1 · m-1 respectively. This conforms to the fact that the highly localized W d state aligns along the c direction, while there is little intraplanar directional bonding in the W planes. With advanced micro-manipulation technology, the conductivity of a nanowire was tested to be approximately constant, even under a considerable bending state. Moreover, the field electron emission of WC was evaluated based on large area emission and single nanowire (nanosheet) emission. A single nanowire exhibits a stable electron emission performance, which can output emission currents >3 uA before fusing. These results provide useful references to assess low-dimensional WC nanostructures as electronic materials in flexible devices, such as nanoscale interconnects and electron emitters.
Controllable growth of GeSi nanostructures by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ma, Yingjie; Zhou, Tong; Zhong, Zhenyang; Jiang, Zuimin
2018-06-01
We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures. Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).
NASA Astrophysics Data System (ADS)
Kim, In Soo
The influence of stoichiometry on the metal-insulator transition of vanadium dioxide (VO2) nanowires was investigated using Raman spectroscopy. Controlled reduction of nominally strain-free suspended VO2 nanowires was conducted by rapid thermal annealing (RTA). The deficiency in oxygen assisted in the unprecedented suppression of the metallic (R) phase to temperatures as low as 103 K through generation of free electrons. In a complementary manner, oxygen-rich conditions stabilized the metastable monoclinic (M2) and triclinic (T) phases. A pseudo-phase diagram with dimensions of temperature and stoichiometry was established, highlighting the accessibility of new phases in the nanowire geometry. Detection of the dynamic elastic response across the metal-insulator transition in suspended VO2 nanowires was enabled by fiber-coupled polarization dependent interferometry. Dual-beam Raman spectroscopy was developed to determine the local domain/phase structure of VO2 nanowires, which allowed for accurate modeling using COMSOL finite element analysis (FEA). The Young's moduli of the single crystal insulating (M1) and metallic (R) phases without artifacts were determined for the first time. The sources of dissipation were identified as clamping losses, structural losses, thermoelastic damping, and domain wall motion. While contribution of thermoelastic damping was found to be dominant in the terminal phases, extraordinary dissipation was observed upon formation and movement of domain walls. Finally, it was shown that creation of local defects could lead to new classes of tunable sensors with a discrete and programmable frequency response with temperature.
Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides
NASA Astrophysics Data System (ADS)
Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu
2012-10-01
Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.
Implementation of novel receptor-transduction concepts and material morphologies in gas sensorics
NASA Astrophysics Data System (ADS)
Strelcov, Evgheni
Low dimensional nanostructures have defined the frontier of the research in material science for the last two decades. Presented here are the results of experimental research on growth, device fabrication and application of quasi-one dimensional phthalocyanines and metal oxides to gas-sensing. The possibility of rational tuning of the growth conditions, in order to control composition, morphology, size, orientation and alignment of the grown low-dimensional nanostructures was investigated. Employing custom designed heating stages coupled with optical microscope the in situ approach of monitoring the growth of nanostructures has been realized. Using this method, the growth of VO2 nanowires and nanoplatelets have been investigated and two novel growth mechanisms were discovered and explained. A variety of phthalocyanine and metal-oxide nanowire-based chemical sensors have been proposed, fabricated and tested. The focus of our research was on the development of new sensing principles and the improvement of existing ones. In particular, nanowires of tin and titanium dioxide were proposed to be used as self-heated chemiresistors capable of operating in the absence of an external heater, thus paving the way for ultra-low power consumption sensors. For the first time VO2 nanowires were used to create a nano-Pirani gauge and a gas sensor employing a sharp temperature-driven metal-insulator transition in this material. The sensor is sensitive to both chemically active and inert gases. Its performance is modeled and optimization parameters are presented.
NASA Astrophysics Data System (ADS)
Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Jin, Cuihong; Liu, Xin; Bian, Zhenpan; Li, Jianjun; Wang, Lu; Li, Xiaoyu
2018-03-01
Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.
Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei
2017-12-12
Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.
Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won
2015-12-11
One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.
Synthesis of InSb Nanowire Architectures - Building Blocks for Majorana Devices
NASA Astrophysics Data System (ADS)
Car, Diana
Breakthroughs in material development are playing a major role in the emerging field of topological quantum computation with Majorana Zero Modes (MZMs). Due to the strong spin-orbit interaction and large Landé g-factor InSb nanowires are one of the most promising one dimensional material systems in which to detect MZMs. The next generation of Majorana experiments should move beyond zero-mode detection and demonstrate the non-Abelian nature of MZMs by braiding. To achieve this goal advanced material platforms are needed: low-disorder, single-crystalline, planar networks of nanowires with high spin-orbit energy. In this talk I will discuss the formation and electronic properties of InSb nanowire networks. The bottom-up synthesis method we have developed is generic and can be employed to synthesize interconnected nanowire architectures of group III-V, II-VI and IV materials as long as they grow along a <111>direction.
NASA Astrophysics Data System (ADS)
Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.
2018-01-01
Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.
Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.
Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J
2009-10-27
We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.
Robust transport signatures of topological superconductivity in topological insulator nanowires.
de Juan, Fernando; Ilan, Roni; Bardarson, Jens H
2014-09-05
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime where an exactly quantized 2e2/h zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.
Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.
2010-01-01
This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).
NASA Astrophysics Data System (ADS)
Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua
2017-01-01
Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile ;templating and embossing; technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g-1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg-1 and 103.2 kW kg-1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.
NASA Astrophysics Data System (ADS)
Huang, Xuankai; Zhang, Haiyan; Li, Na
2017-02-01
Transition metal oxides with high specific capacitance materials are ideal for a new generation of high-performance transparent supercapacitors but are rarely reported. Commonly, the synthesis of the required nanostructured materials is a crucial step required to achieve the transparency of the device. In this study, a Fe2O3 nanowire network transparent film is developed simply through air-solution interface reactions and wrapped in graphene shells for use as transparent electrodes. The Fe2O3 nanowire networks surrounded by the graphene layer exhibit an effective encapsulation structure, providing rapid three-dimensional electron and ion transport pathways. The specific areal capacitance (3.3 mF cm-2 at a scan rate of 10 mV s-1) was greatly improved, which is at least one hundred times higher than that for transparent devices based on planar chemical vapor deposition graphene. Furthermore, the films have a power density of 191.3 W cm-3, which is higher than that of electrolytic capacitors, an energy density of 8 mWh cm-3, which is comparable to that of lithium thin-film batteries, and superior cycling stability.
Size dependent nanomechanics of coil spring shaped polymer nanowires
Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru
2015-01-01
Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials. PMID:26612544
Micromagnetic simulations of anisotropies in coupled and uncoupled ferromagnetic nanowire systems.
Blachowicz, T; Ehrmann, A
2013-01-01
The influence of a variation of spatial relative orientations onto the coupling dynamics and subsequent magnetic anisotropies was modeled in ferromagnetic nanowires. The wires were analyzed in the most elementary configurations, thus, arranged in pairs perpendicular to each other, leading to one-dimensional (linear) and zero-dimensional (point-like) coupling. Different distances within each elementary pair of wires and between the pairs give rise to varying interactions between parallel and perpendicular wires, respectively. Simulated coercivities show an exchange of easy and hard axes for systems with different couplings. Additionally, two of the systems exhibit a unique switching behavior which can be utilized for developing new functionalities.
Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie
2013-02-21
A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.
A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain
NASA Astrophysics Data System (ADS)
Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana
Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.
Positive magnetoresistance in Fe3Se4 nanowires
NASA Astrophysics Data System (ADS)
Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.
2011-04-01
We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.
Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W
2003-07-01
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun
2012-05-02
A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khan, Muhammad Ibrahim
Limitation of near future scaling down of conventional silicon technology stimulated the quest for alternative technologies in nanometer-scale materials and devices in recent years. Since the discovery of carbon nanotubes, there has been great interest in the synthesis and characterization of other one-dimensional materials. Nanorods, wires, belts, and tubes make up one particular class of anisotropic nanomaterials, which are considered quasi one-dimensional structures. Nanowires are promising materials for many novel applications, ranging from chemical and biological sensors to optical and electronic devices. This is not only because of their unique geometry, but also because they possess many unique physical properties, including electrical, magnetic, optical, as well as mechanical properties. In this dissertation, we describe the synthesis, structure and properties of nanowires of various inorganic materials fabricated simply by filling up pores or via in a template by means of electrochemical deposition (ECD). The architecture of the porous template defines the wire shape, direction and size. Because of the extreme aspect ratios of these 3D porous membranes, most physical and chemical vapor deposition techniques are ill suited for this template-directed growth technique and template directed fabrication is found to be superior in terms of low cost, high throughput, high volume, and ease of production. Also multicomponent nanowires can be grown simply by switching the solution composition or in some cases even in the same solution by switching the deposition potential. The nanowires can be released from the template matrix by chemical dissolution of the template. Based on the successful fabrication of elemental and multicomponent nanowires we have designed and fabricated InSb nanowire based field effect transistor (FET) devices on Si substrate. InSb is well known for its direct narrow band gap (0.18 eV at 300 K) with a very high electron mobility (8x10 4 cm2 V-1 s-1 at 300 K), electron velocity, and ballistic length (up to 0.7 mum at 300 K) of any known semiconductor. We demonstrated InSb nanowire devices at different diameter range from 30nm to 200nm using template directed technique which promises smaller feature sizes and an alternate, more economical path to atomic-scale computing structures than top-down lithography.
Zafar, Sufi; D'Emic, Christopher; Jagtiani, Ashish; Kratschmer, Ernst; Miao, Xin; Zhu, Yu; Mo, Renee; Sosa, Norma; Hamann, Hendrik F; Shahidi, Ghavam; Riel, Heike
2018-06-22
Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their unique ultralow detection ability but also makes their fabrication challenging with large sensor to sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials and electrical characterization is applied towards identifying and improving fabrication steps that induce sensor to sensor variations. An enhanced complementary metal-oxide-semiconductor (CMOS) compatible process for fabricating silicon nanowire FET sensors is demonstrated. Nanowire (30 nm width) FETs with aqueous solution as gates are shown to have the Nernst limit sub-threshold swing SS = 60 mV/decade with ~1.7% variations, whereas literature values for SS are ≥ 80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (~3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (~0.6 mV) and enhanced on-current to off-current ratios (~10 6 ). These improvements resulted in nanowire FET sensors with lowest (~3%) reported sensor to sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal to noise ratio with the lowest reported defect density of 1x10 18 eV -1 cm -3 in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.
Semiconductor Nanowires and Nanotubes for Energy Conversion
NASA Astrophysics Data System (ADS)
Fardy, Melissa Anne
In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at 300 K. In addition, using a field-effect gated device, the Seebeck coefficient of single PbSe nanowires could be tuned from 64 to 193 muV˙K-1. This direct electrical field control of the electrical conductivity and Seebeck coefficient suggests a powerful strategy for optimizing ZT in thermoelectric devices and these results represent the first demonstration of field-effect modulation of the thermoelectric figure of merit in a single semiconductor nanowire. This novel strategy for thermoelectric property modulation could prove especially important in optimizing the thermoelectric properties of semiconductors where reproducible doping is difficult to achieve. Recent theoretical work has shown large enhancements in ZT for single-crystal nanowires containing nanoscale interfaces along their lengths. M2O3(ZnO) n ( M = In, Ga, Fe) superlattice nanowires were synthesized via a novel solid-state diffusion approach to investigate this possible enhancement. Using atomic resolution Z-contrast STEM imaging a detailed structural analysis was performed on In2-xGaxO3(ZnO) n nanowires, leading to the discovery that octahedral inclusions within the superlattice structure are likely generated through a defect-assisted process. Single-nanowire thermal and electrical measurements on In2-x GaxO3(ZnO)n reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, giving an order of magnitude enhancement over similar bulk materials at room temperature. This is the first report of enhancement of all three thermoelectric parameters (Seebeck coefficient, electrical conductivity, and thermal resistivity) for a nanowire system. Photoelectrochemical water splitting is another exciting renewable energy application that can benefit from the high surface area of nanomaterials. Recently, (Ga1-xZnx)(N1-xOx) has gained widespread attention as a high efficiency material for visible-light-driven H2 and O2 generation. To improve the crystallinity of the material and reduce charge recombination (Ga1-xZnx)(N 1-xOx) nanotubes were synthesized by epitaxial coating of GaN onto ZnO nanowires. The nanotubes were single-crystalline, solid solutions of GaN and ZnO with ZnO compositions up to 10% and bandgaps as low as 2.6 eV. Incorporation of In into these nanotubes pushed the absorption even further into the visible. After decoration with Rh2-yCryO3 nanoparticle cocatalysts, (Ga1-xZnx)(N1-xOx) nanotubes spontaneously generated H2 in aqueous solutions under illumination. The photoanodic properties of these nanotubes are still under investigation. The significant reductions in thermal conductivity achieved using lead chalcogenide and In2-xGaxO3(ZnO) n nanowires highlight their use in thermoelectric power generation. The promise of 1-dimensional materials for energy conversion is further evident in the superior crystalline quality and high surface areas of the (Ga 1-xZnx)(N1-xOx) nanotubes. As research continues along these direction we move ever closer toward implementation of nanowires and nanotubes for clean, renewable, and more efficient energy use.
NASA Astrophysics Data System (ADS)
Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan
2017-12-01
Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.
Quasi-one dimensional (Q1D) nanostructures: Synthesis, integration and device application
NASA Astrophysics Data System (ADS)
Chien, Chung-Jen
Quasi-one-dimensional (Q1D) nanostructures such as nanotubes and nanowires have been widely regarded as the potential building blocks for nanoscale electronic, optoelectronic and sensing devices. In this work, the content can be divided into three categories: Nano-material synthesis and characterizations, alignment and integration, physical properties and application. The dissertation consists of seven chapters as following. Chapter 1 will give an introduction to low dimensional nano-materials. Chapter 2 explains the mechanism how Q1D nanostructure grows. Chapter 3 describes the methods how we horizontally and vertically align the Q1D nanostructure. Chapter 4 and 5 are the electrical and optical device characterization respectively. Chapter 6 demonstrates the integration of Q1D nanostructures and the device application. The last chapter will discuss the future work and conclusion of the thesis.
Thermoelectric Power Factor Limit of a 1D Nanowire
NASA Astrophysics Data System (ADS)
Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-01
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Thermoelectric Power Factor Limit of a 1D Nanowire.
Chen, I-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-27
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW/m K^{2}) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Crystallographic alignment of high-density gallium nitride nanowire arrays.
Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong
2004-08-01
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.
Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts
NASA Astrophysics Data System (ADS)
Zhang, Yanlin; Liu, Peihong; Wu, Honghai
2015-02-01
One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.
Length measurement and spatial orientation reconstruction of single nanowires.
Prestopino, Giuseppe; Orsini, Andrea; Falconi, Christian; Bietti, Sergio; Verona-Rinati, Gianluca; Caselli, Federica; Bisegna, Paolo
2018-06-27
The accurate determination of the geometrical features of quasi one-dimensional nanostructures is mandatory for reducing errors and improving repeatability in the estimation of a number of geometry-dependent properties in nanotechnology. In this paper a method for the reconstruction of length and spatial orientation of single nanowires is presented. Those quantities are calculated from a sequence of scanning electron microscope images taken at different tilt angles using a simple 3D geometric model. The proposed method is evaluated on a collection of scanning electron microscope images of single GaAs nanowires. It is validated through the reconstruction of known geometric features of a standard reference calibration pattern. An overall uncertainty of about 1% in the estimated length of the nanowires is achieved. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Asano, Atsushi; Maeyoshi, Yuta; Watanabe, Shogo; Saeki, Akinori; Sugimoto, Masaki; Yoshikawa, Masahito; Nanto, Hidehito; Tsukuda, Satoshi; Tanaka, Shun-Ichiro; Seki, Shu
2013-03-01
Cyclodextrins (CDs), hosting selectively a wide range of guest molecules in their hydrophobic cavity, were directly fabricated into 1-dimensional nanostructures with extremely wide surface area by single particle nanofabrication technique in the present paper. The copolymers of acrylamide and mono(6-allyl)-β-CD were synthesized, and the crosslinking reaction of the polymer alloys with poly(4-bromostyrene) (PBrS) in SPNT gave nanowires on the quarts substrate with high number density of 5×109 cm-2. Quartz crystal microbalance (QCM) measurement suggested 320 fold high sensitivity for formic acid vapor adsorption in the nanowire fabricated surfaces compared with that in the thin solid film of PBrS, due to the incorporation of CD units and extremely wide surface area of the nanowires.
NASA Astrophysics Data System (ADS)
Thakur, Anil; Kashyap, Rajinder
2018-05-01
Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.
Wang, Xiaoxia; Shoaib, Muhammad; Wang, Xiao; Zhang, Xuehong; He, Mai; Luo, Ziyu; Zheng, Weihao; Li, Honglai; Yang, Tiefeng; Zhu, Xiaoli; Ma, Libo; Pan, Anlian
2018-06-14
Cesium lead halide perovskite nanowires have emerged as promising low-dimensional semiconductor structures for integrated photonic applications. Understanding light-matter interactions in a nanowire cavity is of both fundamental and practical interest in designing low-power-consumption nanoscale light sources. In this work, high-quality in-plane aligned halide perovskite CsPbX 3 (X = Cl, Br, I) nanowires are synthesized by a vapor growth method on an annealed M-plane sapphire substrate. Large-area nanowire laser arrays have been achieved based on the as-grown aligned CsPbX 3 nanowires at room temperature with quite low pumping thresholds, very high quality factors, and a high degree of linear polarization. More importantly, it is found that exciton-polaritons are formed in the nanowires under the excitation of a pulsed laser, indicating a strong exciton-photon coupling in the optical microcavities made of cesium lead halide perovskites. The coupling strength in these CsPbX 3 nanowires is dependent on the atomic composition, where the obtained room-temperature Rabi splitting energy is ∼210 ± 13, 146 ± 9, and 103 ± 5 meV for the CsPbCl 3 , CsPbBr 3 , and CsPbI 3 nanowires, respectively. This work provides fundamental insights for the practical applications of all-inorganic perovskite CsPbX 3 nanowires in designing light-emitting devices and integrated nanophotonic systems.
Confined Doping for Control of Transport Properties in Nanowires and Nanofilms
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2006-03-01
Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)
Bernal, Rodrigo A; Filleter, Tobin; Connell, Justin G; Sohn, Kwonnam; Huang, Jiaxing; Lauhon, Lincoln J; Espinosa, Horacio D
2014-02-26
Electromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported. Coupled mechanical and electrical measurements are carried out for penta-twinned silver nanowires, their resistance is identified as a function of strain, and it is shown that resistance variations are the result of nanowire dimensional changes. Furthermore, in situ SEM piezoresistive measurements on n-type, [111]-oriented silicon nanowires up to unprecedented levels of ∼7% strain are demonstrated. The piezoresistance coefficients are found to be similar to bulk values. For both metallic and semiconducting nanowires, variations of the contact resistance as strain is applied are observed. These variations must be considered in the interpretation of future two-point electromechanical measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.
Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio
2016-01-13
We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.
Conducting polymer nanowire arrays for high performance supercapacitors.
Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang
2014-01-15
This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen
2018-04-01
To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.
Unique [Mn 6Bi 5] - Nanowires in KMn 6Bi 5: A Quasi-One-Dimensional Antiferromagnetic Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jin-Ke; Tang, Zhang-Tu; Jung, Hee Joon
In this paper, we report a new quasi-one-dimensional compound KMn 6Bi 5 composed of parallel nanowires crystallizing in a monoclinic space group C2/m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and β = 124.578(6)°. The nanowires are infinite [Mn 6Bi 5] - columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn–Mn bonding and are defined by distorted Mn-centered cluster icosahedramore » of Mn 13 sharing their vertices along the b axis. The [Mn 6Bi 5] - nanowires are linked with weak internanowire Bi–Bi bonds and charge balanced with K + ions. The [Mn 6Bi 5] - nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ~75 K and a small average effective magnetic moment (1.56 μ B/Mn for H ∥ b and 1.37 μ B/Mn for H ⊥ b) of Mn from Curie–Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K –2(mol-Mn) -1 and a small magnetic entropy change ΔS mag ≈ 1.6 J K –1 (mol-Mn) -1 across the antiferromagnetic transition. Finally, in contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.« less
Unique [Mn 6Bi 5] - Nanowires in KMn 6Bi 5: A Quasi-One-Dimensional Antiferromagnetic Metal
Bao, Jin-Ke; Tang, Zhang-Tu; Jung, Hee Joon; ...
2018-03-01
In this paper, we report a new quasi-one-dimensional compound KMn 6Bi 5 composed of parallel nanowires crystallizing in a monoclinic space group C2/m with a = 22.994(2) Å, b = 4.6128(3) Å, c = 13.3830(13) Å and β = 124.578(6)°. The nanowires are infinite [Mn 6Bi 5] - columns each of which is composed of a nanotube of Bi atoms acting as the cladding with a nanorod of Mn atoms located in the central axis of the nanotubes. The nanorods of Mn atoms inside the Bi cladding are stabilized by Mn–Mn bonding and are defined by distorted Mn-centered cluster icosahedramore » of Mn 13 sharing their vertices along the b axis. The [Mn 6Bi 5] - nanowires are linked with weak internanowire Bi–Bi bonds and charge balanced with K + ions. The [Mn 6Bi 5] - nanowires were directly imaged by high-resolution transmission electron microscopy and scanning transmission electron microscopy. Magnetic susceptibility studies show one-dimensional characteristics with an antiferromagnetic transition at ~75 K and a small average effective magnetic moment (1.56 μ B/Mn for H ∥ b and 1.37 μ B/Mn for H ⊥ b) of Mn from Curie–Weiss fits above 150 K. Specific heat measurements reveal an electronic specific heat coefficient γ of 6.5(2) mJ K –2(mol-Mn) -1 and a small magnetic entropy change ΔS mag ≈ 1.6 J K –1 (mol-Mn) -1 across the antiferromagnetic transition. Finally, in contrast to a metallic resistivity along the column, the resistivity perpendicular to the column shows a change from a semiconducting behavior at high temperatures to a metallic one at low temperatures, indicating an incoherent-to-coherent crossover of the intercolumn tunneling of electrons.« less
Electron Transport in Tellurium Nanowires
NASA Astrophysics Data System (ADS)
Berezovets, V. A.; Kumzerov, Yu. A.; Firsov, Yu. A.
2018-02-01
The temperature and magnetic field dependences of the voltage-current characteristics of tellurium nanowires manufactured via the insertion of tellurium into chrysotile asbestos pores from a melt have been measured. The measurements have been performed within a broad range of temperatures and magnetic fields. The results of such measurements are analyzed by means of their comparison with the predictions of theoretical models developed for the case of one-dimensional structures. The obtained dependences are concluded to most closely correspond to Luttinger liquid theory predictions. This result agrees with the concepts that the major mechanism of current in such one-dimensional wires does not depend on the material inserted into pores, but depends only on the dimension of conducting wires.
Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.
Shen, Guozhen; Chen, Di; Chen, Po-Chiang; Zhou, Chongwu
2009-05-26
Gallium sulfide (GaS) is a wide direct bandgap semiconductor with uniform layered structure used in photoelectric devices, electrical sensors, and nonlinear optical applications. We report here the controlled synthesis of various high-quality one-dimensional GaS nanostructures (thin nanowires, nanobelts, and zigzag nanobelts) as well as other kinds of GaS products (microbelts, hexagonal microplates, and GaS/Ga(2)O(3) heterostructured nanobelts) via a simple vapor-solid method. The morphology and structures of the products can be easily controlled by substrate temperature and evaporation source. Optical properties of GaS thin nanowires and nanobelts were investigated and both show an emission band centered at 580 nm.
2016-01-01
Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5–6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host–guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis. PMID:26751502
Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu
2012-06-25
Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabassum, Natasha; Nikas, Vasileios; Ford, Brian
2016-07-25
The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less
Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro
2012-08-08
Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.
Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires.
Chen, Chih-Yen; Lin, Yu-Kai; Hsu, Chia-Wei; Wang, Chiu-Yen; Chueh, Yu-Lun; Chen, Lih-Juann; Lo, Shen-Chuan; Chou, Li-Jen
2012-05-09
One-dimensional metal silicide nanowires are excellent candidates for interconnect and contact materials in future integrated circuits devices. Novel core-shell Ni(2)Si/C54-TiSi(2) nanowires, 2 μm in length, were grown controllably via a solid-liquid-solid growth mechanism. Their interesting ferromagnetic behaviors and excellent electrical properties have been studied in detail. The coercivities (Hcs) of the core-shell Ni(2)Si/C54-TiSi(2) nanowires was determined to be 200 and 50 Oe at 4 and 300 K, respectively, and the resistivity was measured to be as low as 31 μΩ-cm. The shift of the hysteresis loop with the temperature in zero field cooled (ZFC) and field cooled (FC) studies was found. ZFC and FC curves converge near room temperature at 314 K. The favorable ferromagnetic and electrical properties indicate that the unique core-shell nanowires can be used in penetrative ferromagnetic devices at room temperature simultaneously as a future interconnection in integrated circuits.
Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin
2017-10-13
Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.
Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.
NASA Astrophysics Data System (ADS)
Dholakia, Geetha; Kuo, Steven; Allen, E. L.
2007-03-01
Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.
Biodegradable porous silicon barcode nanowires with defined geometry
Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro
2010-01-01
Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H2O2 concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments. PMID:21057669
Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces
Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; ...
2016-05-06
The emergence of two-dimensional metallic states at the LaAlO 3/SrTiO 3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that formore » nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less
Highly infrared sensitive VO2 nanowires for a nano-optical device.
Bhuyan, Prabal Dev; Gupta, Sanjeev K; Kumar, Ashok; Sonvane, Yogesh; Gajjar, P N
2018-04-25
Recent studies on the electronic, magnetic and optical properties of VO2 (vanadium dioxide) materials have motivated the exploration of one dimensional VO2 nanowires. First principles calculations were performed to investigate the structural, electronic, magnetic and optical properties of the monoclinic (M) and rutile (R) phases of VO2 nanowires. The monoclinic phase shows semiconducting behaviour with a band gap of 1.17 eV, whereas the rutile phase of VO2 nanowires behaves as a spin gapless semiconducting material, as band lines cross the Fermi level due only to up spin contribution. The monoclinic structure of VO2 nanowires is found to be paramagnetic and the rutile structure shows ferromagnetic half metal behavior. The conductivity calculation for VO2 nanowires shows the metal-insulator transition (MIT) temperature to be 250 K. The possible mechanism of VO2 nanowires to be used as smart windows has been discussed, as the nanowires are highly sensitive in the infrared (IR) region. Interestingly, at low temperature, the VO2 monoclinic structure allows infrared light to be transmitted, while VO2 with the rutile phase blocks light in the IR region. Furthermore, we adsorbed CO2, N2 and SO2 gas molecules on 1D VO2 monoclinic nanowire to investigate their interaction behaviour. It was observed that the absorption and transmission properties of VO2 dramatically change upon the adsorption of CO2 and SO2 gas molecules, which is likely to open up its application as an optical gas sensor.
NASA Astrophysics Data System (ADS)
Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K.
2005-07-01
We show that preferentially oriented, single-crystalline ZnxCd1-xSe alloy nanowires can be grown on GaAs (100) surface using Au as a catalyst over the entire compositional range in a metalorganic chemical vapor deposition system. The composition of the alloy nanowires can be simply adjusted through the ratio of the flow rates of group-II precursors. Electron microscopy shows that the nanowires are smooth and uniform in shape; their diameters range from 20 to 80 nm and lengths exceed a few micrometers. Nanowires containing more than 13% Zn are zinc blende structured and grow along the ⟨110⟩ direction. Those containing less Zn are wurtzite structured and grow along the ⟨210⟩ direction. Compared with the bulk alloy, the change from zinc blende to wurtzite structure in nanowires occurs at far smaller x. The preferred orientation and the persistence of the zinc blende structure both reflect the influence of the substrate on the growth of the nanowires. Photoluminescence measurements identify a strong near-band-edge emission for all samples and show that its peak energy tracks the band gap of ZnxCd1-xSe epilayer for x>0.13. The growth of alloy nanowires at many compositions opens up the possibility of realizing quasi-one-dimensional heterojunctions.
Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.
Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie
2012-09-12
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.
Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications
NASA Astrophysics Data System (ADS)
Parthangal, Prahalad Madhavan
The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same material. Essentially, we have formulated simple processes for improving current thin film sensors as well as a means of incorporating nanostructures directly into miniature sensing devices. Apart from gas sensing applications, the approaches described in this work are suitable for designing future nanoelectronic devices such as gas-ionization, capacitive and calorimetric sensors, miniature sensor arrays for electronic nose applications, field emitters, as well as photonic devices such as nanoscale LEDs and lasers.
Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan
2017-07-01
Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sponge-Templated Macroporous Graphene Network for Piezoelectric ZnO Nanogenerator.
Li, Xinda; Chen, Yi; Kumar, Amit; Mahmoud, Ahmed; Nychka, John A; Chung, Hyun-Joong
2015-09-23
We report a simple approach to fabricate zinc oxide (ZnO) nanowire based electricity generators on three-dimensional (3D) graphene networks by utilizing a commercial polyurethane (PU) sponge as a structural template. Here, a 3D network of graphene oxide is deposited from solution on the template and then is chemically reduced. Following steps of ZnO nanowire growth, polydimethylsiloxane (PDMS) backfilling and electrode lamination completes the fabrication processes. When compared to conventional generators with 2D planar geometry, the sponge template provides a 3D structure that has a potential to increase power density per unit area. The modified one-pot ZnO synthesis method allows the whole process to be inexpensive and environmentally benign. The nanogenerator yields an open circuit voltage of ∼0.5 V and short circuit current density of ∼2 μA/cm(2), while the output was found to be consistent after ∼3000 cycles. Finite element analysis of stress distribution showed that external stress is concentrated to deform ZnO nanowires by orders of magnitude compared to surrounding PU and PDMS, in agreement with our experiment. It is shown that the backfilled PDMS plays a crucial role for the stress concentration, which leads to an efficient electricity generation.
Self-limited growth of the CaF nanowire on the Si(5 5 12)-2 × 1 template
NASA Astrophysics Data System (ADS)
Kim, Hidong; Duvjir, Ganbat; Dugerjav, Otgonbayar; Li, Huiting; Motlak, Moaaed; Arvisbaatar, Amarmunkh; Seo, Jae M.
2012-10-01
The atomic structure and interfacial bonding of the ordered-and-isolated CaF nanowires on Si(5 5 12)-2 × 1 have been disclosed by scanning tunneling microscopy and synchrotron photoemission spectroscopy. Initially, CaF molecules dissociated from thermally deposited CaF2 molecules are adsorbed preferentially on the chain structures of Si(5 5 12)-2 × 1 held at 500 °C. With increasing CaF2 deposition amount, one-dimensional (1D) CaF nanowires composed of (113) and (111) facets are formed. The line density of these CaF nanowires increases as a function of deposition amount. Finally, at a submonolayer coverage, the surface is saturated with these 1D nanowires except for the (225) subunit, while the original period of Si(5 5 12)-2 × 1, 5.35 nm, is preserved. It has been deduced by the present studies that, owing to these preferential adsorption of CaF and facet-dependent growth of a CaF layer within a unit periodic length of Si(5 5 12)-2 × 1, such a self-limited growth of the CaF nanowire with a high aspect ratio becomes possible.
InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation.
Kelrich, Alexander; Sorias, Ofir; Calahorra, Yonatan; Kauffmann, Yaron; Gladstone, Ran; Cohen, Shimon; Orenstein, Meir; Ritter, Dan
2016-04-13
Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.
Cho, Jeong-Hyun; Picraux, S Tom
2013-01-01
It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.
Power generation from base excitation of a Kevlar composite beam with ZnO nanowires
NASA Astrophysics Data System (ADS)
Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.
2015-04-01
One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.
Li, Jianye; An, Lei; Lu, Chenguang; Liu, Jie
2006-02-01
We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.
Magnetoresistance of non-180° domain wall in the presence of electron-photon interaction
NASA Astrophysics Data System (ADS)
Majidi, Roya
2013-04-01
In the present paper, influence of photon on resistance of non-180° domain wall in metallic magnetic nanowires has been studied using the semiclassical approach. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type domain wall between two ferromagnetic domains with relative magnetization angle less than 180° is considered. By increasing this angle, the contribution of the domain wall in the resistivity of the nanowire becomes considerable. It is also found that the fundamental contribution of the domain wall in resistivity can be controlled by propagating photon. These results are valuable in designing spintronic devices based on magnetic nanowires.
NASA Astrophysics Data System (ADS)
Kim, Hyunhong; Choi, Seong-Hyeon; Kim, Mijung; Park, Jang-Ung; Bae, Joonwon; Park, Jongnam
2017-11-01
Owing to a recent push toward one-dimensional nanomaterials, in this study, we report a seed-mediated synthetic strategy for copper nanowires (Cu NWs) production involving thermal decomposition of metal-surfactant complexes in an organic medium. Ultra-long Cu NWs with a high aspect ratio and uniform diameter were obtained by separating nucleation and growth steps. The underlying mechanism for nanowire formation was investigated, in addition, properties of the obtained Cu NWs were also characterized using diverse analysis techniques. The performance of resulting Cu NWs as transparent electrodes was demonstrated for potential application. This article can provide information on both new synthetic pathway and potential use of Cu NWs.
Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires
NASA Astrophysics Data System (ADS)
Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming
2018-06-01
In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.
Zhang, Haihua; Wu, Yishi; Liao, Qing; Zhang, Zhaoyi; Liu, Yanping; Gao, Qinggang; Liu, Peng; Li, Meili; Yao, Jiannian; Fu, Hongbing
2018-06-25
Miniaturized nanowire nanolasers of 3D perovskites feature a high gain coefficient; however, room-temperature optical gain and nanowire lasers from 2D layered perovskites have not been reported to date. A biomimetic approach is presented to construct an artificial ligh-harvesting system in mixed multiple quantum wells (QWs) of 2D-RPPs of (BA) 2 (FA) n-1 Pb n Br 3n+1 , achieving room-temperature ASE and nanowire (NW) lasing. Owing to the improvement of flexible and deformable characteristics provided by organic BA cation layers, high-density large-area NW laser arrays were fabricated with high photostability. Well-controlled dimensions and uniform geometries enabled 2D-RPPs NWs functioning as high-quality Fabry-Perot (FP) lasers with almost identical optical modes, high quality (Q) factor (ca. 1800), and similarly low lasing thresholds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Du, Haifeng; Liang, Dong; Jin, Chiming; Kong, Lingyao; Stolt, Matthew J.; Ning, Wei; Yang, Jiyong; Xing, Ying; Wang, Jian; Che, Renchao; Zang, Jiadong; Jin, Song; Zhang, Yuheng; Tian, Mingliang
2015-07-01
Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future spintronic devices. To enable such applications, particular attention has been focused on the properties of skyrmions in highly confined geometries such as one-dimensional nanowires. Hitherto, it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here, we achieve this by measuring the magnetoresistance in ultra-narrow MnSi nanowires. We observe quantized jumps in magnetoresistance versus magnetic field curves. By tracking the size dependence of the jump number, we infer that skyrmions are assembled into cluster states with a tunable number of skyrmions, in agreement with the Monte Carlo simulations. Our results enable an electric reading of the number of skyrmions in the cluster states, thus laying a solid foundation to realize skyrmion-based memory devices.
Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju
2016-06-17
In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.
Efficient n-type doping of zinc-blende III-V semiconductor nanowires
NASA Astrophysics Data System (ADS)
Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.
2014-03-01
We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.
Tan, Chuan Fu; Su Su Zin, Aung Kyi; Chen, Zhihui; Liow, Chi Hao; Phan, Huy Thong; Tan, Hui Ru; Xu, Qing-Hua; Ho, Ghim Wei
2018-05-22
One-dimensional (1D) metallic nanocrystals constitute an important class of plasmonic materials for localization of light into subwavelength dimensions. Coupled with their intrinsic conductive properties and extended optical paths for light absorption, metallic nanowires are prevalent in light-harnessing applications. However, the transverse surface plasmon resonance (SPR) mode of traditional multiply twinned nanowires often suffers from weaker electric field enhancement due to its low degree of morphological curvature in comparison to other complex anisotropic nanocrystals. Herein, simultaneous anisotropic stellation and excavation of multiply twinned nanowires are demonstrated through a site-selective galvanic reaction for a pronounced manipulation of light-matter interaction. The introduction of longitudinal extrusions and cavitation along the nanowires leads to a significant enhancement in plasmon field with reduced quenching of localized surface plasmon resonance (LSPR). The as-synthesized multimetallic nanostartubes serve as a panchromatic plasmonic framework for incorporation of photocatalytic materials for plasmon-assisted solar fuel production.
Choudhary, Nitin; Li, Chao; Chung, Hee-Suk; Moore, Julian; Thomas, Jayan; Jung, Yeonwoong
2016-12-27
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising capacitive materials for supercapacitor devices owing to their intrinsically layered structure and large surface areas. Hierarchically integrating 2D TMDs with other functional nanomaterials has recently been pursued to improve electrochemical performances; however, it often suffers from limited cyclic stabilities and capacitance losses due to the poor structural integrity at the interfaces of randomly assembled materials. Here, we report high-performance core/shell nanowire supercapacitors based on an array of one-dimensional (1D) nanowires seamlessly integrated with conformal 2D TMD layers. The 1D and 2D supercapacitor components possess "one-body" geometry with atomically sharp and structurally robust core/shell interfaces, as they were spontaneously converted from identical metal current collectors via sequential oxidation/sulfurization. These hybrid supercapacitors outperform previously developed any stand-alone 2D TMD-based supercapacitors; particularly, exhibiting an exceptional charge-discharge retention over 30,000 cycles owing to their structural robustness, suggesting great potential for unconventional energy storage technologies.
Origin of noise in liquid-gated Si nanowire troponin biosensors.
Kutovyi, Y; Zadorozhnyi, I; Hlukhova, H; Handziuk, V; Petrychuk, M; Ivanchuk, Andriy; Vitusevich, S
2018-04-27
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Origin of noise in liquid-gated Si nanowire troponin biosensors
NASA Astrophysics Data System (ADS)
Kutovyi, Y.; Zadorozhnyi, I.; Hlukhova, H.; Handziuk, V.; Petrychuk, M.; Ivanchuk, Andriy; Vitusevich, S.
2018-04-01
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Pura, J L; Periwal, P; Baron, T; Jiménez, J
2018-08-31
The vapour-liquid-solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process, precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique, axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with complementary metal oxide semiconductor (CMOS) technology, which improves their versatility and the possibility of integration with current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, the VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles that are in good agreement with the experimental measurements. Finally, an in-depth study of the composition map provides a practical approach to the drastic reduction of heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches, which use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to the reduction of heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors.
Cross, C E; Hemminger, J C; Penner, R M
2007-09-25
One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.
NASA Astrophysics Data System (ADS)
Wang, Zhihuan; Nabet, Bahram
2015-12-01
Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.
Lewis, Crystal S.; Moronta, Dominic; Terban, Maxwell W.; ...
2017-12-12
In this report, we have synthesized and structurally characterized nanowire bundles of cobalt-substituted pyroxenes, similar to the crystal structure of aegirine (i.e. Co-substituted XYSi 2O 6 with X and Y referring to metallic elements such as but not limited to Co, Na, and Fe), using a readily scalable hydrothermal technique. We then propose a growth mechanism for these bundles, based on detailed time and temperature dependent studies as well as complementary control experiments, particularly reactions in the absence of either 3-aminopropyltriethoxysilane (APTES) or sodium hydroxide (NaOH), via a transmission electron microscopy visualization study. Moreover, these nanowire bundles were probed formore » their magnetic properties and chemical composition using superconducting quantum interference device (SQUID) measurements, X-ray diffraction, and pair distribution function analysis, respectively. Specifically, SQUID measurement observations highlighted that these bundles evince (i) unique and interesting super-paramagnetic properties at 5 K that are consistent with that of our previously published ~2 nm ultra-small nanoparticles as well as (ii) paramagnetic behavior at 300 K.« less
Simple Analytic Model for Nanowire Array Polarizers
NASA Astrophysics Data System (ADS)
Pelletier, Vincent; Asakawa, Koji; Wu, Mingshaw; Register, Richard; Chaikin, Paul
2006-03-01
Cylinder-forming diblock copolymers can be used to pattern nanowire arrays on a transparent substrate to be used as a polarizer, as described by Koji Asakawa in a complementary talk at this meeting. With a 33nm period, these wire arrays can polarize UV radiation, which is of great interest in lithography, astronomy and other areas. One can gain an analytical understanding of such an array made of non-perfectly conducting material of finite thickness using a model with an appropriately averaged complex dielectric function in an infinite wavelength approximation. This analysis predicts that the grid can go from an E-polarizer to an H-polarizer as the wavelength decreases below a cross-over wavelength, and experimental data confirm this cross-over. The overall response of the polarizing grid depends primarily on the plasma frequency of the metal used and the volume fraction of the nanowires, as well as the grid thickness. A numerical approach is also used to confirm the analytical model and assess departure from infinite wavelength effects. For our array dimensions, the polarization is only slightly different from this approximation for wavelengths down to 150nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Crystal S.; Moronta, Dominic; Terban, Maxwell W.
In this report, we have synthesized and structurally characterized nanowire bundles of cobalt-substituted pyroxenes, similar to the crystal structure of aegirine (i.e. Co-substituted XYSi 2O 6 with X and Y referring to metallic elements such as but not limited to Co, Na, and Fe), using a readily scalable hydrothermal technique. We then propose a growth mechanism for these bundles, based on detailed time and temperature dependent studies as well as complementary control experiments, particularly reactions in the absence of either 3-aminopropyltriethoxysilane (APTES) or sodium hydroxide (NaOH), via a transmission electron microscopy visualization study. Moreover, these nanowire bundles were probed formore » their magnetic properties and chemical composition using superconducting quantum interference device (SQUID) measurements, X-ray diffraction, and pair distribution function analysis, respectively. Specifically, SQUID measurement observations highlighted that these bundles evince (i) unique and interesting super-paramagnetic properties at 5 K that are consistent with that of our previously published ~2 nm ultra-small nanoparticles as well as (ii) paramagnetic behavior at 300 K.« less
NASA Astrophysics Data System (ADS)
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-10-01
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-10-12
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.
NASA Astrophysics Data System (ADS)
Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie; Li, Qingbiao; Li, Guoqing; Zhang, Guoliang
2015-10-01
Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu2O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu2O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu2O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu2O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.
Variation in the electrical properties of ion beam irradiated cadmium selenate nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, R. P., E-mail: chauhanrpc@gmail.com; Narula, Chetna; Panchal, Suresh
The key feature of nanowires consists in the pronounced change in properties induced by the low dimensionality and high surface to volume ratio. The study of electrical transport properties of nanowires is important for electronic device applications. Energetic ions create changes, which may be structural or chemical, in a material along their track and these changes might alter the material’s properties. The demand of the modern technology is to understand the effect of radiation on the different properties of the material for its further applications. The present study is on the high-energy Nickel ion beam (160 MeV Ni{sup +12}) induced modificationsmore » in the electrical and structural properties of the cadmium selenate nanowires. An enhancement in the electrical conductivity of irradiated wires was observed as the ion fluence was increased especially in the forward I–V characteristics. The creation of defects by ion irradiation and the synergy of the ions during their passage in the sample with the intrinsic charge carriers may be responsible for the variation in the transport properties of the irradiated nanowires.« less
Grooved nanowires from self-assembling hairpin molecules for solar cells.
Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I
2012-03-27
One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society
Solid-phase diffusion mechanism for GaAs nanowire growth.
Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine
2004-10-01
Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.
High performance NO2 sensor using MoS2 nanowires network
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh
2018-01-01
We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.
Hot Electrons Regain Coherence in Semiconducting Nanowires
NASA Astrophysics Data System (ADS)
Reiner, Jonathan; Nayak, Abhay Kumar; Avraham, Nurit; Norris, Andrew; Yan, Binghai; Fulga, Ion Cosma; Kang, Jung-Hyun; Karzig, Toesten; Shtrikman, Hadas; Beidenkopf, Haim
2017-04-01
The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves nonmonotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Pèrot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Johann Deisenhofer, Crystallography, and Proteins
research using X-ray crystallography to elucidate for the first time the three-dimensional structure of a large membrane-bound protein molecule. This structure helped explain the process of photosynthesis, by a protein structure determination that relied on complementary features of two different beam lines
Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires
Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie
2012-01-01
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063
Understanding channel and contact effects on transport in 1-dimensional nanotransistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartzentruber, Brian S.; Delker, Collin James; Yoo, Jinkyoung
Nanowire transistors are generally formed by metal contacts to a uniformly doped nanowire. The transistor can be modeled as a series combination of resistances from both the channel and the contacts. In this study, a simple model is proposed consisting of a resistive channel in series with two Schottky metal-semiconductor contacts modeled using the WKB approximation. This model captures several phenomena commonly observed in nanowire transistor measurements, including the mobility as a function of gate potential, mobility reduction with respect to bulk mobility, and non-linearities in output characteristics. For example, the maximum measured mobility as a function of gate voltagemore » in a nanowire transistor can be predicted based on the semiconductor bulk mobility in addition to barrier height and other properties of the contact. The model is then extended to nanowires with axial p-n junctions having an inde- pendent gate over each wire segment by splitting the channel resistance into a series component for each doping segment. Finally, the contact-channel model is applied to low-frequency noise analysis in nanowire devices, where the noise can be generated in both the channel and the contacts. Because contacts play a major, yet often neglected, role in nanowire transistor operation, they must be accounted for in order to extract meaningful parameters from I-V and noise measurements.« less
Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded with Electropolymers
NASA Technical Reports Server (NTRS)
McKay, Chris; Chen, Bin
2012-01-01
Single-wall carbon nanotubes (SWCNTs) coated with a hydrogen-rich, electrically conducting polymer such as polyethylene, receive and dissipate a portion of incoming radiation pulse energy to electrical signals that are transmitted along the CNT axes, and are received at energy-dissipating terminals. In this innovation, an array of highly aligned nanowires is grown using a strong electric field or another suitable orientation procedure. Polyethylene (PE), polymethymlethacrylate (PMMA), or other electrically conducting polymer is spin-coated onto the SWCNTs with an average thickness of a few hundred nanometers to a few tenths of micrometers to form a PE/SWCNT composite. Alternatively, the polymer is spin-coated onto the nanowire array or an anodized alumina membrane (AAM) to form a PE/metal core shell structure, or PE can be electropolymerized using the SWCNTs or the metal nanowires as an electrode to form a PE/SWCNT core shell structure. The core shell structures can be extruded as anisotropic fibers. A monomer can be polymerized in the presence of SWCNTs to form highly cross-linked PE/SWCNT films. Alternatively, Pb colloid solution can be impregnated into a three-dimensional PE/SWCNT nanostructure to form a PW/SWCNT/Pb composite structure. A face-centered cubic (FCC) arrangement provides up to 12 interconnection channels connected to each core, with transverse channel dimensions up to 20 nm, with adequate mechanical compressive strength, and with an associated electrical conductivity of around 3 Seimens/cm for currents ranging from 0.01 to 10 mA. This threedimensional nanostructure is used as a host material to house appropriate radiation shielding material such as hydrogen- rich polymer/CNT structures, metal nanoparticles, and nanowires. Thicknesses of this material required to attenuate 10 percent, 50 percent, and 90 percent of an incident beam (gamma, X-ray, ultraviolet, neutron, proton, and electron) at energies in the range of 0 440 MeV are being determined, for example, by measuring fluence rate reduction. For example, a radiation field arrives first at an exposed surface of the innovation and produces an associated first electric field within the metal-like fingers of the three-dimensional nanostructure. This field is intensified near the exposed tips of the fingers, and this intensified field generates an intensified second electric field near the adjacent exposed tips of the coated CNSs. This generates an associated electrical current in the CNSs, and the associated electropolymer coating. The current is received by the second substrate transport component and is transported to the dissipation mechanism located contiguously to the second substrate.
Applications of one-dimensional structured nanomaterials as biosensors and transparent electronics
NASA Astrophysics Data System (ADS)
Ishikawa, Fumiaki
This dissertation presents applications of one-dimensional structured nanomaterials, carbon nanotubes and In2O3 nanowires, for biosensors and transparent electronics. Chapter 1 gives the motivation to study applications of one-dimensional structured nanomaterials, and also brief introduction to structure, synthesis, and electronic properties of carbon nanotubes and In2O3 nanowires. In Chapter 2, introduction and motivation of biosensors using nanotubes/nanowires is given, followed by an overview on important background knowledge and concepts in biosensing. In Chapter 3, application of carbon nanotube biosensors toward brown tide algae detection is presented. Our devices successfully detected a brown tide marker selectively with real-time response. In Chapter 4, we demonstrate that In2O3 nanowire biosensors coupled with an antibody mimic protein (Fibronectin, Fn) can be used to detect nucleocapsid (N) protein, a biomarker for severe acute respiratory syndrome (SARS), at concentrations to below the sub-nanomolar range. In Chapter 5, we develop an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. In Chapter 6, we investigate the effect of nanotube density on the biosensor performance, and proved that it plays an important role through systematic studies. In Chapter 7, I propose a future direction of nanobiosensors research, and show preliminary results along the proposed direction. I first present a concept of an ideal bioassay system with a list of requirements for the system, and propose the strategy of multi-integration to establish a system based on nanobiosensors that satisfies all of the requirements. In Chapter 8, we demonstrate high performance fully transparent transistors based on transfer printed aligned carbon nanotubes on both rigid and flexible substrates. We achieved device mobility as high as 1,300 cm 2V-1s-1 on glass substrates, which is the highest among transparent transistors reported so far. We also demonstrated fully transparent PMOS inverters on flexible substrates, and also successfully controlled commercial GaN light--emitting diodes (LEDs) with light intensity modulation of 103. Lastly, a brief summary of this thesis is given in Chapter 9.
NASA Astrophysics Data System (ADS)
Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.
2015-10-01
The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.
Single nanowire extinction spectroscopy.
Giblin, Jay; Vietmeyer, Felix; McDonald, Matthew P; Kuno, Masaru
2011-08-10
Here we show the first direct extinction spectra of single one-dimensional (1D) semiconductor nanostructures obtained at room temperature utilizing a spatial modulation approach. (1) For these materials, ensemble averaging in conventional extinction spectroscopy has limited our understanding of the interplay between carrier confinement and their electrostatic interactions. (2-4) By probing individual CdSe nanowires (NWs), we have identified and assigned size-dependent exciton transitions occurring across the visible. In turn, we have revealed the existence of room temperature 1D excitons in the narrowest NWs.
Novel Crystal Structure C60 Nanowire
NASA Astrophysics Data System (ADS)
Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex
2003-03-01
We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.
Ballistic transport in nanowires through non-magnetic or magnetic cavity
NASA Astrophysics Data System (ADS)
Nonoyama, Shinji; Honma, Yukari; Ono, Miyuki; Nakamura, Atsunobu
2015-07-01
Ballistic transport phenomena through a region containing a cavity in a quasi-one-dimensional quantum nanowire are investigated. Conductance curves calculated as a function of a structural parameter show quantum interference effects on transport clearly. In a special geometry, very narrow periodic dips, which are attributable to the anti-resonance, appear on the conductance curve. The nature of the virtual bound state resulting in the anti-resonance is studied in detail. Electron conductions through a small dilute magnetic semiconductor are also investigated.
Transport Imaging in the One Dimensional Limit
2006-06-01
Spatial luminescence from single bottom-up GaN and ZnO nanowires deposited by metal initiated metal -organic CVD on Au and SiO2 substrates is imaged. CL...this thesis were deposited by metal initiated metal -organic CVD on Au and SiO2 substrates . The process was carried out with different reagents in...are reported. Spatial luminescence from single bottom-up GaN and ZnO nanowires deposited by metal initiated metal -organic CVD on Au and SiO2
Growth mechanism of isolated indium nanowires formed on Si(5 5 12)-2 × 1 templates
NASA Astrophysics Data System (ADS)
Zhu, Yong-Zhe; Kim, Hidong; Seo, Jae M.
2012-08-01
Through self-assembly of In atoms on a reconstructed Si(5 5 12)-2×1 surface, nanowires of a width less than 5 nm have been formed. One specific site of the one-dimensional structure of the substrate turns out to be inert to arriving In atoms so that the self-assembled nanowires are well-isolated from each other, resulting in a high aspect ratio. In addition to such an isolation, keeping the same periodicity as the substrate ( i.e., 5.35 nm) during such self-assembly is another interesting point of the present system. In the present study, the detailed growth mechanism has been disclosed by using scanning tunneling microscopy.
NASA Astrophysics Data System (ADS)
Çakır, D.; Gülseren, O.
2011-08-01
In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.
NASA Astrophysics Data System (ADS)
Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song
2015-03-01
Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.
High-Switching-Ratio Photodetectors Based on Perovskite CH₃NH₃PbI₃ Nanowires.
Zhang, Xin; Liu, Caichi; Ren, Gang; Li, Shiyun; Bi, Chenghao; Hao, Qiuyan; Liu, Hui
2018-05-10
Hybrid organic-inorganic perovskite materials have attracted extensive attention due to their impressive performance in photovoltaic devices. One-dimensional perovskite CH₃NH₃PbI₃ nanomaterials, possessing unique structural features such as large surface-to-volume ratio, anisotropic geometry and quantum confinement, may have excellent optoelectronic properties, which could be utilized to fabricate high-performance photodetectors. However, in comparison to CH₃NH₃PbI₃ thin films, reports on the fabrication of CH₃NH₃PbI₃ nanowires for optoelectrical application are rather limited. Herein, a two-step spin-coating process has been utilized to fabricate pure-phase and single-crystalline CH₃NH₃PbI₃ nanowires on a substrate without mesoporous TiO₂ or Al₂O₃. The size and density of CH₃NH₃PbI₃ nanowires can be easily controlled by changing the PbI₂ precursor concentration. The as-prepared CH₃NH₃PbI₃ nanowires are utilized to fabricate photodetectors, which exhibit a fairly high switching ratio of ~600, a responsivity of 55 mA/W, and a normalized detectivity of 0.5 × 10 11 jones under 532 nm light illumination (40 mW/cm²) at a very low bias voltage of 0.1 V. The as-prepared perovskite CH₃NH₃PbI₃ nanowires with excellent optoelectronic properties are regarded to be a potential candidate for high-performance photodetector application.
NASA Astrophysics Data System (ADS)
Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou
2016-04-01
We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08467a
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M
2013-08-01
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or 'cyborg' tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable 'cyborg' tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain.
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.
2013-01-01
Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or ‘cyborg’ tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable ‘cyborg’ tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain. PMID:24073014
NASA Astrophysics Data System (ADS)
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-03-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-12-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.
NASA Astrophysics Data System (ADS)
Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying
2016-05-01
Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02600a
Three-dimensional nanoscale characterisation of materials by atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Perea, Daniel E.; Liu, Jia
The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less
Integrated polarization-dependent sensor for autonomous navigation
NASA Astrophysics Data System (ADS)
Liu, Ze; Zhang, Ran; Wang, Zhiwen; Guan, Le; Li, Bin; Chu, Jinkui
2015-01-01
Based on the navigation strategy of insects utilizing the polarized skylight, an integrated polarization-dependent sensor for autonomous navigation is presented. The navigation sensor has the features of compact structure, high precision, strong robustness, and a simple manufacture technique. The sensor is composed by integrating a complementary-metal-oxide-semiconductor sensor with a multiorientation nanowire grid polarizer. By nanoimprint lithography, the multiorientation nanowire polarizer is fabricated in one step and the alignment error is eliminated. The statistical theory is added to the interval-division algorithm to calculate the polarization angle of the incident light. The laboratory and outdoor tests for the navigation sensor are implemented and the errors of the measured angle are ±0.02 deg and ±1.3 deg, respectively. The results show that the proposed sensor has potential for application in autonomous navigation.
Nanostructures having high performance thermoelectric properties
Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
2015-12-22
The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
Nanostructures having high performance thermoelectric properties
Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz
2014-05-20
The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
NASA Astrophysics Data System (ADS)
Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen
2016-08-01
Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.
Fu, Xin; Yuan, Jun
2017-07-24
Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.
CMOS Active-Pixel Image Sensor With Intensity-Driven Readout
NASA Technical Reports Server (NTRS)
Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina
1996-01-01
Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.
Choi, Yeon Sik; Kim, Sung Kyun; Williams, Findlay; Calahorra, Yonatan; Elliott, James A; Kar-Narayan, Sohini
2018-06-19
Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.
Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen
2018-01-11
We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.
Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong
2016-09-22
This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.
NASA Astrophysics Data System (ADS)
Yang, Ting
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
Development of self-assembling nanowires containing electronically active oligothiophenes
NASA Astrophysics Data System (ADS)
Tsai, Wei-Wen
This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without any twisting, left-handed helices with smaller pitches (40 +/- 6 nm), or aggregates without regular shapes. We believe these effects are steric in nature that changes the beta-sheet sub-structure within the nanofibers. These principles could be utilized as strategies to optimize the morphologies and properties of nanostructures based on these amphiphilic molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lan, Bang
Highlights: • One-dimensional α-MnO{sub 2} nanowires were prepared by a facile hydrothermal route. • Shape and crystal phase of the products were controlled by tuning reaction conditions. • A possible formation mechanism of the α-MnO{sub 2} nanowires was discussed. • The α-MnO{sub 2} nanowires showed great catalytic activity for toluene combustion. - Abstract: α-MnO{sub 2} nanowires with a length about 6–10 μm and an average diameter of 20 nm were synthesized through a facile hydrothermal process without any templates or surfactants. The products were characterized by X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, hydrogenmore » temperature-programmed reduction techniques, X-ray photoelectron spectroscopy and surface area analysis. The effects of the hydrothermal temperature and the concentration of CH{sub 3}COOH on the crystal phase and morphology of the final products were studied in detail. The hydrothermal temperature and the concentration of CH{sub 3}COOH play crucial roles in determining the crystal phase and morphology of the products. The possible formation mechanism of the α-MnO{sub 2} nanowires was investigated and discussed. Additionally, the as-prepared α-MnO{sub 2} nanowires showed higher catalytic activity for toluene combustion than the commercial MnO{sub 2}, suggesting their potential applications in the elimination of volatile organic compounds.« less
NASA Astrophysics Data System (ADS)
Trahey, Lynn
Bismuth telluride is a well-known thermoelectric material for refrigeration applications. Thermoelectrics possess several advantages over conventional refrigeration and power generation devices, yet are not widely-used due to low efficiencies. It has been predicted and shown experimentally that the efficiency of thermoelectric devices increases when the semiconducting materials have reduced dimensions. Therefore, the aim of this research was to show enhanced thermoelectric efficiency in one-dimensional nanowires. The nanowires were synthesized via electrochemical deposition into porous alumina templates. Electrodeposition is a versatile technique that ensures electrical continuity in the deposited material. The nanowire templates, porous alumina, were made by the double anodization of high-purity aluminum foil in oxalic acid solutions. This technique produces parallel, hexagonally packed, and nanometer-range diameter pores that can reach high aspect ratios (greater than 2000:1). The main anodization variables (electrolyte concentration, applied potential, 2nd anodization time, and temperature) were studied systematically in order to deconvolute their effects on the resulting pores and to obtain high aspect ratio pores. The porous alumina is of great importance because the pore dimensions determine the dimensions of the electrodeposited nanowires, which influence the thermoelectric performance of the nanowire arrays. Nanowire arrays were characterized in several ways. Powder X-ray diffraction was used to assess crystallinity and preferred orientation of the nanowires, revealing that the nanowires are highly crystalline and grow with strong preferred orientation such that the material is suited for optimal thermoelectric performance. Scanning electron microscopy was used to evaluate the nanowire nucleation percentage and growth-front uniformity, both of which were enhanced by pulsed-potential electrodeposition. Compositional analysis via electron microprobe indicates that the as-grown nanowires are Te-rich or Bi-deficient, which agrees with Seebeck coefficient data showing the arrays are n-type semiconductors. In collaboration with Marlow Industries, the thermoelectric performance of the arrays was gauged. The nanowire arrays were successfully contacted with robust nickel layers as revealed by the low AC resistances of the arrays. One array was incorporated into a hybrid thermoelectric device and a DeltaT of 14.8°C was measured, indicating that the measurement and electrical contact approaches were successful despite further optimization being needed.
Photogating in Low Dimensional Photodetectors
Fang, Hehai
2017-01-01
Abstract Low dimensional materials including quantum dots, nanowires, 2D materials, and so forth have attracted increasing research interests for electronic and optoelectronic devices in recent years. Photogating, which is usually observed in photodetectors based on low dimensional materials and their hybrid structures, is demonstrated to play an important role. Photogating is considered as a way of conductance modulation through photoinduced gate voltage instead of simply and totally attributing it to trap states. This review first focuses on the gain of photogating and reveals the distinction from conventional photoconductive effect. The trap‐ and hybrid‐induced photogating including their origins, formations, and characteristics are subsequently discussed. Then, the recent progress on trap‐ and hybrid‐induced photogating in low dimensional photodetectors is elaborated. Though a high gain bandwidth product as high as 109 Hz is reported in several cases, a trade‐off between gain and bandwidth has to be made for this type of photogating. The general photogating is put forward according to another three reported studies very recently. General photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high‐performance photodetectors. PMID:29270342
NASA Astrophysics Data System (ADS)
Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng
2015-08-01
A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE. Electronic supplementary information (ESI) available: Supporting figures, with additional SEM images, EDS spectra, N2 sorption isotherms, charge-discharge curves, cycling performance, Ragone plot, Nyquist plots and linear scan voltammogram plots. See DOI: 10.1039/c5nr04603c
Analytical model for the threshold voltage of III-V nanowire transistors including quantum effects
NASA Astrophysics Data System (ADS)
Marin, E. G.; Ruiz, F. G.; Tienda-Luna, I. M.; Godoy, A.; Gámiz, F.
2014-02-01
In this work we propose an analytical model for the threshold voltage (VT) of III-V cylindrical nanowires, that takes into consideration the two dimensional quantum confinement of the carriers, the Fermi-Dirac statistics, the wave-function penetration into the gate insulator and the non-parabolicity of the conduction band structure. A simple expression for VT is obtained assuming some suitable approximations. The model results are compared to those of a 2D self consistent Schrödinger-Poisson solver, demonstrating a good fit for different III-V materials, insulator thicknesses and nanowire sizes with diameter down to 5 nm. The VT dependence on the confinement effective mass is discussed. The different contributions to VT are analyzed showing significant variations among different III-V materials.
Nanowire-based single-cell endoscopy
NASA Astrophysics Data System (ADS)
Yan, Ruoxue; Park, Ji-Ho; Choi, Yeonho; Heo, Chul-Joon; Yang, Seung-Man; Lee, Luke P.; Yang, Peidong
2012-03-01
One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution and high-throughput gene and drug delivery, biosensing and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.
Nanowire growth by an electron beam induced massive phase transformation
Sood, Shantanu; Kisslinger, Kim; Gouma, Perena
2014-11-15
Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less
NASA Astrophysics Data System (ADS)
Sun, Xu; Gu, Yousong; Wang, Xueqiang
2012-08-01
One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.
Multiscale Study of Barium Titanate Nanostructures and Nanocomposites
NASA Astrophysics Data System (ADS)
Louis, Lydie
Advancements in integrated nanoelectronics will continue to require the use of unique materials or systems of materials with diverse functionalities in increasingly confined spaces. Hence, research on finite-dimensional systems strive to unearth and expand the knowledge of fundamental physical properties in certain key materials which exhibit numerous concurrent and exploitable functions. Correspondingly, ferroelectric nanostructures, which particularly display a plethora of complex phenomena, prevalent in countless fields of research, are noteworthy candidates. Presently, however, the assimilation of zero-(0D) and one-dimensional (1D) ferroelectric into micro- or nano-electronics has been lagging, in part due to a lack of applied and fundamental studies but also due to the paucity of synthetic strategies yielding high quality monocrystalline structures. In this work, the problematics of size reduction, which affects many aspects of electronic devices, was addressed. Furthermore, the depolarizing effects associated with finite thickness in ferroelectric nanostructures was investigated in connection with other crucial boundary conditions. The work reported in this dissertation concerned isolated 0D and 1D BaTiO3 nanocrystals and nanocomposites composed of periodic arrays of BaTiO 3 nanowires embedded in a matrix formed by another ferroelectric material. A systematic investigation was conducted for those three types of nanostructures from a quantum mechanical and atomistic perspective using both direct-first-principles and first-principles-derived methods. Using first-principles-based calculations, the structural phase sequences in 0D (cubic-to-tetragonal-to-monoclinic-to-rhombohedral) and 1D (cubic-to-tetragonal-to-orthorhombic-to-monoclinic) BaTiO3 nanoparticles revealed differences from that of the bulk and thin film systems. The monoclinic symmetry found in the 0D compounds, and as for the ground-state of 1D systems, were also affected by size effects and tuned by varying parameters related to the depolarizing effect. Strong electromechanical responses characteristic to the monoclinic symmetry, were also found. In addition, by partially screening the uncompensated charges at the surface of the nanodots, a small range existed (˜87% to ˜95% screening) where both the polarization and toroidal moment coexisted within the nanoparticles. Ferroelectric nanocomposites are novel systems that were also examined and were found to exhibit completely original properties not yet observed in either constituents alone. The temperature-dependent properties such as the structural phases and behavior of the polarization within these nanocomposites were obtained. Interesting new features related to flux-closure configurations were discovered. Transitions associated with the cores of electric dipole vortices were correlated to the direction of in-plane polarization. In addition, vortex-antivortex pairs in a peculiar phase-locked configuration were ascertained in these structures. Complementary density-functional theory calculations were also performed for BaTiO3 nanowires with dissociated-water adsorbates as a function of the out-of-plane lattice constant. Topological defects with winding numbers ranging from 1 to -3 were found in the water-covered nanowires. The ground-state was found to be of triclinic symmetry. Ab-initio calculations were also performed for nanocomposites to investigate the electronic properties of the phase-locked configuration. Similarly to the Monte-Carlo simulations, a configuration containing both vortices (not localized in the nanowires though) and antivortices was found to be the ground state. Mastery of nanomaterials requires merging theoretical research with experimental observation, hence a synthesis project was developed to obtain BaTiO 3 nano-tubes and wires using direct pore filling of nanoporous templates. The preliminary results suggested the synthesis of polycrystalline nanostructures depend on the template pore surface polarity and size. The results presented in this dissertation suggested that ferroelectric nanostructures continue to be of great fundamental value and may substantially impact advancement in certain technologies. Furthermore, the work on nanocomposites offered a glimpse to the novel functionalities in ferroelectrics.
Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas.
Klinghammer, Stephanie; Uhlig, Tino; Patrovsky, Fabian; Böhm, Matthias; Schütt, Julian; Pütz, Nils; Baraban, Larysa; Eng, Lukas M; Cuniberti, Gianaurelio
2018-06-25
Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm 2 ) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications.
Directed branch growth in aligned nanowire arrays.
Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J
2014-01-01
Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.
Jin, Ho; Choi, Sukyung; Lim, Sang-Hoon; Rhee, Shi-Woo; Lee, Hyo Joong; Kim, Sungjee
2014-01-13
Layer cake: Multilayered CdSe quantum dot (QD) sensitizers are layer-by-layer assembled onto ZnO nanowires by making use of electrostatic interactions to study the effect of the layer number on the photovoltaic properties. The photovoltaic performance of QD-sensitized solar cells critically depends on this number as a result of the balance between light-harvesting efficiency and carrier-recombination probability. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi
2015-08-01
A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03023d
Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N
2017-12-13
Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haiqing; Han, Jinkyu; McBean, Coray
Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF 4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH 4OH appear to be the most critical determinants of the phase and morphology. For example, with NH 4OH as an additive, we have observed the formation of novelmore » hierarchical nanowire bundles which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF 4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF 4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less
Liu, Haiqing; Han, Jinkyu; McBean, Coray; ...
2017-01-03
Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF 4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH 4OH appear to be the most critical determinants of the phase and morphology. For example, with NH 4OH as an additive, we have observed the formation of novelmore » hierarchical nanowire bundles which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF 4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF 4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less
Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan
2015-01-01
We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors. PMID:26456769
Direct observation of single-charge-detection capability of nanowire field-effect transistors.
Salfi, J; Savelyev, I G; Blumin, M; Nair, S V; Ruda, H E
2010-10-01
A single localized charge can quench the luminescence of a semiconductor nanowire, but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity. The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires. Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10(-5) e Hz(-1/2) at 25 K and 6 × 10(-5) e Hz(-1/2) at 198 K, is orders of magnitude better than conventional field-effect transistors and nanoelectromechanical systems, and is just a factor of 20-30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref. 8). This work demonstrates the feasibility of nanowire-based single-electron memories and illustrates a physical process of potential relevance for high performance chemical sensors. The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes, because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors.
Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei
2015-09-16
The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.
Growth of Gallium Nitride Nanowires: A Study Using In Situ Transmission Electron Microscopy
NASA Astrophysics Data System (ADS)
Diaz Rivas, Rosa Estela
Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.
Majorana splitting from critical currents in Josephson junctions
NASA Astrophysics Data System (ADS)
Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa
2017-11-01
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.
Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry.
Carrad, D J; Mostert, A B; Ullah, A R; Burke, A M; Joyce, H J; Tan, H H; Jagadish, C; Krogstrup, P; Nygård, J; Meredith, P; Micolich, A P
2017-02-08
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.
Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.
Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten
2016-01-11
Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots.
Francaviglia, Luca; Giunto, Andrea; Kim, Wonjong; Romero-Gomez, Pablo; Vukajlovic-Plestina, Jelena; Friedl, Martin; Potts, Heidi; Güniat, Lucas; Tütüncüoglu, Gözde; Fontcuberta I Morral, Anna
2018-04-11
Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.
Electrical characteristics of silicon nanowire CMOS inverters under illumination.
Yoo, Jeuk; Kim, Yoonjoong; Lim, Doohyeok; Kim, Sangsig
2018-02-05
In this study, we examine the electrical characteristics of complementary metal-oxide-semiconductor (CMOS) inverters with silicon nanowire (SiNW) channels on transparent substrates under illumination. The electrical characteristics vary with the wavelength and power of light due to the variation in the generation rates of the electric-hole pairs. Compared to conventional optoelectronic devices that sense the on/off states by the variation in the current, our device achieves the sensing of the on/off states with more precision by using the voltage variation induced by the wavelength or intensity of light. The device was fabricated on transparent substrates to maximize the light absorption using conventional CMOS technologies. The key difference between our SiNW CMOS inverters and conventional optoelectronic devices is the ability to control the flow of charge carriers more effectively. The improved sensitivity accomplished with the use of SiNW CMOS inverters allows better control of the on/off states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, Laura Butler
2009-09-01
A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbonmore » nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than MWNTs, their vibration spectra was more extensively studied. The thermal vibration spectra of Ag{sub 2}Ga nanoneedles was measured under both ambient and low-vacuum conditions. The operational deflection shapes of the vibrating Ag{sub 2}Ga nanoneedles was also measured, allowing confirmation of the eigenmodes of vibration. The modulus of the crystalline nanoneedles was 84.3 {+-} 1.0 GPa. Gas damping is the dominate mechanism of energy loss for nanowires oscillating under ambient conditions. The measured quality factors, Q, of oscillation are in line with theoretical predictions of air damping in the free molecular gas damping regime. In the free molecular regime, Q{sub gas} is linearly proportional to the density and diameter of the nanowire and inversely proportional to the air pressure. Since the density of the Ag{sub 2}Ga nanoneedles is three times that of the MWNTs, the Ag{sub 2}Ga nanoneedles have greater Q at atmospheric pressures. Our initial measurements of Q for Ag{sub 2}Ga nanoneedles in low-vacuum (10 Torr) suggest that the intrinsic Q of these nanoneedles may be on the order of 1000. The epitaxial carbon that grows after heating (000{bar 1}) silicon carbide (SiC) to high temperatures (1450-1600) in vacuum was also studied. At these high temperatures, the surface Si atoms sublime and the remaining C atoms reconstruct to form graphene. X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the quality of the few-layer graphene (FLG) surface. The XPS studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples. STM studies revealed a wide variety of nanometer-scale features that include sharp carbon-rich ridges, moire superlattices, one-dimensional line defects, and grain boundaries. By imaging these features with atomic scale resolution, considerable insight into the growth mechanisms of FLG on the carbon-face of SiC is obtained.« less
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-09-01
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Zheng, Wei; Wang, Zi
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah
2016-10-01
We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
NASA Astrophysics Data System (ADS)
Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng
2017-09-01
Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.
Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires
NASA Astrophysics Data System (ADS)
Zhang, Rui-Xing; Liu, Chao-Xing
2018-04-01
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
Local Peltier-effect-induced reversible metal–insulator transition in VO{sub 2} nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takami, Hidefumi; Kanki, Teruo, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp
2016-06-15
We report anomalous resistance leaps and drops in VO{sub 2} nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO{sub 2} nanowires because one straight current path through the electronicmore » domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.« less
Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX 3 Arrays
Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; ...
2016-11-16
One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX 3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensuratemore » epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. We have studied the unique photon transport in the one-dimensional structure in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Furthermore, epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.« less
Drag of ballistic electrons by an ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru
2015-12-15
Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. Thismore » means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.« less
NASA Astrophysics Data System (ADS)
Eskandari, Alireza; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza
2018-01-01
Zinc oxide nanowires are considered as promising materials for wide range of optoelectrical and chemical devices, thanks to their desirable structural and optoelectrical properties. Over the past decade, chemical bath deposition (CBD) has been widely used to synthesize these nanostructures due to its low cost and controllability. Since improving the aspect ratio and length of nanowires is a vital issue in growing one-dimensional nanostructures, the influence of polyethyleneimine (PEI) as a complexing and chelating agent on the structural, morphological, and optoelectrical properties of ZnO nanowires has been studied in this report. As-grown ZnO nanowires synthesized by mixing deionized water, zinc acetate dihydrate, hexamethylenetetramine, and PEI were characterized with field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), and photoluminescence spectroscopy (PL). FESEM results unambiguously show that increasing PEI concentration (from 0 to 0.2 g in 50 ml DI water) reduces the diameter and density of nanowires from ˜120 to 56 nm and from ˜85% to 65%, respectively. Interestingly, although adding more PEI decreases nanowires diameter, over-increasing of PEI brings about an inappropriate nanostructures growth. Moreover, XRD patterns demonstrate that all the samples have wurtzite structure with a preferred orientation along c-axis which may be improved or deteriorated by adding PEI into the chemical bath. Accordingly, it is crucial to optimize the amount of PEI in CBD method. Near-band edge (NBE) region in PL spectrum also confirms wide bandgap of ZnO (˜3.3 eV). In addition, comparing the appearance of PEI free with PEI assisted solutions show a considerable difference in their colors, which may be attributed to the formation of new chemical compounds. Considering these results, PEI plays a couple of determining roles in synthesizing ZnO nanowires; making nanowires thinner, with selectively absorption to the non-polar, lateral facets of wurtzite lattice, and controlling deposition rate by forming the PEI-Zn2+-HCHO complex compounds.
Synthesis and cathodoluminescence of beta-Ga2O3 nanowires with holes.
Zhang, Xitian; Liu, Zhuang; Hark, Suikong
2008-03-01
Gallium oxide nanowires were synthesized on Si (001) substrate by chemical vapor deposition, using a Ga/Ga2O3 mixture as a precursor and Au as a catalyst. The structure of the as-synthesized products was examined by X-ray powder diffraction and high-resolution transmission electron microscopy, and found to be monoclinic beta-Ga2O3. The morphologies of the beta-Ga2O3 nanowires were characterized by scanning electron microscopy. The majority of the nanowires contain holes along their length, but a few were also found without holes. The holes are believed to be formed by the reaction of adsorbed Ga droplets on reactive terminating surfaces of the nanowires. For nanowires where these reactive surfaces are not exposed, the reaction of Ga is retarded. Cathodoluminescence (CL) of the nanowires was measured. Three emission bands centered at 376, 454, and 666 nm, respectively, were observed.
Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.
Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie
2017-05-15
Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.
Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires
Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie
2017-01-01
Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116
Ai, Yuanfei; Geng, Xuewen; Lou, Zheng; Wang, Zhiming M; Shen, Guozhen
2015-11-04
Effectively composite materials with optimized structures exhibited promising potential in continuing improving the electrochemical performances of supercapacitors in the past few years. Here, we proposed a rational design of branched CoMoO4@CoNiO2 core/shell nanowire arrays on Ni foam by two steps of hydrothermal processing. Owing to the high activity of the scaffold-like CoMoO4 nanowires and the well-defined CoNiO2 nanoneedles, the three-dimensional (3D) electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (5.31 F/cm(2) at 5 mA/cm(2)) and superior cycling stability(159% of the original specific capacitance, i.e., 95.7% of the maximum retained after 5000 cycles at 30 mA/cm(2)). The all-solid-state asymmetric supercapacitors composed of such electrode and activated carbon (AC) exhibited an areal specific capacitance of 1.54 F/cm(2) at 10 mA/cm(2) and a rate capability (59.75 Wh/kg at a 1464 W/kg) comparable with Li-ion batteries. It also showed an excellent cycling stability with no capacitance attenuation after 50000 cycles at 100 mA/cm(2). After rapid charging (1 s), such supercapacitors in series could lighten a red LED for a long time and drive a mini motor effectively, demonstrating advances in energy storage, scalable integrated applications, and promising commercial potential.
Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate
NASA Astrophysics Data System (ADS)
Chen, Youlong; Liu, Yilun; Yan, Yuan; Zhu, Yong; Chen, Xi
2016-10-01
When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.
Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors.
Wang, You-Yi; Wu, Ya-Dong; Peng, Wei; Song, Yong-Hong; Wang, Bao; Wu, Chun-Yan; Lu, Yang
2018-06-13
Near infrared light (NIR) photodetectors based on one-dimensional semiconductor nanowires have generated considerable interest due to their practical application in versatile fields. We present a facile yet efficient approach to rationally integrating KCu7S4 semiconductor nanowires by the Langmuir-Blodgett (LB) technique. A self-powered near infrared (NIR) light photodetector is fabricated by transferring a close-packed KCu7S4 nanowire monolayer to the surface of a silicon wafer. The as-fabricated Si/KCu7S4 heterojunction with a close-packed and well-aligned nanowire array exhibits splendid photovoltaic performance when illuminated by NIR light, allowing the detection of NIR light without an exterior power supply. The photodetector exhibits a high sensitivity to NIR light (980 nm, 295.3 μW cm-2) with responsivity (R) 15 mA W-1 and detectivity (D*) 2.15 × 1012 cm Hz1/2 W-1. Significantly, the device shows the capability to work under high pulsed light irradiation up to 50 kHz with a high-speed response (response time τr 7.4 μs and recovery time τf 8.6 μs). This facilitates the fabrication of low-cost and high-speed photodetectors and integrated optoelectronic sensor circuitry.
NASA Astrophysics Data System (ADS)
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf
2018-01-01
Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.
Nie, Kui-Ying; Tu, Xuecou; Li, Jing; Chen, Xuanhu; Ren, Fang-Fang; Zhang, Guo-Gang; Kang, Lin; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong
2018-06-14
The ability to manipulate light-matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core-shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core-shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light-matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.
Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau
2017-03-08
Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.
25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications.
Dasgupta, Neil P; Sun, Jianwei; Liu, Chong; Brittman, Sarah; Andrews, Sean C; Lim, Jongwoo; Gao, Hanwei; Yan, Ruoxue; Yang, Peidong
2014-04-09
Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dissipative quantum transport in silicon nanowires based on Wigner transport equation
NASA Astrophysics Data System (ADS)
Barraud, Sylvain
2011-11-01
In this work, we present a one-dimensional model of quantum electron transport for silicon nanowire transistor that makes use of the Wigner function formalism and that takes into account the carrier scattering. Effect of scattering on the current-voltage (I-V) characteristics is assessed using both the relaxation time approximation and the Boltzmann collision operator. Similarly to the classical transport theory, the scattering mechanisms are included in the Wigner formulation through the addition of a collision term in the Liouville equation. As compared to the relaxation time, the Boltzmann collision operator approach is considered to be more realistic because it provides a better description of the scattering events. Within the Fermi golden rule approximation, the standard collision term is described for both acoustic phonon and surface-roughness interactions. It is introduced in the discretized version of the Liouville equation to obtain the Wigner distribution function and the current density. The model is then applied to study the impact of each scattering mechanism on short-channel electrical performance of silicon nanowire transistors for different gate lengths and nanowire widths.
NASA Astrophysics Data System (ADS)
Calestani, Davide; Alabi, Aderemi Babatunde; Coppedè, Nicola; Villani, Marco; Lazzarini, Laura; Fabbri, Filippo; Salviati, Giancarlo; Zappettini, Andrea
2017-01-01
In recent years, a large interest has been reported on low-dimensional β-Ga2O3 structures, like nanowires, nanobelts, nanorods or nanosheets, because of their peculiar and sometimes superior properties. These properties, however, can be strongly affected by the growth procedure, especially if metal growth catalysts are used. In this work we report the successful synthesis of β-Ga2O3 nanowires/nanobelts using a simple combination of thermal evaporation of a metallic Ga source and controlled oxidation. The same growth procedure has been used to grow nanostructures on different kind of substrates (silicon and alumina), without catalyst as well as with Au or Pt deposited on the substrates, in order to promote the nucleation of nanowires. The morphological, structural and optical properties of the obtained nanostructures have been characterized and compared. Different growth distributions on the substrates and possible growth mechanisms have been highlighted, while a strong increase in luminescence intensity has been observed on samples grown with Au and Pt catalysts.
Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi
2015-08-28
A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.
Quantum-interference transport through surface layers of indium-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-01
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong
2013-06-21
We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (
Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Seol, Jin-Kyeong; Lee, Mi-Ri; Hyung, Jung-Hwan; Kim, Gil-Sung; Ohgai, Takeshi; Lee, Sang-Kwon
2012-04-01
Direct CD4+ T lymphocytes were separated from whole mouse splenocytes using 1-dimensional ferromagnetic nickel silicide nanowires (NiSi NWs). NiSi NWs were prepared by silver-assisted wet chemical etching of silicon and subsequent deposition and annealing of Ni. This method exhibits a separation efficiency of ˜93.5%, which is comparable to that of the state-of-the-art superparamagnetic bead-based cell capture (˜96.8%). Furthermore, this research shows potential for separation of other lymphocytes, B, natural killer and natural killer T cells, and even rare tumor cells simply by changing the biotin-conjugated antibodies.
Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires.
Natarov, Denys M; Marciniak, Marian; Sauleau, Ronan; Nosich, Alexander I
2014-11-17
We consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented. The observed resonance effects are studied and compared with their counterparts in the scattering by the same linear chain of wires in free space.
Plasma Enabled Fabrication of Silicon Carbide Nanostructures
NASA Astrophysics Data System (ADS)
Fang, Jinghua; Levchenko, Igor; Aramesh, Morteza; Rider, Amanda E.; Prawer, Steven; Ostrikov, Kostya (Ken)
Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.
Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame
Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.
2016-01-01
Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194
Heat transfer across the interface between nanoscale solids and gas.
Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao
2011-12-27
When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.