Sample records for three-dimensional quantitative structure

  1. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  2. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  3. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  4. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  5. 3D-quantitative structure-activity relationship study for the design of novel enterovirus A71 3C protease inhibitors.

    PubMed

    Nie, Quandeng; Xu, Xiaoyi; Zhang, Qi; Ma, Yuying; Yin, Zheng; Shang, Luqing

    2018-06-07

    A three-dimensional quantitative structure-activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein-ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three-dimensional quantitative structure-activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds (I-III) were designed and evaluated for their biochemical activity against 3C protease and anti-enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC 50 =0.031 ± 0.005 μM, EC 50 =0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure-activity relationships model to develop potent inhibitors for enterovirus A71 3C protease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  7. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  8. Label-free imaging of the dynamics of cell-to-cell string-like structure bridging in the free-space by low-coherent quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2013-03-01

    We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.

  9. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  10. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  11. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  12. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  13. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry

    2014-07-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  14. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg; Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007; Yan, Jie

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlativemore » with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.« less

  15. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  16. The Reconstruction of Three-Dimensional Morphological and Electrical Paraneters from Two-Dimensional Sections of Neurones

    NASA Astrophysics Data System (ADS)

    Brawn, A. D.; Wheal, H. V.

    1986-07-01

    A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.

  17. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  18. Quantifying the relationship between sequence and three-dimensional structure conservation in RNA

    PubMed Central

    2010-01-01

    Background In recent years, the number of available RNA structures has rapidly grown reflecting the increased interest on RNA biology. Similarly to the studies carried out two decades ago for proteins, which gave the fundamental grounds for developing comparative protein structure prediction methods, we are now able to quantify the relationship between sequence and structure conservation in RNA. Results Here we introduce an all-against-all sequence- and three-dimensional (3D) structure-based comparison of a representative set of RNA structures, which have allowed us to quantitatively confirm that: (i) there is a measurable relationship between sequence and structure conservation that weakens for alignments resulting in below 60% sequence identity, (ii) evolution tends to conserve more RNA structure than sequence, and (iii) there is a twilight zone for RNA homology detection. Discussion The computational analysis here presented quantitatively describes the relationship between sequence and structure for RNA molecules and defines a twilight zone region for detecting RNA homology. Our work could represent the theoretical basis and limitations for future developments in comparative RNA 3D structure prediction. PMID:20550657

  19. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  20. A sedimentological approach to hydrologic characterization: A detailed three-dimensional study of an outcrop of the Sierra Ladrones Formation, Albuquerque basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohmann, R.C.

    1992-01-01

    Three-dimensional geologic outcrop studies which quantitatively describe the geologic architecture of deposits of a specific depositional environment are a necessary requirement for characterization of the permeability structure of an aquifer. The objective of this study is to address this need for quantitative, three-dimensional outcrop studies. For this study, a 10,000 m{sup 2} by 25 m high outcrop of Pliocene-Pleistocene Sierra Ladrones Formation located near Belen, New Mexico was mapped in detail, and the geologic architecture was quantified using geostatistical variogram analysis. In general, the information contained in this study should be useful for hydrologists working on the characterization of aquifersmore » from similar depositional environments such as this one. However, for the permeability correlation study to be truly useful, the within-element correlation structure needs to be superimposed on the elements themselves instead of using mean log (k) values, as was done for this study. Such information is derived from outcrop permeability sampling such as the work of Davis (1990) and Goggin et al. (1988).« less

  1. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Lee, Seoeun; Yoon, Jonghee; Heo, Jihan; Choi, Chulhee; Park, Yongkeun

    2016-11-01

    Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.

  2. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants

    PubMed Central

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  3. Cochlear implant-related three-dimensional characteristics determined by micro-computed tomography reconstruction.

    PubMed

    Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei

    2017-01-01

    To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  5. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  6. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.

    PubMed

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. © The Author(s) 2014. Published by Oxford University Press.

  7. Quantitative volumetric Raman imaging of three dimensional cell cultures

    NASA Astrophysics Data System (ADS)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  8. Cardiovascular Imaging and Image Processing: Theory and Practice - 1975

    NASA Technical Reports Server (NTRS)

    Harrison, Donald C. (Editor); Sandler, Harold (Editor); Miller, Harry A. (Editor); Hood, Manley J. (Editor); Purser, Paul E. (Editor); Schmidt, Gene (Editor)

    1975-01-01

    Ultrasonography was examined in regard to the developmental highlights and present applicatons of cardiac ultrasound. Doppler ultrasonic techniques and the technology of miniature acoustic element arrays were reported. X-ray angiography was discussed with special considerations on quantitative three dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body. Nuclear cardiography and scintigraphy, three--dimensional imaging of the myocardium with isotopes, and the commercialization of the echocardioscope were studied.

  9. Multiview hyperspectral topography of tissue structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Liu, Peng; Huang, Jiwei; Xu, Ronald

    2012-12-01

    Accurate and in vivo characterization of structural, functional, and molecular characteristics of biological tissue will facilitate quantitative diagnosis, therapeutic guidance, and outcome assessment in many clinical applications, such as wound healing, cancer surgery, and organ transplantation. However, many clinical imaging systems have limitations and fail to provide noninvasive, real time, and quantitative assessment of biological tissue in an operation room. To overcome these limitations, we developed and tested a multiview hyperspectral imaging system. The multiview hyperspectral imaging system integrated the multiview and the hyperspectral imaging techniques in a single portable unit. Four plane mirrors are cohered together as a multiview reflective mirror set with a rectangular cross section. The multiview reflective mirror set was placed between a hyperspectral camera and the measured biological tissue. For a single image acquisition task, a hyperspectral data cube with five views was obtained. The five-view hyperspectral image consisted of a main objective image and four reflective images. Three-dimensional topography of the scene was achieved by correlating the matching pixels between the objective image and the reflective images. Three-dimensional mapping of tissue oxygenation was achieved using a hyperspectral oxygenation algorithm. The multiview hyperspectral imaging technique is currently under quantitative validation in a wound model, a tissue-simulating blood phantom, and an in vivo biological tissue model. The preliminary results have demonstrated the technical feasibility of using multiview hyperspectral imaging for three-dimensional topography of tissue functional properties.

  10. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  11. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  12. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  13. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  14. NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES

    EPA Science Inventory

    New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...

  15. Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship.

    PubMed

    Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin

    2018-03-01

    A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.

  16. Dual exposure, two-photon, conformal phasemask lithography for three dimensional silicon inverse woodpile photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shir, Daniel J.; Nelson, Erik C.; Chanda, Debashis

    2010-01-01

    The authors describe the fabrication and characterization of three dimensional silicon inverse woodpile photonic crystals. A dual exposure, two-photon, conformal phasemask technique is used to create high quality polymer woodpile structures over large areas with geometries that quantitatively match expectations based on optical simulations. Depositing silicon into these templates followed by the removal of the polymer results in silicon inverse woodpile photonic crystals for which calculations indicate a wide, complete photonic bandgap over a range of structural fill fractions. Spectroscopic measurements of normal incidence reflection from both the polymer and siliconphotonic crystals reveal good optical properties.

  17. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  18. CLICK: The new USGS center for LIDAR information coordination and knowledge

    USGS Publications Warehouse

    Stoker, Jason M.; Greenlee, Susan K.; Gesch, Dean B.; Menig, Jordan C.

    2006-01-01

    Elevation data is rapidly becoming an important tool for the visualization and analysis of geographic information. The creation and display of three-dimensional models representing bare earth, vegetation, and structures have become major requirements for geographic research in the past few years. Light Detection and Ranging (lidar) has been increasingly accepted as an effective and accurate technology for acquiring high-resolution elevation data for bare earth, vegetation, and structures. Lidar is an active remote sensing system that records the distance, or range, of a laser fi red from an airborne or space borne platform such as an airplane, helicopter or satellite to objects or features on the Earth’s surface. By converting lidar data into bare ground topography and vegetation or structural morphologic information, extremely accurate, high-resolution elevation models can be derived to visualize and quantitatively represent scenes in three dimensions. In addition to high-resolution digital elevation models (Evans et al., 2001), other lidar-derived products include quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass (Lefsky et al., 2002), and models of urban areas such as building footprints and three-dimensional city models (Maas, 2001).

  19. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  20. Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.

    1997-07-01

    We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

  1. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpy of vaporization.

    PubMed

    Puri, Swati; Chickos, James S; Welsh, William J

    2002-01-01

    Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.

  2. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, J.H.

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometrymore » calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.« less

  4. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena.

    PubMed

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment.

  5. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  6. Evolution of the three-dimensional collagen structure in vascular walls during deformation: an in situ mechanical testing under multiphoton microscopy observation.

    PubMed

    Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves

    2015-08-01

    The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues.

  7. Two-dimensional and three-dimensional evaluation of the deformation relief

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.

    2017-12-01

    This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.

  8. Wave field restoration using three-dimensional Fourier filtering method.

    PubMed

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  9. Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R

    2013-05-31

    We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.

  10. Fast determination of three-dimensional fibril orientation of type-I collagen via macroscopic chirality

    NASA Astrophysics Data System (ADS)

    Zhuo, Guan-Yu; Chen, Mei-Yu; Yeh, Chao-Yuan; Guo, Chin-Lin; Kao, Fu-Jen

    2017-01-01

    Polarization-resolved second harmonic generation (SHG) microscopy is appealing for studying structural proteins and well-organized biophotonic nanostructures, due to its highly sensitized structural specificity. In recent years, it has been used to investigate the chiroptical effect, particularly SHG circular dichroism (SHG-CD) in biological tissues. Although SHG-CD attributed to macromolecular structures has been demonstrated, the corresponding quantitative analysis and interpretation on how SHG correlates with second-order susceptibility χ(2) under circularly polarized excitations remains unclear. In this study, we demonstrate a method based on macroscopic chirality to elucidate the correlation between SHG-CD and the orientation angle of the molecular structure. By exploiting this approach, three-dimensional (3D) molecular orientation of type-I collagen is revealed with only two cross polarized SHG images (i.e., interactions of left and right circular polarizations) without acquiring an image stack of varying polarization.

  11. Novel Three-Dimensional Interphase Characterisation of Polymer Nanocomposites Using Nanoscaled Topography.

    PubMed

    Mousa, Mohanad; Dong, Yu

    2018-06-19

    Mechanical properties of polymer nanocomposites depend primarily on nanointerphases as transitional zones between nanoparticles and surrounding matrices. Due to the difficulty in the quantitative characterisation of nanointerphases, previous literatures generally deemed such interphases as one-dimensional uniform zones around nanoparticles by assumption for analytical or theoretical modelling. We hereby have demonstrated for the first time direct three-dimensional topography and physical measurement of nanophase mechanical properties between nanodimeter bamboo charcoals (NBCs) and poly (vinyl alcohol) (PVA) in polymer nanocomposites. Topographical features, nanomechanical properties and dimensions of nanointerphases were systematically determined via peak force quantitative nanomechanical tapping mode (PFQNM). Significantly different mechanical properties of nanointerphases were revealed as opposed to those of individual NBCs and PVA matrices. Non-uniform irregular three-dimensional structures and shapes of nanointerphases are manifested around individual NBCs, which can be greatly influenced by nanoparticle size and roughness, and nanoparticle dispersion and distribution. Elastic moduli of nanointerphases were experimentally determined in range from 25.32 ±3.4 to 66.3±3.2 GPa. Additionally, it is clearly shown that the interphase modulus strongly depends on interphase surface area SAInterphase and interphase volume VInterphase. Different NBC distribution patterns from fully to partially embedded nanoparticles are proven to yield a remarkable reduction in elastic moduli of nanointerphases. © 2018 IOP Publishing Ltd.

  12. Quantitative characterization of 3D deformations of cell interactions with soft biomaterials

    NASA Astrophysics Data System (ADS)

    Franck, Christian

    In recent years, the importance of mechanical forces in directing cellular function has been recognized as a significant factor in biological and physiological processes. In fact, these physical forces are now viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these cellular forces, or cell tractions, play an important role in cell migration, they are also significant to many other physiological and pathological processes, both at the tissue and organ level, including wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell tractions during cell-material interactions can lead to a deeper understanding of the fundamental role these forces play in cell biology. Thus, understanding the function and role of a cell from a mechanical framework can have important implications towards the development of new implant materials and drug treatments. Previous research has contributed significant descriptions of cell-tissue interactions by quantifying cell tractions in two-dimensional environments; however, most physiological processes are three-dimensional in nature. Recent studies have shown morphological differences in cells cultured on two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular matrix interactions and migration behavior are different in three dimensions versus two dimensions. Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions. This thesis presents a full-field imaging technique capable of quantitatively measuring cell traction forces in all three spatial dimensions, and hence addresses the need of a three-dimensional quantitative imaging technique to gain insight into the fundamental role of physical forces in biological processes. The technique combines laser scanning confocal microscopy (LSCM) with digital volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.

  13. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  14. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPY OF VAPORIZATION. (R826133)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  16. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography.

    PubMed

    Koddenberg, Tim; Militz, Holger

    2018-05-05

    The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.

  17. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Undecalcified temporal bone morphology: a methodology useful for gross to fine observation and three-dimensional reconstruction.

    PubMed

    Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F

    1992-01-01

    Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.

  19. A Novel Method for Tracking Individuals of Fruit Fly Swarms Flying in a Laboratory Flight Arena

    PubMed Central

    Cheng, Xi En; Qian, Zhi-Ming; Wang, Shuo Hong; Jiang, Nan; Guo, Aike; Chen, Yan Qiu

    2015-01-01

    The growing interest in studying social behaviours of swarming fruit flies, Drosophila melanogaster, has heightened the need for developing tools that provide quantitative motion data. To achieve such a goal, multi-camera three-dimensional tracking technology is the key experimental gateway. We have developed a novel tracking system for tracking hundreds of fruit flies flying in a confined cubic flight arena. In addition to the proposed tracking algorithm, this work offers additional contributions in three aspects: body detection, orientation estimation, and data validation. To demonstrate the opportunities that the proposed system offers for generating high-throughput quantitative motion data, we conducted experiments on five experimental configurations. We also performed quantitative analysis on the kinematics and the spatial structure and the motion patterns of fruit fly swarms. We found that there exists an asymptotic distance between fruit flies in swarms as the population density increases. Further, we discovered the evidence for repulsive response when the distance between fruit flies approached the asymptotic distance. Overall, the proposed tracking system presents a powerful method for studying flight behaviours of fruit flies in a three-dimensional environment. PMID:26083385

  20. Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating

    PubMed Central

    Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian

    2013-01-01

    Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910

  1. Building the Peanut: Simulations and Observations of Peanut-shaped Structures and Ansae in Face-on Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Saha, Kanak; Graham, Alister W.; Rodríguez-Herranz, Isabel

    2018-01-01

    Peanut/x-shaped features observed in a significant fraction of disk galaxies are thought to have formed from vertically buckled bars. Despite being three-dimensional structures, they are preferentially detected in near edge-on projection. Only a few galaxies are found to have displayed such structures when their disks are relatively face-on—suggesting that either they are generally weak in face-on projection or many may be hidden by the light of their galaxy’s face-on disk. Here, we report on three (collisionless) simulated galaxies displaying peanut-shaped structures when their disks are seen both face-on and edge-on—resembling a three-dimensional peanut or dumbbell. Furthermore, these structures are accompanied by ansae and an outer ring at the end of the bar—as seen in real galaxies such as IC 5240. The same set of quantitative parameters used to measure peanut structures in real galaxies has been determined for the simulated galaxies, and a broad agreement is found. In addition, the peanut length grows in tandem with the bar, and is a maximum at half the length of the bar. Beyond the cutoff of these peanut structures, toward the end of the bar, we discover a new positive/negative feature in the B 6 radial profile associated with the isophotes of the ansae/ring. Our simulated, self-gravitating, three-dimensional peanut structures display cylindrical rotation even in the near-face-on disk projection. In addition, we report on a kinematic pinch in the velocity map along the bar minor axis, matching that seen in the surface density map.

  2. A Quantitative Technique for Beginning Microscopists.

    ERIC Educational Resources Information Center

    Sundberg, Marshall D.

    1984-01-01

    Stereology is the study of three-dimensional objects through the interpretation of two-dimensional images. Stereological techniques used in introductory botany to quantitatively examine changes in leaf anatomy in response to different environments are discussed. (JN)

  3. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  4. Incremental value of three-dimensional transesophageal echocardiography over two-dimensional transesophageal echocardiography in the assessment of Lambl's excrescences and nodules of Arantius on the aortic valve.

    PubMed

    Dumaswala, Bhavin; Dumaswala, Komal; Hsiung, Ming Chon; Quiroz, Luis David Meggo; Sungur, Aylin; Escanuela, Maximilliano German Amado; Mehta, Kruti; Oz, Tugba Kemaloglu; Bhagatwala, Kunal; Karia, Nidhi M; Nanda, Navin C

    2013-09-01

    In this retrospective study, we identified 7 cases where Lambl's excrescences were identified by two-dimensional transesophageal echocardiography (2DTEE) and also had live/real time three-dimensional transesophageal echocardiography (3DTEE) studies available for comparison. We subsequently assessed them for the presence of Lambl's excrescences (LE) and nodules of Arantius (NA) on the aortic valve. After their identification, we qualitatively and quantitatively organized our findings by number, cusp location, measurements, and orientation if applicable. A greater number of LE was found by 3DTEE than 2DTEE (19 vs. 11, respectively). In all 3DTEE studies, their cusp attachment site, their x-, y-, and z-axis measurements, and orientation were clearly visualized and described. Only 3DTEE studies provided confident visualization of the cusp attachment sites. Similarly, a greater number of NA was found by 3DTEE than 2DTEE (21 vs. 5, respectively). The triad of NA was visualized in all 3DTEE studies and each was described using its x-, y-, and z- axis measurements. Only three 2DTEE studies provided reliable identification of the NA. In conclusion, we present further evidence of the incremental value of 3DTEE over 2DTEE in the qualitative and quantitative assessment of cardiac structures including LE and NA on the aortic valve. © 2013, Wiley Periodicals, Inc.

  5. Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.

    PubMed

    Bilgin, Cemal Cagatay; Lund, Amanda W; Can, Ali; Plopper, George E; Yener, Bülent

    2010-09-30

    Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.

  6. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  7. Method of fabricating free-form, high-aspect ratio components for high-current, high-speed microelectrics

    DOEpatents

    Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W

    2014-03-11

    Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.

  8. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  9. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  10. Measurements of morphology and refractive indexes on human downy hairs using three-dimensional quantitative phase imaging.

    PubMed

    Lee, SangYun; Kim, Kyoohyun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    We present optical measurements of morphology and refractive indexes (RIs) of human downy arm hairs using three-dimensional (3-D) quantitative phase imaging techniques. 3-D RI tomograms and high-resolution two-dimensional synthetic aperture images of individual downy arm hairs were measured using a Mach–Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the RIs and morphological parameters of downy hairs were noninvasively quantified including the mean RI, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  11. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  12. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  13. Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester derivatives containing quinazoline moiety.

    PubMed

    Wu, Zengxue; Zhang, Jian; Chen, Jixiang; Pan, Jianke; Zhao, Lei; Liu, Dengyue; Zhang, Awei; Chen, Jin; Hu, Deyu; Song, Baoan

    2017-10-01

    Ferulic acid and quinazoline derivatives possess good antiviral activities. In order to develop novel compounds with high antiviral activities, a series of ferulic acid ester derivatives containing quinazoline were synthesized and evaluated for their antiviral activities. Bioassays indicated that some of the compounds exhibited good antiviral activities in vivo against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). One of the compounds demonstrated significant curative and protective activities against TMV and CMV, with EC 50 values of 162.14, 114.61 and 255.49, 138.81 mg L -1 , respectively, better than those of ningnanmycin (324.51, 168.84 and 373.88, 272.70 mg L -1 ). The values of q 2 and r 2 for comparative molecular field analysis and comparative molecular similarity index analysis in the TMV (0.508, 0.663 and 0.992, 0.930) and CMV (0.530, 0.626 and 0.997, 0.981) models presented good predictive abilities. Some of the title compounds demonstrated good antiviral activities. Three-dimensional quantitative structure-activity relationship models revealed that the antiviral activities depend on steric and electrostatic properties. These results could provide significant structural insights for the design of highly active ferulic acid derivatives. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography.

    PubMed

    Govyadinov, Alexander A; Mastel, Stefan; Golmar, Federico; Chuvilin, Andrey; Carney, P Scott; Hillenbrand, Rainer

    2014-07-22

    The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.

  15. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  16. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian; Zheng, Wei; Wang, Zi

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  17. Rational design, synthesis, biologic evaluation, and structure-activity relationship studies of novel 1-indanone alpha(1)-adrenoceptor antagonists.

    PubMed

    Li, Minyong; Xia, Lin

    2007-11-01

    In the present report, a novel series of 1-indanone alpha(1)-adrenoceptor antagonists were designed and synthesized based on 3D-pharmacophore model. Their in vitro alpha(1)-adrenoceptor antagonistic assay showed that three compounds (2a, 2m, and 2o) had similar or improved alpha(1)-adrenoceptor antagonistic activities relative to the positive control prazosin. Based on these results, a three-dimensional quantitative structure-activity relationship study was performed using a Self-Organizing Molecular Field Analysis method to provide insight for the future development of alpha(1)-adrenoceptor antagonists.

  18. A three-dimensional polyhedral unit model for grain boundary structure in fcc metals

    NASA Astrophysics Data System (ADS)

    Banadaki, Arash Dehghan; Patala, Srikanth

    2017-03-01

    One of the biggest challenges in developing truly bottom-up models for the performance of polycrystalline materials is the lack of robust quantitative structure-property relationships for interfaces. As a first step in analyzing such relationships, we present a polyhedral unit model to classify the geometrical nature of atomic packing along grain boundaries. While the atomic structure in disordered systems has been a topic of interest for many decades, geometrical analyses of grain boundaries has proven to be particularly challenging because of the wide range of structures that are possible depending on the underlying macroscopic crystallographic character. In this article, we propose an algorithm that can partition the atomic structure into a connected array of three-dimensional polyhedra, and thus, present a three-dimensional polyhedral unit model for grain boundaries. A point-pattern matching algorithm is also provided for quantifying the distortions of the observed grain boundary polyhedral units. The polyhedral unit model is robust enough to capture the structure of high-Σ, mixed character interfaces and, hence, provides a geometric tool for comparing grain boundary structures across the five-parameter crystallographic phase-space. Since the obtained polyhedral units circumscribe the voids present in the structure, such a description provides valuable information concerning segregation sites within the grain boundary. We anticipate that this technique will serve as a powerful tool in the analysis of grain boundary structure. The polyhedral unit model is also applicable to a wide array of material systems as the proposed algorithm is not limited by the underlying lattice structure.

  19. Quantitative Restoration of the Evolution of Mantle Structures Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.

    2008-12-01

    Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of mantle rocks facilitates research in assimilation of data related to mantle dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for mantle temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of mantle structures can be restore backward in time. We apply data assimilation techniques to model the evolution of mantle plumes and lithospheric slabs. We show that the geometry of the mantle structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of mantle bodies with time. Present seismic tomography images of mantle structures do not allow definition of the sharp shapes of these structures. Assimilation of mantle temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.

  20. Three-dimensional surface profile intensity correction for spatially modulated imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2009-05-01

    We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.

  1. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-09-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.

  2. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  4. Rational redesign of inhibitors of furin/kexin processing proteases by electrostatic mutations.

    PubMed

    Cai, Xiao-hui; Zhang, Qing; Ding, Da-fu

    2004-12-01

    To model the three-dimensional structure and investigate the interaction mechanism of the proprotein convertase furin/kexin and their inhibitors (eglin c mutants). The three-dimensional complex structures of furin/kexin with its inhibitors, eglin c mutants, were generated by modeller program using the newly published X-ray crystallographical structures of mouse furin and yeast kexin as templates. The electrostatic interaction energy of each complex was calculated and the results were compared with the experimentally determined inhibition constants to find the correlation between them. High quality models of furin/kexin-eglin c mutants were obtained and used for calculation of the electrostatic interaction energies between the proteases and their inhibitors. The calculated electrostatic energies of interaction showed a linear correlation to the experimental inhibition constants. The modeled structures give good explanations of the specificity of eglin c mutants to furin/kexin. The electrostatic interactions play important roles in inhibitory activity of eglin c mutants to furin/kexin. The results presented here provided quantitative structural and functional information concerning the role of the charge-charge interactions in the binding of furin/kexin and their inhibitors.

  5. Highly conducting divalent Mg{sup 2+} cation solid electrolytes with well-ordered three-dimensional network structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Shinji; Yamane, Megumi; Hoshino, Yasunori

    2016-03-15

    A three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor, (Mg{sub x}Hf{sub 1−x}){sub 4/(4−2x)}Nb(PO{sub 4}){sub 3}, was firstly developed by partial substitution of lower valent Mg{sup 2+} cation onto the Hf{sup 4+} sites in a HfNb(PO{sub 4}){sub 3} solid to realize high Mg{sup 2+} cation conductivity even at moderate temperatures. Due to the formation of well-ordered NASICON-type structure, both the high Mg{sup 2+} cation conductivity below 450 °C and the low activation energy for Mg{sup 2+} cation migration was successfully realized for the (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} solid. Pure Mg{sup 2+} cation conduction in the NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{submore » 4}){sub 3} solid was directly and quantitatively demonstrated by means of two kinds of dc electrolysis. - Graphical abstract: Image of the Mg{sup 2+} cation conduction in NASICON-type (Mg{sub 0.1}Hf{sub 0.9}){sub 4/3.8}Nb(PO{sub 4}){sub 3} and its Mg{sup 2+} conductivity. - Highlights: • We develop a three-dimensionally well-ordered NASICON-type Mg{sup 2+} cation conductor. • A high magnesium cation conductivity is realized even at moderate temperatures. • Divalent magnesium cation conduction is demonstrated directly and quantitatively.« less

  6. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    DTIC Science & Technology

    2008-07-11

    Nucleotide Base pairs Hydrogen bonds FIG. 1: Ladder structure of DNA showing the Watson - Crick bonding of the bases A, T, G, and C which are suspended by a...protected against unwanted action of chemicals and proteins. The three-dimensional structure of DNA is the famed Watson - Crick double-helix, the equilibrium...quantitative analysis [88]. [1] A. Kornberg and T. A. Baker, DNA Replication (W. H. Freeman, New York, 1992). [2] J. D. Watson and F. H. C. Crick

  7. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  8. Through the looking glass: Unraveling the network structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, D. M.; Stec, D. F.; Botto, R. E.

    1999-12-23

    Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less

  9. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less

  10. Three-dimensional structural modelling and calculation of electrostatic potentials of HLA Bw4 and Bw6 epitopes to explain the molecular basis for alloantibody binding: toward predicting HLA antigenicity and immunogenicity.

    PubMed

    Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis

    2015-02-01

    We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.

  11. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.

  12. Quantitative three-dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body

    NASA Technical Reports Server (NTRS)

    Sturm, R. E.; Ritman, E. L.; Wood, E. H.

    1975-01-01

    The background for, and design of a third generation, general purpose, all electronic spatial scanning system, the DSR is described. Its specified performance capabilities provide dynamic and stop action three dimensional spatial reconstructions of any portion of the body based on a minimum exposure time of 0.01 second for each 28 multiplanar 180 deg scanning set, a maximum scan repetition rate of sixty 28 multiplane scan sets per second, each scan set consisting of a maximum of 240 parallel cross sections of a minimum thickness of 0.9 mm, and encompassing a maximum cylindrical volume about 23 cm in length and up to 38 cm in diameter.

  13. Experiments on two- and three-dimensional vortex flows in lid-driven cavities

    NASA Astrophysics Data System (ADS)

    Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.

    2009-11-01

    Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.

  14. Incremental Value of Three-Dimensional Transesophageal Echocardiography over the Two-Dimensional Technique in the Assessment of a Thrombus in Transit through a Patent Foramen Ovale.

    PubMed

    Thind, Munveer; Ahmed, Mustafa I; Gok, Gulay; Joson, Marisa; Elsayed, Mahmoud; Tuck, Benjamin C; Townsley, Matthew M; Klas, Berthold; McGiffin, David C; Nanda, Navin C

    2015-05-01

    We report a case of a right atrial thrombus traversing a patent foramen ovale into the left atrium, where three-dimensional transesophageal echocardiography provided considerable incremental value over two-dimensional transesophageal echocardiography in its assessment. As well as allowing us to better spatially characterize the thrombus, three-dimensional transesophageal echocardiography provided a more quantitative assessment through estimation of total thrombus burden. © 2015, Wiley Periodicals, Inc.

  15. Incremental value of live/real time three-dimensional transesophageal echocardiography over the two-dimensional technique in the assessment of primary cardiac malignant fibrous histiocytoma.

    PubMed

    Gok, Gulay; Elsayed, Mahmoud; Thind, Munveer; Uygur, Begum; Abtahi, Firoozeh; Chahwala, Jugal R; Yıldırımtürk, Özlem; Kayacıoğlu, İlyas; Pehlivanoğlu, Seçkin; Nanda, Navin C

    2015-07-01

    We describe a case of primary cardiac malignant fibrous histiocytoma where live/real time three-dimensional transesophageal echocardiography added incremental value to the two-dimensional modalities. Specifically, the three-dimensional technique allowed us to delineate the true extent and infiltration of the tumor, to identify characteristics of the tumor mass suggestive of its malignant nature, and to quantitatively assess the total tumor burden. © 2015, Wiley Periodicals, Inc.

  16. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  17. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  18. Quantitative Analysis Of Three-dimensional Branching Systems From X-ray Computed Microtomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Adriana L.; Varga, Tamas

    Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less

  19. Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2010-01-01

    The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.

  20. Quantitative analysis of eyes and other optical systems in linear optics.

    PubMed

    Harris, William F; Evans, Tanya; van Gool, Radboud D

    2017-05-01

    To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  1. Flow Structure and Force Variation with Aspect Ratio for a Two-Degree-of-Freedom Flapping Wing

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Favale, James; Ringuette, Matthew

    2014-11-01

    We investigate experimentally the effect of aspect ratio (AR) on the flow structure and forces of a two-degree-of-freedom flapping wing. Flapping wings are known to produce complex and unsteady vortex loop structures, and the objective is to characterize their variation with AR and how this influences the lift force. Previous results on rotating wings demonstrated that changes in AR significantly affect the three-dimensional flow structure and lift coefficient. This is primarily due to the relatively greater influence of the tip vortex for lower AR. At Reynolds number of order O(103) we test wings of AR = 2-4, values typically found in nature, with simplified planform shapes. The lift force is measured using a submersible transducer at the base of the wing in a glycerin-water mixture. The qualitative, three-dimensional vortex loop structure for different ARs is obtained using multi-color dye flow visualization. Guided by this, quantitative three-component flow information, namely vorticity, the Q-criterion, and circulation, is acquired from stereoscopic particle image velocimetry in key planes. Of interest is how these parameters and the vortex loop topology vary with AR, and their connection to features in the unsteady force signal. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  2. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  3. Quantitative evaluation of the fetal cerebellar vermis using the median view on three-dimensional ultrasound.

    PubMed

    Zhao, Dan; Liu, Wei; Cai, Ailu; Li, Jingyu; Chen, Lizhu; Wang, Bing

    2013-02-01

    The purpose of this study was to investigate the effectiveness for quantitative evaluation of cerebellar vermis using three-dimensional (3D) ultrasound and to establish a nomogram for Chinese fetal vermis measurements during gestation. Sonographic examinations were performed in normal fetuses and in cases suspected of the diagnosis of vermian rotation. 3D median planes were obtained with both OMNIVIEW and tomographic ultrasound imaging. Measurements of the cerebellar vermis were highly correlated between two-dimensional and 3D median planes. The diameter of the cerebellar vermis follows growth approximately predicted by the quadratic regression equation. The normal vermis was almost parallel to the brain stem, with the average angle degree to be <2° in normal fetuses. The average angle degree of the 9 cases of vermian rotation was >5°. Three-dimensional median planes are obtained more easily than two-dimensional ones, and allow accurate measurements of the cerebellar vermis. The 3D approach may enable rapid assessment of fetal cerebral anatomy in standard examination. Measurements of cerebellar vermis may provide a quantitative index for prenatal diagnosis of posterior fossa malformations. © 2012 John Wiley & Sons, Ltd.

  4. 75 FR 77885 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... of federally-funded research and development. Foreign patent applications are filed on selected... applications. Software System for Quantitative Assessment of Vasculature in Three Dimensional Images... three dimensional vascular networks from medical and basic research images. Deregulation of angiogenesis...

  5. Assessing the Unidimensionality of the School and College Ability Test (SCAT, Spanish Version) Using Non-Parametric Methods Based on Item Response Theory

    ERIC Educational Resources Information Center

    Touron, Javier; Lizasoain, Luis; Joaristi, Luis

    2012-01-01

    The aim of this work is to analyze the dimensional structure of the Spanish version of the School and College Ability Test, employed in the process for the identification of students with high intellectual abilities. This test measures verbal and mathematical (or quantitative) abilities at three levels of difficulty: elementary (3rd, 4th, and 5th…

  6. Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Rizvi, Imran; Evans, Conor L.; Abu-Yousif, Adnan O.; Hasan, Tayyaba

    2010-09-01

    Three-dimensional tumor models have emerged as valuable in vitro research tools, though the power of such systems as quantitative reporters of tumor growth and treatment response has not been adequately explored. We introduce an approach combining a 3-D model of disseminated ovarian cancer with high-throughput processing of image data for quantification of growth characteristics and cytotoxic response. We developed custom MATLAB routines to analyze longitudinally acquired dark-field microscopy images containing thousands of 3-D nodules. These data reveal a reproducible bimodal log-normal size distribution. Growth behavior is driven by migration and assembly, causing an exponential decay in spatial density concomitant with increasing mean size. At day 10, cultures are treated with either carboplatin or photodynamic therapy (PDT). We quantify size-dependent cytotoxic response for each treatment on a nodule by nodule basis using automated segmentation combined with ratiometric batch-processing of calcein and ethidium bromide fluorescence intensity data (indicating live and dead cells, respectively). Both treatments reduce viability, though carboplatin leaves micronodules largely structurally intact with a size distribution similar to untreated cultures. In contrast, PDT treatment disrupts micronodular structure, causing punctate regions of toxicity, shifting the distribution toward smaller sizes, and potentially increasing vulnerability to subsequent chemotherapeutic treatment.

  7. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  8. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications

    PubMed Central

    Bachmann, Thomas; Wagner, Hermann

    2011-01-01

    Barn owl feathers at the leading edge of the wing are equipped with comb-like structures termed serrations on their outer vanes. Each serration is formed by one barb ending that separates and bends upwards. This structure is considered to play a role in air-flow control and noise reduction during flight. Hence, it has considerable potential for engineering applications, particularly in the aviation industry. Several publications have reported possible functions of serrations at artificial airfoils. However, only crude approximations of natural serrations have so far been investigated. We refer to these attempts as zero-order approximations of serrations. It was the goal of this study to present a quantitative three-dimensional characterization of natural serrations as first-order approximations (mean values) and second-order approximations (listed differences depending on the position of the serration along the leading edge). Confocal laser scanning microscopy was used for a three-dimensional reconstruction and investigation with high spatial resolution. Each serration was defined by its length, profile geometry and curvature. Furthermore, the orientation of the serrations at the leading edge was characterized by the inclination angle, the tilt angle and the separation distance of neighboring serrations. These data are discussed with respect to possible applications of serration-like structures for noise suppression and air-flow control. PMID:21507001

  9. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  10. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences.

    PubMed

    De Benedictis, Alessandro; Nocerino, Erica; Menna, Fabio; Remondino, Fabio; Barbareschi, Mattia; Rozzanigo, Umberto; Corsini, Francesco; Olivetti, Emanuele; Marras, Carlo Efisio; Chioffi, Franco; Avesani, Paolo; Sarubbo, Silvio

    2018-04-13

    Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds. 2010 Elsevier Ltd. All rights reserved.

  12. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  13. Importance of many-body dispersion and temperature effects on gas-phase gold cluster (meta)stability

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Gruene, Philipp; Lyon, Jonathan T.; Rayner, David M.; Fielicke, André; Scheffler, Matthias; Ghiringhelli, Luca M.

    Gold clusters in the gas phase exhibit many structural isomers that are shown to intercovert frequently, even at room temperature. We performed ab initio replica-exchange molecular dynamics (REMD) calculations on gold clusters (of sizes 5-14 atoms) to identify metastable states and their relative populations at finite temperature, as well as to examine the importance of temperature and van der Waals (vdW) on their isomer energetic ordering. Free energies of the gold cluster isomers are optimally estimated using the Multistate Bennett Acceptance Ratio. The distribution of bond coordination numbers and radius of gyration are used to address the challenge of discriminating isomers along their dynamical trajectories. Dispersion effects are important for stabilizing three-dimensional structures relative to planar structures and brings isomer energetic predictions to closer quantitative agreement compared with RPA@PBE calculations. We find that higher temperatures typically stabilize metastable three-dimensional structures relative to planar/quasiplanar structures. Computed IR spectra of low free energy Au9, Au10, and Au12 isomers are in agreement with experimental spectra obtained by far-IR multiple photon dissociation in a molecular beam at 100 K.

  14. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  15. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors

    PubMed Central

    Zhao, Manman; Zheng, Linfeng; Qiu, Chun

    2017-01-01

    Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865

  16. Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging

    PubMed Central

    Gannavarpu, Rajshekhar; Bhaduri, Basanta; Tangella, Krishnarao; Popescu, Gabriel

    2014-01-01

    Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents. PMID:25386701

  17. Numerical simulation of synthesis gas incineration

    NASA Astrophysics Data System (ADS)

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.

    2016-04-01

    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  18. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  19. Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki

    2003-05-01

    Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.

  20. Method for making a bio-compatible scaffold

    DOEpatents

    Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM; Dellinger, Jennifer G [Champaigne, IL; Jamison, Russell D [Urbana, IL

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  1. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  2. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    PubMed

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  3. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  4. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE PAGES

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent; ...

    2017-09-04

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  5. Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D

    DOE PAGES

    King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...

    2015-07-01

    DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less

  6. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  7. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants.

    PubMed

    Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L

    2007-04-01

    In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist.

  8. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  9. Atom-based 3D-QSAR, induced fit docking, and molecular dynamics simulations study of thieno[2,3-b]pyridines negative allosteric modulators of mGluR5.

    PubMed

    Vijaya Prabhu, Sitrarasu; Singh, Sanjeev Kumar

    2018-05-28

    Atom-based three dimensional-quantitative structure-activity relationship (3D-QSAR) model was developed on the basis of 5-point pharmacophore hypothesis (AARRR) with two hydrogen bond acceptors (A) and three aromatic rings for the derivatives of thieno[2,3-b]pyridine, which modulates the activity to inhibit the mGluR5 receptor. Generation of a highly predictive 3D-QSAR model was performed using the alignment of predicted pharmacophore hypothesis for the training set (R 2  = 0.84, SD = 0.26, F = 45.8, N = 29) and test set (Q 2  = 0.74, RMSE = 0.235, Pearson-R = 0.94, N = 9). The best pharmacophore hypothesis AARRR was selected, and developed three dimensional-quantitative structure activity relationship (3D-QSAR) model also supported the outcome of this study by means of favorable and unfavorable electron withdrawing group and hydrophobic regions of most active compound 42d and least active compound 18b. Following, induced fit docking and binding free energy calculations reveals the reliable binding orientation of the compounds. Finally, molecular dynamics simulations for 100 ns were performed to depict the protein-ligand stability. We anticipate that the resulted outcome could be supportive to discover potent negative allosteric modulators for metabotropic glutamate receptor 5 (mGluR5).

  10. Non-invasive microstructure and morphology investigation of the mouse lung: qualitative description and quantitative measurement.

    PubMed

    Zhang, Lu; Li, Dongyue; Luo, Shuqian

    2011-02-25

    Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.

  11. Building quantitative, three-dimensional atlases of gene expression and morphology at cellular resolution.

    PubMed

    Knowles, David W; Biggin, Mark D

    2013-01-01

    Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis. Copyright © 2013 Wiley Periodicals, Inc.

  12. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    PubMed Central

    Aoki, Michio

    2018-01-01

    Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894

  13. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  14. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  15. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  16. Correlation strength, Lifshitz transition, and the emergence of a two-dimensional to three-dimensional crossover in FeSe under pressure

    NASA Astrophysics Data System (ADS)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2018-03-01

    We report a detailed theoretical study of the electronic structure, spectral properties, and lattice parameters of bulk FeSe under pressure using a fully charge self-consistent implementation of the density functional theory plus dynamical mean-field theory method (DFT+DMFT). In particular, we perform a structural optimization and compute the evolution of the lattice parameters (volume, c /a ratio, and the internal z position of Se) and the electronic structure of the tetragonal (space group P 4 /n m m ) unit cell of paramagnetic FeSe. Our results for the lattice parameters obtained by structural optimization using DFT+DMFT are in good quantitative agreement with experiment, implying a crucial importance of electron correlations in determining the correct lattice properties of FeSe. Most importantly, upon compression to 10 GPa our results reveal a topological change in the Fermi surface (Lifshitz transition) which is accompanied by a two- to three-dimensional crossover and a small reduction of the quasiparticle mass renormalization compared to ambient pressure. The behavior of the momentum-resolved magnetic susceptibility χ (q ) shows no topological changes of magnetic correlations under pressure but demonstrates a reduction of the degree of the in-plane (π ,π ) stripe-type nesting. Our results for the electronic structure and lattice parameters of FeSe are in good qualitative agreement with recent experiments on its isoelectronic counterpart FeSe1 -xSx .

  17. On the construction of a direct numerical simulation of a breaking inertia-gravity wave in the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan

    2014-10-01

    A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.

  18. The contribution of synchrotron X-ray computed microtomography to understanding volcanic processes.

    PubMed

    Polacci, Margherita; Mancini, Lucia; Baker, Don R

    2010-03-01

    A series of computed microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometre scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. The geometry of the vesicle (gas-filled void) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two-dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.

  19. Quantitative power Doppler ultrasound measures of peripheral joint synovitis in poor prognosis early rheumatoid arthritis predict radiographic progression.

    PubMed

    Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C

    2016-01-01

    To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography.

    PubMed

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar

    2009-08-25

    Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  1. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    PubMed Central

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2017-01-01

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not been well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. We also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology. PMID:28776025

  2. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  3. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  4. Polish adaptation of three self-report measures of job stressors: the Interpersonal Conflict at Work Scale, the Quantitative Workload Inventory and the Organizational Constraints Scale.

    PubMed

    Baka, Łukasz; Bazińska, Róża

    2016-01-01

    The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test-retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test-retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions.

  5. Polish adaptation of three self-report measures of job stressors: the Interpersonal Conflict at Work Scale, the Quantitative Workload Inventory and the Organizational Constraints Scale

    PubMed Central

    Baka, Łukasz; Bazińska, Róża

    2016-01-01

    Aim. The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. Method. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test–retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. Results. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test–retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. Conclusions. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions. PMID:26652317

  6. Modeling drying of three-dimensional pulp molded structures. Part I, Experimental program

    Treesearch

    Heike Nyist; John F. Hunt; Margit Tamasy-Bano

    1998-01-01

    Researchers at the USDA Forest Products Laboratory have developed a new three-dimensional structural panel, called FPL Spaceboard. This panel is formed using a U.S. patented three-dimensional mold capable of using a variety of fibrous materials with either the wet- or dry-forming process. Structurally, the panel departs from the traditional two-dimensional panel by...

  7. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  8. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  9. A Mechanism-based 3D-QSAR Approach for Classification ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86

  10. Ultrahigh resolution optical coherence tomography for quantitative topographic mapping of retinal and intraretinal architectural morphology

    NASA Astrophysics Data System (ADS)

    Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.

    2002-06-01

    Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.

  11. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    NASA Astrophysics Data System (ADS)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed turbulence, eventually leading to flow laminarization. A sufficiently high Schmidt number (weakly diffusive polymers) is necessary to allow self-sustained turbulence to settle. Although EIT can withstand a low amount of diffusion and remains in a nonlaminar chaotic state, adding a finite amount of GAD in the system can have an impact on the dynamics and lead to important quantitative changes, even for Schmidt numbers as large as 102. The use of GAD should therefore be avoided in viscoelastic flow simulations.

  12. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    PubMed Central

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Åke; Winter, Reidar

    2009-01-01

    Background Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant. PMID:19706183

  13. Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example

    PubMed Central

    Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T.; Baruchel, José

    2013-01-01

    Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own ‘local’ rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities (e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with ‘pinhole’ and ‘section’ diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10−5–10−6 rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now. PMID:24046486

  14. Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example.

    PubMed

    Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T; Baruchel, José

    2013-08-01

    Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own 'local' rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities ( e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with 'pinhole' and 'section' diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10 -5 -10 -6  rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now.

  15. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    PubMed

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

  16. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    PubMed Central

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576

  17. Building a Three-Dimensional Nano-Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect.

    PubMed

    Du, Xiaojiao; Jiang, Ding; Hao, Nan; Qian, Jing; Dai, Liming; Zhou, Lei; Hu, Jianping; Wang, Kun

    2016-10-04

    The development of novel detection methodologies in electrochemiluminescence (ECL) aptasensor fields with simplicity and ultrasensitivity is essential for constructing biosensing architectures. Herein, a facile, specific, and sensitive methodology was developed unprecedentedly for quantitative detection of microcystin-LR (MC-LR) based on three-dimensional boron and nitrogen codoped graphene hydrogels (BN-GHs) assisted steric hindrance amplifying effect between the aptamer and target analytes. The recognition reaction was monitored by quartz crystal microbalance (QCM) to validate the possible steric hindrance effect. First, the BN-GHs were synthesized via self-assembled hydrothermal method and then applied as the Ru(bpy) 3 2+ immobilization platform for further loading the biomolecule aptamers due to their nanoporous structure and large specific surface area. Interestingly, we discovered for the first time that, without the aid of conventional double-stranded DNA configuration, such three-dimensional nanomaterials can directly amplify the steric hindrance effect between the aptamer and target analytes to a detectable level, and this facile methodology could be for an exquisite assay. With the MC-LR as a model, this novel ECL biosensor showed a high sensitivity and a wide linear range. This strategy supplies a simple and versatile platform for specific and sensitive determination of a wide range of aptamer-related targets, implying that three-dimensional nanomaterials would play a crucial role in engineering and developing novel detection methodologies for ECL aptasensing fields.

  18. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data.

    PubMed

    Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas

    2016-04-26

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.

  19. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  20. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  1. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    PubMed

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Mitral Annular Dynamics in Mitral Annular Calcification: A Three-Dimensional Imaging Study.

    PubMed

    Pressman, Gregg S; Movva, Rajesh; Topilsky, Yan; Clavel, Marie-Annick; Saldanha, Jason A; Watanabe, Nozomi; Enriquez-Sarano, Maurice

    2015-07-01

    The mitral annulus displays complex conformational changes during the cardiac cycle that can now be quantified by three-dimensional echocardiography. Mitral annular calcification (MAC) is increasingly encountered, but its structural and dynamic consequences are largely unexplored. The objective of this study was to describe alterations in mitral annular dimensions and dynamics in patients with MAC. Transthoracic three-dimensional echocardiography was performed in 43 subjects with MAC and 36 age- and sex-matched normal control subjects. Mitral annular dimensions were quantified, using dedicated software, at six time points (three diastolic, three systolic) during the cardiac cycle. In diastole, the calcified annulus was larger and flatter than normal, with increased anteroposterior diameter (29.4 ± 0.6 vs 27.8 ± 0.6 mm, P = .046), reduced height (2.8 ± 0.2 vs 3.6 ± 0.2 mm, P = .006), and decreased saddle shape (8.9 ± 0.6% vs 11.4 ± 0.6%, P = .005). In systole, patients with MAC had greater annular area at all time points (P < .05 for each) compared with control subjects, because of reduced contraction along the anteroposterior diameter (P < .001). Saddle shape increased in early systole (from 10.5% to 13.5%, P = .04) in control subjects but not in those with MAC (P = NS). Valvular alterations were also noted; although mitral valve tent length decreased during systole in both groups, decreases were less in patients with MAC (P < .05 for mid- and late systole). For certain parameters (e.g., annular area), changes were confined largely to those patients with moderate to severe MAC (P = .006 vs control subjects, but nonsignificant for patients with mild MAC). Quantitative three-dimensional echocardiography provides new insights into the dynamic consequences of MAC. This imaging technique demonstrates that the mitral annulus is not made smaller by calcification. However, there is loss of annular contraction, particularly along the anteroposterior diameter, and loss of early systolic folding along the intercommissural diameter. Associated valvular alterations include smaller than usual declines in tenting during systole. These quantitative three-dimensional echocardiographic data provide new insights into the dynamic physiology of the calcified mitral annulus. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  3. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships.

    PubMed

    Chen, Shaodan; Li, Xiangmin; Yong, Tianqiao; Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B

    2017-02-07

    We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds.

  4. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Quantitative analysis of in vivo mucosal bacterial biofilms.

    PubMed

    Singhal, Deepti; Boase, Sam; Field, John; Jardeleza, Camille; Foreman, Andrew; Wormald, Peter-John

    2012-01-01

    Quantitative assays of mucosal biofilms on ex vivo samples are challenging using the currently applied specialized microscopic techniques to identify them. The COMSTAT2 computer program has been applied to in vitro biofilm models for quantifying biofilm structures seen on confocal scanning laser microscopy (CSLM). The aim of this study was to quantify Staphylococcus aureus (S. aureus) biofilms seen via CSLM on ex situ samples of sinonasal mucosa, using the COMSTAT2 program. S. aureus biofilms were grown in frontal sinuses of 4 merino sheep as per a previously standardized sheep sinusitis model for biofilms. Two sinonasal mucosal samples, 10 mm × 10 mm in size, from each of the 2 sinuses of the 4 sheep were analyzed for biofilm presence with Baclight stain and CSLM. Two random image stacks of mucosa with S. aureus biofilm were recorded from each sample, and analyzed using COMSTAT2 software that translates image stacks into a simplified 3-dimensional matrix of biofilm mass by eliminating surrounding host tissue. Three independent observers analyzed images using COMSTAT2 and 3 repeated rounds of analyses were done to calculate biofilm biomass. The COMSTAT2 application uses an observer-dependent threshold setting to translate CSLM biofilm images into a simplified 3-dimensional output for quantitative analysis. Intraclass correlation coefficient (ICC) between thresholds set by the 3 observers for each image stacks was 0.59 (p = 0.0003). Threshold values set at different points of time by a single observer also showed significant correlation as seen by ICC of 0.80 (p < 0.001). COMSTAT2 can be applied to quantify and study the complex 3-dimensional biofilm structures that are recorded via CSLM on mucosal tissue like the sinonasal mucosa. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  6. [Studies on the structure-activity relationship of retinoids--Hansch analysis and 3D-OSAR studies on specific ligands of retinoid x receptor].

    PubMed

    Huang, N; Chu, F; Guo, Z

    1998-06-01

    Retinoids (Vitamin A, its metabolites and synthetic analogues) play important roles in a variety of biological processes, including cellular differentiation, proliferation and apoptosis. The many diverse actions of retinoids attribute to the ability of regulating transcription of different target genes through activation of multiple retinoid nuclear receptors (RAR of RXR). So, retinoids with selective binding ability to specific receptor may not only have improved therapeutic indices, but may also be invaluable for elucidating the molecular mechanism of retinoidal transcriptional activation. Based on the two dimensional and three dimensional quantitative structure-activity relationships of specific ligands of RXR, we carried out mimesis of environment of ligands interacting with their receptor and, to some extent, mapping the topological and physico-chemical characteristics of receptor. The knowledge of the QSAR study will offer detailed molecular information for design, synthesis and biological evaluation in drug research and development.

  7. Imaging challenges in biomaterials and tissue engineering

    PubMed Central

    Appel, Alyssa A.; Anastasio, Mark A.; Larson, Jeffery C.; Brey, Eric M.

    2013-01-01

    Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development. PMID:23768903

  8. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  9. Self-assembled three-dimensional nanocrown array.

    PubMed

    Hong, Soongweon; Kang, Taewook; Choi, Dukhyun; Choi, Yeonho; Lee, Luke P

    2012-07-24

    Although an ordered nanoplasmonic probe array will have a huge impact on light harvesting, selective frequency response (i.e., nanoantenna), and quantitative molecular/cellular imaging, the realization of such an array is still limited by conventional techniques due to the serial processing or resolution limit by light diffraction. Here, we demonstrate a thermodynamically driven, self-assembled three-dimensional nanocrown array that consists of a core and six satellite gold nanoparticles (GNPs). Our ordered nanoprobe array is fabricated over a large area by thermal dewetting of thin gold film on hexagonally ordered porous anodic alumina (PAA). During thermal dewetting, the structural order of the PAA template dictates the periodic arrangement of gold nanoparticles, rendering the array of gold nanocrown. Because of its tunable size (i.e., 50 nm core and 20 nm satellite GNPs), arrangement, and periodicity, the nanocrown array shows multiple optical resonance frequencies at visible wavelengths as well as angle-dependent optical properties.

  10. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  11. Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan

    2017-11-01

    Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.

  12. Determination of the structure of subsurface layers by means of coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Teplov, S. V.; Rabalais, J. W.

    1994-05-01

    It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.

  13. Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.

    PubMed

    Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian

    2012-08-01

    A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.

  14. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  15. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus

    DOE PAGES

    Chen, Bo; Yusuf, Mohammed; Hashimoto, Teruo; ...

    2017-07-21

    The human genetic material is packaged into 46 chromosomes. The structure of chromosomes is known at the lowest level, where the DNA chain is wrapped around a core of eight histone proteins to form nucleosomes. Around a million of these nucleosomes, each about 11 nm in diameter and 6 nm in thickness, are wrapped up into the complex organelle of the chromosome, whose structure is mostly known at the level of visible light microscopy to form a characteristic cross shape in metaphase. However, the higher-order structure of human chromosomes, between a few tens and hundreds of nanometers, has not beenmore » well understood. We show a three-dimensional (3D) image of a human prophase nucleus obtained by serial block-face scanning electron microscopy, with 36 of the complete set of 46 chromosomes captured within it. The acquired image allows us to extract quantitative 3D structural information about the nucleus and the preserved, intact individual chromosomes within it, including their positioning and full spatial morphology at a resolution of around 50 nm in three dimensions. The chromosome positions were found, at least partially, to follow the pattern of chromosome territories previously observed only in interphase. The 3D conformation shows parallel, planar alignment of the chromatids, whose occupied volumes are almost fully accounted for by the DNA and known chromosomal proteins. Here, we also propose a potential new method of identifying human chromosomes in three dimensions, on the basis of the measurements of their 3D morphology.« less

  16. A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

    PubMed Central

    Martínez-Castilla, León P.; Rodríguez-Sotres, Rogelio

    2010-01-01

    Background Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. Principal Findings The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449–460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. Conclusion Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone. PMID:20830209

  17. Fast Two-Dimensional Bubble Analysis of Biopolymer Filamentous Networks Pore Size from Confocal Microscopy Thin Data Stacks

    PubMed Central

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499

  18. Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Heeschen, William

    2016-10-01

    Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.

  19. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    NASA Astrophysics Data System (ADS)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  20. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering.

    PubMed

    Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco

    2018-04-09

    The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.

  1. The dynamic micro computed tomography at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.

    2018-05-01

    Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.

  2. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  3. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties

    ERIC Educational Resources Information Center

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha

    2009-01-01

    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer's generative theory of multimedia learning. Simulations might lead to a…

  4. Three-dimensional architecture of the whole human soleus muscle in vivo

    PubMed Central

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the anatomy of complex skeletal muscles in living humans. PMID:29682414

  5. Estimating ankle rotational constraints from anatomic structure

    NASA Astrophysics Data System (ADS)

    Baker, H. H.; Bruckner, Janice S.; Langdon, John H.

    1992-09-01

    Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.

  6. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  7. Automated Recovery of Three-Dimensional Models of Plant Shoots from Multiple Color Images1[C][W][OPEN

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Murchie, Erik H.; Pridmore, Tony P.

    2014-01-01

    Increased adoption of the systems approach to biological research has focused attention on the use of quantitative models of biological objects. This includes a need for realistic three-dimensional (3D) representations of plant shoots for quantification and modeling. Previous limitations in single-view or multiple-view stereo algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present a fully automatic approach to image-based 3D plant reconstruction that can be achieved using a single low-cost camera. The reconstructed plants are represented as a series of small planar sections that together model the more complex architecture of the leaf surfaces. The boundary of each leaf patch is refined using the level-set method, optimizing the model based on image information, curvature constraints, and the position of neighboring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed and, as such, is applicable to a wide variety of plant species and topologies and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on data sets of wheat (Triticum aestivum) and rice (Oryza sativa) plants as well as a unique virtual data set that allows us to compute quantitative measures of reconstruction accuracy. The output is a 3D mesh structure that is suitable for modeling applications in a format that can be imported in the majority of 3D graphics and software packages. PMID:25332504

  8. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    DOE PAGES

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...

    2015-06-18

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less

  9. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  10. From Two- to Three-Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations.

    PubMed

    Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I

    2017-08-14

    With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Error-growth dynamics and predictability of surface thermally induced atmospheric flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, X.; Pielke, R.A.

    1993-09-01

    Using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhydrostatic and compressible configuration, over 200 two-dimensional simulations with [Delta]x = 2 km and [Delta]x = 100 m are performed to study in detail the initial adjustment process and the error-growth dynamics of surface thermally induced circulation including the sensitivity to initial conditions, boundary conditions, and model parameters, and to study the predictability as a function of the size of surface heat patches under a calm mean wind. It is found that the error growth is not sensitive to the characterisitics of the initial perturbations. The numerical smoothing has amore » strong impact on the initial adjustment process and on the error-growth dynamics. The predictability and flow structures, it is found that the vertical velocity field is strongly affected by the mean wind, and the flow structures are quite sensitive to the initial soil water content. The transition from organized flow to the situation in which fluxes are dominated by noncoherent turbulent eddies under a calm mean wind is quantitatively evaluated and this transition is different for different variables. The relationship between the predictability of a realization and of an ensemble average is discussed. The predictability and the coherent circulations modulated by the surface inhomogeneities are also studied by computing the autocorrelations and the power spectra. The three-dimensional mesoscale and large-eddy simulations are performed to verify the above results. It is found that the two-dimensional mesoscale (or fine resolution) simulation yields very close or similar results regarding the predictability as those from the three-dimensional mesoscale (or large eddy) simulation. The horizontally averaged quantities based on two-dimensional fine-resolution simulations are insensitive to initial perturbations and agree with those based on three-dimensional large-eddy simulations. 87 refs., 25 figs.« less

  12. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.

    PubMed

    Xu, Yuanyuan; Guo, Xiao; Yang, Shuaitao; Li, Long; Zhang, Peng; Sun, Wei; Liu, Changyong; Mi, Shengli

    2018-06-01

    Articular cartilage (AC) has gradient features in both mechanics and histology as well as a poor regeneration ability. The repair of AC poses difficulties in both research and the clinic. In this paper, a gradient scaffold based on poly(lactic-co-glycolic acid) (PLGA)-extracellular matrix was proposed. Cartilage scaffolds with a three-layer gradient structure were fabricated by PLGA through three-dimensional printing, and the microstructure orientation and pore fabrication were made by decellularized extracellular matrix injection and directional freezing. The manufactured scaffold has a mechanical strength close to that of real cartilage. A quantitative optimization of the Young's modulus and shear modulus was achieved by material mechanics formulas, which achieved a more accurate mechanical bionic and a more stable interface performance because of the one-time molding process. At the same time, the scaffolds have a bionic and gradient microstructure orientation and pore size, and the stratification ratio can be quantitatively optimized by design of the freeze box and temperature simulation. In general, this paper provides a method to optimize AC scaffolds by both mechanics and histology as well as a bionic multimaterial scaffold. This paper is of significance for cell culture and clinical transplantation experiments. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1664-1676, 2018. © 2018 Wiley Periodicals, Inc.

  13. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  14. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  15. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis.

    PubMed

    Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James

    2003-01-17

    Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.

  16. Quantitative Three-Dimensional Ultrasound Analysis of Tongue Protrusion, Grooving and Symmetry: Data from 12 Normal Speakers and a Partial Glossectomee

    ERIC Educational Resources Information Center

    Bressmann, Tim; Thind, Parveen; Uy, Catherine; Bollig, Carmen; Gilbert, Ralph W.; Irish, Jonathan C.

    2005-01-01

    The functional determinants for a good speech outcome after a partial tongue resection and reconstruction are not well established. The purpose of the present study was to assess the protrusion, grooving and symmetry of the tongue during sustained speech sound production using three-dimensional ultrasound. The participants were twelve normal…

  17. Softly-confined water cluster between freestanding graphene sheets

    NASA Astrophysics Data System (ADS)

    Agustian, Rifan; Akaishi, Akira; Nakamura, Jun

    2018-01-01

    Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.

  18. Quantitative three-dimensional low-speed wake surveys

    NASA Technical Reports Server (NTRS)

    Brune, G. W.

    1992-01-01

    Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.

  19. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  20. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound

    PubMed Central

    Mercado, Karla P.; Helguera, María; Hocking, Denise C.

    2015-01-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13–47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices. PMID:25517512

  1. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    PubMed

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  2. Experiments on an unsteady, three-dimensional separation

    NASA Technical Reports Server (NTRS)

    Henk, R. W.; Reynolds, W. C.; Reed, H. L.

    1992-01-01

    Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.

  3. Structure of Exhausts in Magnetic Reconnection with an X-line of Finite Extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, L. S.; Cassak, P. A.; Drake, J. F.

    2017-10-20

    We present quantitative predictions of the structure of reconnection exhausts in three-dimensional magnetic reconnection with an X-line of finite extent in the out-of-plane direction. Sasunov et al. showed that they have a tilted ribbon-like shape bounded by rotational discontinuities and tangential discontinuities. We show analytically and numerically that this prediction is largely correct. When there is an out-of-plane (guide) magnetic field, the presence of the upstream field that does not reconnect acts as a boundary condition in the normal direction, which forces the normal magnetic field to be zero outside the exhaust. This condition constrains the normal magnetic field insidemore » the exhaust to be small. Thus, rather than the ribbon tilting in the inflow direction, the exhaust remains collimated in the normal direction and is forced to expand nearly completely in the out-of-plane direction. This exhaust structure is in stark contrast to the two-dimensional picture of reconnection, where reconnected flux expands in the normal direction. We present analytical predictions for the structure of the exhausts in terms of upstream conditions. The predictions are confirmed using three-dimensional resistive-magnetohydrodynamic simulations with a finite-length X-line achieved using a localized (anomalous) resistivity. Implications to reconnection in the solar wind are discussed. In particular, the results can be used to estimate a lower bound for the extent of the X-line in the out-of-plane direction solely using single-spacecraft data taken downstream in the exhausts.« less

  4. Three-Dimensional Biologically Relevant Spectrum (BRS-3D): Shape Similarity Profile Based on PDB Ligands as Molecular Descriptors.

    PubMed

    Hu, Ben; Kuang, Zheng-Kun; Feng, Shi-Yu; Wang, Dong; He, Song-Bing; Kong, De-Xin

    2016-11-17

    The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.

  5. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  6. Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.

    PubMed

    Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R

    2014-01-01

    Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed subjectively, can be easily and reproducibly measured using three-dimensional photogrammetry. The RMSD for facial asymmetry of healthy volunteers clusters at approximately 0.80 ± 0.24 mm. Patients with facial asymmetry due to a pathologic process can be differentiated from normative facial asymmetry based on their RMSDs.

  7. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less

  8. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison.

    PubMed

    Wegel, Eva; Göhler, Antonia; Lagerholm, B Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M

    2016-06-06

    Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.

  9. [3D visualization and analysis of vocal fold dynamics].

    PubMed

    Bohr, C; Döllinger, M; Kniesburges, S; Traxdorf, M

    2016-04-01

    Visual investigation methods of the larynx mainly allow for the two-dimensional presentation of the three-dimensional structures of the vocal fold dynamics. The vertical component of the vocal fold dynamics is often neglected, yielding a loss of information. The latest studies show that the vertical dynamic components are in the range of the medio-lateral dynamics and play a significant role within the phonation process. This work presents a method for future 3D reconstruction and visualization of endoscopically recorded vocal fold dynamics. The setup contains a high-speed camera (HSC) and a laser projection system (LPS). The LPS projects a regular grid on the vocal fold surfaces and in combination with the HSC allows a three-dimensional reconstruction of the vocal fold surface. Hence, quantitative information on displacements and velocities can be provided. The applicability of the method is presented for one ex-vivo human larynx, one ex-vivo porcine larynx and one synthetic silicone larynx. The setup introduced allows the reconstruction of the entire visible vocal fold surfaces for each oscillation status. This enables a detailed analysis of the three dimensional dynamics (i. e. displacements, velocities, accelerations) of the vocal folds. The next goal is the miniaturization of the LPS to allow clinical in-vivo analysis in humans. We anticipate new insight on dependencies between 3D dynamic behavior and the quality of the acoustic outcome for healthy and disordered phonation.

  10. Quantification of mitral valve morphology with three-dimensional echocardiography--can measurement lead to better management?

    PubMed

    Lee, Alex Pui-Wai; Fang, Fang; Jin, Chun-Na; Kam, Kevin Ka-Ho; Tsui, Gary K W; Wong, Kenneth K Y; Looi, Jen-Li; Wong, Randolph H L; Wan, Song; Sun, Jing Ping; Underwood, Malcolm J; Yu, Cheuk-Man

    2014-01-01

    The mitral valve (MV) has complex 3-dimensional (3D) morphology and motion. Advance in real-time 3D echocardiography (RT3DE) has revolutionized clinical imaging of the MV by providing clinicians with realistic visualization of the valve. Thus far, RT3DE of the MV structure and dynamics has adopted an approach that depends largely on subjective and qualitative interpretation of the 3D images of the valve, rather than objective and reproducible measurement. RT3DE combined with image-processing computer techniques provides precise segmentation and reliable quantification of the complex 3D morphology and rapid motion of the MV. This new approach to imaging may provide additional quantitative descriptions that are useful in diagnostic and therapeutic decision-making. Quantitative analysis of the MV using RT3DE has increased our understanding of the pathologic mechanism of degenerative, ischemic, functional, and rheumatic MV disease. Most recently, 3D morphologic quantification has entered into clinical use to provide more accurate diagnosis of MV disease and for planning surgery and transcatheter interventions. Current limitations of this quantitative approach to MV imaging include labor-intensiveness during image segmentation and lack of a clear definition of the clinical significance of many of the morphologic parameters. This review summarizes the current development and applications of quantitative analysis of the MV morphology using RT3DE.

  11. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  12. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety.

    PubMed

    Gan, Xiuhai; Hu, Deyu; Li, Pei; Wu, Jian; Chen, Xuewen; Xue, Wei; Song, Baoan

    2016-03-01

    1,4-Pentadien-3-one and 1,3,4-oxadiazole derivatives possess good antiviral activities, and their substructure units are usually used in antiviral agent design. In order to discover novel molecules with high antiviral activities, a series of 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety were designed and synthesised. Bioassays showed that most of the title compounds exhibited good inhibitory activities against tobacco mosaic virus (TMV) in vivo. The compound 8f possessing the best protective activity against TMV had an EC50 value of 135.56 mg L(-1) , which was superior to that of ribavirin (435.99 mg L(-1) ). Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques were used in three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of protective activities, with values of q(2) and r(2) for the CoMFA and CoMSIA models of 0.751 and 0.775 and 0.936 and 0.925 respectively. Compound 8k with higher protective activity (EC50 = 123.53 mg L(-1) ) according to bioassay was designed and synthesised on the basis of the 3D-QSAR models. Some of the title compounds displayed good antiviral activities. 3D-QSAR models revealed that the appropriate compact electron-withdrawing and hydrophobic group at the benzene ring could enhance antiviral activity. These results could provide important structural insights for the design of highly active 1,4-pentadien-3-one derivatives. © 2015 Society of Chemical Industry.

  13. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography.

    PubMed

    Jiřík, Miroslav; Bartoš, Martin; Tomášek, Petr; Malečková, Anna; Kural, Tomáš; Horáková, Jana; Lukáš, David; Suchý, Tomáš; Kochová, Petra; Hubálek Kalbáčová, Marie; Králíčková, Milena; Tonar, Zbyněk

    2018-06-01

    Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans. © 2018 Wiley Periodicals, Inc.

  15. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  16. Virtual reality haptic dissection.

    PubMed

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  17. An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes

    NASA Astrophysics Data System (ADS)

    Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan

    2016-04-01

    Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.

  18. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    PubMed

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  19. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis.

  20. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis. PMID:24359345

  1. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  2. A method for three-dimensional quantitative observation of the microstructure of biological samples

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  3. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  4. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    ERIC Educational Resources Information Center

    Lazarowitz, Reuven; Naim, Raphael

    2014-01-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…

  5. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR

    PubMed Central

    Krůček, Martin; Vrška, Tomáš; Král, Kamil

    2017-01-01

    Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167

  6. Concept mapping as an approach for expert-guided model building: The example of health literacy.

    PubMed

    Soellner, Renate; Lenartz, Norbert; Rudinger, Georg

    2017-02-01

    Concept mapping served as the starting point for the aim of capturing the comprehensive structure of the construct of 'health literacy.' Ideas about health literacy were generated by 99 experts and resulted in 105 statements that were subsequently organized by 27 experts in an unstructured card sorting. Multidimensional scaling was applied to the sorting data and a two and three-dimensional solution was computed. The three dimensional solution was used in subsequent cluster analysis and resulted in a concept map of nine "clusters": (1) self-regulation, (2) self-perception, (3) proactive approach to health, (4) basic literacy and numeracy skills, (5) information appraisal, (6) information search, (7) health care system knowledge and acting, (8) communication and cooperation, and (9) beneficial personality traits. Subsequently, this concept map served as a starting point for developing a "qualitative" structural model of health literacy and a questionnaire for the measurement of health literacy. On the basis of questionnaire data, a "quantitative" structural model was created by first applying exploratory factor analyses (EFA) and then cross-validating the model with confirmatory factor analyses (CFA). Concept mapping proved to be a highly valuable tool for the process of model building up to translational research in the "real world". Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    DTIC Science & Technology

    2006-12-01

    initial activity after 10 days at 24°C. The ability to generate three- dimensional structures with enhanced loading capacity for biosensing molecules...dimensional structures for biosensors (Charles et al. 2004). Silicon samples that had been washed but not activated with APTS did not retain any enzyme...preparation. The use of silica particles to build a 3-dimensional structure not only provides an increased capacity for the immobilization of β

  8. Fibrin network changes in neonates after cardiopulmonary bypass

    PubMed Central

    Brown, Ashley C.; Hannan, Riley; Timmins, Lucas H.; Fernandez, Janet D.; Barker, Thomas H.; Guzzetta, Nina A.

    2016-01-01

    Background Quantitative and qualitative differences exist between the hemostatic systems of neonates and adults, among them the presence of ‘fetal’ fibrinogen, a qualitatively dysfunctional form of fibrinogen that exists until one year of age. The consequences of ‘fetal’ fibrinogen on clot structure in neonates, particularly in the context of surgical associated bleeding, have not been well characterized. Here we examine the sequential changes in clotting components and resultant clot structure in a small sample of neonates undergoing cardiac surgery and cardiopulmonary bypass (CPB). Methods Blood samples were collected from neonates (n=10) before surgery, immediately after CPB and following the transfusion of cryoprecipitate (i.e. adult fibrinogen component). Clots were formed from patient samples or purified neonatal and adult fibrinogen. Clot structure was analyzed using confocal microscopy. Results Clots formed from plasma obtained after CPB and after transfusion were more porous than baseline clots. Analysis of clots formed from purified neonatal and adult fibrinogen, demonstrated that at equivalent fibrinogen concentrations, neonatal clots lack three-dimensional structure while adult clots were denser with significant three-dimensional structure. Clots formed from a combination of purified neonatal and adult fibrinogen were less homogenous than those formed from either purified adult or neonatal fibrinogen. Conclusions Our results confirm that significant differences exist in clot structure between neonates and adults, and that neonatal and adult fibrinogen may not integrate well. These findings suggest that differential treatment strategies for neonates should be pursued to reduce the demonstrated morbidity of blood product transfusion. PMID:26914227

  9. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  10. Spanwise visualization of the flow around a three-dimensional foil with leading edge protuberances

    NASA Astrophysics Data System (ADS)

    Stanway, M. J.; Techet, A. H.

    2006-11-01

    Studies of model humpback whale fins have shown that leading edge protuberances, or tubercles, can lead to delayed stall and increased lift at higher angles of attack, compared to foils with geometrically smooth leading edges. Such enhanced performance characteristics could prove highly useful in underwater vehicles such as gliders or long range AUVs (autonomous underwater vehicles). In this work, Particle Imaging Velocimetry (PIV) is performed on two static wings in a water tunnel over a range of angles of attack. These three- dimensional, finite-aspect ratio wings are modeled after a humpback whale flipper and are identical in shape, tapered from root to tip, except for the leading edge. In one of the foils the leading edge is smooth, whereas in the other, regularly spaced leading edge bumps are machined to simulate the whale’s fin tubercles. Results from these PIV tests reveal distinct cells where coherent flow structures are destroyed as a result of the leading edge perturbations. Tests are performed at Reynolds numbers Re ˜ O(10^5), based on chordlength, in a recirculating water tunnel. An inline six-axis load cell is mounted to measure the forces on the foil over a range of static pitch angles. It is hypothesized that this spanwise breakup of coherent vortical structures is responsible for the delayed angle of stall. These quantitative experiments complement exiting qualitative studies with two dimensional foils.

  11. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  12. [Differential diagnosis of papillary carcinomas of the thyroid, using image analysis and three dimensional reconstruction from serial sections].

    PubMed

    Holschbach, A; Kriete, A; Schäffer, R

    1990-01-01

    Papillae with fibrovascular cores are characteristic of papillary carcinoma of the thyroid. Papillae may be found in diffuse hyperplasia, nodular hyperplasia, Hashimoto's disease and follicular adenoma. Tissues from ten benign hyperplasias and ten papillary carcinomas were reconstructed from serial sections with three dimensional reconstruction programs. Significant qualitative and quantitative differences were found between the hyperplasia and the carcinoma. The principal differences between papillae of papillary carcinoma and hyperplasia were more clearly seen in the three dimensional reconstruction, than by means of morphometric methods. Certain criteria, e.g. the volume of papillae, were useful only with regard to the third dimension. Nevertheless, three dimensional reconstruction of biological tissue is a time consuming procedure which is not yet suitable for routine examination.

  13. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    NASA Astrophysics Data System (ADS)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  14. Design of 3-D adipospheres for quantitative metabolic study

    PubMed Central

    Akama, Takeshi; Leung, Brendan M.; Labuz, Joseph M.; Takayama, Shuichi; Chun, Tae-Hwa

    2017-01-01

    Quantitative assessment of adipose mitochondrial activity is critical for better understanding of adipose tissue function in obesity and diabetes. While the two-dimensional (2-D) tissue culture method has been sufficient to discover key molecules that regulate adipocyte differentiation and function, the method is insufficient to determine the role of extracellular matrix (ECM) molecules and their modifiers, such as matrix metalloproteinases (MMPs), in regulating adipocyte function in three-dimensional (3-D) in vivo-like microenvironments. By using a 3-D hanging drop tissue culture system, we are able to produce scalable 3-D adipospheres that are suitable for quantitative mitochondrial study in 3-D microenvironment. PMID:28244051

  15. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  16. Laser cooling at resonance

    NASA Astrophysics Data System (ADS)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  17. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  18. Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay

    PubMed Central

    Leung, Jacqueline M.; Rould, Mark A.; Konradt, Christoph; Hunter, Christopher A.; Ward, Gary E.

    2014-01-01

    T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility. PMID:24489670

  19. Vfold: a web server for RNA structure and folding thermodynamics prediction.

    PubMed

    Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2014-01-01

    The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".

  20. Analysis of 3D vortex motion in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Mulsow, M.; Himpel, M.; Melzer, A.

    2017-12-01

    Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.

  1. Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.

  2. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  3. Three-dimensional numerical simulations of crustal-scale wrenching using a non-linear failure criterion

    NASA Astrophysics Data System (ADS)

    Braun, Jean

    1994-08-01

    We have developed a three-dimensional finite element model to study wrench deformation of the crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and the existence of a component of deformation in the x-direction (normal to the direction of wrenching). The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross-sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively with direct measurement of dilatancy during high-pressure rock-deformation experiments.

  4. Computation of the three-dimensional medial surface dynamics of the vocal folds.

    PubMed

    Döllinger, Michael; Berry, David A

    2006-01-01

    To increase our understanding of pathological and healthy voice production, quantitative measurement of the medial surface dynamics of the vocal folds is significant, albeit rarely performed because of the inaccessibility of the vocal folds. Using an excised hemilarynx methodology, a new calibration technique, herein referred to as the linear approximate (LA) method, was introduced to compute the three-dimensional coordinates of fleshpoints along the entire medial surface of the vocal fold. The results were compared with results from the direct linear transform. An associated error estimation was presented, demonstrating the improved accuracy of the new method. A test on real data was reported including computation of quantitative measurements of vocal fold dynamics.

  5. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  6. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  7. Functionally Graded Metal-Metal Composite Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A. (Inventor)

    2017-01-01

    Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.

  8. Three-dimensional reconstruction of TMJ MR images: a technical note and case report.

    PubMed

    Kitai, Noriyuki; Eriksson, Lars; Kreiborg, Sven; Wagner, Aase; Takada, Kenji

    2004-01-01

    MR images of the temporomandibular joint at occlusion and at various stages of mouth opening were registered and reconstructed three-dimensionally before and after a modified condylotomy in a patient with painful disk displacement. Following the condylotomy, the condyle/disk relationship had become normalized in all three planes of space at closed mouth and during mouth opening. The post-operative distances of the condylar and diskal paths had increased when compared with the preoperative distances. The three-dimensional visualizing method may, besides providing diagnostic advantages, be a valuable tool for qualitative and quantitative documentation of the efficiency of different treatment methods for normalization of the disk/condyle relationship in patients with TMJ disk displacement.

  9. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  10. The effect of incidence angle on the overall three-dimensional aerodynamic performance of a classical annular airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Fleeter, S.

    1983-01-01

    To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.

  11. One-dimensional, two-dimensional, and three-dimensional photonic crystals fabricated with interferometric techniques on ultrafine-grain silver halide emulsions

    NASA Astrophysics Data System (ADS)

    Ulibarrena, Manuel; Carretero, Luis; Acebal, Pablo; Madrigal, Roque; Blaya, Salvador; Fimia, Antonio

    2004-09-01

    Holographic techniques have been used for manufacturing multiple band one-dimensional, two-dimensional, and three-dimensional photonic crystals with different configurations, by multiplexing reflection and transmission setups on a single layer of holographic material. The recording material used for storage is an ultra fine grain silver halide emulsion, with an average grain size around 20 nm. The results are a set of photonic crystals with the one-dimensional, two-dimensional, and three-dimensional index modulation structure consisting of silver halide particles embedded in the gelatin layer of the emulsion. The characterisation of the fabricated photonic crystals by measuring their transmission band structures has been done and compared with theoretical calculations.

  12. Evaluating the Contribution of Different Item Features to the Effect Size of the Gender Difference in Three-Dimensional Mental Rotation Using Automatic Item Generation

    ERIC Educational Resources Information Center

    Arendasy, Martin E.; Sommer, Markus

    2010-01-01

    In complex three-dimensional mental rotation tasks males have been reported to score up to one standard deviation higher than females. However, this effect size estimate could be compromised by the presence of gender bias at the item level, which calls the validity of purely quantitative performance comparisons into question. We hypothesized that…

  13. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  14. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  15. Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system.

    PubMed

    Li, Changqing; Zhao, Hongzhi; Anderson, Bonnie; Jiang, Huabei

    2006-03-01

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  16. Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.

    PubMed

    Jasnin, Marion; Crevenna, Alvaro H

    2016-02-23

    Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  18. Kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1992-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  19. Kinetics of hexacelsian-to-celsian phase transformation in SrAl2Si2O8

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Drummond, Charles H., III

    1993-01-01

    The kinetics of hexacelsian to celsian phase transformation in SrAl2Si2O8 have been investigated. Phase pure hexacelsian was prepared by heat treatment of glass flakes at 990 C for 10 h. Bulk hexacelsian was isothermally heat treated at 1026, 1050, 1100, 1152, and 1200 C for various times. The amounts of monoclinic celsian formed were determined using quantitative X-ray diffraction. Values of reaction rate constant, k, at various temperatures were evaluated from the Avrami equation. The Avrami parameter was determined to be 1.1, suggesting a diffusionless, one-dimensional transformation mechanism. From the temperature dependence of k, the activation energy for this reaction was evaluated to be 527 plus or minus 50 kJ/mole (126 plus or minus 12 kcal/mole). This value is consistent with a mechanism involving the transformation of the layered hexacelsian structure to a three-dimensional network celsian structure which necessitates breaking of the strongest bonds, the Si-O bonds.

  20. Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design.

    PubMed

    Gu, Wenwen; Chen, Ying; Li, Yu

    2017-08-01

    Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.

  1. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    PubMed Central

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-01-01

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424

  2. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies

    PubMed Central

    Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark

    2014-01-01

    DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497

  3. The efficient simulation of separated three-dimensional viscous flows using the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1985-01-01

    A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.

  4. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  5. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  6. Three-dimensional modeling and quantitative analysis of gap junction distributions in cardiac tissue.

    PubMed

    Lackey, Daniel P; Carruth, Eric D; Lasher, Richard A; Boenisch, Jan; Sachse, Frank B; Hitchcock, Robert W

    2011-11-01

    Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.

  7. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments.

    PubMed

    Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro

    2017-09-28

    The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.

  8. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with Human β₃-Adrenergic Activity.

    PubMed

    Apablaza, Gastón; Montoya, Luisa; Morales-Verdejo, Cesar; Mellado, Marco; Cuellar, Mauricio; Lagos, Carlos F; Soto-Delgado, Jorge; Chung, Hery; Pessoa-Mahana, Carlos David; Mella, Jaime

    2017-03-05

    The β₃ adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β₃ adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent β₃ adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β₃ adrenergic activity is given.

  9. Early Changes in Facial Profile Following Structured Filler Rhinoplasty: An Anthropometric Analysis Using a 3-Dimensional Imaging System.

    PubMed

    Rho, Nark Kyoung; Park, Je Young; Youn, Choon Shik; Lee, Soo-Keun; Kim, Hei Sung

    2017-02-01

    Quantitative measurements are important for objective evaluation of postprocedural outcomes. Three-dimensional (3D) imaging is known as an objective, accurate, and reliable system for quantifying the soft tissue dimensions of the face. To compare the preprocedural and acute postprocedural nasofrontal, nasofacial, nasolabial, and nasomental angles, early changes in the height and length of the nose, and nasal volume using a 3D surface imaging with a light-emitting diode. The 3D imaging analysis of 40 Korean women who underwent structured nonsurgical rhinoplasty was conducted. The 3D assessment was performed before, immediately after, 1 day, and 2 weeks after filler rhinoplasty with a Morpheus 3D scanner (Morpheus Co., Seoul, Korea). There were significant early changes in facial profile following nonsurgical rhinoplasty with a hyaluronic acid filler. An average increase of 6.03° in the nasofrontal angle, an increase of 3.79° in the nasolabial angle, increase of 0.88° in the nasomental angle, and a reduction of 0.83° in the nasofacial angle was observed at 2 weeks of follow-up. Increment in nasal volume and nose height was also found after 2 weeks. Side effects, such as hematoma, nodules, and skin necrosis, were not observed. The 3D surface imaging quantitatively demonstrated the early changes in facial profile after structured filler rhinoplasty. The study results describe significant acute spatial changes in nose shape following treatment.

  10. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  11. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  12. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.

    PubMed

    Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-08-01

    Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.

  13. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    PubMed

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  14. LiDAR: Providing structure

    USGS Publications Warehouse

    Vierling, Lee A.; Martinuzzi, Sebastián; Asner, Gregory P.; Stoker, Jason M.; Johnson, Brian R.

    2011-01-01

    Since the days of MacArthur, three-dimensional (3-D) structural information on the environment has fundamentally transformed scientific understanding of ecological phenomena (MacArthur and MacArthur 1961). Early data on ecosystem structure were painstakingly laborious to collect. However, as reviewed and reported in recent volumes of Frontiers(eg Vierling et al. 2008; Asner et al.2011), advances in light detection and ranging (LiDAR) remote-sensing technology provide quantitative and repeatable measurements of 3-D ecosystem structure that enable novel ecological insights at scales ranging from the plot, to the landscape, to the globe. Indeed, annual publication of studies using LiDAR to interpret ecological phenomena increased 17-fold during the past decade, with over 180 new studies appearing in 2010 (ISI Web of Science search conducted on 23 Mar 2011: [{lidar AND ecol*} OR {lidar AND fores*} OR {lidar AND plant*}]).

  15. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  16. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning.

    PubMed

    Malhi, Yadvinder; Jackson, Tobias; Patrick Bentley, Lisa; Lau, Alvaro; Shenkin, Alexander; Herold, Martin; Calders, Kim; Bartholomeus, Harm; Disney, Mathias I

    2018-04-06

    Terrestrial laser scanning (TLS) opens up the possibility of describing the three-dimensional structures of trees in natural environments with unprecedented detail and accuracy. It is already being extensively applied to describe how ecosystem biomass and structure vary between sites, but can also facilitate major advances in developing and testing mechanistic theories of tree form and forest structure, thereby enabling us to understand why trees and forests have the biomass and three-dimensional structure they do. Here we focus on the ecological challenges and benefits of understanding tree form, and highlight some advances related to capturing and describing tree shape that are becoming possible with the advent of TLS. We present examples of ongoing work that applies, or could potentially apply, new TLS measurements to better understand the constraints on optimization of tree form. Theories of resource distribution networks, such as metabolic scaling theory, can be tested and further refined. TLS can also provide new approaches to the scaling of woody surface area and crown area, and thereby better quantify the metabolism of trees. Finally, we demonstrate how we can develop a more mechanistic understanding of the effects of avoidance of wind risk on tree form and maximum size. Over the next few years, TLS promises to deliver both major empirical and conceptual advances in the quantitative understanding of trees and tree-dominated ecosystems, leading to advances in understanding the ecology of why trees and ecosystems look and grow the way they do.

  17. Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening.

    PubMed

    Gladysz, Rafaela; Dos Santos, Fabio Mendes; Langenaeker, Wilfried; Thijs, Gert; Augustyns, Koen; De Winter, Hans

    2018-03-07

    Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. In our current implementation, the atomic properties that were used to calculate spectrophores include atomic partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach can easily be widened to also include additional atomic properties. Our novel methodology finds its roots in the experimental affinity fingerprinting technology developed in the 1990's by Terrapin Technologies. Here we have translated it into a purely virtual approach using artificial affinity cages and a simplified metric to calculate the interaction between these cages and the atomic properties. A typical spectrophore consists of a vector of 48 real numbers. This makes it highly suitable for the calculation of a wide range of similarity measures for use in virtual screening and for the investigation of quantitative structure-activity relationships in combination with advanced statistical approaches such as self-organizing maps, support vector machines and neural networks. In our present report we demonstrate the applicability of our novel methodology for scaffold hopping as well as virtual screening.

  18. CUBIC pathology: three-dimensional imaging for pathological diagnosis.

    PubMed

    Nojima, Satoshi; Susaki, Etsuo A; Yoshida, Kyotaro; Takemoto, Hiroyoshi; Tsujimura, Naoto; Iijima, Shohei; Takachi, Ko; Nakahara, Yujiro; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Hori, Yumiko; Wada, Naoki; Ikeda, Jun-Ichiro; Kumanogoh, Atsushi; Morii, Eiichi; Ueda, Hiroki R

    2017-08-24

    The examination of hematoxylin and eosin (H&E)-stained tissues on glass slides by conventional light microscopy is the foundation for histopathological diagnosis. However, this conventional method has some limitations in x-y axes due to its relatively narrow range of observation area and in z-axis due to its two-dimensionality. In this study, we applied a CUBIC pipeline, which is the most powerful tissue-clearing and three-dimensional (3D)-imaging technique, to clinical pathology. CUBIC was applicable to 3D imaging of both normal and abnormal patient-derived, human lung and lymph node tissues. Notably, the combination of deparaffinization and CUBIC enabled 3D imaging of specimens derived from paraffin-embedded tissue blocks, allowing quantitative evaluation of nuclear and structural atypia of an archival malignant lymphoma tissue. Furthermore, to examine whether CUBIC can be applied to practical use in pathological diagnosis, we performed a histopathological screening of a lymph node metastasis based on CUBIC, which successfully improved the sensitivity in detecting minor metastatic carcinoma nodules in lymph nodes. Collectively, our results indicate that CUBIC significantly contributes to retrospective and prospective clinicopathological diagnosis, which might lead to the establishment of a novel field of medical science based on 3D histopathology.

  19. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.

    2014-05-01

    Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).

  20. Why laparoscopists may opt for three-dimensional view: a summary of the full HTA report on 3D versus 2D laparoscopy by S.I.C.E. (Società Italiana di Chirurgia Endoscopica e Nuove Tecnologie).

    PubMed

    Vettoretto, Nereo; Foglia, Emanuela; Ferrario, Lucrezia; Arezzo, Alberto; Cirocchi, Roberto; Cocorullo, Gianfranco; Currò, Giuseppe; Marchi, Domenico; Portale, Giuseppe; Gerardi, Chiara; Nocco, Umberto; Tringali, Michele; Anania, Gabriele; Piccoli, Micaela; Silecchia, Gianfranco; Morino, Mario; Valeri, Andrea; Lettieri, Emauele

    2018-06-01

    Three-dimensional view in laparoscopic general, gynaecologic and urologic surgery is an efficient, safe and sustainable innovation. The present paper is an extract taken from a full health technology assessment report on three-dimensional vision technology compared with standard two-dimensional laparoscopic systems. A health technology assessment approach was implemented in order to investigate all the economic, social, ethical and organisational implications related to the adoption of the innovative three-dimensional view. With the support of a multi-disciplinary team, composed of eight experts working in Italian hospitals and Universities, qualitative and quantitative data were collected, by means of literature evidence, validated questionnaire and self-reported interviews, applying a final MCDA quantitative approach, and considering the dimensions resulting from the EUnetHTA Core Model. From systematic search of literature, we retrieved the following studies: 9 on general surgery, 35 on gynaecology and urology, both concerning clinical setting. Considering simulated setting we included: 8 studies regarding pitfalls and drawbacks, 44 on teaching, 12 on surgeons' confidence and comfort and 34 on surgeons' performances. Three-dimensional laparoscopy was shown to have advantages for both the patients and the surgeons, and is confirmed to be a safe, efficacious and sustainable vision technology. The objective of the present paper, under the patronage of Italian Society of Endoscopic Surgery, was achieved in that there has now been produced a scientific report, based on a HTA approach, that may be placed in the hands of surgeons and used to support the decision-making process of the health providers.

  1. Three-Dimensional Registration for Handheld Profiling Systems Based on Multiple Shot Structured Light

    PubMed Central

    Ayaz, Shirazi Muhammad; Kim, Min Young

    2018-01-01

    In this article, a multi-view registration approach for the 3D handheld profiling system based on the multiple shot structured light technique is proposed. The multi-view registration approach is categorized into coarse registration and point cloud refinement using the iterative closest point (ICP) algorithm. Coarse registration of multiple point clouds was performed using relative orientation and translation parameters estimated via homography-based visual navigation. The proposed system was evaluated using an artificial human skull and a paper box object. For the quantitative evaluation of the accuracy of a single 3D scan, a paper box was reconstructed, and the mean errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. A comprehensive quantitative evaluation and comparison of proposed algorithm was performed with other variants of ICP. The root mean square error for the ICP algorithm to register a pair of point clouds of the skull object was also found to be less than 1 mm. PMID:29642552

  2. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  3. Quantitative 3D imaging of yeast by hard X-ray tomography.

    PubMed

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  4. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells

    PubMed Central

    Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240

  5. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  6. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  7. Structure–activity relationships study of mTOR kinase inhibition using QSAR and structure-based drug design approaches

    PubMed Central

    Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2016-01-01

    The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424

  8. Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jiong; Deng, Qingming; Ly, Thuc Hue; Han, Gang Hee; Sandeep, Gorantla; Rümmeli, Mark H.

    2015-11-01

    The great application potential for two-dimensional (2D) membranes (MoS2, WSe2, graphene and so on) aroused much effort to understand their fundamental mechanical properties. The out-of-plane bending rigidity is the key factor that controls the membrane morphology under external fields. Herein we provide an easy method to reconstruct the 3D structures of the folded edges of these 2D membranes on the atomic scale, using high-resolution (S)TEM images. After quantitative comparison with continuum mechanics shell model, it is verified that the bending behaviour of the studied 2D materials can be well explained by the linear elastic shell model. And the bending rigidities can thus be derived by fitting with our experimental results. Recall almost only theoretical approaches can access the bending properties of these 2D membranes before, now a new experimental method to measure the bending rigidity of such flexible and atomic thick 2D membranes is proposed.

  9. Barcode extension for analysis and reconstruction of structures

    NASA Astrophysics Data System (ADS)

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng

    2017-03-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  10. Barcode extension for analysis and reconstruction of structures.

    PubMed

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-03-13

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.

  11. Barcode extension for analysis and reconstruction of structures

    PubMed Central

    Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng

    2017-01-01

    Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117

  12. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  13. The Structure Lacuna

    PubMed Central

    Boeyens, Jan C.A.; Levendis, Demetrius C.

    2012-01-01

    Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753

  14. Electron transport through triangular potential barriers with doping-induced disorder

    NASA Astrophysics Data System (ADS)

    Elpelt, R.; Wolst, O.; Willenberg, H.; Malzer, S.; Döhler, G. H.

    2004-05-01

    Electron transport through single-, double-, and triple-barrier structures created by the insertion of suitably δ-doped layers in GaAs is investigated. The results are compared with experiments on barriers of similar shape, but obtained by linear grading of the Al fraction x in AlxGa1-xAs structures. In the case of the doping-induced space-charge potential it is found that the effective barrier height for transport is much lower than expected from a simple model, in which uniform distribution of the doping charge within the doped layers is assumed. This reduction is quantitatively explained by taking into account the random distribution of the acceptor atoms within the δp-doped layers, which results in large spatial fluctuations of the barrier potential. The transport turns out to be dominated by small regions around the energetically lowest saddle points of the random space-charge potential. Additionally, independent on the dimensionality of the transport [three-dimensional (3D) to 3D in the single barrier, from 3D through 2D to 3D in the double barrier, and from 3D through 2D through 2D to 3D in the triple-barrier structure], fingerprints of 2D subband resonances are neither experimentally observed nor theoretically expected in the doping-induced structures. This is attributed to the disorder-induced random spatial fluctuations of the subband energies in the n layers which are uncorrelated for neighboring layers. Our interpretations of the temperature-dependent current-voltage characteristics are corroborated by comparison with the experimental and theoretical results obtained from the corresponding fluctuation-free AlxGa1-xAs structures. Quantitative agreement between theory and experiment is observed in both cases.

  15. Recent developments in structural proteomics for protein structure determination.

    PubMed

    Liu, Hsuan-Liang; Hsu, Jyh-Ping

    2005-05-01

    The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.

  16. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli

    PubMed Central

    van der Wolde, James W.; Schulze, Keith E.; Short, Kieran M.; Wong, Milagros N.; Bensley, Jonathan G.; Cullen-McEwen, Luise A.; Caruana, Georgina; Hokke, Stacey N.; Li, Jinhua; Firth, Stephen D.; Harper, Ian S.; Nikolic-Paterson, David J.; Bertram, John F.

    2016-01-01

    Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli. PMID:26975438

  17. Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak

    DOE PAGES

    Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-04-07

    A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less

  18. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  19. On hairpin vortices as model of wall turbulence structure

    NASA Technical Reports Server (NTRS)

    Liu, N.-S.; Shamroth, S. J.; Mcdonald, H.

    1985-01-01

    A model of the hairpin vortex has been constructed and used in two distinct but related approaches. The first approach is kinematic in nature in which a synthesis procedure using hairpin vortices to provide a quantitative link between mean flow quantities and the statistical quantities of near wall turbulence has become developed. The second approach is dynamic in nature, and the evolution of an incipient 'representative' hairpin vortex as well as the distortion of a background laminar boundary layer flow, in which the hairpin vortex is immersed, has been simulated by numerical solution of the unsteady, three-dimensional Navier-Stokes equations.

  20. Designer drugs: the evolving science of drug discovery.

    PubMed

    Wanke, L A; DuBose, R F

    1998-07-01

    Drug discovery and design are fundamental to drug development. Until recently, most drugs were discovered through random screening or developed through molecular modification. New technologies are revolutionizing this phase of drug development. Rational drug design, using powerful computers and computational chemistry and employing X-ray crystallography, nuclear magnetic resonance spectroscopy, and three-dimensional quantitative structure activity relationship analysis, is creating highly specific, biologically active molecules by virtual reality modeling. Sophisticated screening technologies are eliminating all but the most active lead compounds. These new technologies promise more efficacious, safe, and cost-effective medications, while minimizing drug development time and maximizing profits.

  1. Three-dimensional quantitative structure-activity relationship study on antioxidant capacity of curcumin analogues

    NASA Astrophysics Data System (ADS)

    Chen, Bohong; Zhu, Zhibo; Chen, Min; Dong, Wenqi; Li, Zhen

    2014-03-01

    A comparative molecular similarity indices analysis (CoMSIA) was performed on a set of 27 curcumin-like diarylpentanoid analogues with the radical scavenging activities. A significant cross-validated correlation coefficient Q2 (0.784), SEP (0.042) for CoMSIA were obtained, indicating the statistical significance of the correlation. Further we adopt a rational approach toward the selection of substituents at various positions in our scaffold,and finally find the favored and disfavoured regions for the enhanced antioxidative activity. The results have been used as a guide to design compounds that, potentially, have better activity against oxidative damage.

  2. Virtual reality haptic human dissection.

    PubMed

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  3. X-ray fluorescence holography studies for a Cu3Au crystal

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  4. Surface-enhanced Raman spectroscopy on coupled two-layer nanorings

    NASA Astrophysics Data System (ADS)

    Hou, Yumin; Xu, Jun; Wang, Pengwei; Yu, Dapeng

    2010-05-01

    A reproducible quasi-three-dimensional structure, composed of top and bottom concentric nanorings with same periodicity but different widths and no overlapping at the perpendicular direction, is built up by a separation-layer method, which results in huge enhancement of surface-enhanced Raman spectroscopy (SERS) due to the coupling of plasmons. Simulations show plasmonic focusing with "hot arcs" of electromagnetic enhancement meeting the need of quantitative SERS with extremely high sensitivities. In addition, the separation-layer method opens a simple and effective way to adjust the coupling of plasmons among nanostructures which is essential for the fabrication of SERS-based sensors.

  5. Isolation of Three Triterpene Saponins, Including Two New Oleanane Derivatives, from Soldanella alpina and Hydrophilic Interaction Liquid Chromatography-Evaporative Light Scattering Detection of these Three Saponins in Four Soldenella Species.

    PubMed

    Haller, Julia; Schwaiger, Stefan; Stuppner, Hermann; Gafner, Frank; Ganzera, Markus

    2017-11-01

    The genus Soldanella is one of the few endemic to Europe. Some of its species have relevance in local traditional medicine. Earlier work has indicated the possible presence of saponins in S. alpina. To investigate S. alpina and other related species for the occurrence of saponins. Following sequential extraction with n-hexane, dichloromethane and ethyl acetate the subsequent methanolic extract of S. alpina roots was fractionated after solvent precipitation using fast centrifugal partition chromatography and column chromatography. Structures were elucidated by LC-MS n , high-resolution MS, hydrolysis experiments and one-dimensional (1D)- and two-dimensional (2D)-NMR. A hydrophilic interaction liquid chromatography method was developed to quantitate saponins in the leaves and roots of four Soldanella species. Three triterpene saponins, two of them new natural products, were isolated from S. alpina. Based on an epoxyoleanal aglycone substituted with four sugar units, they were analytically quantitated using a Kinetex 2.6 μm hydrophilic interaction liquid chromatography (HILIC) column together with a mobile phase comprising of ammonium acetate, water and acetonitrile. Method validation confirmed that the assay meets all requirements in respect to linearity, accuracy, sensitivity and precision. All four Soldanella species investigated contained the three saponins. The lowest total level of the three saponins (1.09%) was observed in S. montana leaves while the highest saponin content (5.14%) was determined in S. alpina roots. The detection of saponins within the genus Soldanella is an indication that further phytochemical examination of this genus may reveal more secondary metabolites of interest. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  7. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  8. Enhanced conformational sampling technique provides an energy landscape view of large-scale protein conformational transitions.

    PubMed

    Shao, Qiang

    2016-10-26

    Large-scale conformational changes in proteins are important for their functions. Tracking the conformational change in real time at the level of a single protein molecule, however, remains a great challenge. In this article, we present a novel in silico approach with the combination of normal mode analysis and integrated-tempering-sampling molecular simulation (NMA-ITS) to give quantitative data for exploring the conformational transition pathway in multi-dimensional energy landscapes starting only from the knowledge of the two endpoint structures of the protein. The open-to-closed transitions of three proteins, including nCaM, AdK, and HIV-1 PR, were investigated using NMA-ITS simulations. The three proteins have varied structural flexibilities and domain communications in their respective conformational changes. The transition state structure in the conformational change of nCaM and the associated free-energy barrier are in agreement with those measured in a standard explicit-solvent REMD simulation. The experimentally measured transition intermediate structures of the intrinsically flexible AdK are captured by the conformational transition pathway measured here. The dominant transition pathways between the closed and fully open states of HIV-1 PR are very similar to those observed in recent REMD simulations. Finally, the evaluated relaxation times of the conformational transitions of three proteins are roughly at the same level as reported experimental data. Therefore, the NMA-ITS method is applicable for a variety of cases, providing both qualitative and quantitative insights into the conformational changes associated with the real functions of proteins.

  9. Simulation of wave propagation in three-dimensional random media

    NASA Astrophysics Data System (ADS)

    Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1995-04-01

    Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of

  10. Three types of dermal grafts in rats: the importance of mechanical property and structural design.

    PubMed

    You, Chuangang; Wang, Xingang; Zheng, Yurong; Han, Chunmao

    2013-12-04

    To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes-ADM, CS and PMCSs are different in the tensile properties and microstructure. Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague-Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). In vitro studies demonstrated ADM had a higher Young's modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for maintaining the three-dimensional microarchitecture of constructs used to induce tissue regeneration and vascularization. The results illustrated that tissue regeneration requires the proper pore size and an appropriate mechanical property like PMCS which could satisfy these conditions to sustain growth.

  11. Three types of dermal grafts in rats: the importance of mechanical property and structural design

    PubMed Central

    2013-01-01

    Background To determine how the mechanical property and micro structure affect tissue regeneration and angiogenesis, three types of scaffolds were studied. Acellular dermal matrices (ADM), produced from human skin by removing the epidermis and cells, has been widely used in wound healing because of its high mechanical strength. Collagen scaffolds (CS) incorporated with poly(glycolide-co-L-lactide) (PLGA) mesh forms a well-supported hybrid dermal equivalent poly(glycolide-co-L-lactide) mesh/collagen scaffolds (PMCS). We designed this scaffold to enhance the CS mechanical property. These three different dermal substitutes—ADM, CS and PMCSs are different in the tensile properties and microstructure. Methods Several basic physical characteristics of dermal substitutes were investigated in vitro. To characterize the angiogenesis and tissue regeneration, the materials were embedded subcutaneously in Sprague–Dawley (SD) rats. At weeks 1, 2, 4 and 8 post-surgery, the tissue specimens were harvested for histology, immunohistochemistry and real-time quantitative PCR (RT-qPCR). Results In vitro studies demonstrated ADM had a higher Young’s modulus (6.94 MPa) rather than CS (0.19 MPa) and PMCS (3.33 MPa) groups in the wet state. Compared with ADMs and CSs, PMCSs with three-dimensional porous structures resembling skin and moderate mechanical properties can promote tissue ingrowth more quickly after implantation. In addition, the vascularization of the PMCS group is more obvious than that of the other two groups. The incorporation of a PLGA knitted mesh in CSs can improve the mechanical properties with little influence on the three-dimensional porous microstructure. After implantation, PMCSs can resist the contraction and promote cell infiltration, neotissue formation and blood vessel ingrowth, especially from the mesh side. Although ADM has high mechanical strength, its vascularization is poor because the pore size is too small. In conclusion, the mechanical properties of scaffolds are important for maintaining the three-dimensional microarchitecture of constructs used to induce tissue regeneration and vascularization. Conclusion The results illustrated that tissue regeneration requires the proper pore size and an appropriate mechanical property like PMCS which could satisfy these conditions to sustain growth. PMID:24304500

  12. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  13. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  14. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  15. Quantitative Large-Scale Three-Dimensional Imaging of Human Kidney Biopsies: A Bridge to Precision Medicine in Kidney Disease.

    PubMed

    Winfree, Seth; Dagher, Pierre C; Dunn, Kenneth W; Eadon, Michael T; Ferkowicz, Michael; Barwinska, Daria; Kelly, Katherine J; Sutton, Timothy A; El-Achkar, Tarek M

    2018-06-05

    Kidney biopsy remains the gold standard for uncovering the pathogenesis of acute and chronic kidney diseases. However, the ability to perform high resolution, quantitative, molecular and cellular interrogation of this precious tissue is still at a developing stage compared to other fields such as oncology. Here, we discuss recent advances in performing large-scale, three-dimensional (3D), multi-fluorescence imaging of kidney biopsies and quantitative analysis referred to as 3D tissue cytometry. This approach allows the accurate measurement of specific cell types and their spatial distribution in a thick section spanning the entire length of the biopsy. By uncovering specific disease signatures, including rare occurrences, and linking them to the biology in situ, this approach will enhance our understanding of disease pathogenesis. Furthermore, by providing accurate quantitation of cellular events, 3D cytometry may improve the accuracy of prognosticating the clinical course and response to therapy. Therefore, large-scale 3D imaging and cytometry of kidney biopsy is poised to become a bridge towards personalized medicine for patients with kidney disease. © 2018 S. Karger AG, Basel.

  16. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study

    PubMed Central

    Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M.

    2017-01-01

    Objectives (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Design Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. Participants 747 students (51.3% girls) from Cordoba, Spain, aged 12–17 years (M=13.8; SD=1.21). Results The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach’s alpha and McDonald’s omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. Conclusions This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. PMID:28951400

  17. Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: Impact on salt transport

    NASA Astrophysics Data System (ADS)

    Sun, Detong; Wan, Yongshan; Qiu, Chelsea

    2016-05-01

    Numerical hydrodynamic modeling provides quantitative understanding of how physical alterations of an estuary may alter the waterbody hydrodynamics and the rate of mixing with the ocean. In this study, a three dimensional hydrodynamic model (CH3D) was used to compare simulated salinities between the existing condition and five historical cases representing varying physical alterations of the Caloosahatchee Estuary involving (1) removal of the headwater structure (S-79); (2) removal of the downstream causeway to Sanibel Island; (3) backfilling an oyster bar near the estuary month; (4) refilling the navigation channel; and (5) the pre-development bathymetric condition. The results suggested that some alterations including the Sanibel Causeway, backfilling the oyster bar and the S-79 structure may have some local effects but did not change estuarine salinity structure significantly. Refilling the navigation channel had a more profound effect, resulting in a dry season salinity reduction of about 5 when compared with the existing condition. The reduced salt transport was more pronounced with the pre-development bathymetry because the estuary as a whole was much shallower than today. The significant system-wide increase in salt transport caused by the historic dredging of the navigation channel in the Caloosahatchee Estuary has significant implications in the development of attainable environmental flow targets for protecting the estuarine ecosystem.

  18. A polyhedron made of tRNAs.

    PubMed

    Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc

    2010-09-01

    Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.

  19. Modeling and numerical simulations of growth and morphologies of three dimensional aggregated silver films

    NASA Astrophysics Data System (ADS)

    Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.

    2012-11-01

    We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.

  20. WebCSD: the online portal to the Cambridge Structural Database

    PubMed Central

    Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.

    2010-01-01

    WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776

  1. Helical structures in vertically aligned dust particle chains in a complex plasma

    NASA Astrophysics Data System (ADS)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  2. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

    PubMed

    Tegze, Miklós; Bortel, Gábor

    2016-07-01

    The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.

  3. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  4. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  5. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  6. Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes

    PubMed Central

    Purnell, Mark; Seehausen, Ole; Galis, Frietson

    2012-01-01

    Resource polymorphisms and competition for resources are significant factors in speciation. Many examples come from fishes, and cichlids are of particular importance because of their role as model organisms at the interface of ecology, development, genetics and evolution. However, analysis of trophic resource use in fishes can be difficult and time-consuming, and for fossil fish species it is particularly problematic. Here, we present evidence from cichlids that analysis of tooth microwear based on high-resolution (sub-micrometre scale) three-dimensional data and new ISO standards for quantification of surface textures provides a powerful tool for dietary discrimination and investigation of trophic resource exploitation. Our results suggest that three-dimensional approaches to analysis offer significant advantages over two-dimensional operator-scored methods of microwear analysis, including applicability to rough tooth surfaces that lack distinct scratches and pits. Tooth microwear textures develop over a longer period of time than is represented by stomach contents, and analyses based on textures are less prone to biases introduced by opportunistic feeding. They are more sensitive to subtle dietary differences than isotopic analysis. Quantitative textural analysis of tooth microwear has a useful role to play, complementing existing approaches, in trophic analysis of fishes—both extant and extinct. PMID:22491979

  7. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  8. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  9. Band-gap tuning and optical response of two-dimensional Si x C 1 - x : A first-principles real-space study of disordered two-dimensional materials

    DOE PAGES

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; ...

    2017-08-09

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less

  10. Band-gap tuning and optical response of two-dimensional Si x C 1 - x : A first-principles real-space study of disordered two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less

  11. Optical signal processing of spatially distributed sensor data in smart structures

    NASA Technical Reports Server (NTRS)

    Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.

    1989-01-01

    Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.

  12. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    NASA Astrophysics Data System (ADS)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-09-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  13. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    PubMed Central

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  14. Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography.

    PubMed

    Paavolainen, Lassi; Acar, Erman; Tuna, Uygar; Peltonen, Sari; Moriya, Toshio; Soonsawad, Pan; Marjomäki, Varpu; Cheng, R Holland; Ruotsalainen, Ulla

    2014-01-01

    Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifacts, seen as the loss of three-dimensional (3D) resolution in the reconstructed images. The goal of this study was to achieve isotropic resolution with a statistical reconstruction method, sequential maximum a posteriori expectation maximization (sMAP-EM), using no prior morphological knowledge about the specimen. The missing wedge effects on sMAP-EM were examined with a synthetic cell phantom to assess the effects of noise. An experimental dataset of a multivesicular body was evaluated with a number of gold particles. An ellipsoid fitting based method was developed to realize the quantitative measures elongation and contrast in an automated, objective, and reliable way. The method statistically evaluates the sub-volumes containing gold particles randomly located in various parts of the whole volume, thus giving information about the robustness of the volume reconstruction. The quantitative results were also compared with reconstructions made with widely-used weighted backprojection and simultaneous iterative reconstruction technique methods. The results showed that the proposed sMAP-EM method significantly suppresses the effects of the missing information producing isotropic resolution. Furthermore, this method improves the contrast ratio, enhancing the applicability of further automatic and semi-automatic analysis. These improvements in ET reconstruction by sMAP-EM enable analysis of subcellular structures with higher three-dimensional resolution and contrast than conventional methods.

  15. Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging

    PubMed Central

    Sbarbati, Andrea; Pizzini, Francesca; Fabene, Paolo F; Nicolato, Elena; Marzola, Pasquina; Calderan, Laura; Simonati, Alessandro; Longo, Laura; Osculati, Antonio; Beltramello, Alberto

    2004-01-01

    Seven human fetuses of crown/rump length corresponding to gestational ages ranging from the 12th to the 16th week were studied using a paradigm based on three-dimensional reconstruction of the brain obtained by magnetic resonance imaging (MRI). The aim of the study was to evaluate brain morphology in situ and to describe developmental dynamics during an important period of fetal morphogenesis. Three-dimensional MRI showed the increasing degree of maturation of the brains; fronto-occipital distance, bitemporal distance and occipital angle were examined in all the fetuses. The data were interpreted by correlation with the internal structure as visualized using high-spatial-resolution MRI, acquired using a 4.7-T field intensity magnet with a gradient power of 20 G cm−1. The spatial resolution was sufficient for a detailed detection of five layers, and the contrast was optimized using sequences with different degrees of T1 and T2 weighting. Using the latter, it was possible to visualize the subplate and marginal zones. The cortical thickness was mapped on to the hemispheric surface, describing the thickness gradient from the insular cortex to the periphery of the hemispheres. The study demonstrates the utility of MRI for studying brain development. The method provides a quantitative profiling of the brain, which allows the calculation of important morphological parameters, and it provides informative regarding transient features of the developing brain. PMID:15198688

  16. 3D imaging of a rice pollen grain using transmission X-ray microscopy.

    PubMed

    Wang, Shengxiang; Wang, Dajiang; Wu, Qiao; Gao, Kun; Wang, Zhili; Wu, Ziyu

    2015-07-01

    For the first time, the three-dimensional (3D) ultrastructure of an intact rice pollen cell has been obtained using a full-field transmission hard X-ray microscope operated in Zernike phase contrast mode. After reconstruction and segmentation from a series of projection images, complete 3D structural information of a 35 µm rice pollen grain is presented at a resolution of ∼100 nm. The reconstruction allows a clear differentiation of various subcellular structures within the rice pollen grain, including aperture, lipid body, mitochondrion, nucleus and vacuole. Furthermore, quantitative information was obtained about the distribution of cytoplasmic organelles and the volume percentage of each kind of organelle. These results demonstrate that transmission X-ray microscopy can be quite powerful for non-destructive investigation of 3D structures of whole eukaryotic cells.

  17. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher; Robinson, David B.

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  18. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE PAGES

    Salloum, Maher; Robinson, David B.

    2018-01-30

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  19. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 2. Teaching Units that Utilize an Interactive Web-Accessible Subset of the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2010-01-01

    A series of online interactive teaching units have been developed that illustrate the use of experimentally measured three-dimensional (3D) structures to teach fundamental chemistry concepts. The units integrate a 500-structure subset of the Cambridge Structural Database specially chosen for their pedagogical value. The units span a number of key…

  20. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 4. Examples of Discovery-Based Learning Using the Complete Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  1. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 3. The Cambridge Structural Database System: Information Content and Access Software in Educational Applications

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  2. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  3. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  4. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  5. Do Gender-Specific and High-Resolution Three Dimensional Body Charts Facilitate the Communication of Pain for Women? A Quantitative and Qualitative Study

    PubMed Central

    Egsgaard, Line Lindhardt

    2016-01-01

    Background Chronic pain is more prevalent among women; however, the majority of standardized pain drawings are often collected using male-like androgynous body representations. Objective The purpose of this study was to assess whether gender-specific and high-resolution three-dimensional (3D) body charts facilitate the communication of pain for women. Methods Using mixed-methods and a cross-over design, female patients with chronic pain were asked to provide detailed drawings of their current pain on masculine and feminine two-dimensional (2D) body schemas (N=41, Part I) or on female 2D and 3D high-resolution body schemas (N=41, Part II) on a computer tablet. The consistency of the drawings between body charts were assessed by intraclass correlation coefficient (ICC) and Bland-Altman plots. Semistructured interviews and a preference questionnaire were then used to obtain qualitative and quantitative responses of the drawing experience. Results The consistency between body charts were high (Part I: ICC=0.980, Part II: ICC=0.994). The preference ratio for the masculine to feminine body schemas were 6:35 and 18:23 for the 2D to 3D female body charts. Patients reported that the 3D body chart enabled a more accurate expression of their pain due to the detailed contours of the musculature and bone structure, however, patients also reported the 3D body chart was too human and believed that skin-like appearance limited ‘deep pain’ expressions. Conclusions Providing gender-specific body charts may facilitate the communication of pain and the level of detail (2D vs 3D body charts) should be used according to patients’ needs. PMID:27440737

  6. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  7. Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis

    PubMed Central

    Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.

    2014-01-01

    Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual standard error [RSEresidual standard error] = 6.38 and 6.33 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively), when compared with non-3Dthree-dimensional techniques (RSEresidual standard error = 12.18 for visual assessment). Conclusion This radiologic-pathologic correlation study demonstrates the diagnostic accuracy of 3Dthree-dimensional quantitative MR imaging techniques in identifying pathologically measured tumor necrosis in HCChepatocellular carcinoma lesions treated with TACEtransarterial chemoembolization. © RSNA, 2014 Online supplemental material is available for this article. PMID:25028783

  8. Applications of molecular modeling in coal research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.A.; Faulon, J.L.

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less

  9. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    PubMed

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  10. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  11. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations.

    PubMed

    Bottino, Marco C; Yassen, Ghaeth H; Platt, Jeffrey A; Labban, Nawaf; Windsor, L Jack; Spolnik, Kenneth J; Bressiani, Ana H A

    2015-11-01

    An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5-10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p < 0.0001) fibre diameter increase and a reduction in scaffold strength. Moreover, PDS-HNTs scaffolds supported the attachment and proliferation of human-derived pulp fibroblast cells. Quantitative proliferation assay performed with human dental pulp-derived cells as a function of nanotubes concentration indicated that the HNTs exhibit a high level of biocompatibility, rendering them good candidates for the potential encapsulation of distinct bioactive molecules. Collectively, the reported data support the conclusion that PDS-HNTs nanocomposite fibrous structures hold potential in the development of a bioactive scaffold for regenerative endodontics. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    PubMed

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.

  14. An overview of contemporary nuclear cardiology.

    PubMed

    Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G

    2004-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.

  15. Synthesis and quantitative structure-activity relationship (QSAR) study of novel isoxazoline and oxime derivatives of podophyllotoxin as insecticidal agents.

    PubMed

    Wang, Yi; Shao, Yonghua; Wang, Yangyang; Fan, Lingling; Yu, Xiang; Zhi, Xiaoyan; Yang, Chun; Qu, Huan; Yao, Xiaojun; Xu, Hui

    2012-08-29

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, 33 isoxazoline and oxime derivatives of podophyllotoxin modified in the C and D rings were synthesized and their structures were characterized by Proton nuclear magnetic resonance ((1)H NMR), high-resolution mass spectrometry (HRMS), electrospray ionization-mass spectrometry (ESI-MS), optical rotation, melting point (mp), and infrared (IR) spectroscopy. The stereochemical configurations of compounds 5e, 5f, and 9f were unambiguously determined by X-ray crystallography. Their insecticidal activity was evaluated against the pre-third-instar larvae of northern armyworm, Mythimna separata (Walker), in vivo. Compounds 5e, 9c, 11g, and 11h especially exhibited more promising insecticidal activity than toosendanin, a commercial botanical insecticide extracted from Melia azedarach . A genetic algorithm combined with multiple linear regression (GA-MLR) calculation is performed by the MOBY DIGS package. Five selected descriptors are as follows: one two-dimensional (2D) autocorrelation descriptor (GATS4e), one edge adjacency indice (EEig06x), one RDF descriptor (RDF080v), one three-dimensional (3D) MoRSE descriptor (Mor09v), and one atom-centered fragment (H-052) descriptor. Quantitative structure-activity relationship studies demonstrated that the insecticidal activity of these compounds was mainly influenced by many factors, such as electronic distribution, steric factors, etc. For this model, the standard deviation error in prediction (SDEP) is 0.0592, the correlation coefficient (R(2)) is 0.861, and the leave-one-out cross-validation correlation coefficient (Q(2)loo) is 0.797.

  16. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  17. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  18. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study.

    PubMed

    Herrera-López, Mauricio; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M

    2017-09-25

    (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. 747 students (51.3% girls) from Cordoba, Spain, aged 12-17 years (M=13.8; SD=1.21). The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach's alpha and McDonald's omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. A brief update on physical and optical disector applications and sectioning-staining methods in neuroscience.

    PubMed

    Yurt, Kıymet Kübra; Kivrak, Elfide Gizem; Altun, Gamze; Mohamed, Hamza; Ali, Fathelrahman; Gasmalla, Hosam Eldeen; Kaplan, Suleyman

    2018-02-26

    A quantitative description of a three-dimensional (3D) object based on two-dimensional images can be made using stereological methods These methods involve unbiased approaches and provide reliable results with quantitative data. The quantitative morphology of the nervous system has been thoroughly researched in this context. In particular, various novel methods such as design-based stereological approaches have been applied in neuoromorphological studies. The main foundations of these methods are systematic random sampling and a 3D approach to structures such as tissues and organs. One key point in these methods is that selected samples should represent the entire structure. Quantification of neurons, i.e. particles, is important for revealing degrees of neurodegeneration and regeneration in an organ or system. One of the most crucial morphometric parameters in biological studies is thus the "number". The disector counting method introduced by Sterio in 1984 is an efficient and reliable solution for particle number estimation. In order to obtain precise results by means of stereological analysis, counting items should be seen clearly in the tissue. If an item in the tissue cannot be seen, these cannot be analyzed even using unbiased stereological techniques. Staining and sectioning processes therefore play a critical role in stereological analysis. The purpose of this review is to evaluate current neuroscientific studies using optical and physical disector counting methods and to discuss their definitions and methodological characteristics. Although the efficiency of the optical disector method in light microscopic studies has been revealed in recent years, the physical disector method is more easily performed in electron microscopic studies. Also, we offered to readers summaries of some common basic staining and sectioning methods, which can be used for stereological techniques in this review. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. QUANTITATION OF MENSTRUAL BLOOD LOSS: A RADIOACTIVE METHOD UTILIZING A COUNTING DOME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, W.N.

    A description has been given of a simple, accurate tech nique for the quantitation of menstrual blood loss, involving the determination of a three- dimensional isosensitivity curve and the fashioning of a lucite dome with cover to fit these specifications. Ten normal subjects lost no more than 50 ml each per menstrual period. (auth)

  1. Secondary motion in three-dimensional branching networks

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δ S F , and δ G n ) for a quantitative description of the overall features of the secondary flow field. δ S F represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δ G n provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δ S F are found to lie within a small range ( 0.37 ≤ δ S F ≤ 0.66 ) for the six-generation networks studied. It is shown that δ G n grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δ S F ), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δ G n ), as compared to the in-plane arrangement of the same branches.

  2. Secondary motion in three-dimensional branching networks

    PubMed Central

    Guha, Abhijit; Pradhan, Kaustav

    2017-01-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δSF, and δGn) for a quantitative description of the overall features of the secondary flow field. δSF represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δGn provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δSF are found to lie within a small range (0.37≤δSF≤0.66) for the six-generation networks studied. It is shown that δGn grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δSF), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δGn), as compared to the in-plane arrangement of the same branches. PMID:28713213

  3. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  4. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  5. Power-scaling performance of a three-dimensional tritium betavoltaic diode

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan

    2009-12-01

    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.

  6. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. II - Shell and three-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Kennedy, Ronald; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.

  7. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  8. Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    PubMed Central

    Acar, Evrim; Plopper, George E.; Yener, Bülent

    2012-01-01

    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315

  9. Structure and topology of three-dimensional hydrocarbon polymers.

    PubMed

    Kondrin, Mikhail V; Lebed, Yulia B; Brazhkin, Vadim V

    2016-08-01

    A new family of three-dimensional hydrocarbon polymers which are more energetically favorable than benzene is proposed. Although structurally these polymers are closely related to well known diamond and lonsdaleite carbon structures, using topological arguments we demonstrate that they have no known structural analogs. Topological considerations also give some indication of possible methods of synthesis. Taking into account their exceptional optical, structural and mechanical properties these polymers might have interesting applications.

  10. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  11. StructMap: Elastic Distance Analysis of Electron Microscopy Maps for Studying Conformational Changes.

    PubMed

    Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica

    2016-04-26

    Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Three-dimensional Cervical Movement Characteristics in Healthy Subjects and Subgroups of Chronic Neck Pain Patients Based on Their Pain Location.

    PubMed

    Waeyaert, Patirck; Jansen, Daniel; Bastiaansen, Marco; Scafoglieri, Aldo; Buyl, Ronald; Schmitt, Maarten; Cattrysse, Erik

    2016-08-01

    A cross-sectional observational study of three-dimensional (3D) cervical kinematics in 41 chronic neck pain (CNPs) patients and 156 asymptomatic controls. The objective was to investigate 3D cervical kinematics by analyzing and comparing quantitative and qualitative parameters in healthy subjects and CNPs. Furthermore, subgroups were formed to explore the influence of pain-location on cervical kinematics. The possible correlation of kinematic parameters with the degree of functional disability was examined as well. In patients with chronic neck pain, a clear pathological cause is frequently not identifiable. Therefore, the need to assess neck pain with a broader view than structure or anatomical-based divergences is desirable. Movements of the cervical spine were registered using an electromagnetic tracking system. Quantitative and qualitative kinematics were analyzed for active axial rotation, lateral bending, and flexion-extension motion components. During lateral bending, the range of the main motion demonstrated significant higher values (P = 0.001) in the controls (mean: 68.67° ± 15.17°) than patients (mean: 59.28° ± 15.41°). Significant differences were demonstrated between subgroups for several kinematic parameters (P < 0.05). Although differences were predominantly recorded between the "symmetrical" and "asymmetrical" pain group, some parameters also distinguished subgroups from controls. On average, the symmetrical group showed significant less harmonic movement patterns, expressed by qualitative parameters, in comparison with the "asymmetrical" group and controls. Furthermore, the "asymmetrical" group showed significant lower scores on quantitative parameters than the "symmetrical" group and controls. The degree of functional disability correlated moderately with changes in qualitative parameters. In this study, chronic neck pain patients with a symmetrical pain pattern showed significant poorer quality of movement, while those with asymmetrical pain showed a significant reduction in quantitative measures. Subgrouping of neck patients based on pain location may be of help for further research and clinics. 4.

  13. Three-dimensional visualization and quantitation of fibrin in solid tumors by confocal laser scanning microscopy.

    PubMed

    Biggerstaff, J; Amirkhosravi, A; Francis, J L

    1997-10-01

    Fibrin forms part of the stroma essential for growth of solid tumors. Anticoagulants reduce primary tumor growth and tumor metastasis in murine and some human tumors. These effects may be partly mediated by reduction of intra-tumor fibrin, although there are no quantitative data to support this hypothesis. We therefore evaluated the effect of warfarin on fibrin deposition in a subcutaneously (s.c.) implanted murine tumor using confocal laser scanning microscopy (CLSM). AJ mice received no treatment (n = 6) or sodium warfarin (3.5 mg/L in drinking water, n = 5). All animals received 2 x 10(6) syngeneic Neuro2a neuroblastoma cells s.c. After 14 days, primary tumors were excised and placed in liquid nitrogen. Warfarin treatment resulted in a small, but significant (P < 0.05), decrease in wet tumor weight. Frozen sections (20 microns) were incubated with goat anti-mouse fibrin(ogen) or normal goat serum (isotypic control) and stained with FITC-conjugated rabbit anti-goat antibody. Using a Multiprobe 2001 CLSM (Molecular Dynamics, Sunnyvale, CA), 20 serial optical sections were taken from five, randomly chosen, high power fields (60x objective) for each slide. A threshold excluded all fluorescence except that from structural components within the tumor stroma (fibrin). The volume of fibrin in each section series was determined, and the percentage of tumor volume occupied by fibrin calculated. Intra- and inter-assay variation were assessed on serial frozen tumor sections from an untreated animal. The percentage fibrin volume was not significantly different among or within experiments, indicating that the procedure was reproducible. In controls, the median (range) volume occupied by fibrin was 8.1% (2.4-22.3%), whereas in anticoagulated animals, this was reduced to 3.7% (0.4-14.0%; P < 0.001). This is the first quantitative demonstration that warfarin reduces fibrin deposition in solid tumors. We conclude that three-dimensional CLSM is useful for the quantitation of tissue antigens and that the technique may have clinical value.

  14. Cell-ECM Interactions During Cancer Invasion

    NASA Astrophysics Data System (ADS)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  15. Hydrodynamics of a three-dimensional self-propelled flexible plate

    NASA Astrophysics Data System (ADS)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  16. Simulations of laminar boundary-layer flow encountering large-scale surface indentions

    NASA Astrophysics Data System (ADS)

    Beratlis, N.; Balaras, E.; Squires, K.; Vizard, A.

    2016-03-01

    The transition from laminar to turbulent flow over dimples and grooves has been investigated through a series of direct numerical simulations. Emphasis has been given to the mechanism of transition and the momentum transport in the post-dimple boundary layer. It has been found that the dimple geometry plays an important role in the evolution of the turbulent boundary layer downstream. The mechanism of transition in all cases is that of the reorientation of the spanwise vorticity into streamwise oriented structures resembling hairpin vortices commonly encountered in wall bounded turbulent flows. Although qualitatively the transition mechanism amongst the three different cases is similar, important quantitative differences exist. It was shown that two-dimensional geometries like a groove are more stable than three-dimensional geometries like a dimple. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist but in all cases the boundary layer grows in a self-similar manner.

  17. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  18. Heuristic lipophilicity potential for computer-aided rational drug design

    NASA Astrophysics Data System (ADS)

    Du, Qishi; Arteca, Gustavo A.; Mezey, Paul G.

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water-octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

  19. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  20. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    NASA Astrophysics Data System (ADS)

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

  1. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    PubMed Central

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.

    2013-01-01

    Abstract. Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo. PMID:23407909

  2. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  3. N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Iwagami, N.; Oyama, K.-I.

    2013-11-01

    The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.

  4. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.

    PubMed

    Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian

    2011-12-01

    To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

  5. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction.

    PubMed

    Chen, Mounter C Y; Lu, Po-Chien; Chen, James S Y; Hwang, Ned H C

    2005-01-01

    Coronary stents are supportive wire meshes that keep narrow coronary arteries patent, reducing the risk of restenosis. Despite the common use of coronary stents, approximately 20-35% of them fail due to restenosis. Flow phenomena adjacent to the stent may contribute to restenosis. Three-dimensional computational fluid dynamics (CFD) and reconstruction based on biplane cine angiography were used to assess coronary geometry and volumetric blood flows. A patient-specific left anterior descending (LAD) artery was reconstructed from single-plane x-ray imaging. With corresponding electrocardiographic signals, images from the same time phase were selected from the angiograms for dynamic three-dimensional reconstruction. The resultant three-dimensional LAD artery at end-diastole was adopted for detailed analysis. Both the geometries and flow fields, based on a computational model from CAE software (ANSYS and CATIA) and full three-dimensional Navier-Stroke equations in the CFD-ACE+ software, respectively, changed dramatically after stent placement. Flow fields showed a complex three-dimensional spiral motion due to arterial tortuosity. The corresponding wall shear stresses, pressure gradient, and flow field all varied significantly after stent placement. Combined angiography and CFD techniques allow more detailed investigation of flow patterns in various segments. The implanted stent(s) may be quantitatively studied from the proposed hemodynamic modeling approach.

  6. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1). Annual report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-08-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  7. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to linkmore » the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.« less

  8. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    PubMed

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  9. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    NASA Astrophysics Data System (ADS)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  10. DIGE Analysis of Human Tissues.

    PubMed

    Gelfi, Cecilia; Capitanio, Daniele

    2018-01-01

    Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.

  11. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    PubMed

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  12. Measuring 3D Alloy Composition Profiles at Surfaces

    NASA Astrophysics Data System (ADS)

    Hannon, James

    2006-03-01

    A key challenge in thin-film growth is controlling structure and composition. Of particular importance is understanding how and why atomic-scale heterogeneity develops during growth. We have used low-energy electron microscopy (LEEM) to measure how the three-dimensional composition of an alloy film evolves with time at the nanometer length scale. By quantitatively analyzing the reflected electron intensity in LEEM, we determine the alloy composition and structure, layer by layer near a surface, with 9 nm lateral spatial resolution. As an example, we show that heterogeneity during the growth of Pd on Cu(001) arises naturally from a generic step-overgrowth mechanism that is likely to be relevant in many growth systems. This work was performed in collaboration with Jiebing Sun (UNH), Karsten Pohl (UNH), and Gary Kellogg (Sandia Labs).

  13. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides.

    PubMed

    Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai

    2015-05-08

    A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  14. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  15. Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F

    2012-03-07

    Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society

  16. Validating two-dimensional leadership models on three-dimensionally structured fish schools

    PubMed Central

    Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa

    2017-01-01

    Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582

  17. Quantification of soil structure based on Minkowski functions

    NASA Astrophysics Data System (ADS)

    Vogel, H.-J.; Weller, U.; Schlüter, S.

    2010-10-01

    The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.

  18. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719

  19. Cross-stream diffusion under pressure-driven flow in microchannels with arbitrary aspect ratios: a phase diagram study using a three-dimensional analytical model.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.

  20. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    PubMed

    Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet

    2015-01-01

    To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  1. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  2. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R., E-mail: mawr@ns.crys.ras.ru

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  3. Modelling the drying of three-dimensional pulp moulded structures. Part II, Drying data obtained from flat panels using virgin and recycled paper fibre

    Treesearch

    John F. Hunt; Margit Tamasy-Bano; Heike Nyist

    1999-01-01

    A three-dimensional structural panel, called FPL Spaceboard, was developed at the USDA Forest Products Laboratory. Spaceboard panels have been formed using a variety of fibrous materials using either a wet- or dry-forming process. Geometrically, the panel departs from the traditional two-dimensional flat panel by integrally forming an array of perpendicular ribs and...

  4. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs

    NASA Astrophysics Data System (ADS)

    Lee, Sehan; Barron, Mace G.

    2016-04-01

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π-π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency.

  5. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species

    PubMed Central

    Saranathan, Vinodkumar; Forster, Jason D.; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G. J.; Cao, Hui; Dufresne, Eric R.; Prum, Richard O.

    2012-01-01

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology. PMID:22572026

  6. Balancing Newtonian gravity and spin to create localized structures

    NASA Astrophysics Data System (ADS)

    Bush, Michael; Lindner, John

    2015-03-01

    Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.

  7. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  8. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  9. Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis.

    PubMed

    Choe, Leila H; Lee, Kelvin H

    2003-10-01

    We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.

  10. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Psycharakis, Stylianos; Schönig, Kai; Bartsch, Dusan; Mamalaki, Clio; Papamatheakis, Joseph; Ripoll, Jorge; Zacharakis, Giannis

    2016-02-01

    Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture.

  11. Preliminary Discussion On The Three Dimensional Space Quantitative Analysis Of Erythrocytes By SEMP And Some Applications On The Clinic And Research Of Blood Disease.

    NASA Astrophysics Data System (ADS)

    Lian-Huang, Lu; Wen-Meng, Tong; Zhi-Jun, Zhang; Gui-Huan, He; Su-Hui, Huan

    1989-04-01

    The abnormity of the quality and quantity for erythrocytes is one of the important changes of blood disease. It shows the abnormal blood-making function of human body. Therefore, the study of the change of shape of erythrocytes is the indispensible and important basis of reference in the clinic, diagnose and research of blood disease. In this paper, a preliminary discussion is made on the acquisition of scanning stereographs for erythrocytes, the application of the theory of photographic measurement on the three dimensional space quantitative analysis of erythrocytes, drawings of isoline map and section map of various erythrocytes for normal persons, paroxysmal nocturanal hemoglobinuria (PNH) patients and aplastic anemia patients, study of the shape characteristics of normal erythrocytes and various abnormal erytnrocytes and the applications in clinic, diagnose and research. This research is a combination of microphotogrammetry and erythrocyte morphology. It is polssible to push fotward the study of erythrocyte morphology from LM, SEM to a higher stage of scanning electron micrographic photogrammetry(SEMP) for stereograpic observationand three diamensional quantitative analysis to explore a new path for the further study of the shape of erthrocytes.

  12. Three-dimensional features on oscillating microbubbles streaming flows

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  13. Quantitative Analysis of Three-Dimensional Human Mammary Epithelial Tissue Architecture Reveals a Role for Tenascin-C in Regulating c-Met Function

    PubMed Central

    Taraseviciute, Agne; Vincent, Benjamin T.; Schedin, Pepper; Jones, Peter Lloyd

    2010-01-01

    Remodeling of the stromal extracellular matrix and elevated expression of specific proto-oncogenes within the adjacent epithelium represent cardinal features of breast cancer, yet how these events become integrated is not fully understood. To address this question, we focused on tenascin-C (TN-C), a stromal extracellular matrix glycoprotein whose expression increases with disease severity. Initially, nonmalignant human mammary epithelial cells (MCF-10A) were cultured within a reconstituted basement membrane (BM) where they formed three-dimensional (3-D) polarized, growth-attenuated, multicellular acini, enveloped by a continuous endogenous BM. In the presence of TN-C, however, acini failed to generate a normal BM, and net epithelial cell proliferation increased. To quantify how TN-C alters 3-D tissue architecture and function, we developed a computational image analysis algorithm, which showed that although TN-C disrupted acinar surface structure, it had no effect on their volume. Thus, TN-C promoted epithelial cell proliferation leading to luminal filling, a process that we hypothesized involved c-met, a proto-oncogene amplified in breast tumors that promotes intraluminal filling. Indeed, TN-C increased epithelial c-met expression and promoted luminal filling, whereas blockade of c-met function reversed this phenotype, resulting in normal BM deposition, proper lumen formation, and decreased cell proliferation. Collectively, these studies, combining a novel quantitative image analysis tool with 3-D organotypic cultures, demonstrate that stromal changes associated with breast cancer can control proto-oncogene function. PMID:20042668

  14. Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration.

    PubMed

    Petroll, W M; Jester, J V; Cavanagh, H D

    1996-01-01

    A new depth encoding system (DES) is presented, which makes it possible to calculate, display, and record the z-axis position continuously during in vivo imaging using tandem scanning confocal microscopy (TSCM). In order to verify the accuracy of the DES for calculating the position of the focal plane in the cornea both in vitro and in vivo, we compared TSCM measurements of corneal thickness to measurements made using an ultrasonic pachymeter (UP, a standard clinical instrument) in both enucleated rabbit, cat, and human eyes (n = 15), and in both human patients (n = 7). Very close agreement was found between the UP and TSCM measurements in enucleated eyes; the mean percent difference was 0.50 +/- 2.58% (mean +/- SD, not significant). A significant correlation (R = 0.995, n = 15, p < 0.01) was found between UP and TSCM measurements. These results verify that the theoretical equation for calculating focal depth provided by the TSCM manufacturer is accurate for corneal imaging. Similarly, close agreement was found between the in vivo UP and TSCM measurements; the mean percent differences was 1.67 +/- 1.38% (not significant), confirming that z-axis drift can be minimized with proper applanation of the objective. These results confirm the accuracy of the DES for imaging of the cornea both ex vivo and in vivo. This system should be of great utility for applications where quantitation of the three-dimensional location of cellular structures is needed.

  15. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland

    2018-03-01

    Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.

  16. Quantitative structure-retention relationship studies for taxanes including epimers and isomeric metabolites in ultra fast liquid chromatography.

    PubMed

    Dong, Pei-Pei; Ge, Guang-Bo; Zhang, Yan-Yan; Ai, Chun-Zhi; Li, Guo-Hui; Zhu, Liang-Liang; Luan, Hong-Wei; Liu, Xing-Bao; Yang, Ling

    2009-10-16

    Seven pairs of epimers and one pair of isomeric metabolites of taxanes, each pair of which have similar structures but different retention behaviors, together with additional 13 taxanes with different substitutions were chosen to investigate the quantitative structure-retention relationship (QSRR) of taxanes in ultra fast liquid chromatography (UFLC). Monte Carlo variable selection (MCVS) method was adopted to choose descriptors. The selected four descriptors were used to build QSRR model with multi-linear regression (MLR) and artificial neural network (ANN) modeling techniques. Both linear and nonlinear models show good predictive ability, of which ANN model was better with the determination coefficient R(2) for training, validation and test set being 0.9892, 0.9747 and 0.9840, respectively. The results of 100 times' leave-12-out cross validation showed the robustness of this model. All the isomers can be correctly differentiated by this model. According to the selected descriptors, the three dimensional structural information was critical for recognition of epimers. Hydrophobic interaction was the uppermost factor for retention in UFLC. Molecules' polarizability and polarity properties were also closely correlated with retention behaviors. This QSRR model will be useful for separation and identification of taxanes including epimers and metabolites from botanical or biological samples.

  17. Quasi-three-dimensional particle imaging with digital holography.

    PubMed

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  18. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  19. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  20. Three-Dimensional, Inelastic Response of Single-Edge Notch Bend Specimens Subjected to Impact Loading

    DTIC Science & Technology

    1993-08-01

    measure the inherent fracture toughness of a material. A thor- ough understanding of the test specimen behavior is a prerequisite to the application of...measured material properties in structural applications . Three- dimensional dynamic analyses are performed for three different specimen configurations...derstanding of the test specimen behavior is a prerequisite to the application of measured ma- terial properties in structural applications . Three

  1. Homosexuality as a Discrete Class.

    PubMed

    Norris, Alyssa L; Marcus, David K; Green, Bradley A

    2015-12-01

    Previous research on the latent structure of sexual orientation has returned conflicting results, with some studies finding a dimensional structure (i.e., ranging quantitatively along a spectrum) and others a taxonic structure (i.e., categories of individuals with distinct orientations). The current study used a sample (N = 33,525) from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). A series of taxometric analyses were conducted using three indicators of sexual orientation: identity, behavior, and attraction. These analyses, performed separately for women and men, revealed low-base-rate same-sex-oriented taxa for men (base rate = 3.0%) and women (base rate = 2.7%). Generally, taxon membership conferred an increased risk for psychiatric and substance-use disorders. Although taxa were present for men and women, women demonstrated greater sexual fluidity, such that any level of same-sex sexuality conferred taxon membership for men but not for women. © The Author(s) 2015.

  2. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    PubMed

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  3. Vertical structure of medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol

    2015-11-01

    We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.

  4. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  5. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach

    PubMed Central

    Kubínová, Zuzana

    2014-01-01

    Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344

  6. Automated integration of lidar into the LANDFIRE product suite

    Treesearch

    Birgit Peterson; Kurtis J. Nelson; Carl Seielstad; Jason Stoker; W. Matt Jolly; Russell Parsons

    2015-01-01

    Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although...

  7. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  8. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  9. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  10. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  11. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  12. Hydroelastic behaviour of a structure exposed to an underwater explosion

    PubMed Central

    Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.

    2015-01-01

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585

  13. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  14. Reconstitution of hepatic tissue architectures from fetal liver cells obtained from a three-dimensional culture with a rotating wall vessel bioreactor.

    PubMed

    Ishikawa, Momotaro; Sekine, Keisuke; Okamura, Ai; Zheng, Yun-wen; Ueno, Yasuharu; Koike, Naoto; Tanaka, Junzo; Taniguchi, Hideki

    2011-06-01

    Reconstitution of tissue architecture in vitro is important because it enables researchers to investigate the interactions and mutual relationships between cells and cellular signals involved in the three-dimensional (3D) construction of tissues. To date, in vitro methods for producing tissues with highly ordered structure and high levels of function have met with limited success although a variety of 3D culture systems have been investigated. In this study, we reconstituted functional hepatic tissue including mature hepatocyte and blood vessel-like structures accompanied with bile duct-like structures from E15.5 fetal liver cells, which contained more hepatic stem/progenitor cells comparing with neonatal liver cells. The culture was performed in a simulated microgravity environment produced by a rotating wall vessel (RWV) bioreactor. The hepatocytes in the reconstituted 3D tissue were found to be capable of producing albumin and storing glycogen. Additionally, bile canaliculi between hepatocytes, characteristics of adult hepatocyte in vivo were also formed. Apart from this, bile duct structure secreting mucin was shown to form complicated tubular branches. Furthermore, gene expression analysis by semi-quantitative RT-PCR revealed the elevated levels of mature hepatocyte markers as well as genes with the hepatic function. With RWV culture system, we could produce functionally reconstituted liver tissue and this might be useful in pharmaceutical industry including drug screening and testing and other applications such as an alternative approach to experimental animals. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Verification of a three-dimensional viscous flow analysis for a single stage compressor

    NASA Astrophysics Data System (ADS)

    Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro

    1992-12-01

    A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.

  16. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.

  17. Three-dimensional hydrogen microscopy using a high-energy proton probe

    NASA Astrophysics Data System (ADS)

    Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.

    2003-01-01

    It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.

  18. Band-gap tuning and optical response of two-dimensional SixC1 -x : A first-principles real-space study of disordered two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit

    2017-08-01

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.

  19. A preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.; Pozzetti, G.

    2015-11-01

    In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.

  20. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.

    PubMed

    Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye

    2003-10-01

    A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.

  1. Three dimensional contact/impact methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less

  2. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  3. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  4. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.

    PubMed

    Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung

    2011-09-01

    Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.

  5. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  6. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  7. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  8. A new idea for broad band reflector and tunable multichannel filter of one dimensional symmetric photonic crystal with magnetized cold plasma defects

    NASA Astrophysics Data System (ADS)

    Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.

    2018-05-01

    The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.

  9. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  10. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification

    PubMed Central

    Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676

  11. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.

    PubMed

    Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.

  12. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei

    2016-03-28

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less

  13. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  14. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.; ...

    2015-10-01

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  15. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models.

    PubMed

    Mladenović, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-04-24

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including the following: (1) definition of optimized and validated structure-based three-dimensional (3-D) quantitative structure-activity relationships (QSAR) models derived from available cocrystallized inhibitor-MAO B complexes; (2) elaboration of SAR features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61 ) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rule assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSAR training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a result of rational SB/LB 3D QSAR design; therefore, D123 (IC 50 = 0.83 nM, K i = 0.25 nM) and D124 (IC 50 = 0.97 nM, K i = 0.29 nM) are potential lead candidates as anti-Parkinson's drugs.

  16. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    ERIC Educational Resources Information Center

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  17. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  18. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  19. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  20. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    NASA Astrophysics Data System (ADS)

    Lazarowitz, Reuven; Naim, Raphael

    2013-08-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular learning material in an expository mode (which use one- or two-dimensional cell structures as are presented in charts, textbooks and microscopic slides). The sample included 669, 9th-grade students from 25 classes who were taught by 22 Biology teachers. Students were randomly assigned to the three modes of instruction, and two tests in content knowledge in Biology were used. Data were treated with multiple analyses of variance. The results indicate that entry behavior in Biology was equal for all the study groups and types of schools. The "hands-on" learning group who build three-dimensional models through the learning process achieved significantly higher on academic achievements and on the high and low cognitive questions' levels than the other two groups. The study indicates the advantages students may have being actively engaged in the learning process through the "hands-on" mode of instruction/learning.

  1. Effects of B1 inhomogeneity correction for three-dimensional variable flip angle T1 measurements in hip dGEMRIC at 3 T and 1.5 T.

    PubMed

    Siversson, Carl; Chan, Jenny; Tiderius, Carl-Johan; Mamisch, Tallal Charles; Jellus, Vladimir; Svensson, Jonas; Kim, Young-Jo

    2012-06-01

    Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T. Copyright © 2011 Wiley-Liss, Inc.

  2. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Three-dimensional drift kinetic response of high-β plasmas in the DIII-D tokamak.

    PubMed

    Wang, Z R; Lanctot, M J; Liu, Y Q; Park, J-K; Menard, J E

    2015-04-10

    A quantitative interpretation of the experimentally measured high-pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon β limit, is achieved. The self-consistent inclusion of the drift kinetic effects in magnetohydrodynamic (MHD) modeling [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)] successfully resolves an outstanding issue of the ideal MHD model, which significantly overpredicts the plasma-induced field amplification near the no-wall limit, as compared to experiments. The model leads to quantitative agreement not only for the measured field amplitude and toroidal phase but also for the measured internal 3D displacement of the plasma. The results can be important to the prediction of the reliable plasma behavior in advanced fusion devices, such as ITER [K. Ikeda, Nucl. Fusion 47, S1 (2007)].

  4. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.

    PubMed

    Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A

    2012-05-01

    Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.

  5. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

    PubMed

    Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K

    2017-03-03

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6  cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

  6. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  7. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  8. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  9. Repeated-measure validation of craniofacial metrics from three-dimensional surface scans: application to medical genetics

    NASA Astrophysics Data System (ADS)

    Lauer, Eric A.; Corner, Brian D.; Li, Peng; Beecher, Robert M.; Deutsch, Curtis

    2002-03-01

    Traditionally, medical geneticists have employed visual inspection (anthroposcopy) to clinically evaluate dysmorphology. In the last 20 years, there has been an increasing trend towards quantitative assessment to render diagnosis of anomalies more objective and reliable. These methods have focused on direct anthropometry, using a combination of classical physical anthropology tools and new instruments tailor-made to describe craniofacial morphometry. These methods are painstaking and require that the patient remain still for extended periods of time. Most recently, semiautomated techniques (e.g., structured light scanning) have been developed to capture the geometry of the face in a matter of seconds. In this paper, we establish that direct anthropometry and structured light scanning yield reliable measurements, with remarkably high levels of inter-rater and intra-rater reliability, as well as validity (contrasting the two methods).

  10. Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures

    NASA Astrophysics Data System (ADS)

    Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.

    2015-07-01

    We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.

  11. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  12. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    PubMed

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  13. Quantitation of valve regurgitation severity by three-dimensional vena contracta area is superior to flow convergence method of quantitation on transesophageal echocardiography.

    PubMed

    Abudiab, Muaz M; Chao, Chieh-Ju; Liu, Shuang; Naqvi, Tasneem Z

    2017-07-01

    Quantitation of regurgitation severity using the proximal isovelocity acceleration (PISA) method to calculate effective regurgitant orifice (ERO) area has limitations. Measurement of three-dimensional (3D) vena contracta area (VCA) accurately grades mitral regurgitation (MR) severity on transthoracic echocardiography (TTE). We evaluated 3D VCA quantitation of regurgitant jet severity using 3D transesophageal echocardiography (TEE) in 110 native mitral, aortic, and tricuspid valves and six prosthetic valves in patients with at least mild valvular regurgitation. The ASE-recommended integrative method comprising semiquantitative and quantitative assessment of valvular regurgitation was used as a reference method, including ERO area by 2D PISA for assigning severity of regurgitation grade. Mean age was 62.2±14.4 years; 3D VCA quantitation was feasible in 91% regurgitant valves compared to 78% by the PISA method. When both methods were feasible and in the presence of a single regurgitant jet, 3D VCA and 2D PISA were similar in differentiating assigned severity (ANOVAP<.001). In valves with multiple jets, however, 3D VCA had a better correlation to assigned severity (ANOVAP<.0001). The agreement of 2D PISA and 3D VCA with the integrative method was 47% and 58% for moderate and 65% and 88% for severe regurgitation, respectively. Measurement of 3D VCA by TEE is superior to the 2D PISA method in determination of regurgitation severity in multiple native and prosthetic valves. © 2017, Wiley Periodicals, Inc.

  14. Eco-evo-devo in the Study of Adaptive Divergence: Examples from Threespine Stickleback (Gasterosteus aculeatus).

    PubMed

    Jamniczky, Heather A; Barry, Tegan N; Rogers, Sean M

    2015-07-01

    The tight fit between form and function in organisms suggests the influence of adaptive evolution in biomechanics; however, the prevalence of adaptive traits, the mechanisms by which they arise and the corresponding responses to selection are subjects of extensive debate. We used three-dimensional microcomputed tomography and geometric morphometrics to characterize the structure of phenotypic covariance within the G. aculeatus trophic apparatus and its supporting structures in wild and controlled crosses of fish from two different localities. Our results reveal that while the structure of phenotypic covariance is conserved in marine and freshwater forms, it may be disrupted in the progeny of artificial crosses or during rapid adaptive divergence events. We discuss these results within the context of integrating covariance structure with quantitative genetics, toward establishing predictive links between genes, development, biomechanics, and the environment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  16. Biological evaluation and 3D-QSAR studies of curcumin analogues as aldehyde dehydrogenase 1 inhibitors.

    PubMed

    Wang, Hui; Du, Zhiyun; Zhang, Changyuan; Tang, Zhikai; He, Yan; Zhang, Qiuyan; Zhao, Jun; Zheng, Xi

    2014-05-16

    Aldehyde dehydrogenase 1 (ALDH1) is reported as a biomarker for identifying some cancer stem cells, and down-regulation or inhibition of the enzyme can be effective in anti-drug resistance and a potent therapeutic for some tumours. In this paper, the inhibitory activity, mechanism mode, molecular docking and 3D-QSAR (three-dimensional quantitative structure activity relationship) of curcumin analogues (CAs) against ALDH1 were studied. Results demonstrated that curcumin and CAs possessed potent inhibitory activity against ALDH1, and the CAs compound with ortho di-hydroxyl groups showed the most potent inhibitory activity. This study indicates that CAs may represent a new class of ALDH1 inhibitor.

  17. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure–activity relationships

    PubMed Central

    Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B.

    2017-01-01

    We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure–activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds. PMID:28052025

  18. Hydroelastic behaviour of a structure exposed to an underwater explosion.

    PubMed

    Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M

    2015-01-28

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Towards effective interactive three-dimensional colour postprocessing

    NASA Technical Reports Server (NTRS)

    Bailey, B. C.; Hajjar, J. F.; Abel, J. F.

    1986-01-01

    Recommendations for the development of effective three-dimensional, graphical color postprocessing are made. First, the evaluation of large, complex numerical models demands that a postprocessor be highly interactive. A menu of available functions should be provided and these operations should be performed quickly so that a sense of continuity and spontaneity exists during the post-processing session. Second, an agenda for three-dimensional color postprocessing is proposed. A postprocessor must be versatile with respect to application and basic algorithms must be designed so that they are flexible. A complete selection of tools is necessary to allow arbitrary specification of views, extraction of qualitative information, and access to detailed quantitative and problem information. Finally, full use of advanced display hardware is necessary if interactivity is to be maximized and effective postprocessing of today's numerical simulations is to be achieved.

  20. Scattering calculation and image reconstruction using elevation-focused beams

    PubMed Central

    Duncan, David P.; Astheimer, Jeffrey P.; Waag, Robert C.

    2009-01-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering. PMID:19425653

  1. Scattering calculation and image reconstruction using elevation-focused beams.

    PubMed

    Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C

    2009-05-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.

  2. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  3. Femoral articular shape and geometry. A three-dimensional computerized analysis of the knee.

    PubMed

    Siu, D; Rudan, J; Wevers, H W; Griffiths, P

    1996-02-01

    An average, three-dimensional anatomic shape and geometry of the distal femur were generated from x-ray computed tomography data of five fresh asymptomatic cadaver knees using AutoCAD (AutoDesk, Sausalito, CA), a computer-aided design and drafting software. Each femur model was graphically repositioned to a standardized orientation using a series of alignment templates and scaled to a nominal size of 85 mm in mediolateral and 73 mm in anteroposterior dimensions. An average generic shape of the distal femur was synthesized by combining these pseudosolid models and reslicing the composite structure at different elevations using clipping and smoothing techniques in interactive computer graphics. The resulting distal femoral geometry was imported into a computer-aided manufacturing system, and anatomic prototypes of the distal femur were produced. Quantitative geometric analyses of the generic femur in the coronal and transverse planes revealed definite condylar camber (3 degrees-6 degrees) and toe-in (8 degrees-10 degrees) with an oblique patellofemoral groove (15 degrees) with respect to the mechanical axis of the femur. In the sagittal plane, each condyle could be approximated by three concatenated circular arcs (anterior, distal, and posterior) with slope continuity and a single arc for the patellofemoral groove. The results of this study may have important implications in future femoral prosthesis design and clinical applications.

  4. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  5. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering.

    PubMed

    Ji, Shuiwang

    2013-07-11

    The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.

  6. Quantitative analysis of three-dimensional biological cells using interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Wax, Adam

    2011-06-01

    Live biological cells are three-dimensional microscopic objects that constantly adjust their sizes, shapes and other biophysical features. Wide-field digital interferometry (WFDI) is a holographic technique that is able to record the complex wavefront of the light which has interacted with in-vitro cells in a single camera exposure, where no exogenous contrast agents are required. However, simple quasi-three-dimensional holographic visualization of the cell phase profiles need not be the end of the process. Quantitative analysis should permit extraction of numerical parameters which are useful for cytology or medical diagnosis. Using a transmission-mode setup, the phase profile represents the multiplication between the integral refractive index and the thickness of the sample. These coupled variables may not be distinct when acquiring the phase profiles of dynamic cells. Many morphological parameters which are useful for cell biologists are based on the cell thickness profile rather than on its phase profile. We first overview methods to decouple the cell thickness and its refractive index using the WFDI-based phase profile. Then, we present a whole-cell-imaging approach which is able to extract useful numerical parameters on the cells even in cases where decoupling of cell thickness and refractive index is not possible or desired.

  7. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes.

    PubMed

    Miller, M J; Maher, V M; McCormick, J J

    1992-11-01

    Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P < 0.01, T test, mean ratio of intensity > 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  9. Development of 3D microwave imaging technology for damage assessment of concrete bridge.

    DOT National Transportation Integrated Search

    2003-11-01

    An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...

  10. A Dimensionally Reduced Clustering Methodology for Heterogeneous Occupational Medicine Data Mining.

    PubMed

    Saâdaoui, Foued; Bertrand, Pierre R; Boudet, Gil; Rouffiac, Karine; Dutheil, Frédéric; Chamoux, Alain

    2015-10-01

    Clustering is a set of techniques of the statistical learning aimed at finding structures of heterogeneous partitions grouping homogenous data called clusters. There are several fields in which clustering was successfully applied, such as medicine, biology, finance, economics, etc. In this paper, we introduce the notion of clustering in multifactorial data analysis problems. A case study is conducted for an occupational medicine problem with the purpose of analyzing patterns in a population of 813 individuals. To reduce the data set dimensionality, we base our approach on the Principal Component Analysis (PCA), which is the statistical tool most commonly used in factorial analysis. However, the problems in nature, especially in medicine, are often based on heterogeneous-type qualitative-quantitative measurements, whereas PCA only processes quantitative ones. Besides, qualitative data are originally unobservable quantitative responses that are usually binary-coded. Hence, we propose a new set of strategies allowing to simultaneously handle quantitative and qualitative data. The principle of this approach is to perform a projection of the qualitative variables on the subspaces spanned by quantitative ones. Subsequently, an optimal model is allocated to the resulting PCA-regressed subspaces.

  11. Envelope molecular-orbital theory of extended systems. I. Electronic states of organic quasilinear nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Arce, J. C.; Perdomo-Ortiz, A.; Zambrano, M. L.; Mujica-Martínez, C.

    2011-03-01

    A conceptually appealing and computationally economical course-grained molecular-orbital (MO) theory for extended quasilinear molecular heterostructures is presented. The formalism, which is based on a straightforward adaptation, by including explicitly the vacuum, of the envelope-function approximation widely employed in solid-state physics leads to a mapping of the three-dimensional single-particle eigenvalue equations into simple one-dimensional hole and electron Schrödinger-like equations with piecewise-constant effective potentials and masses. The eigenfunctions of these equations are envelope MO's in which the short-wavelength oscillations present in the full MO's, associated with the atomistic details of the molecular potential, are smoothed out automatically. The approach is illustrated by calculating the envelope MO's of high-lying occupied and low-lying virtual π states in prototypical nanometric heterostructures constituted by oligomers of polyacetylene and polydiacetylene. Comparison with atomistic electronic-structure calculations reveals that the envelope-MO energies agree very well with the energies of the π MO's and that the envelope MO's describe precisely the long-wavelength variations of the π MO's. This envelope MO theory, which is generalizable to extended systems of any dimensionality, is seen to provide a useful tool for the qualitative interpretation and quantitative prediction of the single-particle quantum states in mesoscopic molecular structures and the design of nanometric molecular devices with tailored energy levels and wavefunctions.

  12. Photodeposition Method For Fabricating A Three-Dimensional, Patterned Polymer Microstructure

    DOEpatents

    Walt, David R.; Healey, Brian G.

    2001-03-13

    The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.

  13. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale.

    PubMed

    Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M

    2002-01-01

    A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.

  14. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.

    PubMed

    Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  16. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  17. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  18. Three-dimensional macro-structures of two-dimensional nanomaterials.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng

    2016-10-21

    If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.

  19. Applications to car bodies - Generalized layout design of three-dimensional shells

    NASA Technical Reports Server (NTRS)

    Fukushima, Junichi; Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    We shall describe applications of the homogenization method, formulated in Part 1, to design layout of car bodies represented by three-dimensional shell structures based on a multi-loading optimization.

  20. Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.

    PubMed

    Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin

    2010-03-10

    Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.

Top