Sample records for three-dimensional side load

  1. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  2. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  3. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  4. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  5. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  6. Effect of same-sided and cross-body load carriage on 3D back shape in young adults.

    PubMed

    O'Shea, C; Bettany-Saltikov, J A; Warren, J G

    2006-01-01

    Regular carriage of heavy loads such as backpacks, satchels and mailbags results in a variety of acute medical problems and increased potential for back injury. There is a paucity of information about the specific changes in back posture that occur in response to asymmetrical loading. The purpose of this study was to examine the changes in back shape that occurred in response to asymmetrical load carriage, either on one shoulder (same-side) or across the body (cross-body), in healthy young adults. A convenience sample of 21 physiotherapy students randomly performed three trials (unloaded, same-side loaded, cross-body loaded) in standing with a 15% body load. The Microscribe 3DX digitiser (Immersion Group Ltd) recorded the three dimensional coordinates of 15 Key anatomical landmarks on the back in the three conditions. A one-way ANOVA with repeated measures and post-hoc tests was implemented to highlight statistical differences in the data collected (p<0.05). Significant differences were found in the x, y and z coordinates of the anatomical landmarks in the upper back between unloaded and loaded conditions. Results demonstrated significantly less impact on spinal posture from cross-body loading as compared to same-sided loading. This study confirms that there are significant three-dimensional changes in back shape in response to asymmetrical loading. Further work is needed to evaluate the optimal carriage type and maximal body load that results in the least spinal impact and injury potential in young adults.

  7. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    ng, Ten-See

    2005-01-01

    Nozzle side loads are potentially detrimental to the integrity and life of almost all launch vehicles. the lack of a detailed prediction capability results in reducing life and increased weight for reusable nozzle systems. A clear understanding of the mechanism that contribute to side loads during engine startup, shutdown, and steady-state operations must be established. A CFD based predictive tool must be developed to aid the understanding of side load physics and development of future reusable engine.

  8. In situ three-dimensional reciprocal-space mapping during mechanical deformation.

    PubMed

    Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O

    2012-09-01

    Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.

  9. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  10. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  11. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.

  12. Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis.

    PubMed

    Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan

    2013-03-01

    The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  14. Three-dimensional quantification of orthodontic root resorption with time-lapsed imaging of micro-computed tomography in a rodent model.

    PubMed

    Yang, Chongshi; Zhang, Yuanyuan; Zhang, Yan; Fan, Yubo; Deng, Feng

    2015-01-01

    Despite various X-ray approaches have been widely used to monitor root resorption after orthodontic treatment, a non-invasive and accurate method is highly desirable for long-term follow up. The aim of this study was to build a non-invasive method to quantify longitudinal orthodontic root resorption with time-lapsed images of micro-computed tomography (micro-CT) in a rodent model. Twenty male Sprague Dawley (SD) rats (aged 6-8 weeks, weighing 180-220 g) were used in this study. A 25 g orthodontic force generated by nickel-titanium coil spring was applied to the right maxillary first molar for each rat, while contralateral first molar was severed as a control. Micro-CT scan was performed at day 0 (before orthodontic load) and days 3, 7, 14, and 28 after orthodontic load. Resorption of mesial root of maxillary first molars at bilateral sides was calculated from micro-CT images with registration algorithm via reconstruction, superimposition and partition operations. Obvious resorption of mesial root of maxillary first molar can be detected at day 14 and day 28 at orthodontic side. Most of the resorption occurred in the apical region at distal side and cervical region at mesiolingual side. Desirable development of molar root of rats was identified from day 0 to day 28 at control side. The development of root concentrated on apical region. This non-invasive 3D quantification method with registration algorithm can be used in longitudinal study of root resorption. Obvious root resorption in rat molar can be observed three-dimensionally at day 14 and day 28 after orthodontic load. This indicates that registration algorithm combined with time-lapsed images provides clinic potential application in detection and quantification of root contour.

  15. Three-dimensional finite-element analysis of chevron-notched fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.

  16. Numerical study on wave loads and motions of two ships advancing in waves by using three-dimensional translating-pulsating source

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Dong, Wen-Cai

    2013-08-01

    A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to measure the wave loads and the freemotions for a pair of side-byside arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numerical resonances and peak shift can be found in the 3DP predictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free surface and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two vessels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.

  17. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  18. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  19. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    PubMed

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  20. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    PubMed

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  1. [Analysis of the influence of lower premolar rotation on TMJ stress distribution by finite element method].

    PubMed

    Zhang, Yuan; Wang, Mei-qing; Ling, Wei

    2005-10-01

    To evaluate the resultant differences of stress distribution in bilateral condyle when occlusal loads were changed with teeth rotation. A three-dimensional FEA model containing human TMJ and left lower second premolar was developed using commercial FEA software ANSYS. Lower second premolar was applied with ICO occlusal loading in the load case 1. According to the same upper dentition in the load case 2, lower premolar was applied with occlusal loading when it was rotated 30 degree counter-clockwise in Frankfort horizontal plane level. In this two load cases,the different stress distributions of the condyle was investigated. The stress distribution of loading side condyle had changed abnormally when premolar rotation was performed. It had showed more disorderly than ICO loading in load case 1. In load case 1 the maximum main stress and Von Mises stress values increased from medial pole to lateral pole. In load case 2,the stress values mainly decreased from medial pole to lateral pole, but along the path there were some parts with values-increasing. The stress values of bilateral condyle in load case 2 were lower than that in load case 1, especially for the stress values of the opposite condyle. The stress distribution of loading side condyle got in disorder resulting from rotation of unilateral lower premolar.

  2. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  3. Unsteady Performance of Finite-Span Pitching Propulsors in Mixtures of Side-by-Side and In-Line Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2016-11-01

    Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.

  4. Three-Dimensional Nonlinear Finite Element Analysis and Microcomputed Tomography Evaluation of Microgap Formation in a Dental Implant Under Oblique Loading.

    PubMed

    Jörn, Daniela; Kohorst, Philipp; Besdo, Silke; Borchers, Lothar; Stiesch, Meike

    2016-01-01

    Since bacterial leakage along the implant-abutment interface may be responsible for peri-implant infections, a realistic estimation of the interface gap width during function is important for risk assessment. The purpose of this study was to compare two methods for investigating microgap formation in a loaded dental implant, namely, microcomputed tomography (micro-CT) and three-dimensional (3D) nonlinear finite element analysis (FEA); additionally, stresses to be expected during loading were also evaluated by FEA. An implant-abutment complex was inspected for microgaps between the abutment and implant in a micro-CT scanner under an oblique load of 200 N. A numerical model of the situation was constructed; boundary conditions and external load were defined according to the experiment. The model was refined stepwise until its load-displacement behavior corresponded sufficiently to data from previous load experiments. FEA of the final, validated model was used to determine microgap widths. These were compared with the widths as measured in micro-CT inspection. Finally, stress distributions were evaluated in selected regions. No microgaps wider than 13 μm could be detected by micro-CT for the loaded implant. FEA revealed gap widths up to 10 μm between the implant and abutment at the side of load application. Furthermore, FEA predicted plastic deformation in a limited area at the implant collar. FEA proved to be an adequate method for studying microgap formation in dental implant-abutment complexes. FEA is not limited in gap width resolution as are radiologic techniques and can also provide insight into stress distributions within the loaded complex.

  5. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  6. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    PubMed Central

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  7. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  8. A comparison of three methods to evaluate the position of an artificial ear on the deficient side of the face from a three-dimensional surface scan of patients with hemifacial microsomia.

    PubMed

    Coward, Trevor J; Watson, Roger M; Richards, Robin; Scott, Brendan J J

    2012-01-01

    Patients with hemifacial microsomia may have a missing ear on the deficient side of the face. The fabrication of an ear for such individuals usually has been accomplished by directly measuring the ear on the normal side to construct a prosthesis based on these dimensions, and the positioning has been, to a large extent, primarily operator-dependent. The aim of the present study was to compare three methods, developed from the identification of landmarks plotted on three-dimensional surface scans, to evaluate the position of an artificial ear on the deficient side of the face compared with the position of the natural ear on the normally developed side. Laser scans were undertaken of the faces of 14 subjects with hemifacial microsomia. Landmarks on the ear and face on the normal side were identified. Three methods of mirroring the normal ear on the deficient side of the face were investigated, which used either facial landmarks from the orbital area or a zero reference point generated from the intersection of three orthogonal planes on a frame of reference. To assess the methods, landmarks were identified on the ear situated on the normal side as well as on the face. These landmarks yielded paired dimensional measurements that could be compared between the normal and deficient sides. Mean differences and 95% confidence intervals were calculated. It was possible to mirror the normal ear image on to the deficient side of the face using all three methods. Generally only small differences between the dimensional measurements on the normal and deficient sides were observed. However, two-way analysis of variance revealed statistically significant differences between the three methods (P = .005). The method of mirroring using the outer canthi was found to result in the smallest dimensional differences between the anthropometric points on the ear and face between the normally developed and deficient sides. However, the effects of the deformity can result in limitations in relation to achieving a precise alignment of the ear to the facial tissues. This requires further study.

  9. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    NASA Astrophysics Data System (ADS)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  10. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects

    PubMed Central

    Akay, Canan; Yaluğ, Suat

    2015-01-01

    Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental implant, model 2 with 1 zygomatic implant and 2 dental implants, and model 3 with 2 zygomatic implants. Locator attachments were used as a superstructure. A 150-N load was applied 3 different ways. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis are expressed in MPa. Results In all loading conditions, model 3 (when compared models 1 and 2) showed the lowest maximum principal stress value. Model 3 is the most appropirate reconstruction in Aramany class IV maxillary defects. Two zygomatic implants can reduce the stresses in model 3. The distribution of stresses on prostheses were more rational with the help of zygoma implants, which can distribute the stresses on each part of the maxilla. Conclusions Aramany class IV obturator prosthesis placement of 2 zygomatic implants in each side of the maxilla is more advantageous than placement of dental implants. In the non-defective side, increasing the number of dental implants is not as suitable as zygomatic implants. PMID:25714086

  11. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  12. Three-dimensional kinetic and fluid dynamic modeling and three iterative algorithms for side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2017-11-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.

  13. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    PubMed

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  14. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  15. A lift-cancellation technique in linearized supersonic-wing theory

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1951-01-01

    A lift-cancellation technique is presented for determining load distributions on thin wings at supersonic speeds. The loading on a wing having a prescribed plan form is expressed as the loading of a known related wing (such as a two-dimensional or triangular wing) minus the loading of an appropriate cancellation wing. The lift-cancellation technique can be used to find the loading on a large variety of wings. Applications to swept wings having curvilinear plan forms and to wings having reentrant side edges are indicated.

  16. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    NASA Technical Reports Server (NTRS)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  17. Development and Assessment of Altitude Adjustable Convergent Divergent Nozzles Using Passive Flow Control

    NASA Astrophysics Data System (ADS)

    Mandour Eldeeb, Mohamed

    The backward facing steps nozzle (BFSN) is a new developed flow adjustable exit area nozzle. It consists of two parts, the first is a base nozzle with small area ratio and the second part is a nozzle extension with surface consists of backward facing steps. The steps number and heights are carefully chosen to produce controlled flow separation at steps edges that adjust the nozzle exit area at all altitudes (pressure ratios). The BFSN performance parameters are assessed numerically in terms of thrust and side loads against the dual-bell nozzle with the same pressure ratios and cross sectional areas. Cold flow inside the planar BFSN and planar DBN are simulated using three-dimensional turbulent Navier-Stoke equations solver at different pressure ratios. The pressure distribution over the upper and the lower nozzles walls show symmetrical flow separation location inside the BFSN and an asymmetrical flow separation location inside the DBN at same vertical plane. The side loads are calculated by integrate the pressure over the nozzles walls at different pressure ratios for both nozzles. Time dependent solution for the DBN and the BFSN are obtained by solving two-dimensional turbulent flow. The side loads over the upper and lower nozzles walls are plotted against the flow time. The BFSN side loads history shows a small values of fluctuated side loads compared with the DBN which shows a high values with high fluctuations. Hot flow 3-D numerical solutions inside the axi-symmetric BFSN and DBN are obtained at different pressure ratios and compared to assess the BFSN performance against the DBN. Pressure distributions over the nozzles walls at different circumferential angels are plotted for both nozzles. The results show that the flow separation location is axi-symmetric inside the BFSN with symmetrical pressure distributions over the nozzle circumference at different pressure ratios. While the DBN results show an asymmetrical flow separation locations over the nozzle circumference at all pressure ratios.The results show that the side loads in the BFSN is 0.01%-0.6% of its value in the DBN for same pressure ratio. For further confirmation of the axi-symmetric nature of the flow in the BFSN, 2-D axi-symmetric solutions are obtained at same pressure ratios and boundary conditions. The flow parameters at the nozzle exit are calculated the 3-D and the 2-D solutions and compared to each other. The maximum difference between the 3-D and the 2-D solutions is less than 1%. Parametric studies are carried out with number of the backward facing steps varied from two to forty. The results show that as the number of backward facing steps increase, the nozzle performance in terms of thrust approach the DBN performance. The BFSN with two and six steps are simulated for pressure ratios range from 148 to 1500 and compared with the DBN and a conventional bell nozzle. Expandable BFSN study is carried out on the BFSN with two steps where the nozzle operation is divided into three modes related to the operating altitude (PR). Backward facing steps concept is applied to a full scale conventional bell nozzle by adding two backward facing steps at the end of the nozzle increasing its expansion area results in 1.8% increasing in its performance in terms of thrust coefficient at high altitudes.

  18. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Three-dimensional computational aerodynamics in the 1980's

    NASA Technical Reports Server (NTRS)

    Lomax, H.

    1978-01-01

    The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.

  20. Water Quality Performance of Three Side-by-Side Permeable Pavement Surface Materials: Three Year Update

    EPA Science Inventory

    Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...

  1. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  2. Biomechanical evaluation of various suture configurations in side-to-side tenorrhaphy.

    PubMed

    Wagner, Emilio; Ortiz, Cristian; Wagner, Pablo; Guzman, Rodrigo; Ahumada, Ximena; Maffulli, Nicola

    2014-02-05

    Side-to-side tenorrhaphy is increasingly used, but its mechanical performance has not been studied. Two porcine flexor digitorum tendon segments of equal length (8 cm) and thickness (1 cm) were placed side by side. Eight tenorrhaphies (involving sixteen tendons) were performed with each of four suture techniques (running locked, simple eight, vertical mattress, and pulley suture). The resulting constructs underwent cyclic loading on a tensile testing machine, followed by monotonically increasing tensile load if failure during cyclic loading did not occur. Clamps secured the tendons on each side of the repair, and specimens were mounted vertically. Cyclic loading varied between 15 N and 35 N, with a distension rate of 1 mm/sec. Cyclic loading strength was determined by applying a force of 70 N. The cause of failure and tendon distension during loading were recorded. All failures occurred in the monotonic loading phase and resulted from tendon stripping. No suture or knot failure was observed. The mean loads resisted by the configurations ranged from 138 to 398 N. The mean load to failure, maximum load resisted prior to 1 cm of distension, and load resisted at 1 cm of distension were significantly lower for the vertical mattress suture group than for any of the other three groups (p < 0.031). All four groups sustained loads well above the physiologic loads expected to occur in tendons in the foot and ankle (e.g., in tendon transfer for tibialis posterior tendon insufficiency). None of the four side-to-side configurations distended appreciably during the cyclic loading phase. The vertical mattress suture configuration appeared to be weaker than the other configurations. For surgeons who advocate immediate loading or motion of a side-to-side tendon repair, a pulley, running locked, or simple eight suture technique appears to provide a larger safety margin compared with a vertical mattress suture technique.

  3. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering

    PubMed Central

    Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.

    2009-01-01

    The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248

  4. Control of acoustic absorption in one-dimensional scattering by resonant scatterers

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.

    2015-12-01

    We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.

  5. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  6. Three-dimensional fracture instability of a displacement-weakening planar interface under locally peaked nonuniform loading

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2018-06-01

    We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.

  7. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  8. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  9. The use of 3d scanner for testing changes in shape of human limbs under the influence of external mechanical load

    NASA Astrophysics Data System (ADS)

    Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.

    2017-10-01

    Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.

  10. Occupant dynamics in rollover crashes: influence of roof deformation and seat belt performance on probable spinal column injury.

    PubMed

    Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S

    2007-11-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.

  11. Occupant Dynamics in Rollover Crashes: Influence of Roof Deformation and Seat Belt Performance on Probable Spinal Column Injury

    PubMed Central

    Cochran, John E.; King, Dottie; Burke, Donald S.

    2007-01-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975

  12. Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures.

    PubMed

    Tanino, Fuminori; Hayakawa, Iwao; Hirano, Shigezo; Minakuchi, Shunsuke

    2007-01-01

    The purpose of this study was to examine the effect of stress-breaking attachments at the connections between maxillary palateless overdentures and implants. Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two-implant models (in the canine tooth positions on both sides) and four-implant models (in the canine and second premolar tooth positions on both sides) were examined. Stress-breaking material connecting the implants and denture was included around each abutment. Axial loads of 100 N were applied to the occlusal surface at the left first molar tooth positions. In each model, the influence of the stress-breaking attachments was compared by changing the elastic modulus from 1 to 3,000 MPa and the thickness of the stress-breaking material from 1 to 3 mm. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were calculated. In all models, maximum stress at the implant-bone interface with implants located in the canine tooth position was generated at the peri-implant bone on the loading side. As the elastic modulus of the stress-breaking materials increased, the stress increased at the implant-bone interface and decreased at the cortical bone surface. Moreover, stress at the implant-bone interface with 3-mm-thick stress-breaking material was smaller than that with 1-mm-thick material. Within the limitations of this experiment, stress generated at the implant-bone interface could be controlled by altering the elastic modulus and thickness of the stress-breaking materials.

  13. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  14. Development of a finite element based delamination analysis for laminates subject to extension, bending, and torsion

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1989-01-01

    Delamination is a common failure mode of laminated composite materials. This type of failure frequently occurs at the free edges of laminates where singular interlaminar stresses are developed due to the difference in Poisson's ratios between adjacent plies. Typically the delaminations develop between 90 degree plies and adjacent angle plies. Edge delamination has been studied by several investigators using a variety of techniques. Recently, Chan and Ochoa applied the quasi-three-dimensional finite element model to the analysis of a laminate subject to bending, extension, and torsion. This problem is of particular significance relative to the structural integrity of composite helicopter rotors. The task undertaken was to incorporate Chan and Ochoa's formulation into a Raju Q3DG program. The resulting program is capable of modeling extension, bending, and torsional mechanical loadings as well as thermal and hygroscopic loadings. The addition of the torsional and bending loading capability will provide the capability to perform a delamination analysis of a general unsymmetric laminate containing four cracks, each of a different length. The solutions obtained using this program are evaluated by comparing them with solutions from a full three-dimensional finite element solution. This comparison facilitates the assessment of three dimensional affects such as the warping constraint imposed by the load frame grips. It wlso facilitates the evaluation of the external load representation employed in the Q3D formulation. Finally, strain energy release rates computed from the three-dimensional results are compared with those predicted using the quasi-three-dimensional formulation.

  15. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  16. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  17. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure.

    PubMed

    Gajda, Steven; Chen, Jie

    2012-03-01

    To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.

  18. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  19. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. II - Shell and three-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Kennedy, Ronald; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.

  20. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.

    PubMed

    Ma, Lin; Weisman, Catherine; Baltean-Carlès, Diana; Delbende, Ivan; Bauwens, Luc

    2015-08-01

    The influence of a resistive load on the starting performance of a standing-wave thermoacoustic engine is investigated numerically. The model used is based upon a low Mach number assumption; it couples the two-dimensional nonlinear flow and heat exchange within the thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean pressure, and prescribed load, results from a simulation in the time domain include the evolution of the acoustic pressure in the active cell. That signal is then analyzed, extracting growth rate and frequency of the dominant modes. For a given load, the temperature difference between the two sides is then varied; the most unstable mode is identified and so is the corresponding critical temperature ratio between heater and cooler. Next, varying the load, a stability diagram is obtained, potentially with a predictive value. Results are compared with those derived from Rott's linear theory as well as with experimental results found in the literature.

  1. Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer

    NASA Astrophysics Data System (ADS)

    Wang, Chunqi; Huang, Lixi

    2008-06-01

    When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.

  2. A solution procedure for behavior of thick plates on a nonlinear foundation and postbuckling behavior of long plates

    NASA Technical Reports Server (NTRS)

    Stein, M.; Stein, P. A.

    1978-01-01

    Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.

  3. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  4. Applications to car bodies - Generalized layout design of three-dimensional shells

    NASA Technical Reports Server (NTRS)

    Fukushima, Junichi; Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    We shall describe applications of the homogenization method, formulated in Part 1, to design layout of car bodies represented by three-dimensional shell structures based on a multi-loading optimization.

  5. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  6. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    PubMed

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  7. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.

    PubMed

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-11-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  8. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study

    PubMed Central

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-01-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. PMID:21848602

  9. Load reduction of a monopile wind turbine tower using optimal tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Zhao, Xiaowei; Zhao, Shi

    2017-07-01

    We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method, we derive a finite-dimensional state-space model Σd from an infinite-dimensional model Σ of a monopile wind turbine tower stabilised by a TMD located in the nacelle. Σ and Σd can be used to represent the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast and accurate simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show that Σd agrees very well with the FAST (fatigue, aerodynamics, structures and turbulence) simulation of the NREL 5-MW wind turbine model. We optimise the parameters of the TMD by minimising the frequency-limited ?-norm of the transfer function matrix of Σd which has input of force and torque acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described by partial differential equations.

  10. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    PubMed

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). There was no statistically significant difference in the wound area of front torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc ( F =0.33, P >0.05). The wound area of side torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (169±88), (150±80), and (169±86) cm(2,) respectively. There was no statistically significant difference in the wound area of side torso of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of side torso of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). (3) The time for getting information of wounds of patients by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (77±14), (10±3), and (9±3) s, respectively. The time for getting information of wounds of patients by transparency tracing method was longer than that by NIH Image J method and three dimensional human body scanning system BurnCalc (with P values below 0.05). The time for getting information of wounds of patients by three dimensional human body scanning system BurnCalc was close to that by NIH Image J method ( P >0.05). Conclusions: The three dimensional human body scanning system BurnCalc is stable and can accurately evaluate the wound area on limbs and torso of burn patients.

  11. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure

    PubMed Central

    Gajda, Steven; Chen, Jie

    2014-01-01

    Objective To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. Materials and Methods An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. Results The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. Conclusions The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation. PMID:21879793

  12. [Stress distribution in press-fit orthodontic microimplant bone interface].

    PubMed

    Wu, Jian-chao; Huang, Ji-na; Zhao, Shi-fang; Xu, Xue-jun

    2006-12-01

    The goal of this study is to analyse the stress distribution in the press-fit microimplant-bone interface and its indications for immediate loading of orthodontic microimplant. Three-dimensional finite element models were created of a 20 mm section of posterior mandible simplified in isosceles trapezoid shape, 30 mm in height, 10mm in upper side width, 14 mm in lower side width,with a single microimplant, 1.2 mm in diameter, 6 mm in length embedded in the bone. The cortical bone thickness was assumed as 1.6 mm. Cortical and cancellous bone were modeled as transversely isotropic and linearly elastic materials. Titanium was modeled as isotropic and linearly elastic material. Perfect bonding was assumed at microimplant- bone interfaces. ANSYS 9.0 finite element analysis software was used to generate the simplified finite element models of the local mandible-implant complex. 0 mm, 0.05 mm and 0.1 mm press-fit were arbitrarily set to the implant-bone interface to mimic the situation of immediate placement of microimplant. Stresses in the microimplant-bone interface were calculated under these "press-fit". Stresses distributed mainly in the cortical bone interface. At Omm press-fit, the stress was 0 MPa. For 0.05mm press-fit, the stress was 1648 MPa in mesio-distal direction, 1782MPa in occluso-gingival direction;and for 0.1 mm, it reached 2012MPa in mesio-distal direction, 2110MPa in occluso-gingival direction. As the "press-fit" increased, the stresses increased accordingly. Values of initial stress in the microimplant-bone interface due to press-fit generated by immediately placed microimplant were very high in these limited and simplified three dimensional finite element models. It reminded us that the initial stress be taken into consideration when immediate loading of the microimplant is planned. Supported by Research Fund of Health Bureau of Zhejiang Province (2005B104).

  13. The classification of frontal sinus pneumatization patterns by CT-based volumetry.

    PubMed

    Yüksel Aslier, Nesibe Gül; Karabay, Nuri; Zeybek, Gülşah; Keskinoğlu, Pembe; Kiray, Amaç; Sütay, Semih; Ecevit, Mustafa Cenk

    2016-10-01

    We aimed to define the classification of frontal sinus pneumatization patterns according to three-dimensional volume measurements. Datasets of 148 sides of 74 dry skulls were generated by the computerized tomography-based volumetry to measure frontal sinus volumes. The cutoff points for frontal sinus hypoplasia and hyperplasia were tested by ROC curve analysis and the validity of the diagnostic points was measured. The overall frequencies were 4.1, 14.2, 37.2 and 44.5 % for frontal sinus aplasia, hypoplasia, medium size and hyperplasia, respectively. The aplasia was bilateral in all three skulls. Hypoplasia was seen 76 % at the right side and hyperplasia was seen 56 % at the left side. The cutoff points for diagnosing frontal sinus hypoplasia and hyperplasia were '1131.25 mm(3)' (95.2 % sensitivity and 100 % specificity) and '3328.50 mm(3)' (88 % sensitivity and 86 % specificity), respectively. The findings provided in the present study, which define frontal sinus pneumatization patterns by CT-based volumetry, proved that two opposite sides of the frontal sinuses are asymmetric and three-dimensional classification should be developed by CT-based volumetry, because two-dimensional evaluations lack depth measurement.

  14. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

    PubMed

    Cho, Sung-Kun; Lee, Ho-Hoon

    2002-04-01

    In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

  15. Numerical prediction of the energy efficiency of the three-dimensional fish school using the discretized Adomian decomposition method

    NASA Astrophysics Data System (ADS)

    Lin, Yinwei

    2018-06-01

    A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.

  16. Assessment of Normal Eyeball Protrusion Using Computed Tomographic Imaging and Three-Dimensional Reconstruction in Korean Adults.

    PubMed

    Shin, Kang-Jae; Gil, Young-Chun; Lee, Shin-Hyo; Kim, Jeong-Nam; Yoo, Ja-Young; Kim, Soon-Heum; Choi, Hyun-Gon; Shin, Hyun Jin; Koh, Ki-Seok; Song, Wu-Chul

    2017-01-01

    The aim of the present study was to assess normal eyeball protrusion from the orbital rim using two- and three-dimensional images and demonstrate the better suitability of CT images for assessment of exophthalmos. The facial computed tomographic (CT) images of Korean adults were acquired in sagittal and transverse views. The CT images were used in reconstructing three-dimensional volume of faces using computer software. The protrusion distances from orbital rims and the diameters of eyeballs were measured in the two views of the CT image and three-dimensional volume of the face. Relative exophthalmometry was calculated by the difference in protrusion distance between the right and left sides. The eyeball protrusion was 4.9 and 12.5 mm in sagittal and transverse views, respectively. The protrusion distances were 2.9 mm in the three-dimensional volume of face. There were no significant differences between right and left sides in the degree of protrusion, and the difference was within 2 mm in more than 90% of the subjects. The results of the present study will provide reliable criteria for precise diagnosis and postoperative monitoring using CT imaging of diseases such as thyroid-associated ophthalmopathy and orbital tumors.

  17. 49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...

  18. 49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...

  19. 49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...

  20. 49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...

  1. 49 CFR 393.132 - What are the rules for securing flattened or crushed vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is prohibited except that such webbing may be used to connect wire rope or chain to anchor points on... or comparable means on four sides which extend to the full height of the load and which block against... comparable means on three sides which extend to the full height of the load and which block against movement...

  2. High Capacity Cathode Materials for Next Generation Energy Storage

    NASA Astrophysics Data System (ADS)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of 969 mAh g-1 normalized by the entire electrode with a 90% sulfur loading. In the third and final part of my dissertation, we investigate the usage of catalysts for both Li-Air, and Li-S batteries. We demonstrate how different noble metal configurations are optimal for Li-Air batteries, showcase how different metals effect the sulfur reduction reaction, and how both Pt and Mn increase the capacity of Li-S battery by interacting with the sulfur redox reactions intermediate species.

  3. Gait profile score and movement analysis profile in patients with Parkinson's disease during concurrent cognitive load

    PubMed Central

    Speciali, Danielli S.; Oliveira, Elaine M.; Cardoso, Jefferson R.; Correa, João C. F.; Baker, Richard; Lucareli, Paulo R. G.

    2014-01-01

    Background: Gait disorders are common in individuals with Parkinson's Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (P<0.05) and Gait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (P<0.05) in the PD group. An interaction between task and group was observed for GPS (P<0.01) for the right side (Cohen's ¯d=0.99), left side (Cohen's ¯d=0.91), and overall (Cohen's ¯d=0.88). No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group. Conclusions: The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD. PMID:25054382

  4. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.

  5. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.

    PubMed

    Dai, Boyi; Garrett, William E; Gross, Michael T; Padua, Darin A; Queen, Robin M; Yu, Bing

    2015-02-01

    Anterior cruciate ligament injuries (ACL) commonly occur during jump landing and cutting tasks. Attempts to land softly and land with greater knee flexion are associated with decreased ACL loading. However, their effects on performance are unclear. Attempts to land softly will decrease peak posterior ground-reaction force (PPGRF) and knee extension moment at PPGRF compared with a natural landing during stop-jump and side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact will increase knee flexion at PPGRF compared with a natural landing during both tasks. In addition, both landing techniques will increase stance time and lower extremity mechanical work as well as decrease jump height and movement speed compared with a natural landing during both tasks. Controlled laboratory study. A total of 18 male and 18 female recreational athletes participated in the study. Three-dimensional kinematic and kinetic data were collected during stop-jump and side-cutting tasks under 3 conditions: natural landing, soft landing, and landing with greater knee flexion at initial ground contact. Attempts to land softly decreased PPGRF and knee extension moment at PPGRF compared with a natural landing during stop-jump tasks. Attempts to land softly decreased PPGRF compared with a natural landing during side-cutting tasks. Attempts to land with greater knee flexion at initial ground contact increased knee flexion angle at PPGRF compared with a natural landing during both stop-jump and side-cutting tasks. Attempts to land softly and land with greater knee flexion at initial ground contact increased stance time and lower extremity mechanical work, as well as decreased jump height and movement speed during both stop-jump and side-cutting tasks. Although landing softly and landing with greater knee flexion at initial ground contact may reduce ACL loading during stop-jump and side-cutting tasks, the performance of these tasks decreased, as indicated by increased stance time and mechanical work as well as decreased jump height and movement speed. Training effects tested in laboratory environments with the focus on reducing ACL loading may be reduced in actual competition environments when the focus is on athlete performance. The effects of training programs for ACL injury prevention on lower extremity biomechanics in athletic tasks may need to be evaluated in laboratories as well as in actual competitions. © 2014 The Author(s).

  6. [Three-dimensional finite element analysis on cell culture membrane under mechanical load].

    PubMed

    Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai

    2002-01-01

    A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.

  7. Combined Loadings and Cross-Dimensional Loadings Timeliness of Presentation of Financial Statements of Local Government

    NASA Astrophysics Data System (ADS)

    Muda, I.; Dharsuky, A.; Siregar, H. S.; Sadalia, I.

    2017-03-01

    This study examines the pattern of readiness dimensional accuracy of financial statements of local government in North Sumatra with a routine pattern of two (2) months after the fiscal year ends and patterns of at least 3 (three) months after the fiscal year ends. This type of research is explanatory survey with quantitative methods. The population and the sample used is of local government officials serving local government financial reports. Combined Analysis And Cross-Loadings Loadings are used with statistical tools WarpPLS. The results showed that there was a pattern that varies above dimensional accuracy of the financial statements of local government in North Sumatra.

  8. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solversmore » that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.« less

  9. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi

    2015-09-02

    This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared tomore » finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.« less

  10. Observations of two-dimensional magnetic field evolution in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Shpitalnik, R.; Weingarten, A.; Gomberoff, K.; Krasik, Ya.; Maron, Y.

    1998-03-01

    The time dependent magnetic field distribution was studied in a coaxial 100-ns positive-polarity Plasma Opening Switch (POS) by observing the Zeeman effect in ionic line emission. Measurements local in three dimensions are obtained by doping the plasma using laser evaporation techniques. Fast magnetic field penetration with a relatively sharp magnetic field front (⩽1 cm) is observed at the early stages of the pulse (t≲25). Later in the pulse, the magnetic field is observed at the load-side edge of the plasma, leaving "islands" of low magnetic field at the plasma center that last for about 10 ns. The two-dimensional (2-D) structure of the magnetic field in the r,z plane is compared to the results of an analytical model based on electron-magneto-hydrodynamics, that utilizes the measured 2-D plasma density distribution and assumes fast magnetic field penetration along both POS electrodes. The model results provide quantitative explanation for the magnetic field evolution observed.

  11. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    PubMed

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  12. Three-dimensional dynamics of scientific balloon systems in response to sudden gust loadings. [including a computer program user manual

    NASA Technical Reports Server (NTRS)

    Dorsey, D. R., Jr.

    1975-01-01

    A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.

  13. Exploratory Investigation of Aerodynamic Characteristics of Helicopter Tail Boom Cross-Section Models with Passive Venting

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Kelley, Henry L.

    2000-01-01

    Two large-scale, two-dimensional helicopter tail boom models were used to determine the effects of passive venting on boom down loads and side forces in hovering crosswind conditions. The models were oval shaped and trapezoidal shaped. Completely porous and solid configurations, partial venting in various symmetric and asymmetric configurations, and strakes were tested. Calculations were made to evaluate the trends of venting and strakes on power required when applied to a UH-60 class helicopter. Compared with the UH-60 baseline, passive venting reduced side force but increased down load at flow conditions representing right sideward flight. Selective asymmetric venting resulted in side force benefits close to the fully porous case. Calculated trends on the effects of venting on power required indicated that the high asymmetric oval configuration was the most effective venting configuration for side force reduction, and the high asymmetric with a single strake was the most effective for overall power reduction. Also, curves of side force versus flow angle were noticeable smoother for the vented configurations compared with the solid baseline configuration; this indicated a potential for smoother flight in low-speed crosswind conditions.

  14. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  15. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  16. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  17. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    DOE PAGES

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  18. An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    PubMed Central

    Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.

    2010-01-01

    Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699

  19. On the three-quarter view advantage of familiar object recognition.

    PubMed

    Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko

    2016-11-01

    A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.

  20. Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads

    NASA Technical Reports Server (NTRS)

    Murri, G. B.; Guynn, E. G.

    1986-01-01

    A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).

  1. Three dimensional modeling of rigid pavement : executive summary, February 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  2. Three-dimensional modeling of rigid pavement : final report, September 1995.

    DOT National Transportation Integrated Search

    1995-02-17

    A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...

  3. Effect of therapeutic insoles on the medial longitudinal arch in patients with flatfoot deformity: a three-dimensional loading computed tomography study.

    PubMed

    Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu

    2014-12-01

    Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone thicknesses and implant designs are required to provide a better understanding of the biomechanics of zirconia implants.

  5. Three-dimensional friction measurement during hip simulation

    PubMed Central

    Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J. Philippe

    2017-01-01

    Objectives Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. Materials and methods A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). Results A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. Conclusions This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization. PMID:28886102

  6. Three-dimensional friction measurement during hip simulation.

    PubMed

    Sonntag, Robert; Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J Philippe

    2017-01-01

    Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  7. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    DTIC Science & Technology

    2006-12-01

    initial activity after 10 days at 24°C. The ability to generate three- dimensional structures with enhanced loading capacity for biosensing molecules...dimensional structures for biosensors (Charles et al. 2004). Silicon samples that had been washed but not activated with APTS did not retain any enzyme...preparation. The use of silica particles to build a 3-dimensional structure not only provides an increased capacity for the immobilization of β

  8. Numerical simulation of steady state three-dimensional groundwater flow near lakes

    USGS Publications Warehouse

    Winter, Thomas C.

    1978-01-01

    Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.

  9. Cognitive Load and Attentional Demands during Objects' Position Change in Real and Digital Environments

    ERIC Educational Resources Information Center

    Zacharis, Georgios K.; Mikropoulos, Tassos Anastasios; Kalyvioti, Katerina

    2016-01-01

    Studies showed that two-dimensional (2D) and three-dimensional (3D) educational content contributes to learning. Although there were many studies with 3D stereoscopic learning environments, only a few studies reported on the differences between real, 2D, and 3D scenes, as far as cognitive load and attentional demands were concerned. We used…

  10. A unified theory for laminated plates

    NASA Astrophysics Data System (ADS)

    Guiamatsia Tafeuvoukeng, Irene

    A literature survey on plate and beam theories show how the advent of the finite element method and the variational method circa 1940 have been a great stimulant for the research in this field. The initial thin plate formulation has been incrementally expanded to treat the isotropic thick plate, the anisotropic single layer, and then laminated plates. It appears however that current formulations still fall into one of two categories: (1) The formulation is tailored for a specific laminate and/or loading case; (2) or the formulation is too complicated to be of practical relevance. In this work a new unifying approach to laminated plate formulation is presented. All laminated plates, including sandwich panels, subjected to any surface load and with any boundary conditions are treated within a single model. In addition, the fundamental behavior of the plate as a two-dimensional structural element is explained. The novel idea is the introduction of fundamental state solutions, which are analytical far field stress and strain solutions of the laminated plate subjected to a set of hierarchical primary loads, the fundamental loads. These loads are carefully selected to form a basis of the load space, and corresponding solutions are superposed to obtain extremely accurate predictions of the three dimensional solution. six,y,z =aklx,y sikl z where i = 1,..., 6; 1=1,...,l max is a substate of the kth fundamental state k=1,2,3,... Typically, a fundamental state solution is expressed as a through-thickness function (z), while the amplitudes of each fundamental load are found from two dimensional finite element solution as a function of in-plane coordinates (x,y). Three major contributions are produced in this work: (1) A complete calibration of the plate as a two-dimensional structure is performed with pure bending and constant shear fundamental states. (2) There are four independent ways to apply a constant shear resultant on a plate, as opposed to one for a beam. This makes it impossible to define a unique 2 x 2 transverse shear stiffness matrix. Therefore the traditional problem of the shear correction factor loses all relevance. It is however shown that an explicit transverse constitutive relation can be obtained for isotropic-layered laminates or single-layers. (3) Higher accuracy, three-dimensional solutions are obtained using a two-dimensional finite element model with a complexity level (degrees of freedom) similar to the Reissner-Mindlin plate. The proof of concept is realized using Pagano solution for rectangular plates under sinusoidal load, for a sandwich panel. Additional comparisons are also performed for four and six-layer symmetric and antisymmetric laminates, between the new plate theory results and full three-dimensional finite element solutions.

  11. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  12. Ground reaction forces on stairs. Part II: knee implant patients versus normals.

    PubMed

    Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar

    2007-06-01

    The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.

  13. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  14. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  15. A spatial model of wind shear and turbulence for flight simulation. Ph.D. Thesis - Colorado State Univ.

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    A three dimensional model which combines measurements of wind shear in the real atmosphere with three dimensional Monte Carlo simulated turbulence was developed. The wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated.

  16. [Stress analysis of the mandible by 3D FEA in normal human being under three loading conditions].

    PubMed

    Sun, Jian; Zhang, Fu-qiang; Wang, Dong-wei; Yu, Jia; Wang, Cheng-tao

    2004-02-01

    The condition and character of stress distribution in the mandibular in normal human being during centric, protrusive, laterotrusive occlusion were analysed. The three-dimensional finite element model of the mandibular was developed by helica CT scanning and CAD/CAM software, and three-dimensional finite element stress analysis was done by ANSYS software. Three-dimensional finite element model of the mandibular was generated. Under these three occlusal conditions, the stress of various regions in the mandible were distributed unequally, and the stress feature was different;while the stress of corresponding region in bilateral mandibular was in symmetric distribution. The stress value of condyle neck, the posterior surface of coronoid process and mandibular angle were high. The material properties of mandible were closely correlated to the value of stress. Stress distribution were similar according to the three different loading patterns, but had different effects on TMJ joint. The concentrated areas of stress were in the condyle neck, the posterior surface of coronoid process and mandibular angle.

  17. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  18. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skal, Asya S.

    1996-08-01

    A new definition of three-dimensional conductivity backbone, obtained from a distribution function of Joule heat and the Hall coefficient is introduced. The fractal dimension d fB = d - ( {g}/{v}) = 2.25 of conductivity backbone for both sides of the threshold is obtained from a critical exponent of the Hall coefficient g = 0.6. This allows one to construct, below the threshold, a new order parameter of metal-conductor transition—the two-component infinite conductivity back-bone and tested scaling relation, proposed by Alexander and Orbach [ J. Phys. Rev. Lett.43, 1982, L625] for both sides of a threshold.

  19. Lift on side by side intruders of various geometries within a granular flow

    NASA Astrophysics Data System (ADS)

    Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.

    2017-06-01

    Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.

  20. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    PubMed

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Data Report on Post-Irradiation Dimensional Change of AGC-1 Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Windes

    This report summarizes the initial dimensional changes for loaded and unloaded AGC-1 samples. The dimensional change for all samples is presented as a function of dose. The data is further presented by graphite type and applied load levels to illustrate the differences between graphite forming processes and stress levels within the graphite components. While the three different loads placed on the samples have been verified [ ref: Larry Hull’s report] verification of the AGC-1 sample temperatures and dose levels are expected in the summer of 2012. Only estimated dose and temperature values for the samples are presented in this reportmore » to allow a partial analysis of the results.« less

  2. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  3. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).

    PubMed

    Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie

    2016-09-01

    Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.

  4. Guiding Exploration through Three-Dimensional Virtual Environments: A Cognitive Load Reduction Approach

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Fauzy Wan Ismail, Wan Mohd

    2008-01-01

    The real-time interactive nature of three-dimensional virtual environments (VEs) makes this technology very appropriate for exploratory learning purposes. However, many studies have shown that the exploration process may cause cognitive overload that affects the learning of domain knowledge. This article reports a quasi-experimental study that…

  5. Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kiani, Keivan

    2014-06-01

    Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.

  6. Chemical construction and structural permutation of neurotoxic natural product, antillatoxin: importance of the three-dimensional structure of the bulky side chain

    PubMed Central

    INOUE, Masayuki

    2014-01-01

    Antillatoxin 1 is a unique natural product that displays potent neurotoxic and neuritogenic activities through activation of voltage-gated sodium channels. The peptidic macrocycle of 1 was attached to a side chain with an exceptionally high degree of methylation. In this review, we discuss the total synthesis and biological evaluation of 1 and its analogues. First we describe an efficient synthetic route to 1. This strategy enabled the unified preparation of nine side chain analogues. Structure-activity relationship studies of these analogues revealed that subtle side chain modification leads to dramatic changes in activity, and detailed structural analyses indicated the importance of the overall size and three dimensional shape of the side chain. Based on these data, we designed and synthesized a photoresponsive analogue, proving that the activity of 1 was modulated via a photochemical reaction. The knowledge accumulated through these studies will be useful for the rational design of new tailor-made molecules to control the function and behavior of ion channels. PMID:24522155

  7. Three-Dimensional, Inelastic Response of Single-Edge Notch Bend Specimens Subjected to Impact Loading

    DTIC Science & Technology

    1993-08-01

    measure the inherent fracture toughness of a material. A thor- ough understanding of the test specimen behavior is a prerequisite to the application of...measured material properties in structural applications . Three- dimensional dynamic analyses are performed for three different specimen configurations...derstanding of the test specimen behavior is a prerequisite to the application of measured ma- terial properties in structural applications . Three

  8. Stress concentrations for straight-shank and countersunk holes in plates subjected to tension, bending, and pin loading

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1992-01-01

    A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.

  9. A Generalized Hydrodynamic-Impact Theory for the Loads and Motions of Deeply Immersed Prismatic Bodies

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F.

    1959-01-01

    A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.

  10. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  11. Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis

    NASA Astrophysics Data System (ADS)

    Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi

    This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.

  12. [Three-dimensional finite element study on the change of glossopharyngeum in patient with obstructive sleep apnea hypopnea syndrome during titrated mandible advancement].

    PubMed

    Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling

    2013-04-01

    To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.

  13. Driven magnetic reconnection in three dimensions - Energy conversion and field-aligned current generation

    NASA Technical Reports Server (NTRS)

    Sato, T.; Walker, R. J.; Ashour-Abdalla, M.

    1984-01-01

    The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).

  14. Three dimensional force balance of asymmetric droplets

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  15. Finite element analysis of rapid canine retraction through reducing resistance and distraction

    PubMed Central

    XUE, Junjie; YE, Niansong; YANG, Xin; WANG, Sheng; WANG, Jing; WANG, Yan; LI, Jingyu; MI, Congbo; LAI, Wenli

    2014-01-01

    Objective The aims of this study were to compare different surgical approaches to rapid canine retraction by designing and selecting the most effective method of reducing resistance by a three-dimensional finite element analysis. Material and Methods Three-dimensional finite element models of different approaches to rapid canine retraction by reducing resistance and distraction were established, including maxillary teeth, periodontal ligament, and alveolar. The models were designed to dissect the periodontal ligament, root, and alveolar separately. A 1.5 N force vector was loaded bilaterally to the center of the crown between first molar and canine, to retract the canine distally. The value of total deformation was used to assess the initial displacement of the canine and molar at the beginning of force loading. Stress intensity and force distribution were analyzed and evaluated by Ansys 13.0 through comparison of equivalent (von Mises) stress and maximum shear stress. Results The maximum value of total deformation with the three kinds of models occurred in the distal part of the canine crown and gradually reduced from the crown to the apex of the canine; compared with the canines in model 3 and model 1, the canine in model 2 had the maximum value of displacement, up to 1.9812 mm. The lowest equivalent (von Mises) stress and the lowest maximum shear stress were concentrated mainly on the distal side of the canine root in model 2. The distribution of equivalent (von Mises) stress and maximum shear stress on the PDL of the canine in the three models was highly concentrated on the distal edge of the canine cervix. Conclusions Removal of the bone in the pathway of canine retraction results in low stress intensity for canine movement. Periodontal distraction aided by surgical undermining of the interseptal bone would reduce resistance and effectively accelerate the speed of canine retraction. PMID:24626249

  16. The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study

    PubMed Central

    Eraslan, Oguz; Inan, Ozgur; Secilmis, Asli

    2010-01-01

    Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants. Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant-supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis. Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure. Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. PMID:20922156

  17. Current and efficiency optimization under oscillating forces in entropic barriers

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2016-09-01

    The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).

  18. Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2001-01-01

    Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

  19. Gender differences in plantar loading during three soccer-specific tasks.

    PubMed

    Sims, E L; Hardaker, W M; Queen, R M

    2008-04-01

    Examine the effect of gender on plantar loading during three football-specific tasks. Thirty-four athletes (17 men, 17 women) ran an agility course five times while wearing the Nike Vitoria hard ground cleat. Plantar loading data were recorded during a side cut, a cross-over cut and a forward acceleration task using Pedar-X insoles. Controlled laboratory study. No history of lower extremity injury in the past 6 months, no previous foot or ankle surgery, not currently wearing foot orthotics and play a cleated sport at least two times per week. Contact area, maximum force and the force-time integral (FTI) in the medial and lateral midfoot, medial, middle and lateral forefoot as well as the hallux. A univariate ANCOVA (alpha = 0.05) was performed on each dependent variable (covariate was course speed). Significant gender differences existed in the force and force-time integral beneath the lateral midfoot and forefoot during the cross-over cut task as well as in the middle forefoot during the side cut task with the men demonstrating an increased force. No significant differences existed in the loading on the medial side of the foot during any tasks. The results of this study indicate that the increase in plantar loading on the lateral portion of the midfoot and forefoot in men could be one possible explanation for the increased incidence of fifth metatarsal stress fractures in men. Gender differences in loading patterns need to be considered when comparing different movements as well as different footwear conditions.

  20. Using three-dimensional-computerized tomography as a diagnostic tool for temporo-mandibular joint ankylosis: a case report.

    PubMed

    Kao, S Y; Chou, J; Lo, J; Yang, J; Chou, A P; Joe, C J; Chang, R C

    1999-04-01

    Roentgenographic examination has long been a useful diagnostic tool for temporo-mandibular joint (TMJ) disease. The methods include TMJ tomography, panoramic radiography and computerized tomography (CT) scan with or without injection of contrast media. Recently, three-dimensional CT (3D-CT), reconstructed from the two-dimensional image of a CT scan to simulate the soft tissue or bony structure of the real target, was proposed. In this report, a case of TMJ ankylosis due to traumatic injury is presented. 3D-CT was employed as one of the presurgical roentgenographic diagnostic tools. The conventional radiographic examination including panoramic radiography and tomography showed lesions in both sides of the mandible. CT scanning further suggested that the right-sided lesion was more severe than that on the left. With 3D-CT image reconstruction the size and extent of the lesions were clearly observable. The decision was made to proceed with an initial surgical approach on the right side. With condylectomy and condylar replacement using an autogenous costochondral graft on the right side, the range of mouth opening improved significantly. In this case report, 3D-CT demonstrates its advantages as a tool for the correct and precise diagnosis of TMJ ankylosis.

  1. Evaluation of a Composite Sandwich Fuselage Side Panel with Damage and Subjected to Internal Pressure

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Bodine, Jerry; Dopker, Bernhard

    1997-01-01

    The results from an experimental and analytical study of a composite sandwich fuselage side panel for a transport aircraft are presented. The panel has two window cutouts and three frames, and has been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on the graphite-epoxy sandwich panel with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. The two-frame panel was damaged by cutting a notch that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. The two panel configurations successfully satisfied all design load requirements in the experimental part of the study, and the three-frame and two-frame panel responses are fully explained by the analysis results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in.-wide frame spacing to further reduce aircraft fuselage structural weight.

  2. Comparison of mechanisms involved in image enhancement of Tissue Harmonic Imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.; Jing, Yuan

    2006-05-01

    Processes that have been suggested as responsible for the improved imaging in Tissue Harmonic Imaging (THI) include: 1) reduced sensitivity to reverberation, 2) reduced sensitivity to aberration, and 3) reduction in the amplitude of diffraction side lobes. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed and solved using a time-domain code. The numerical simulations were validated through experiments with tissue mimicking phantoms. The impact of aberration from tissue-like media was determined through simulations using three-dimensional maps of tissue properties derived from datasets available through the Visible Female Project. The experiments and simulations demonstrated that second harmonic imaging suffers less clutter from reverberation and side-lobes but is not immune to aberration effects. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.

  3. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    PubMed

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  4. Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations

    NASA Astrophysics Data System (ADS)

    Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei

    2018-02-01

    Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.

  5. Three-Dimensional Effects in Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.

    2003-01-01

    In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.

  6. Fatigue loading history reconstruction based on the rain-flow technique

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.

    1989-01-01

    Methods are considered for reducing a non-random fatigue loading history to a concise description and then for reconstructing a time history similar to the original. In particular, three methods of reconstruction based on a rain-flow cycle counting matrix are presented. A rain-flow matrix consists of the numbers of cycles at various peak and valley combinations. Two methods are based on a two dimensional rain-flow matrix, and the third on a three dimensional rain-flow matrix. Histories reconstructed by any of these methods produce a rain-flow matrix identical to that of the original history, and as a result the resulting time history is expected to produce a fatigue life similar to that for the original. The procedures described allow lengthy loading histories to be stored in compact form.

  7. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    PubMed

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  8. [Three-dimensional stress analysis of periodontal ligament of mandible incisors fixed bridge abutments under dynamic loads by finite element method].

    PubMed

    Ma, Da; Tang, Liang; Pan, Yan-Huan

    2007-12-01

    Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.

  9. Chinese-English Electronics and Telecommunications Dictionary. Volume 2

    DTIC Science & Technology

    1976-11-01

    cA fS] i^ W ^- bearing pin 01 axial 02 axial symmetry; rotational 03 synmetry axle weight 0« shaft clip 05 collar; burr CM axial ...terminal strips 07 J<A# three-way Joint ; triple Joint 08 K#frtt three-wattmeter method. 09 *t*Ü«f*f* three-dimensional wave propagation 10...design load ; assumed load ; 29 load rating 1040 •hejl genju wttt mm •hejl gongahl sir«* •h«Ji jlauan Äjtrt» •hejl Jlsuanblao ■ it it * /< •h«Jl

  10. Novel Treatment Planning of Hemimandibular Hyperplasia by the Use of Three-Dimensional Computer-Aided-Design and Computer-Aided-Manufacturing Technologies.

    PubMed

    Hatamleh, Muhanad M; Yeung, Elizabeth; Osher, Jonas; Huppa, Chrisopher

    2017-05-01

    Hemimandibular hyperplasia is characterized by an obvious overgrowth in the size of the mandible on one side, which can extend up to the midline causing facial asymmetry. Surgical resection of the overgrowth depends heavily on the skill and experience of the surgeon. This report describes a novel methodology of applying three-dimensional computer-aided-design and computer-aided-manufacturing principles in improving the outcome of surgery in 2 mandibular hyperplasia patients. Both patients had their cone beam computer tomography (CBCT) scan performed. CMF Pro Plan software (v. 2.1) was used to process the scan data into virtual 3-dimensional models of the maxilla and mandible. Head tilt was adjusted manually by following horizontal reference. Facial asymmetry secondary to mandibular hypertrophy was obvious on frontal and lateral views. Simulation functions were followed including mirror imaging of the unaffected mandibular side into the hyperplastic side and position was optimized by translation and orientation functions. Reconstruction of virtual symmetry was assessed and checked by running 3-dimensional measurements. Then, subtraction functions were used to create a 3-dimensional template defining the outline of the lower mandibular osteotomy needed. Precision of mandibular teeth was enhanced by amalgamating the CBCT scan with e-cast scan of the patient lower teeth. 3-Matic software (v. 10.0) was used in designing cutting guide(s) that define the amount of overgrowth to be resected. The top section of the guide was resting on the teeth hence ensuring stability and accuracy while positioning it. The guide design was exported as an .stl file and printed using in-house 3-dimensional printer in biocompatible resin. Three-dimensional technologies of both softwares (CMF Pro Plan and 3-Matic) are accurate and reliable methods in the diagnosis, treatment planning, and designing of cutting guides that optimize surgical correction of hemimandibular hyperplasia at timely and cost-effect manner.

  11. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model.

    PubMed

    Gebauer, Matthias; Stark, Olaf; Vettorazzi, Eik; Grifka, Joachim; Püschel, Klaus; Amling, Michael; Beckmann, Johannes

    2014-01-01

    The validity of dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) measurements as predictors of pertrochanteric and femoral neck fracture loads was compared in an experimental simulation of a fall on the greater trochanter. 65 proximal femora were harvested from patients at autopsy. All specimens were scanned with use of DXA for areal bone mineral density and pQCT for volumetric densities at selected sites of the proximal femur. A three-point bending test simulating a side-impact was performed to determine fracture load and resulted in 16 femoral neck and 49 pertrochanteric fractures. Regression analysis revealed that DXA BMD trochanter was the best variable at predicting fracture load of pertrochanteric fractures with an adjusted R(2) of 0.824 (p < 0.0001). There was no correlation between densitometric parameters and the fracture load of femoral neck fractures. A significant correlation further was found between body weight, height, femoral head diameter, and neck length on the one side and fracture load on the other side, irrespective of the fracture type. Clinically, the DXA BMD trochanter should be favored and integrated routinely as well as biometric and geometric parameters, particularly in elderly people with known osteoporosis at risk for falls. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Visualizing the root-PDL-bone interface using high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix

    2008-08-01

    The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.

  13. Three-dimensional finite element analysis of the shear bond test.

    PubMed

    DeHoff, P H; Anusavice, K J; Wang, Z

    1995-03-01

    The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.

  14. Three-dimensional finite element analysis of stress distribution on different bony ridges with different lengths of morse taper implants and prosthesis dimensions.

    PubMed

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2012-11-01

    This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.

  15. Convolutional neural network based side attack explosive hazard detection in three dimensional voxel radar

    NASA Astrophysics Data System (ADS)

    Brockner, Blake; Veal, Charlie; Dowdy, Joshua; Anderson, Derek T.; Williams, Kathryn; Luke, Robert; Sheen, David

    2018-04-01

    The identification followed by avoidance or removal of explosive hazards in past and/or present conflict zones is a serious threat for both civilian and military personnel. This is a challenging task as variability exists with respect to the objects, their environment and emplacement context, to name a few factors. A goal is the development of automatic or human-in-the-loop sensor technologies that leverage signal processing, data fusion and machine learning. Herein, we explore the detection of side attack explosive hazards (SAEHs) in three dimensional voxel space radar via different shallow and deep convolutional neural network (CNN) architectures. Dimensionality reduction is performed by using multiple projected images versus the raw three dimensional voxel data, which leads to noteworthy savings in input size and associated network hyperparameters. Last, we explore the accuracy and interpretation of solutions learned via random versus intelligent network weight initialization. Experiments are provided on a U.S. Army data set collected over different times, weather conditions, target types and concealments. Preliminary results indicate that deep learning can perform as good as, if not better, than a skilled domain expert, even in light of limited training data with a class imbalance.

  16. Long-Time Numerical Integration of the Three-Dimensional Wave Equation in the Vicinity of a Moving Source

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.

    1999-01-01

    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.

  17. Prosthetic tricuspid valve dysfunction assessed by three-dimensional transthoracic and transesophageal echocardiography.

    PubMed

    Yuasa, Toshinori; Takasaki, Kunitsugu; Mizukami, Naoko; Ueya, Nami; Kubota, Kayoko; Horizoe, Yoshihisa; Chaen, Hideto; Kuwahara, Eiji; Kisanuki, Akira; Hamasaki, Shuichi

    2013-09-01

    A 39-year-old male who had undergone tricuspid valve replacement for severe tricuspid regurgitation was admitted with palpitation and general edema. Two-dimensional (2D) echocardiography showed tricuspid prosthetic valve dysfunction. Additional three-dimensional (3D) transthoracic and transesophageal echocardiography (TEE) could clearly demonstrate the disabilities of the mechanical tricuspid valve. Particularly, 3D TEE demonstrated a mass located on the right ventricular side of the tricuspid prosthesis, which may have caused the stuck disk. This observation was confirmed by intra-operative findings.

  18. Design of Aspirated Compressor Blades Using Three-dimensional Inverse Method

    NASA Technical Reports Server (NTRS)

    Dang, T. Q.; Rooij, M. Van; Larosiliere, L. M.

    2003-01-01

    A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.

  19. Frontal Plane Knee Moments in Golf: Effect of Target Side Foot Position at Address

    PubMed Central

    Lynn, Scott K.; Noffal, Guillermo J.

    2010-01-01

    Golf has the potential to keep people active well into their later years. Injuries to the target side knee have been reported in golfers, yet no mechanisms for these injuries have been proposed. The loads on the knee during the golf swing may be insufficient to cause acute injury, yet they may be a factor in the progression of overuse/degenerative conditions; therefore, research developing swing modifications that may alter loading of the knee is warranted. It has been suggested that the proper golf set-up position has the target-side foot externally rotated but no reasoning for this modification has been provided. Frontal plane knee moments have been implicated in many knee pathologies. Therefore, this study used a 3-dimensional link segment model to quantify the frontal plane knee moments during the golf swing in a straight (STR) and externally rotated (EXT) target-side foot position. Subjects were 7 collegiate golfers and knee moments were compared between conditions using repeated measures T-tests. The golf swing knee moment magnitudes were also descriptively compared to those reported for two athletic maneuvers (drop jump landing, side-step cutting) and activities of daily living (gait, stair ascent). The EXT condition decreased the peak knee adduction moment as compared to the STR condition; however, foot position had no effect on the peak knee abduction moment. Also, the magnitude of the knee adduction moments during the two activities of daily living were 9-33% smaller than those experienced during the two different golfing conditions. The drop jump landing and golf swing knee moments were of similar magnitude (STR= - 5%, EXT= + 8%); however, the moments associated with side- step cutting were 50-71% larger than those on the target side knee during the golf swing. The loading of the target side knee during the golf swing may be a factor in the development and progression of knee pathologies and further research should examine ways of attenuating these loads through exercise and swing modifications. Key points An externally rotated front foot position at address would be recommended for those with medial knee pathology in the target side limb. There is a large valgus moment on the target side knee during the golf swing that is not decreased with external rotation of the foot at address. The potential of the knee moments on the target side limb to lead to knee pathologies in golfers needs to be further investigated. PMID:24149696

  20. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    PubMed

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  1. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping

    PubMed Central

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-01-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670

  2. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.

    PubMed

    Fathallah, F A; Marras, W S; Parnianpour, M

    1999-09-01

    Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.

  3. Numerical Simulation of Dual-Mode Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.

    2000-01-01

    Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.

  4. Projectile Motion Model

    NASA Astrophysics Data System (ADS)

    Cordry, Sean

    2003-10-01

    Textbooks almost always have a stroboscopic photograph of a ball falling alongside of one with an initial horizontal speed. These photos are great for showing how the two objects experience the same vertical acceleration; however, the photos don't usually illustrate what happens if a projectile is launched at some angle. There are a number of ways to illustrate the effects of the launch angle: shooting a ball or stream of water through hoops, for example. Those demonstrations, though, do not allow for side-by-side comparison of the effects of various launch angles. Thus, a few years ago I constructed this three-dimensional projectile model to do just that. The model is composed of two three-dimensional "stroboscopic sculptures" representing the trajectory of two projectiles.

  5. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  6. Influence of matrix attachment installation load on movement and resultant forces in implant overdentures.

    PubMed

    Goto, Takaharu; Nagao, Kan; Ishida, Yuichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2015-02-01

    This in vitro study investigated the effect of attachment installation conditions on the load transfer and denture movements of implant overdentures, and aims to clarify the differences among the three types of attachments, namely ball, Locator, and magnet attachments. Three types of attachments, namely ball, Locator, and magnetic attachments were used. An acrylic resin mandibular edentulous model with two implants placed in the bilateral canine regions and removable overdenture were prepared. The two implants and bilateral molar ridges were connected to three-axis load-cell transducers, and a universal testing machine was used to apply a 50 N vertical force to each site of the occlusal table in the first molar region. The denture movement was measured using a G(2) motion sensor. Three installation conditions, namely, the application of 0, 50, and 100 N loads were used to install each attachment on the denture base. The load transfer and denture movement were then evaluated. The resultant force decreased with increasing installation load for all attachments. In particular, the resultant force on implants on the loading side of the Locator attachment significantly decreased when the installation load was increased from 0 to 50 N, and that for magnetic attachment significantly decreased when the installation load was increased from 50 to 100 N. For the residual ridges on the loading side, the direction of the forces for all attachments changed to downward with increasing installation load. Furthermore, the yaw Euler angle increased with increasing installation load for the magnetic attachment. Subject to the limitations of this study, the use of any installation load greater than 0 N is recommended for the installation of ball and Locator attachments on a denture base. Regarding magnetic attachments, our results also recommend installation on a denture base using any installation load greater than 0 N, and suggest that the resultant force acting on the implant can be decreased by increasing the installation load; however, a large installation load of 100 N should be avoided when installing the attachment on the denture base to avoid increasing the denture movement. © 2014 by the American College of Prosthodontists.

  7. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    PubMed

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  8. Development of an aerodyanmic theory capable of predicting surface loads on slender wings with vortex flow

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Johnson, F. T.

    1976-01-01

    The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.

  9. Finite element solution of torsion and other 2-D Poisson equations

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.

    1982-01-01

    The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.

  10. Load partitioning in Ai{sub 2}0{sub 3-}Al composites with three- dimensional periodic architecture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, M. L.; Rao, R.; Almer, J. D.

    2009-05-01

    Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al{sub 2}O{sub 3} preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al{sub 2}O{sub 3} phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to -350MPa. Load transfer, found by diffraction to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffractionmore » measurements show variations in load transfer at two different positions within the composite.« less

  11. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  12. Force system generated by elastic archwires with vertical V bends: a three-dimensional analysis.

    PubMed

    Upadhyay, Madhur; Shah, Raja; Peterson, Donald; Asaki, Takafumi; Yadav, Sumit; Agarwal, Sachin

    2017-04-01

    Our previous understanding of V-bend mechanics is primarily from two-dimensional (2D) analysis of archwire bracket interactions in the second order. These analyses do not take into consideration the three-dimensional (3D) nature of orthodontic appliances involving the third order. To quantify the force system generated in a 3D two bracket set up involving the molar and incisors with vertical V-bends. Maxillary molar and incisor brackets were arranged in a dental arch form and attached to load cells capable of measuring forces and moments in all three planes (x, y, and z) of space. Symmetrical V-bends (right and left sides) were placed at 11 different locations along rectangular beta-titanium archwires of various sizes at an angle of 150degrees. Each wire was evaluated for the 11 bend positions. Specifically, the vertical forces (Fz) and anterio-posterior moments (Mx) were analysed. Descriptive statistics were used to interpret the results. With increasing archwire size, Fz and Mx increased at the two brackets (P < 0.05). The vertical forces were linear and symmetric in nature, increasing in magnitude as the bends moved closer to either bracket. The Mx curves were asymmetric and non-linear displaying higher magnitudes for molar bracket. As the bends were moved closer to either bracket a distinct flattening of the incisor Mx curve was noted, implying no change in its magnitude. This article provides critical information on V-bend mechanics involving second order and third order archwire-bracket interactions. A model for determining this force system is described that might allow for easier translation to actual clinical practice. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  13. Effect of impeded medial longitudinal arch drop on vertical ground reaction force and center of pressure during static loading.

    PubMed

    Chen, Shing-Jye; Gielo-Perczak, Krystyna

    2011-01-01

    Arch supports commonly used to alleviate foot pain can impede the normal drop of medial longitudinal arch (MLA) thereby altering its function. The purpose of the study was to examine the effect of using arch supports on vertical ground reaction force (GRF) and center of pressure (COP) during simulated midstance while the foot was statically loaded. Ten healthy young subjects were recruited. Two dimensional (2D) analysis of the MLA was captured for both barefoot (BF) and arch support conditions before and after loading via a custom made weight loading apparatus. The foot was loaded and positioned to simulate the midstance phase of walking. Two-dimensional reflective markers demarcated the MLA and captured with the loaded foot on a force platform. The impeded MLA drop was compared between the unloaded BF, loaded BF and loaded arch support conditions. The vertical GRF, the anterior-posterior and the medial-lateral COP displacements were also measured in response to the impeded MLA by the arch supports. The arch supports impeded the MLA drop (p<0.05) and shifted the COP toward the medial side (p<0.05), specifically for the rearfoot (calcaneal segment region), but no changes were determined for the vertical GRF (p>0.05). The impedance of MLA drop by the arch support altered the pattern of the ML COP shift in the rearfoot region. The use of arch supports may not relieve painful foot conditions that are associated with excessive calcaneal eversion indicated by altering COP shifts in localized foot regions.

  14. Determination of facial symmetry in unilateral cleft lip and palate patients from three-dimensional data: technical report and assessment of measurement errors.

    PubMed

    Nkenke, Emeka; Lehner, Bernhard; Kramer, Manuel; Haeusler, Gerd; Benz, Stefanie; Schuster, Maria; Neukam, Friedrich W; Vairaktaris, Eleftherios G; Wurm, Jochen

    2006-03-01

    To assess measurement errors of a novel technique for the three-dimensional determination of the degree of facial symmetry in patients suffering from unilateral cleft lip and palate malformations. Technical report, reliability study. Cleft Lip and Palate Center of the University of Erlangen-Nuremberg, Erlangen, Germany. The three-dimensional facial surface data of five 10-year-old unilateral cleft lip and palate patients were subjected to the analysis. Distances, angles, surface areas, and volumes were assessed twice. Calculations were made for method error, intraclass correlation coefficient, and repeatability of the measurements of distances, angles, surface areas, and volumes. The method errors were less than 1 mm for distances and less than 1.5 degrees for angles. The intraclass correlation coefficients showed values greater than .90 for all parameters. The repeatability values were comparable for cleft and noncleft sides. The small method errors, high intraclass correlation coefficients, and comparable repeatability values for cleft and noncleft sides reveal that the new technique is appropriate for clinical use.

  15. Chemozart: a web-based 3D molecular structure editor and visualizer platform.

    PubMed

    Mohebifar, Mohamad; Sajadi, Fatemehsadat

    2015-01-01

    Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimensional structures of molecules. With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user-friendly interface is composed. More than 30 packages are used to compose this application which adds enough flexibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (application programming interface). JavaScript libraries which allow creation of web pages containing interactive three-dimensional molecular structures has also been made available. The application has been released under Apache 2 License and is available from the project website https://chemozart.com.

  16. Finite element analysis of provisional structures of implant-supported complete prostheses.

    PubMed

    Carneiro, Bruno Albuquerque; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes

    2014-04-01

    The use of provisional resin implant-supported complete dentures is a fast and safe procedure to restore mastication and esthetics of patients soon after surgery and during the adaptation phase to the new denture. This study assessed stress distribution of provisional implant-supported fixed dentures and the all-on-4 concept using self-curing acrylic resin (Tempron) and bis-acrylic resin (Luxatemp) to simulate functional loads through the three-dimensional finite element method. Solidworks software was used to build three-dimensional models using acrylic resin (Tempron, model A) and bis-acrylic resin (Luxatemp, model B) for denture captions. Two loading patterns were applied on each model: (1) right unilateral axial loading of 150 N on the occlusal surfaces of posterior teeth and (2) oblique loading vector of 150 N at 45°. The results showed that higher stress was found on the bone crest below oblique load application with a maximum value of 187.57 MPa on model A and 167.45 MPa on model B. It was concluded that model B improved stress distribution on the denture compared with model A.

  17. On the calculation of dynamic and heat loads on a three-dimensional body in a hypersonic flow

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Bityurin, V. A.; Evstigneev, N. M.; Fortov, V. E.; Golovin, N. N.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.

    2018-01-01

    We consider a three-dimensional body in a hypersonic flow at zero angle of attack. Our aim is to estimate heat and aerodynamic loads on specific body elements. We are considering a previously developed code to solve coupled heat- and mass-transfer problem. The change of the surface shape is taken into account by formation of the iterative process for the wall material ablation. The solution is conducted on the multi-graphics-processing-unit (multi-GPU) cluster. Five Mach number points are considered, namely for M = 20-28. For each point we estimate body shape after surface ablation, heat loads on the surface and aerodynamic loads on the whole body and its elements. The latter is done using Gauss-type quadrature on the surface of the body. The comparison of the results for different Mach numbers is performed. We also estimate the efficiency of the Navier-Stokes code on multi-GPU and central processing unit architecture for the coupled heat and mass transfer problem.

  18. A three-dimensional evaluation of human facial asymmetry.

    PubMed Central

    Ferrario, V F; Sforza, C; Miani, A; Serrao, G

    1995-01-01

    Soft-tissue facial asymmetry was studied in a group of 80 young healthy white Caucasian adults (40 men, 40 women) with no craniofacial, dental or mandibular disorders. For each subject, the 3-dimensional coordinates of 16 standardised soft-tissue facial landmarks (trichion, nasion, pronasale, subnasale, B point, pogonion, eye lateral canthi, nasal alae, labial commissures, tragi, gonia) were measured by infrared photogrammetry by an automated instrument. The form of the right and left hemifaces was assessed by calculating all the possible linear distances between pairs of landmarks within side. Side differences were tested by using euclidean distance matrix analysis. The mean faces of both groups were significantly asymmetric, i.e. the 2 sides of face showed significant differences in shape, but no differences in size. PMID:7649806

  19. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  20. Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Paula, C. A.; Ge, S.; Screaton, E. J.

    2001-12-01

    As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.

  1. Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2003-08-15

    A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less

  2. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  3. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...

  4. 14 CFR 23.485 - Side load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...

  5. 14 CFR 23.485 - Side load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...

  6. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...

  7. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 25.485 Section 25.485... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.485 Side load conditions. In addition to § 25.479(d)(2) the following conditions must be considered: (a) For the side load condition, the...

  8. 14 CFR 23.485 - Side load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...

  9. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  10. Three dimensional, non-linear, finite element analysis of compactable soil interaction with a hyperelastic wheel

    NASA Astrophysics Data System (ADS)

    Chiroux, Robert Charles

    The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.

  11. Fourth-dimensional changes in nasolabial dimensions following rotation-advancement repair of unilateral cleft lip.

    PubMed

    Mulliken, John B; LaBrie, Richard A

    2012-02-01

    Repair of unilateral cleft lip requires three-dimensional craftsmanship and understanding four-dimensional changes. Ninety-nine children with unilateral complete or incomplete cleft lip were measured by direct anthropometry following rotation-advancement repair (intraoperatively) and again in childhood. Changes in heminasal width, labial height, and labial width were analyzed and compared measures depending on whether the cleft was incomplete/complete or involved left/right side. Average heminasal width (sn-al) was set 1 mm less on the cleft side and measured only 0.7 mm less at 6 years. Labial height (sn-cphi) was slightly greater on the cleft side at repair and matched the noncleft side at follow-up. Vertical dimension (sbal-cphi) was slightly less at operation; the percent change was the same on both sides. Transverse labial width (cphi-ch) was set short on the cleft side and lengthened disproportionately, resulting in less than 1 mm difference at 6 years. All anthropometric dimensions grew less in complete cleft lips compared with incomplete forms; however, only labial height and width were significantly different. There were no disparities in nasolabial growth between left- and right-sided cleft lips. Cleft side alar base drifts laterally and should be positioned slightly more medial and secured to nasalis or periosteum. Growth in labial height lags and, therefore, the repaired side should be equal to or slightly greater than on the normal side, particularly in a complete labial cleft. Transverse labial width grows more on the cleft side; thus, lateral Cupid's bow peak point can be marked closer to the commissure to match the labial height on the noncleft side. Therapeutic, IV.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  13. Comparative stress distribution of implant-retained mandibular ball-supported and bar-supported overlay dentures: a finite element analysis.

    PubMed

    Vafaei, Fariborz; Khoshhal, Masoumeh; Bayat-Movahed, Saeed; Ahangary, Ahmad Hassan; Firooz, Farnaz; Izady, Alireza; Rakhshan, Vahid

    2011-08-01

    Implant-retained mandibular ball-supported and bar-supported overlay dentures are the two most common treatment options for the edentulous mandible. The superior option in terms of strain distribution should be determined. The three-dimensional model of mandible (based on computerized tomography scan) and its overlying implant-retained bar-supported and ball-supported overlay dentures were simulated using SolidWorks, NURBS, and ANSYS Workbench. Loads A (60 N) and B (60 N) were exerted, respectively, in protrusive and laterotrusive motions, on second molar mesial, first molar mesial, and first premolar. The strain distribution patterns were assessed on (1) implant tissue, (2) first implant-bone, and (3) second implant-bone interfaces. Protrusive: Strain was mostly detected in the apical of the fixtures and least in the cervical when bar design was used. On the nonworking side, however, strain was higher in the cervical and lower in the apical compared with the working side implant. Laterotrusive: The strain values were closely similar in the two designs. It seems that both designs are acceptable in terms of stress distribution, although a superior pattern is associated with the application of bar design in protrusive motion.

  14. Dissimilarity of yellow-blue surfaces under neutral light sources differing in intensity: separate contributions of light intensity and chroma.

    PubMed

    Tokunaga, Rumi; Logvinenko, Alexander D; Maloney, Laurence T

    2008-01-01

    Observers viewed two side-by-side arrays each of which contained three yellow Munsell papers, three blue, and one neutral Munsell. Each array was illuminated uniformly and independently of the other. The neutral light source intensities were 1380, 125, or 20 lux. All six possible combinations of light intensities were set as illumination conditions. On each trial, observers were asked to rate the dissimilarity between each chip in one array and each chip in the other by using a 30-point scale. Each pair of surfaces in each illumination condition was judged five times. We analyzed this data using non-metric multi-dimensional scaling to determine how light intensity and surface chroma contributed to dissimilarity and how they interacted. Dissimilarities were captured by a three-dimensional configuration in which one dimension corresponded to differences in light intensity.

  15. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  16. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  17. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  18. [Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].

    PubMed

    Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying

    2014-10-14

    To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.

  19. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    PubMed

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  20. Flow processes in overexpanded chemical rocket nozzles. Part 2: Side loads due to asymmetric separation

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1984-01-01

    Methods for measuring the lateral forces, occurring as a result of asymmetric nozzle flow separation, are discussed. The effect of some parameters on the side load is explained. A new method was developed for calculation of the side load. The values calculated are compared with side load data of the J-2 engine. Results are used for predicting side loads of the space shuttle main engine.

  1. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  2. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  3. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  4. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  5. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  6. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.

    PubMed

    Li, Xing; Meng, Xiaodong; Tsui, Chi-Ying; Ki, Wing-Hung

    2015-12-01

    Wireless power transfer using reconfigurable resonant regulating (R(3)) rectification suffers from limited range in accommodating varying coupling and loading conditions. A primary-assisted regulation principle is proposed to mitigate these limitations, of which the amplitude of the rectifier input voltage on the secondary side is regulated by accordingly adjusting the voltage amplitude Veq on the primary side. A novel current-sensing method and calibration scheme track Veq on the primary side. A ramp generator simultaneously provides three clock signals for different modules. Both the primary equalizer and the R(3) rectifier are implemented as custom integrated circuits fabricated in a 0.35 μm CMOS process, with the global control implemented in FPGA. Measurements show that with the primary equalizer, the workable coupling and loading ranges are extended by 250% at 120 mW load and 300% at 1.2 cm coil distance compared to the same system without the primary equalizer. A maximum rectifier efficiency of 92.5% and a total system efficiency of 62.4% are demonstrated.

  7. Three-Dimensional Evaluation of Similarity of Right and Left Knee Joints

    PubMed Central

    Jang, Ki-Mo; Park, Jong-Hoon; Chang, Minho; Kim, Youngjun; Lee, Deukhee; Park, Sehyung; Wang, Joon Ho

    2017-01-01

    Purpose The purpose of this study was to evaluate the anatomical similarity of three-dimensional (3D) morphometric parameters between right and left knees. Materials and Methods Ten fresh-frozen paired cadaveric knees were tested. Following dissection, footprint areas of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were measured. Surface scanning was performed using a 3D scanner. Scanned data were reproduced and morphometric parameters were measured on specialized software. After making mirror models, we compared footprint center positions of the ACL and PCL of both sides and calculated the average deviation of 3D alignment between the right- and left-side models. Results No significant side-to-side differences were found in any morphometric parameters. Bony shapes displayed a side-to-side difference of <1 mm. Distal femoral and proximal tibial volumes did not present side-to-side differences, either; the average 3D deviations of alignment between the right and left sides were 0.8±0.4/1.1±0.6 mm (distal femur/proximal tibia). Center-to-center distances between the right and left ACL footprints were 2.6/2.7 mm (femur/tibia) for the anteromedial bundle and 2.4/2.8 mm for the posterolateral bundle. They were 1.9/1.5 mm for the anterolateral bundle and 2.2/1.8 mm for the posteromedial bundle of the PCL. Conclusions There was a remarkable 3D morphometric similarity between right and left knees. Our results might support the concept of obtaining morphologic reference data from the uninvolved contralateral knee. PMID:29046046

  8. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  9. Theory and application of a three-dimensional model of the human spine.

    PubMed

    Belytschko, T; Schwer, L; Privitzer, E

    1978-01-01

    A three-dimensional, discrete model of the human spine, torso, and head was developed for the purpose of evaluating mechanical response in pilot ejection. However, it was developed in sufficient generality to be applicable to other body response problems, such as occupant response in aircraft crash and arbitrary loads on the head-spine system. The anatomy is modelled by a collection of rigid bodies, which represent skeletal segments such as the vertebrae, pelvis, head, and ribs, interconnected by deformable elements, which represent ligaments, cargilagenous joints, viscera and connective tissues. Results are presented for several conditions: different rates of onset, ejection at angles, preejection alignment, and eccentric head loadings. It is shown that slow rates of onset and angling the seat reduce both the peak axial loads and bending moments. In the presence of eccentric head masses, such as helmet-mounted devices, the reflected flexural wave is shown to be the key injury mechanism.

  10. Does overgrowth of costal cartilage cause pectus carinatum? A three-dimensional computed tomography evaluation of rib length and costal cartilage length in patients with asymmetric pectus carinatum

    PubMed Central

    Park, Chul Hwan; Kim, Tae Hoon; Haam, Seok Jin; Lee, Sungsoo

    2013-01-01

    OBJECTIVES To evaluate whether the overgrowth of costal cartilage may cause pectus carinatum using three-dimensional (3D) computed tomography (CT). METHODS Twenty-two patients with asymmetric pectus carinatum were included. The fourth, fifth and sixth ribs and costal cartilages were semi-automatically traced, and their full lengths were measured on three-dimensional CT images using curved multi-planar reformatted (MPR) techniques. The rib length and costal cartilage length, the total combined length of the rib and costal cartilage and the ratio of the cartilage and rib lengths (C/R ratio) in each patient were compared between the protruding side and the opposite side at the levels of the fourth, fifth and sixth ribs. RESULTS The length of the costal cartilage was not different between the more protruded side and the contralateral side (55.8 ± 9.8 mm vs 55.9 ± 9.3 mm at the fourth, 70 ± 10.8 mm vs 71.6 ± 10.8 mm at the fifth and 97.8 ± 13.2 mm vs 99.8 ± 15.5 mm at the sixth; P > 0.05). There were also no significant differences between the lengths of ribs. (265.8 ± 34.9 mm vs 266.3 ± 32.9 mm at the fourth, 279.7 ± 32.7 mm vs 280.6 ± 32.4 mm at the fifth and 283.8 ± 33.9 mm vs 283.9 ± 32.3 mm at the sixth; P > 0.05). There was no statistically significant difference in either the total length of rib and costal cartilage or the C/R ratio according to side of the chest (P > 0.05). CONCLUSIONS In patients with asymmetric pectus carinatum, the lengths of the fourth, fifth and sixth costal cartilage on the more protruded side were not different from those on the contralateral side. These findings suggest that overgrowth of costal cartilage cannot explain the asymmetric protrusion of anterior chest wall and may not be the main cause of pectus carinatum. PMID:23868604

  11. Does overgrowth of costal cartilage cause pectus carinatum? A three-dimensional computed tomography evaluation of rib length and costal cartilage length in patients with asymmetric pectus carinatum.

    PubMed

    Park, Chul Hwan; Kim, Tae Hoon; Haam, Seok Jin; Lee, Sungsoo

    2013-11-01

    To evaluate whether the overgrowth of costal cartilage may cause pectus carinatum using three-dimensional (3D) computed tomography (CT). Twenty-two patients with asymmetric pectus carinatum were included. The fourth, fifth and sixth ribs and costal cartilages were semi-automatically traced, and their full lengths were measured on three-dimensional CT images using curved multi-planar reformatted (MPR) techniques. The rib length and costal cartilage length, the total combined length of the rib and costal cartilage and the ratio of the cartilage and rib lengths (C/R ratio) in each patient were compared between the protruding side and the opposite side at the levels of the fourth, fifth and sixth ribs. The length of the costal cartilage was not different between the more protruded side and the contralateral side (55.8 ± 9.8 mm vs 55.9 ± 9.3 mm at the fourth, 70 ± 10.8 mm vs 71.6 ± 10.8 mm at the fifth and 97.8 ± 13.2 mm vs 99.8 ± 15.5 mm at the sixth; P > 0.05). There were also no significant differences between the lengths of ribs. (265.8 ± 34.9 mm vs 266.3 ± 32.9 mm at the fourth, 279.7 ± 32.7 mm vs 280.6 ± 32.4 mm at the fifth and 283.8 ± 33.9 mm vs 283.9 ± 32.3 mm at the sixth; P > 0.05). There was no statistically significant difference in either the total length of rib and costal cartilage or the C/R ratio according to side of the chest (P > 0.05). In patients with asymmetric pectus carinatum, the lengths of the fourth, fifth and sixth costal cartilage on the more protruded side were not different from those on the contralateral side. These findings suggest that overgrowth of costal cartilage cannot explain the asymmetric protrusion of anterior chest wall and may not be the main cause of pectus carinatum.

  12. Aqueous aerobic oxidation of alkyl arenes and alcohols catalyzed by copper(II) phthalocyanine supported on three-dimensional nitrogen-doped graphene at room temperature.

    PubMed

    Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad

    2014-07-25

    Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting.

  13. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  14. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.

    PubMed

    Tabata, Lucas Fernando; Rocha, Eduardo Passos; Barão, Valentim Adelino Ricardo; Assunção, Wirley Goncalves

    2011-01-01

    The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system.

  15. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid

    NASA Astrophysics Data System (ADS)

    Scolan, Y.-M.; Korobkin, A. A.

    2003-02-01

    Hydrodynamic impact phenomena are three dimensional in nature and naval architects need more advanced tools than a simple strip theory to calculate impact loads at the preliminary design stage. Three-dimensional analytical solutions have been obtained with the help of the so-called inverse Wagner problem as discussed by Scolan and Korobkin in 2001. The approach by Wagner provides a consistent way to evaluate the flow caused by a blunt body entering liquid through its free surface. However, this approach does not account for the spray jets and gives no idea regarding the energy evacuated from the main flow by the jets. Clear insight into the jet formation is required. Wagner provided certain elements of the answer for two-dimensional configurations. On the basis of those results, the energy distribution pattern is analysed for three-dimensional configurations in the present paper.

  16. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...

  17. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...

  18. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...

  19. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...

  20. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...

  1. Pursuing Mirror Image Reconstruction in Unilateral Microtia: Customizing Auricular Framework by Application of Three-Dimensional Imaging and Three-Dimensional Printing.

    PubMed

    Chen, Hsin-Yu; Ng, Li-Shia; Chang, Chun-Shin; Lu, Ting-Chen; Chen, Ning-Hung; Chen, Zung-Chung

    2017-06-01

    Advances in three-dimensional imaging and three-dimensional printing technology have expanded the frontier of presurgical design for microtia reconstruction from two-dimensional curved lines to three-dimensional perspectives. This study presents an algorithm for combining three-dimensional surface imaging, computer-assisted design, and three-dimensional printing to create patient-specific auricular frameworks in unilateral microtia reconstruction. Between January of 2015 and January of 2016, six patients with unilateral microtia were enrolled. The average age of the patients was 7.6 years. A three-dimensional image of the patient's head was captured by 3dMDcranial, and virtual sculpture carried out using Geomagic Freeform software and a Touch X Haptic device for fabrication of the auricular template. Each template was tailored according to the patient's unique auricular morphology. The final construct was mirrored onto the defective side and printed out with biocompatible acrylic material. During the surgery, the prefabricated customized template served as a three-dimensional guide for surgical simulation and sculpture of the MEDPOR framework. Average follow-up was 10.3 months. Symmetric and good aesthetic results with regard to auricular shape, projection, and orientation were obtained. One case with severe implant exposure was salvaged with free temporoparietal fascia transfer and skin grafting. The combination of three-dimensional imaging and manufacturing technology with the malleability of MEDPOR has surpassed existing limitations resulting from the use of autologous materials and the ambiguity of two-dimensional planning. This approach allows surgeons to customize the auricular framework in a highly precise and sophisticated manner, taking a big step closer to the goal of mirror-image reconstruction for unilateral microtia patients. Therapeutic, IV.

  2. Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads

    DOT National Transportation Integrated Search

    2001-01-01

    Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...

  3. Efficient implementation of a 3-dimensional ADI method on the iPSC/860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Wijngaart, R.F.

    1993-12-31

    A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.

  4. Using NASTRAN to solve symmetric structures with nonsymmetric loads

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1982-01-01

    A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.

  5. Design and fabrication of realistic adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1983-01-01

    Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.

  6. Comparison of Experimental Data and Computations Fluid Dynamics Analysis for a Three Dimensional Linear Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Hagemann, G.; Immich, H.

    2003-01-01

    A three dimensional linear plug nozzle of area ratio 12.79 was designed by EADS Space Transportation (former Astrium Space Infrastructure). The nozzle was tested within the German National Technology Program 'LION' in a cold air wind tunnel by TU Dresden. The experimental hardware and test conditions are described. Experimental data was obtained for the nozzle without plug side wall fences at a nozzle pressure ratio of 116 and then with plug side wall fences at NPR 110. Schlieren images were recorded and axial profiles of plug wall static pressures were measured at several spanwise locations and on the plug base. Detailed CFD analysis was performed for these nozzle configurations at NPR 116 by NASA MSFC. The CFD exhibits good agreement with the experimental data. A detailed comparison of the CFD results and the experimental plug wall pressure data are given. Comparisons are made for both the without and with plug side wall fence configurations. Numerical results for density gradient are compared to experimental Schlieren images. Experimental nozzle thrust efficiencies are calculated based on the CFD results. The CFD results are used to illustrate the plug nozzle fluid dynamics. The effect of the plug side wall is emphasized.

  7. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Min; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Zhang, De-Xiang

    2016-05-15

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB). - Graphical abstract: An amine-functionalized neutral Cd(II) boron imidazolate framework can load Ag NPs and show excellent photocatalytic degradation behavious for MB. - Highlights: • Amine-functionalization. • Neutral boron imidazolate framework. • Loading Ag nanoparticles (NPs). • Photocatalytic degradation of methylene blue.

  8. Cone-beam computed tomographic evaluation of the temporomandibular joint and dental characteristics of patients with Class II subdivision malocclusion and asymmetry

    PubMed Central

    Huang, Mingna; Hu, Yun; Yu, Jinfeng; Sun, Jicheng; Ming, Ye

    2017-01-01

    Objective Treating Class II subdivision malocclusion with asymmetry has been a challenge for orthodontists because of the complicated characteristics of asymmetry. This study aimed to explore the characteristics of dental and skeletal asymmetry in Class II subdivision malocclusion, and to assess the relationship between the condyle-glenoid fossa and first molar. Methods Cone-beam computed tomographic images of 32 patients with Class II subdivision malocclusion were three-dimensionally reconstructed using the Mimics software. Forty-five anatomic landmarks on the reconstructed structures were selected and 27 linear and angular measurements were performed. Paired-samples t-tests were used to compare the average differences between the Class I and Class II sides; Pearson correlation coefficient (r) was used for analyzing the linear association. Results The faciolingual crown angulation of the mandibular first molar (p < 0.05), sagittal position of the maxillary and mandibular first molars (p < 0.01), condylar head height (p < 0.01), condylar process height (p < 0.05), and angle of the posterior wall of the articular tubercle and coronal position of the glenoid fossa (p < 0.01) were significantly different between the two sides. The morphology and position of the condyle-glenoid fossa significantly correlated with the three-dimensional changes in the first molar. Conclusions Asymmetry in the sagittal position of the maxillary and mandibular first molars between the two sides and significant lingual inclination of the mandibular first molar on the Class II side were the dental characteristics of Class II subdivision malocclusion. Condylar morphology and glenoid fossa position asymmetries were the major components of skeletal asymmetry and were well correlated with the three-dimensional position of the first molar. PMID:28861389

  9. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    NASA Astrophysics Data System (ADS)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  10. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  11. [Effect of calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint].

    PubMed

    Chen, Yanxi; Yu, Guangrong; Ding, Zhuquan

    2007-03-01

    To discuss the effect of the calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint and its clinical significance. Ten fresh-frozen foot specimens, three-dimensional kinematics of talonavicular joint were determined in the case of neutral position, dorsiflexion. plantoflexion, adduction, abduction, inversion and eversion motion by means of three-dimensional coordinate instrument (Immersion MicroScribe G2X) before and after calcaneocuboid arthrodesis under non-weight with moment of couple, bending moment, equilibrium dynamic loading. Calcaneocuboid arthrodesis was performed on these feet in neutral position and the lateral column of normal length. A significant decrease in the three-dimensional kinematics of talonavicular joint was observed (P < 0.01) in cadaver model following calcaneocuboid arthrodesis. Talonavicular joint motion was diminished by 31.21% +/- 6.08% in sagittal plane; by 51.46% +/- 7.91% in coronal plane; by 36.98% +/- 4.12% in transverse plane; and averagely by 41.25% +/- 6.02%. Calcancocuboid arthrodesis could limite motion of the talonavicular joints, and the disadvantage of calcaneocuboid arthrodesis shouldn't be neglected.

  12. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  13. An exact plane-stress solution for a class of problems in orthotropic elasticity

    NASA Technical Reports Server (NTRS)

    Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.

    1982-01-01

    An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.

  14. Demand Side Management: An approach to peak load smoothing

    NASA Astrophysics Data System (ADS)

    Gupta, Prachi

    A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the need for additional production capacity by the means of demand response measures, but the success is limited to only a few regions. The rate of progress in the future will depend on a wide range of improved technologies and a continuous government monitoring for successful adoption of demand response programs to manage growing energy demand.

  15. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through themore » electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank« less

  16. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.

    PubMed

    Garai, Subhadra; Sinha, Arvind

    2014-03-01

    An innovative biomimetic synthesis of novel three dimensional micro/macro porous carboxymethyl cellulose (CMC)-hydroxyapatite (HA) nanocomposites having four systematically different compositions has been established for its possible application as a load bearing synthetic bone graft. Our process, being in situ, involves a simple and cost effective route akin to a matrix mediated biomineralization process. Developed synthesis route not only controls the size of HA particles in the range of 15-50 nm, embedded in CMC matrix, but also assists in the formation of a mechanically strong three dimensional nanocomposite structures due to physical cross linking of HA impregnated CMC matrix. The process does not involve any toxic cross linker and works at near ambient conditions. The nanocomposites are systematically structurally and mechanically characterized using various techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), solid state (13)C nuclear magnetic resonance ((13)C NMR), thermo-gravimetric analysis (TGA) and Universal mechanical test. It reveals that the ionic/polar or electrostatic interactions are the main driving force for formation of load bearing three dimensional nanocomposites via a process similar to matrix mediated biomineralization. Compressive strength and compressive modulus of nanocomposites, being in the range of 1.74-12 MPa and 157-330 MPa, respectively, meet the desired range of compressive strength for the synthetic grafts used in cancellous bone. An increase in the compressive strength with increase in the porosity has been an interesting observation in the present study. In vitro cytotoxicity of the synthesized nanocomposites has been evaluated using bone marrow mesenchymal stem cells (BMSC) isolated from Wistar rat. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dynamic parameters of three-point crutch gait in female patients after total hip arthroplasty.

    PubMed

    Murawa, Michał; Dworak, Lechosław B; Kabaciński, Jarosław; Syczewska, Małgorzata; Rzepnicka, Agata

    2016-01-01

    Patient recovery after a surgical procedure depends, among other factors, on the amount of the body weight with which patient loads lower limb. Research studies report different results of the degree of body weight with which lower limb is loaded during three-point crutch gait. The aim of this study was to evaluate the level of the ground reaction forces (GRF) during crutch gait used by patients after total hip arthroplasty (THA) in the first week after discharge from the orthopaedic units. Ten female patients diagnosed with primary unilateral coxarthrosis participated in a single measurement session. In order to record kinematic and dynamic variables of this gait pattern motion analysis system was used together with two force plates. The static test of body weight distribution between lower limbs was performed on a dual-top stabilometric plate. The average peak values of loading on the operated (O) limb during mid stance and terminal stance of three-point crutch gait were 64.6% and 64.3% of body weight (BW), respectively, whereas in the case of the nonoperated (NO) limb 103.5%BW and 108.8%BW, respectively. The maximum loads on the crutches were significantly higher (by 9%BW) on the NO side as compared to the O side ( p < 0.05). During the static test, average values of body weight distribution on the O and NO limb were 36%BW and 64%BW, respectively. The patients showed surprisingly similar level of loading on the O limb. The weight bearing on the O limb was lower during static trial than during three-point crutch gait.

  18. Three-dimensional computer simulation of non-reacting jet-gas flow mixing in an MHD second stage combustor

    NASA Astrophysics Data System (ADS)

    Chang, S. L.; Lottes, S. A.; Berry, G. F.

    Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  19. Three-dimensional self-adaptive grid method for complex flows

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Deiwert, George S.

    1988-01-01

    A self-adaptive grid procedure for efficient computation of three-dimensional complex flow fields is described. The method is based on variational principles to minimize the energy of a spring system analogy which redistributes the grid points. Grid control parameters are determined by specifying maximum and minimum grid spacing. Multidirectional adaptation is achieved by splitting the procedure into a sequence of successive applications of a unidirectional adaptation. One-sided, two-directional constraints for orthogonality and smoothness are used to enhance the efficiency of the method. Feasibility of the scheme is demonstrated by application to a multinozzle, afterbody, plume flow field. Application of the algorithm for initial grid generation is illustrated by constructing a three-dimensional grid about a bump-like geometry.

  20. Vertical position of the orbits in nonsyndromic plagiocephaly in childhood and its relation to vertical strabismus.

    PubMed

    Eveleens, Jordi R J; Mathijssen, Irene M; Lequin, Maarten H; Polling, Jan-Roelof; Looman, Caspar W N; Simonsz, Huibert J

    2011-01-01

    To determine the existence of a correlation between the vertical angle of strabismus and the vertical angle between the orbital axes in nonsyndromic plagiocephaly in childhood. Patients were included when diagnosed with plagiocephaly. Orthoptic measurements showed a vertical strabismus and three-dimensional computed tomographic (CT) imaging of the skull was available. Patients were excluded if plagiocephaly was part of a syndrome or if any surgical intervention had taken place before our measurements. Three-dimensional CT imaging was used to calculate the vertical angle between the orbital axes in 3 reference planes (VAO) perpendicular to a line of reference through the lower borders of the maxilla (VAOmax), both auditory canals (VAOaud), and the lower points of the external occipital protuberances (VAOocc). Fourteen patients were included (mean age, 14 mo). Three-dimensional CT measurements showed a mean (SD) VAOmax of 1.70 (2.31) degrees, VAOaud of -1.54 (1.46) degrees, and VAOocc of -2.06 (4.29) degrees (a negative value indicates that the eye on the affected side was situated lower in the head). The mean vertical angle of strabismus was -2.39 (4.69) degrees in gaze toward the affected side, 3.66 (3.77) degrees in gaze ahead, and 8.14 (5.63) degrees in gaze toward the nonaffected side. The Pearson test showed no significant correlations. The clinical observation that vertical strabismus in adult plagiocephaly is correlated with the vertical angle of the orbital axes could not be confirmed in young children.

  1. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.

    PubMed

    Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R

    2014-08-22

    Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Finite element analysis of the lateral load test on battered pile group at I-10 twin span bridge : research project capsule.

    DOT National Transportation Integrated Search

    2016-04-01

    The objectives of this research study are to develop a three-dimensional FE : model for simulating the behavior of a battered pile group foundation subjected : to lateral loading, and to verify the model using results from a unique static : lateral l...

  3. Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree

    PubMed Central

    Hesse, Linnea; Masselter, Tom; Leupold, Jochen; Spengler, Nils; Speck, Thomas; Korvink, Jan Gerrit

    2016-01-01

    Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the vascular bundles and their fibre caps as the mechanically relevant tissue in branch-stem-attachments of Dracaena marginata. The complex three-dimensional deformations that occur during mechanical loading can be analysed on the basis of quasi-three-dimensional data representations of the outer surface, the inner tissue arrangement (meristem and vascular system), and the course of single vascular bundles within the branch-stem-attachment region. In addition, deformations of vascular bundles could be quantified manually and by using digital image correlation software. This combination of qualitative and quantitative stress and strain analysis leads to an improved understanding of the functional morphology and biomechanics of D. marginata, a plant that is used as a model organism for optimizing branched technical fibre-reinforced lightweight trusses in order to increase their load bearing capacity. PMID:27604526

  4. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  5. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  6. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  7. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    PubMed Central

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  8. Three-dimensional dynamic analyses of track-embankment-ground system subjected to high speed train loads.

    PubMed

    Fu, Qiang; Zheng, Changjie

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  9. Standard of disocclusion in complete dentures supported by implants without free distal ends: analysis by the finite elements method

    PubMed Central

    GRECO, Gustavo Diniz; de LAS CASAS, Estevam Barbosa; CORNACCHIA, Tulimar P. Machado; de MAGALHÃES, Cláudia Silami; MOREIRA, Allyson Nogueira

    2012-01-01

    Objective The occlusal patterns are key requirements for the clinical success of oral rehabilitation supported by implants. This study compared the stresses generated by the disocclusion in the canine guide occlusion (CGO) and bilateral balanced occlusion (BBO) on the implants and metallic infrastructure of a complete Brånemark protocol-type denture modified with the inclusion of one posterior short implant on each side. Material and Methods A three-dimensional model simulated a mandible with seven titanium implants as pillars, five of them installed between the mental foramen and the two posterior implants, located at the midpoint of the occlusal surface of the first molar. A load of 15 N with an angle of 45º was applied to a tooth or distributed across three teeth to simulate the CGO or BBO, respectively. The commercial program ABAQUS® was used for the model development, before and after the processing of the data. The results were based on a linear static analysis and were used to compare the magnitude of the equivalent stress for each of the simulations. Results The results showed that the disocclusion in CGO generated higher stresses concentrated on the working side in the region of the short implant. In BBO, the stresses were less intense and more evenly distributed on the prosthesis. The maximum stress found in the simulation of the disocclusion in CGO was two times higher than that found in the simulation of the BBO. The point of maximum stress was located in the neck of the short implant on the working side. Conclusions Under the conditions of this study, it was concluded that the BBO pattern was more suitable than CGO for the lower complete denture supported by implants without free distal ends. PMID:22437680

  10. Toward Theoretically Cycling-Stable Lithium-Sulfur Battery Using a Foldable and Compositionally Heterogeneous Cathode.

    PubMed

    Zhong, Lei; Yang, Kai; Guan, Ruiteng; Wang, Liangbin; Wang, Shuanjin; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-12-20

    Rechargeable lithium-sulfur (Li-S) batteries have been expected for new-generation electrical energy storages, which are attributed to their high theoretical energy density, cost effectiveness, and eco-friendliness. But Li-S batteries still have some problems for practical application, such as low sulfur utilization and dissatisfactory capacity retention. Herein, we designed and fabricated a foldable and compositionally heterogeneous three-dimensional sulfur cathode with integrated sandwich structure. The electrical conductivity of the cathode is facilitated by three different dimension carbons, in which short-distance and long-distance pathways for electrons are provided by zero-dimensional ketjen black (KB), one-dimensional activated carbon fiber (ACF) and two-dimensional graphene (G). The resultant three-dimensional sulfur cathode (T-AKG/KB@S) with an areal sulfur loading of 2 mg cm -2 exhibits a high initial specific capacity, superior rate performance and a reversible discharge capacity of up to 726 mAh g -1 at 3.6 mA cm -2 with an inappreciable capacity fading rate of 0.0044% per cycle after 500 cycles. Moreover, the cathode with a high areal sulfur loading of 8 mg cm -2 also delivers a reversible discharge capacity of 938 mAh g -1 at 0.71 mA cm -2 with a capacity fading rate of 0.15% per cycle and a Coulombic efficiency of almost 100% after 50 cycles.

  11. Variations of the superficial middle cerebral vein: classification using three-dimensional CT angiography.

    PubMed

    Suzuki, Y; Matsumoto, K

    2000-05-01

    Classification of variations of the superficial middle cerebral vein (SMCV) remains ambiguous. We propose a new classification system based on embryologic development for preoperative examination. Three-dimensional CT angiography was used to evaluate 500 SMCVs (in 250 patients). The outflow vessels from the SMCV were classified into seven types on the basis of embryologic development. The 3D CT angiograms in axial stereoscopic and oblique views and multiple intensity projection images were evaluated by the same neurosurgeon on two occasions. Inconsistent interpretations were regarded as equivocal. Three-dimensional CT angiography clearly depicted the SMCV running along the lesser wing or the middle cranial fossa. However, the outflow vessel could not be confirmed as the sphenoparietal, cavernous, or emissary type in 39 (8%) of the sides. SMCVs running in the middle cranial fossa to join the transverse sinus or superior petrosal sinus were accurately identified. SMCVs were present in 456 sides: 62% entered the sphenoparietal sinus or the cavernous sinus and 12% joined the emissary vein. Nine vessels were the superior petrosal type, 10 the basal type, 12 the squamosal type, and 44 the undeveloped type. Three-dimensional CT angiography can depict the vessels and their anatomic relationship to the bone structure, allowing identification of the SMCV variant in individual patients. Preoperative planning for skull base surgery requires such information to reduce the invasiveness of the procedure. With the use of our classification system, 3D CT angiography can provide exact and practical information concerning the SMCV.

  12. An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.

    2003-01-01

    A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.

  13. Effects of Food Texture on Three-Dimensional Loads on Implants During Mastication Based on In Vivo Measurements.

    PubMed

    Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi

    2016-08-01

    The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.

  14. Effects of calcaneal eversion on three-dimensional kinematics of the hip, pelvis and thorax in unilateral weight bearing.

    PubMed

    Tateuchi, Hiroshige; Wada, Osamu; Ichihashi, Noriaki

    2011-06-01

    Understanding the kinematic chain from foot to thorax will provide a better basis for assessment of malalignment of the body. The purpose of this study was to investigate the effects of induced calcaneal eversion on the kinematics of the hip, pelvis and thorax in three dimensions under unilateral weight-bearing. Twenty-eight healthy males were requested to stand on one leg under three conditions: normal (standing directly on the floor), and on wedges producing 5° and 10° calcaneal eversion. Recorded kinematic parameters included the angles of the hip joint, pelvis, and thorax in three dimensions. Eversion induced by wedges produced significant increases in hip flexion, hip medial rotation, pelvic anterior tilt, and thoracic lateral tilt and axial rotation to the standing side. In the frontal plane, pelvic lateral tilt to the standing side was decreased in 5° eversion condition compared with normal condition; conversely, it was increased in 10° eversion condition compared with 5° eversion condition. Arch height was negatively correlated with change in thoracic axial rotation to standing side from the normal to 10° eversion (r=-.528, p<.01). We concluded that induced calcaneal eversion affects the three-dimensional kinematics of the thorax through the hip joint and the pelvis. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Load Balancing Strategies for Multiphase Flows on Structured Grids

    NASA Astrophysics Data System (ADS)

    Olshefski, Kristopher; Owkes, Mark

    2017-11-01

    The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.

  16. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    NASA Astrophysics Data System (ADS)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  17. Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model

    PubMed Central

    Gurev, V.; Constantino, J.; Rice, J.J.; Trayanova, N.A.

    2010-01-01

    In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions. PMID:20682251

  18. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  19. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  20. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    PubMed Central

    Stasuk, Alexander

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625

  1. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  2. Effect of molecular asymmetry on the charge transport physics of high mobility n-type molecular semiconductors investigated by scanning Kelvin probe microscopy.

    PubMed

    Hu, Yuanyuan; Berdunov, Nikolai; Di, Chong-an; Nandhakumar, Iris; Zhang, Fengjiao; Gao, Xike; Zhu, Daoben; Sirringhaus, Henning

    2014-07-22

    We have investigated the influence of the symmetry of the side chain substituents in high-mobility, solution processable n-type molecular semiconductors on the performance of organic field-effect transistors (OFETs). We compare two molecules with the same conjugated core, but either symmetric or asymmetric side chain substituents, and investigate the transport properties and thin film growth mode using scanning Kelvin probe microscopy (SKPM) and atomic force microscopy (AFM). We find that asymmetric side chains can induce a favorable two-dimensional growth mode with a bilayer structure, which enables ultrathin films with a single bilayer to exhibit excellent transport properties, while the symmetric molecules adopt an unfavorable three-dimensional growth mode in which transport in the first monolayer at the interface is severely hindered by high-resistance grain boundaries.

  3. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets.

    PubMed

    Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T; Liu, Sean Shih-Yao

    2013-05-01

    To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P < .05), except for Fy (P > .05). The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.

  4. Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel.

    PubMed

    Fu, Min; Li, Peng; Liang, Xi-Feng

    2017-01-01

    Analysis of the slipstream development around the high-speed trains in tunnels would provide references for assessing the transient gust loads on trackside workers and trackside furniture in tunnels. This paper focuses on the computational analysis of the slipstream caused by high-speed trains passing through double-track tunnels with a cross-sectional area of 100 m2. Three-dimensional unsteady compressible Reynolds-averaged Navier-Stokes equations and a realizable k-ε turbulence model were used to describe the airflow characteristics around a high-speed train in the tunnel. The moving boundary problem was treated using the sliding mesh technology. Three cases were simulated in this paper, including two tunnel lengths and two different configurations of the train. The train speed in these three cases was 250 km/h. The accuracy of the numerical method was validated by the experimental data from full-scale tests, and reasonable consistency was obtained. The results show that the flow field around the high-speed trains can be divided into three distinct regions: the region in front of the train nose, the annular region and the wake region. The slipstream development along the two sides of train is not in balance and offsets to the narrow side in the double-track tunnels. Due to the piston effect, the slipstream has a larger peak value in the tunnel than in open air. The tunnel length, train length and length ratio affect the slipstream velocities; in particular, the velocities increase with longer trains. Moreover, the propagation of pressure waves also induces the slipstream fluctuations: substantial velocity fluctuations mainly occur in front of the train, and weaken with the decrease in amplitude of the pressure wave.

  5. Three-dimensional CT might be a potential evaluation modality in correction of asymmetrical masseter muscle hypertrophy by botulinum toxin injection.

    PubMed

    No, Yeon A; Ahn, Byeong Heon; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon

    2016-01-01

    For correction of this asymmetrical hypertrophy, botulinum toxin type A (BTxA) injection is one of convenient treatment modalities. Unfortunately, physical examination of masseter muscle is not enough to estimate the exact volume of muscle hypertrophy difference. Two Koreans, male and female, of bilateral masseter hypertrophy with asymmetricity were evaluated. BTxA (NABOTA(®), Daewoong, Co. Ltd., Seoul, Korea) was injected at master muscle site with total 50 U (25 U at each side) and volume change was evaluated with three-dimensional (3D) CT image analysis. Maximum reduction of masseter hypertrophy was recognized at 2-month follow-up and reduced muscle size started to restore after 3 months. Mean reduction of masseter muscle volume was 36% compared with baseline. More hypertrophied side of masseter muscle presented 42% of volume reduction at 2-month follow-up but less hypertrophied side of masseter muscle showed 30% of volume shrinkage. In conclusion, 3D CT image analysis might be the exact evaluation tool for correction of asymmetrical masseter hypertrophy by botulinum toxin injection.

  6. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-09-01

    Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.

  7. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty.

    PubMed

    Koyano, Gaku; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2017-02-01

    Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2017-10-01

    This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.

  9. Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture.

    PubMed

    Takaishi, R; Aoyama, T; Zhang, X; Higuchi, S; Yamada, S; Takakuwa, T

    2014-10-01

    Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions. Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software. Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed. Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.

  11. Developing a Magnetic Resonance Imaging measurement of the forces within 3D granular materials under external loads

    NASA Astrophysics Data System (ADS)

    Elrington, Stefan; Bertrand, Thibault; Frey, Merideth; Shattuck, Mark; O'Hern, Corey; Barrett, Sean

    2014-03-01

    Granular materials are comprised of an ensemble of discrete macroscopic grains that interact with each other via highly dissipative forces. These materials are ubiquitous in our everyday life ranging in scale from the granular media that forms the Earth's crust to that used in agricultural and pharmaceutical industries. Granular materials exhibit complex behaviors that are poorly understood and cannot be easily described by statistical mechanics. Under external loads individual grains are jammed into place by a network of force chains. These networks have been imaged in quasi two-dimensional and on the outer surface of three-dimensional granular materials. Our goal is to use magnetic resonance imaging (MRI) to detect contact forces deep within three-dimensional granular materials, using hydrogen-1 relaxation times as a reporter for changes in local stress and strain. To this end, we use a novel pulse sequence to narrow the line width of hydrogen-1 in rubber. Here we present our progress to date, and prospects for future improvements.

  12. Nozzle Side Load Testing and Analysis at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2009-01-01

    Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed

  13. Vehicle Routing with Three-dimensional Container Loading Constraints—Comparison of Nested and Joint Algorithms

    NASA Astrophysics Data System (ADS)

    Koloch, Grzegorz; Kaminski, Bogumil

    2010-10-01

    In the paper we examine a modification of the classical Vehicle Routing Problem (VRP) in which shapes of transported cargo are accounted for. This problem, known as a three-dimensional VRP with loading constraints (3D-VRP), is appropriate when transported commodities are not perfectly divisible, but they have fixed and heterogeneous dimensions. In the paper restrictions on allowable cargo positionings are also considered. These restrictions are derived from business practice and they extended the baseline 3D-VRP formulation as considered by Koloch and Kaminski (2010). In particular, we investigate how additional restrictions influence relative performance of two proposed optimization algorithms: the nested and the joint one. Performance of both methods is compared on artificial problems and on a big-scale real life case study.

  14. Multitasking the three-dimensional transport code TORT on CRAY platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.; Burre, C.A.

    1996-04-01

    The multitasking options in the three-dimensional neutral particle transport code TORT originally implemented for Cray`s CTSS operating system are revived and extended to run on Cray Y/MP and C90 computers using the UNICOS operating system. These include two coarse-grained domain decompositions; across octants, and across directions within an octant, termed Octant Parallel (OP), and Direction Parallel (DP), respectively. Parallel performance of the DP is significantly enhanced by increasing the task grain size and reducing load imbalance via dynamic scheduling of the discrete angles among the participating tasks. Substantial Wall Clock speedup factors, approaching 4.5 using 8 tasks, have been measuredmore » in a time-sharing environment, and generally depend on the test problem specifications, number of tasks, and machine loading during execution.« less

  15. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  16. Three-dimensional features on oscillating microbubbles streaming flows

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  17. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos A.

    2014-05-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.

  18. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  19. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL).

    PubMed

    Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr

    2017-01-01

    High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.

  20. Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading

    NASA Technical Reports Server (NTRS)

    Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto

    1999-01-01

    Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack growth, the presence of out-of-plane shear loads induces a great deal of contact and friction on the crack surfaces, dramatically reducing crack growth rate. A series of experiments and a proposed computational approach for accounting for the friction is discussed.

  1. A new type of two-dimensional carbon crystal prepared from 1,3,5-trihydroxybenzene

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Tang, Pei-Duo; Huang, Hua-Lin; Du, Fang-Li; Huang, Kai; Xie, Neng-Zhong; Long, Si-Yu; Li, Yan-Ming; Qiu, Jie-Shan; Huang, Ri-Bo

    2017-01-01

    A new two-dimensional (2D) carbon crystal, different from graphene, has been prepared from 1,3,5-trihydroxybenzene, consisting of 4-carbon and 6-carbon rings in 1:1 ratio, named 4-6 carbophene by authors, in which all carbon atoms possess sp2 hybrid orbitals with some distortion, forming an extensive conjugated π-bonding planar structure. The angles between the three σ-bonds of the carbon sp2 orbitals are roughly 120°, 90°, and 150°. Each of the three non-adjacent sides of a 6C-ring is shared with a 4C-ring; and each of the two opposite sides of a 4C-ring is shared with a 6C-ring. Dodecagonal holes with a diameter of approximate 5.8 Å are regularly located throughout the 2D carbon crystal. Even though the bond energies in 4-6 carbophene are weaker than those in the graphene, the new planar crystal is quite stable in ambient conditions. The 4-6 carbophene can be synthetized from 1,3,5-trihydroxybenzene or other benzene derivatives through dehydration and polymerization reactions, and may possess several possible patterns that form a family of 2D carbon crystals. A possible side reaction involving 1,3,5-trihydroxybenzene is also discussed, which may produce a carbon-oxygen two dimensional crystal.

  2. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  3. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...

  4. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...

  5. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...

  6. 14 CFR 25.485 - Side load conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accordance with figure 5 of appendix A. (b) Side loads of 0.8 of the vertical reaction (on one side) acting inward and 0.6 of the vertical reaction (on the other side) acting outward must be combined with one-half of the maximum vertical ground reactions obtained in the level landing conditions. These loads are...

  7. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...

  8. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical reaction acting outward on the other side, all combined with the vertical loads specified in paragraph (a...

  9. Sea level side loads in high-area-ratio rocket engines

    NASA Technical Reports Server (NTRS)

    Nave, L. H.; Coffey, G. A.

    1973-01-01

    An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.

  10. A new procedure for investigating three-dimensional stress fields in a thin plate with a through-the-thickness crack

    NASA Astrophysics Data System (ADS)

    Yi, Dake; Wang, TzuChiang

    2018-06-01

    In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.

  11. Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2015-01-01

    The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention/goal. The general understanding is that the current generation of compressor design/analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center. Detailed data-match analysis by GE identified an unexpected high loss generation in the pressure side of the stator passage. Higher total temperature and lower total pressure are measured near the pressure side of the stator. Various analyses based on the RANS and URANS of the compressor stage do not calculate the measured higher total temperature and lower total pressure on the pressure side of the stator. In the present paper, a Large Eddy Simulation (LES) is applied to find the fundamental mechanism of this unsteady loss generation in the stator due to the incoming rotor wake. The results from the LES were first compared with the NASA test results and the GE interpretation of the test data. LES calculates lower total pressure and higher total temperature on the pressure side of the stator, as the measured data showed, resulting in large loss generation on the pressure side of the stator. Detailed examination of the unsteady flow field from LES shows that the rotor wake, which has higher total temperature and higher total pressure relative to the free stream, interacts quite differently with the pressure side of the blade compared to the suction side of the blade. The higher temperature in the wake remains high as the wake passes through the pressure side of the blade. On the other hand, the total temperature diffuses as it passes through near the suction surface. For the presently investigated compressor, the classical intra-stator wake transport to the pressure side of the blade by the slip velocity in the wake seems to be minor. The main causes of this phenomenon are three-dimensional unsteady vortex interactions near the blade surface. The stabilizing effect of the concave curvature on the suction side keeps the rotor wake thin. On the other hand, the destabilizing effect of the convex curvature of the pressure side makes the rotor wake thicker, which results in a higher total temperature measurement at the stator exit. Additionally, wake stretching through the stator seems to contribute to the redistribution of the total temperature and the loss generation.

  12. Asymmetric ground reaction forces and knee kinematics during squat after anterior cruciate ligament (ACL) reconstruction.

    PubMed

    Sanford, Brooke A; Williams, John L; Zucker-Levin, Audrey; Mihalko, William M

    2016-10-01

    This bilateral squat study tests whether people with anterior cruciate ligament (ACL) reconstruction have symmetric three-dimensional ground reaction forces (GRFs) and symmetric anterior-posterior (AP) translation rates of the femur with respect to the tibia when compared with healthy control subjects. We hypothesized that there would be no long-term asymmetry in knee kinematics and kinetics in ACL reconstructed subjects following surgery and rehabilitation. Position and GRF data were collected on eight ACL reconstructed and eight control subjects during bilateral squat. The rate of relative AP translation was determined for each subject. Principal component models were developed for each of the three GRF waveforms. Principal component scores were used to assess symmetry within the ACL reconstructed group and within the control group. ACL reconstructed knees analyzed in early flexion during squat descent displayed a four-fold greater rate of change in anterior translation in the reconstructed knee relative to the contralateral side than did a similar comparison of normal knees. Differences were found between the ACL reconstructed subjects' injured and uninjured limbs for all GRFs. Subjects following ACL reconstruction had asymmetric GRFs and relative rates of AP translation at an average of seven years after ACL reconstructive surgery when compared with control subjects. These alterations in loading may lead to altered load distributions across the knee joint and may put some subjects at risk for future complications such as osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Simeonov, Anthony; Yip, Michael C.

    2018-03-01

    Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.

  14. NASTRAN analysis for the Airmass Sunburst model 'C' Ultralight Aircraft

    NASA Technical Reports Server (NTRS)

    Verbestel, John; Smith, Howard W.

    1993-01-01

    The purpose of this project was to create a three dimensional NASTRAN model of the Airmass Sunburst Ultralight comparable to one made for finite element analysis. A two dimensional sample problem will be calculated by hand and by NASTRAN to make sure that NASTRAN finds similar results. A three dimensional model, similar to the one analyzed by the finite element program, will be run on NASTRAN. A comparison will be done between the NASTRAN results and the finite element program results. This study will deal mainly with the aerodynamic loads on the wing and surrounding support structure at an attack angle of 10 degrees.

  15. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics.

    PubMed

    Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul

    2015-10-01

    While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Theory and procedure for determining loads and motions in chine-immersed hydrodynamic impacts of prismatic bodies

    NASA Technical Reports Server (NTRS)

    Schnitzer, Emanuel

    1953-01-01

    A theoretical method is derived for the determination of the motions and loads during chine-immersed water landings of prismatic bodies. This method makes use of a variation of two-dimensional deflected water mass over the complete range of immersion, modified by a correction for three-dimensional flow. Equations are simplified through omission of the term proportional to the acceleration of the deflected mass for use in calculation of loads on hulls having moderate and heavy beam loading. The effects of water rise at the keel are included in these equations. In order to make a direct comparison of theory with experiment, a modification of the equations was made to include the effect of finite test-carriage mass. A simple method of computation which can be applied without reading the body of this report is presented as an appendix along with the required theoretical plots for determination of loads and motions in chine-immersed landings.

  17. A finite element approach for solution of the 3D Euler equations

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.

    1986-01-01

    Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.

  18. SSME/side loads analysis for flight configuration, revision A. [structural analysis of space shuttle main engine under side load excitation

    NASA Technical Reports Server (NTRS)

    Holland, W.

    1974-01-01

    This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.

  19. Analysis of Contraction Joint Width Influence on Load Stress of Pavement Panels

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Cui, Wei; Sun, Wei

    2018-05-01

    The width of transverse contraction joint of the cement road varies with temperatures, which leads to changes in load transmission among plates of the road surface and affects load stress of the road plates. Three-dimensional element analysis software EverFE is used to address the relation between the contraction joint width and road surface load stress, revealing the impact of reducing contraction joint width. The results could be of critical value in maintaining road functions and extending the service life of cement road surfaces.

  20. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics

    PubMed Central

    Obara, H.; Sapkota, A.; Takei, M.

    2016-01-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247

  1. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.

    1999-01-01

    Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.

  2. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen

    2017-07-01

    Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).

  3. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method.

    PubMed

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy.

  4. The craniomandibular mechanics of being human

    PubMed Central

    Wroe, Stephen; Ferrara, Toni L.; McHenry, Colin R.; Curnoe, Darren; Chamoli, Uphar

    2010-01-01

    Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible. PMID:20554545

  5. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    PubMed

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  6. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less

  7. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    DOE PAGES

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...

    2018-03-12

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less

  8. The Active Side of Stereopsis: Fixation Strategy and Adaptation to Natural Environments.

    PubMed

    Gibaldi, Agostino; Canessa, Andrea; Sabatini, Silvio P

    2017-03-20

    Depth perception in near viewing strongly relies on the interpretation of binocular retinal disparity to obtain stereopsis. Statistical regularities of retinal disparities have been claimed to greatly impact on the neural mechanisms that underlie binocular vision, both to facilitate perceptual decisions and to reduce computational load. In this paper, we designed a novel and unconventional approach in order to assess the role of fixation strategy in conditioning the statistics of retinal disparity. We integrated accurate realistic three-dimensional models of natural scenes with binocular eye movement recording, to obtain accurate ground-truth statistics of retinal disparity experienced by a subject in near viewing. Our results evidence how the organization of human binocular visual system is finely adapted to the disparity statistics characterizing actual fixations, thus revealing a novel role of the active fixation strategy over the binocular visual functionality. This suggests an ecological explanation for the intrinsic preference of stereopsis for a close central object surrounded by a far background, as an early binocular aspect of the figure-ground segregation process.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less

  10. Two-level noncontiguous versus three-level anterior cervical discectomy and fusion: a biomechanical comparison.

    PubMed

    Finn, Michael A; Samuelson, Mical M; Bishop, Frank; Bachus, Kent N; Brodke, Darrel S

    2011-03-15

    Biomechanical study. To determine biomechanical forces exerted on intermediate and adjacent segments after two- or three-level fusion for treatment of noncontiguous levels. Increased motion adjacent to fused spinal segments is postulated to be a driving force in adjacent segment degeneration. Occasionally, a patient requires treatment of noncontiguous levels on either side of a normal level. The biomechanical forces exerted on the intermediate and adjacent levels are unknown. Seven intact human cadaveric cervical spines (C3-T1) were mounted in a custom seven-axis spine simulator equipped with a follower load apparatus and OptoTRAK three-dimensional tracking system. Each intact specimen underwent five cycles each of flexion/extension, lateral bending, and axial rotation under a ± 1.5 Nm moment and a 100-Nm axial follower load. Applied torque and motion data in each axis of motion and level were recorded. Testing was repeated under the same parameters after C4-C5 and C6-C7 diskectomies were performed and fused with rigid cervical plates and interbody spacers and again after a three-level fusion from C4 to C7. Range of motion was modestly increased (35%) in the intermediate and adjacent levels in the skip fusion construct. A significant or nearly significant difference was reached in seven of nine moments. With the three-level fusion construct, motion at the infra- and supra-adjacent levels was significantly or nearly significantly increased in all applied moments over the intact and the two-level noncontiguous construct. The magnitude of this change was substantial (72%). Infra- and supra-adjacent levels experienced a marked increase in strain in all moments with a three-level fusion, whereas the intermediate, supra-, and infra-adjacent segments of a two-level fusion experienced modest strain moments relative to intact. It would be appropriate to consider noncontiguous fusions instead of a three-level fusion when confronted with nonadjacent disease.

  11. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  12. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  13. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  14. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  15. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  16. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  17. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    PubMed

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  18. Three-dimensional finite element analysis of a newly designed onplant miniplate anchorage system.

    PubMed

    Liu, Lin; Qu, Yin-Ying; Jiang, Li-Jun; Zhou, Qian; Tang, Tian-Qi

    2016-06-01

    The purpose of this research was to evaluate the structural stress and deformation of a newly designed onplant miniplate anchorage system compared to a standard anchorage system. A bone block integrated with a novel miniplate and fixation screw system was simulated in a three-dimensional model and subjected to force at different directions. The stress distribution and deformation of the miniplate system and cortical bone were evaluated using the three-dimensional finite element method. The results showed that the stress on the plate system and bone was linearly proportional to the force magnitude and was higher when the force was in a vertical direction (Y-axis). Stress and deformation values of the two screws (screw 1 and 2) were asymmetric when the force was added along Y-axis and was greater in screw 1. The highest deformation value of the screws was 7.5148 μm, much smaller than the limit value. The load was decreased for each single miniscrew, and the ability of the new anchorage system to bear the load was also enhanced to some degree. It was suggested that the newly designed onplant miniplate anchorage system is effective, easily implanted and minimally invasive.

  19. Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelaez, D.; Prestemon, S. O.; Ferracin, P.

    2009-09-13

    Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb{sub 3}Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic,more » and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.« less

  20. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1991-01-01

    The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.

  1. Thermal analysis of the intact mandibular premolar: a finite element analysis.

    PubMed

    Oskui, I Z; Ashtiani, M N; Hashemi, A; Jafarzadeh, H

    2013-09-01

    To obtain temperature distribution data through human teeth focusing on the pulp-dentine junction (PDJ). A three-dimensional tooth model was reconstructed using computer-aided design software from computed tomographic images. Subsequently, temperature distribution was numerically determined through the tooth for three different heat loads. Loading type I was equivalent to a 60° C mouth temperature for 1 s. Loading type II started with a 60° C mouth temperature, decreasing linearly to 37° C over 10 s. Loading type III repeated the pattern of type II in three consecutive cycles, with a 5 s resting time between cycles. The maximum temperatures of the pulp were 37.9° C, 39.0° C and 41.2° C for loading types I, II, and III, respectively. The largest temperature rise occurred with the cyclic loading, that is, type III. For the heat loads considered, the predicted peak temperatures at the PDJ were less than the reported temperature thresholds of irreversible pulpal damage. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Three-Dimensional BEM and FEM Submodelling in a Cracked FML Full Scale Aeronautic Panel

    NASA Astrophysics Data System (ADS)

    Citarella, R.; Cricrì, G.

    2014-06-01

    This paper concerns the numerical characterization of the fatigue strength of a flat stiffened panel, designed as a fiber metal laminate (FML) and made of Aluminum alloy and Fiber Glass FRP. The panel is full scale and was tested (in a previous work) under fatigue biaxial loads, applied by means of a multi-axial fatigue machine: an initial through the thickness notch was created in the panel and the aforementioned biaxial fatigue load applied, causing a crack initiation and propagation in the Aluminum layers. Moreover, (still in a previous work), the fatigue test was simulated by the Dual Boundary Element Method (DBEM) in a bidimensional approach. Now, in order to validate the assumptions made in the aforementioned DBEM approach and concerning the delamination area size and the fiber integrity during crack propagation, three-dimensional BEM and FEM submodelling analyses are realized. Due to the lack of experimental data on the delamination area size (normally increasing as the crack propagates), such area is calculated by iterative three-dimensional BEM or FEM analyses, considering the inter-laminar stresses and a delamination criterion. Such three-dimensional analyses, but in particular the FEM proposed model, can also provide insights into the fiber rupture problem. These DBEM-BEM or DBEM-FEM approaches aims at providing a general purpose evaluation tool for a better understanding of the fatigue resistance of FML panels, providing a deeper insight into the role of fiber stiffness and of delamination extension on the stress intensity factors.

  3. Reinforcement of composite laminate free edges with U-shaped caps

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1986-01-01

    Generalized plane strain finite element analysis is used to predict reduction of interlaminar normal stresses when a U-shaped cap is bonded to the edge of a laminate. Three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 130 to 140 percent stronger than uncapped laminates under static tensile and tension-tension fatigue loading. In addition, the coefficient of variation of the static tensile failure load decreases from 24 to 8 percent when edge caps are added. The predicted failure load calculated with the finite element results is 10 percent lower than the actual failure load. For both capped and uncapped laminates, actual failure loads are much lower than those predicted using classical lamination theory stresses and a two-dimensional failure criterion. Possible applications of the free edge reinforcement concept are described, and future research is suggested.

  4. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  5. Reproducibility of Centric Relation Techniques by means of Condyle Position Analysis

    PubMed Central

    Galeković, Nikolina Holen; Fugošić, Vesna; Braut, Vedrana

    2017-01-01

    Purpose The aim of this study was to determine the reproducibility of clinical centric relation (CR) registration techniques (bimanual manipulation, chin point guidance and Roth's method) by means of condyle position analysis. Material and methods Thirty two fully dentate asymptomatic subjects (16 female and 16 male) with normal occlusal relations (Angle class I) participated in the study (mean age, 22.6 ± 4.7 years). The mandibular position indicator (MPI) was used to analyze the three-dimensional (anteroposterior (ΔX), superoinferior (ΔZ), mediolateral (ΔY)) condylar shift generated by the difference between the centric relation position (CR) and the maximal intercuspation position (MI) observed in dental arches. Results The mean value and standard deviation of three-dimensional condylar shift of the tested clinical CR techniques was 0.19 ± 0.34 mm. Significant differences within the tested clinical CR registration techniques were found for anteroposterior condylar shift on the right side posterior (Δ Xrp; P ≤ 0.012); and superoinferior condylar shift on the left side inferior (Δ Zli; P ≤ 0.011), whereas between the tested CR registration techniques were found for anteroposterior shift on the right side posterior (ΔXrp, P ≤ 0.037) and superoinferior shift on the right side inferior (ΔZri, P ≤ 0.004), on the left side inferior (ΔZli, P ≤ 0.005) and on the left side superior (ΔZls, P ≤ 0.007). Conclusion Bimanual manipulation, chin point guidance and Roth's method are clinical CR registration techniques of equal accuracy and reproducibility in asymptomatic subjects with normal occlusal relationship. PMID:28740266

  6. Reproducibility of Centric Relation Techniques by means of Condyle Position Analysis.

    PubMed

    Galeković, Nikolina Holen; Fugošić, Vesna; Braut, Vedrana; Ćelić, Robert

    2017-03-01

    The aim of this study was to determine the reproducibility of clinical centric relation (CR) registration techniques (bimanual manipulation, chin point guidance and Roth's method) by means of condyle position analysis. Thirty two fully dentate asymptomatic subjects (16 female and 16 male) with normal occlusal relations (Angle class I) participated in the study (mean age, 22.6 ± 4.7 years). The mandibular position indicator (MPI) was used to analyze the three-dimensional (anteroposterior (ΔX), superoinferior (ΔZ), mediolateral (ΔY)) condylar shift generated by the difference between the centric relation position (CR) and the maximal intercuspation position (MI) observed in dental arches. The mean value and standard deviation of three-dimensional condylar shift of the tested clinical CR techniques was 0.19 ± 0.34 mm. Significant differences within the tested clinical CR registration techniques were found for anteroposterior condylar shift on the right side posterior (Δ Xrp; P ≤ 0.012); and superoinferior condylar shift on the left side inferior (Δ Zli; P ≤ 0.011), whereas between the tested CR registration techniques were found for anteroposterior shift on the right side posterior (ΔXrp, P ≤ 0.037) and superoinferior shift on the right side inferior (ΔZri, P ≤ 0.004), on the left side inferior (ΔZli, P ≤ 0.005) and on the left side superior (ΔZls, P ≤ 0.007). Bimanual manipulation, chin point guidance and Roth's method are clinical CR registration techniques of equal accuracy and reproducibility in asymptomatic subjects with normal occlusal relationship.

  7. Comparison of the different kinematic patterns during lateral bending between subjects with and without recurrent low back pain.

    PubMed

    Sung, Paul S; Danial, Pamela; Lee, Dongchul C

    2016-10-01

    Lateral bending is a prerequisite for various functional activities of daily life, which require combined three-dimensional motion. Even though a number of studies have evaluated spinal kinematic changes during lateral bending, the literature reveals a lack of data based on limb dominance. The purpose of this study was to compare kinematic angular displacement of the spinal regions for dominant and non-dominant lateral bending in subjects with and without recurrent low back pain. Forty-four right hand dominant individuals with recurrent low back pain (43.1 [17.4] years) and without low back pain (39.7 [18.7] years) participated in this study. All participants were asked to perform trunk lateral bending to the dominant and non-dominant sides with a bar, three times repeatedly. The outcome measures included three-dimensional angular displacements for the three regions of the spine (upper thorax, lower thorax, and lumbar spine). Lumbar rotation (degrees) increased to the dominant side in the low back pain group (9.29 [1.06]) compared to the control group (6.20 [1.02]) with increased rotation in the upper thorax as well (t=-2.09, p=0.04). However, the upper thorax rotation increased in the low back pain group to the non-dominant side (t=2.08, p=0.03) and to the dominant side (t=-2.35, p=0.02). There was a group interaction with planes (F=5.82, p=0.02) during lateral bending. Although lower thorax motion was not different between groups, increased lumbar spine and upper thorax rotations to the dominant side in the low back pain group were evident during lateral bending. This directional asymmetry should be carefully monitored to understand increased lumbar rotation to the dominant side in subjects with recurrent low back pain. The interactions between group and plane explain compensation strategies through increased lumbar rotation to the dominant side with decreased lateral bending of the upper thorax in subjects with recurrent low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions.

    PubMed

    Fottner, Andreas; Schmid, Markus; Birkenmaier, Christof; Mazoochian, Farhad; Plitz, Wolfgang; Volkmar, Jansson

    2009-06-01

    Stemless and short-stemmed hip prostheses have been developed to preserve femoral bone stock. While all these prostheses claim a more or less physiological load transfer, clinical long-term results are only available for the stemless thrust plate prosthesis. In this study, the in vitro primary stability of the thrust plate prosthesis was compared to two types of short-stemmed prostheses. In addition to the well-established Mayo prosthesis, the modular Metha prosthesis was tested using cone adapters with 130 degrees and 140 degrees neck-shaft-angles. The prostheses were implanted in composite femurs and loaded dynamically (300-1700 N). Three-dimensional micromotions at the bone-prosthesis interface were measured. In addition, the three-dimensional deformations at the surface of the composite femur were measured to gain data on the strain distribution. For all tested prostheses, the micromotions did not exceed 150 microm, the critical value for osteointegration. The thrust plate prosthesis revealed similar motions as the short-stemmed prostheses. The short-stemmed prosthesis with the 130 degrees cone tended to have the highest micromotions of all tested short-stemmed prostheses. The thrust plate prosthesis revealed the lowest alteration of bone surface deformation after implantation. The comparably low micromotions of the thrust plate prosthesis and the short-stemmed prostheses should be conducive to osseous integration. The higher alteration of load transmission after implantation reveals a higher risk of stress shielding for the short-stemmed prostheses.

  9. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  10. Wave propagation simulation in the upper core of sodium-cooled fast reactors using a spectral-element method for heterogeneous media

    NASA Astrophysics Data System (ADS)

    Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian

    2018-01-01

    ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.

  11. Three-dimensional nonlinear responses to impact loads on free-span pipeline: Torsional coupling and load steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J.S.; Huttelmaier, H.P.; Cheng, B.R.

    1995-12-31

    For a heavy object falling on a free-span pipeline, this study assesses three-dimensional (3-D) pipe-span responses with the torsional ({theta}x-) coupling of a pipeline through the biaxial (y) bending responses. The static pipe-span equilibrium is achieved with its self-weight and buoyancy and the external torsional moment induced by the cross-flow (y-directional) current on the sagged pipe span. Load steps taken for 2 different sequences of applying static loads induced different pipe deformations, and the pipe twists in entirely different pattern. The two types of impact loads are applied in the vertical (z-) direction to excite the pipe span in itsmore » static equilibrium: (1) triangular impulse loading and (2) ramp loading. Boundary condition of the span supports is ``fixed-fixed`` at both ends in both displacement and rotation. 3-D coupled axial (x-), bending (y- and z-) and torsional ({theta}x-) responses, both state and dynamic, to the z-directional impact loadings, are modeled and analyzed by a nonlinear FEM method for a 16-in pipeline. The 3-D responses are compared with 2-D responses. The comparison shows significant torsional vibrations caused by the cross-flow current, especially for longer spans. The torsional ({theta}x-) coupling is very sensitive to the time-step size in achieving numerical stability and accuracy, particularly for the ramp loading and for a shorter span. For very large impact loads, the response frequencies differ from the fundamental frequencies of the span, exhibiting beatings and strong bending-to-axial and to-twist couplings. Also, the eigenvalues for the linear system are not necessarily the resonance frequencies for these nonlinear coupled responses.« less

  12. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  13. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  14. [Finite element analysis of the stress distribution of two-piece post crown with different adhesives ].

    PubMed

    He, Lihui; Liu, Lijie; Gao, Bei; Gao, Shang; Chen, Yifu; Zhihui, Liu

    2013-08-01

    To establish three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots, and analyze the stress distribution characteristic to the residual roots with different adhesives, so as to get the best combination under different conditions. The complete mandibular first molar in vitro was selected, the crown was removed along the cemento-enamel junction, then the residual roots were scanned by CT. CT images were imported into a reverse engineering software, and the three-dimensional finite element model of the mandibular first molar residual roots was reconstructed. Titanium two-piece post crown of the mandibular first molar residual roots was produced, then was scanned by CT. The model was reconstructed and assembled by MIMICS. The stress distribution of the root canal and root section under the vertical load and lateral load with different bonding systems were analyzed. Three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots was established. With the increasing of elastic modulus of the adhesives, the maximum stress within the root canal was also increasing. Elastic modulus of zinc phosphate was the biggest, so the stress within the root canal was the biggest; elastic modulus of Superbond C&B was the smallest, so the stress within the root canal was the smallest. Lateral loading stress was much larger than the vertical load. Under vertical load, the load on the root section was even with different bonding systems. Under lateral load, the maximum stress was much larger than the vertical load. The stress on the root section was minimum using zinc phosphate binder, and the stress on the root section was maximum using Superbond C&B. In two-piece post crown restorations, there is significant difference between different adhesives on tooth protection. When the tooth structure of the root canal orifices is weak, in order to avoid the occurrence of splitting, the larger elastic modulus bonding system is the first choice, such as zinc phosphate binder. When the resistance form of the root canal orifices is good enough but the root is too weak, it is suggested that the smaller elastic modulus bonding system is the first choice, such as Superbond C&B.

  15. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  16. Study of guided modes in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  17. Three-dimensional steady flow computations in manifold-type junctions and a comparison with experiment

    NASA Astrophysics Data System (ADS)

    Kuo, Tang-Wei; Chang, Shengming

    Results of three-dimensional steady flow calculations are compared with existing pressure and velocity measurements of two manifold-type junctions. The junctions consist of a main duct and a side branch, both with the same rectangular cross section, with the side branch joining the main duct at an angle of either 90 or 45 degrees. Both combining and dividing flow configurations are considered for different total mass flow rates and different side-branch-to-main-duct mass flow ratios. One objective of this investigation was to assess the effects of numerical differencing scheme and mesh refinement on solution accuracy, and both parameters showed strong influences on the computed results. It is shown that calculations should be made with the highest possible level of numerical accuracy and grid resolution in regions of flow recirculation. Comparisons of computed and measured velocities, static pressures, and flow loss coefficients are presented in this paper. For most cases considered, the model predictions are in good agreement with the measurements. Results can be used as input loss coefficients to an engine-simulation code, in addition to being used to evaluate a specific junction design.

  18. Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.

  19. Modeling damage in concrete pavements and bridges.

    DOT National Transportation Integrated Search

    2010-09-01

    This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...

  20. Force dependent internalization of magnetic nanoparticles results in highly loaded endothelial cells for use as potential therapy delivery vectors.

    PubMed

    MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris

    2012-05-01

    To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.

  1. Development of implant loading device for animal study about various loading protocol: a pilot study

    PubMed Central

    Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo

    2012-01-01

    PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575

  2. Three dimensional microelectrode system for dielectrophoresis

    DOEpatents

    Dehlinger, Dietrich A.; Rose, Klint A.; Shusteff, Maxim; Bailey, Christopher G.; Mariella, Jr., Raymond P.

    2013-09-03

    A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.

  3. Local Dynamic Stability Associated with Load Carrying

    PubMed Central

    Lockhart, Thurmon E

    2013-01-01

    Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183

  4. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems

    Treesearch

    Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom

    2011-01-01

    We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...

  5. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  6. Verification of a three-dimensional viscous flow analysis for a single stage compressor

    NASA Astrophysics Data System (ADS)

    Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro

    1992-12-01

    A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.

  7. Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings

    NASA Astrophysics Data System (ADS)

    Leger, C. A.; Chan, W. S.

    1993-04-01

    A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.

  8. A three-dimensional finite element model for biomechanical analysis of the hip.

    PubMed

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  9. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge

    PubMed Central

    Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.; Manthiram, Arumugam

    2015-01-01

    Lithium–sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energy density and long-cyclic life using three-dimensional nitrogen/sulphur codoped graphene sponge electrodes. The nitrogen/sulphur codoped graphene sponge electrode provides enough space for a high sulphur loading, facilitates fast charge transfer and better immobilization of polysulphide ions. The hetero-doped nitrogen/sulphur sites are demonstrated to show strong binding energy and be capable of anchoring polysulphides based on first-principles calculations. As a result, a high specific capacity of 1,200 mAh g−1 at 0.2C rate, a high-rate capacity of 430 mAh g−1 at 2C rate and excellent cycling stability for 500 cycles with ∼0.078% capacity decay per cycle are achieved. PMID:26182892

  10. Tilted orthodontic micro implants: a photoelastic stress analysis.

    PubMed

    Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev

    2013-10-01

    The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.

  11. Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load

    NASA Astrophysics Data System (ADS)

    Saviz, M. R.; Shakeri, M.; Yas, M. H.

    2007-10-01

    The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.

  12. Measurement of behavior of secondary sealing areas of rotary engine apex seals - Two-piece nonsplit and three-piece slanted horizontal split types

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Terasaki, Kazuo; Yamane, Katsuki

    1992-12-01

    Behavior measurements have been made with two displacement sensors and an underseal pressure sensor, using an overhanging eccentric shaft-type single-rotor research engine equipped with a packaged multichannel slip ring. The two-piece seal was tilted to the leading and trailing sides of a seal slot during its travel along the rotor housing surface and vibrated on the top end of the leading side of the slot as a fulcrum after the shift from the trailing to the leading side of the slot after the minor axis on the spark plug side. As for the three-piece seal, its top part was also tilted in all operating conditions, although its bottom part made effective area contact with the side of the slot under light load conditions up to medium engine speeds. The working chamber pressure was induced in the underseal in the same manner as with the two-piece type.

  13. Biomechanical Influence of Implant Neck Designs on Stress Distribution over Adjacent Bone: A Three-Dimensional Non-Linear Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ikman Ishak, Muhammad; Shafi, Aisyah Ahmad; Mohamad, Su Natasha; Jizat, Noorlindawaty Md

    2018-03-01

    The design of dental implant body has a major influence on the stress dissipation over adjacent bone as numbers of implant failure cases reported in past clinical studies. Besides, the inappropriate implant features may cause excessive high or low stresses which could possibly contribute to pathologic bone resorption or atrophy. The aim of this study is to evaluate the effect of different configurations of implant neck on stress dispersion within the adjacent bone via three-dimensional (3-D) finite element analysis (FEA). A set of computed tomography (CT) images of craniofacial was used to reconstruct a 3-D model of mandible using an image-processing software. The selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone model consisted of both compact (cortical) and porous (cancellous) structures. Three dental implant sets (crown, implant body, and abutment) with different designs of implant neck – straight, tapered with 15°, and tapered with 30° were modelled using a computer-aided design (CAD) software and all models were then analysed via 3-D FEA software. Top surface of first molar crown was subjected to occlusal forces of 114.6 N, 17.2 N, and 23.4 N in the axial, lingual, and mesio-distal directions, respectively. All planes of the mandible model were rigidly constrained in all directions. The result has demonstrated that the straight implant body neck is superior in attributing to high stress generation over adjacent bone as compared to others. This may associate with lower frictional resistance produced than those of tapered designs to withstand the applied loads.

  14. Effect of initial conditions on combustion generated loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tieszen, S.R.

    1991-01-01

    This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less

  15. Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident

    NASA Astrophysics Data System (ADS)

    Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.

    2018-04-01

    Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.

  16. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2014-11-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.

  17. Fully three-dimensional and viscous semi-inverse method for axial/radial turbomachine blade design

    NASA Astrophysics Data System (ADS)

    Ji, Min

    2008-10-01

    A fully three-dimensional viscous semi-inverse method for the design of turbomachine blades is presented in this work. Built on a time marching Reynolds-Averaged Navier-Stokes solver, the inverse scheme is capable of designing axial/radial turbomachinery blades in flow regimes ranging from very low Mach number to transonic/supersonic flows. In order to solve flow at all-speed conditions, the preconditioning technique is incorporated into the basic JST time-marching scheme. The accuracy of the resulting flow solver is verified with documented experimental data and commercial CFD codes. The level of accuracy of the flow solver exhibited in those verification cases is typical of CFD analysis employed in the design process in industry. The inverse method described in the present work takes pressure loading and blade thickness as prescribed quantities and computes the corresponding three-dimensional blade camber surface. In order to have the option of imposing geometrical constraints on the designed blade shapes, a new inverse algorithm is developed to solve the camber surface at specified spanwise pseudo stream-tubes (i.e. along grid lines), while the blade geometry is constructed through ruling (e.g. straight-line element) at the remaining spanwise stations. The new inverse algorithm involves re-formulating the boundary condition on the blade surfaces as a hybrid inverse/analysis boundary condition, preserving the full three-dimensional nature of the flow. The new design procedure can be interpreted as a fully three-dimensional viscous semi-inverse method. The ruled surface design ensures the blade surface smoothness and mechanical integrity as well as achieves cost reduction for the manufacturing process. A numerical target shooting experiment for a mixed flow impeller shows that the semi-inverse method is able to accurately recover the target blade composed of straightline element from a different initial blade. The semi-inverse method is proved to work well with various loading strategies for the mixed flow impeller. It is demonstrated that uniformity of impeller exit flow and performance gain can be achieved with appropriate loading combinations at hub and shroud. An application of this semi-inverse method is also demonstrated through a redesign of an industrial shrouded subsonic centrifugal impeller. The redesigned impeller shows improved performance and operating range from the original one. Preliminary studies of blade designs presented in this work show that through the choice of the prescribed pressure loading profiles, this semi-inverse method can be used to design blade with the following objectives: (1) Various operating envelope. (2) Uniformity of impeller exit flow. (3) Overall performance improvement. By designing blade geometry with the proposed semi-inverse method whereby the blade pressure loading is specified instead of the conventional design approach of manually adjusting the blade angle to achieve blade design objectives, designers can discover blade geometry design space that has not been explored before.

  18. An Assessment of Five Modeling Approaches for Thermo-Mechanical Stress Analysis of Laminated Composite Panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Malik, M.

    2000-01-01

    A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.

  19. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.

  20. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  1. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  2. The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation

    PubMed Central

    Moquin, Stephanie A.; Thomas, Sean; Whalen, Sean; Warburton, Alix; Fernandez, Samantha G.; McBride, Alison A.; Pollard, Katherine S.

    2017-01-01

    ABSTRACT The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation. IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription. PMID:29142137

  3. Io's Plasma Environment During the Galileo Flyby: Global Three-Dimensional MHD Modeling with Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Combi, M. R.; Kabin, K.; Gombosi, T. I.; DeZeeuw, D. L.; Powell, K. G.

    1998-01-01

    The first results for applying a three-dimensional multimedia ideal MHD model for the mass-loaded flow of Jupiter's corotating magnetospheric plasma past Io are presented. The model is able to consider simultaneously physically realistic conditions for ion mass loading, ion-neutral drag, and intrinsic magnetic field in a full global calculation without imposing artificial dissipation. Io is modeled with an extended neutral atmosphere which loads the corotating plasma torus flow with mass, momentum, and energy. The governing equations are solved using adaptive mesh refinement on an unstructured Cartesian grid using an upwind scheme for AHMED. For the work described in this paper we explored a range of models without an intrinsic magnetic field for Io. We compare our results with particle and field measurements made during the December 7, 1995, flyby of to, as published by the Galileo Orbiter experiment teams. For two extreme cases of lower boundary conditions at Io, our model can quantitatively explain the variation of density along the spacecraft trajectory and can reproduce the general appearance of the variations of magnetic field and ion pressure and temperature. The net fresh ion mass-loading rates are in the range of approximately 300-650 kg/s, and equivalent charge exchange mass-loading rates are in the range approximately 540-1150 kg/s in the vicinity of Io.

  4. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  5. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  6. Influence of Thickness and Contact Surface Geometry of Condylar Stem of TMJ Implant on Its Stability

    NASA Astrophysics Data System (ADS)

    Arabshahi, Zohreh; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul; Azari, Abbas

    The aim of this study is to examine the effect thickness and contact surface geometry of condylar stem of TMJ implant on its stability in total reconstruction system and evaluate the micro strain resulted in bone at fixation screw holes in jaw bone embedded with eight different designs of temporomandibular joint implants. A three dimensional model of a lower mandible of an adult were developed from a Computed Tomography scan images. Eight different TMJ implant designs and fixation screws were modeled. Three dimensional finite element models of eight implanted mandibles were analyzed. The forces assigned to the masticatory muscles for incisal clenching were applied consisting of nine important muscular loads. In chosen loading condition, The results indicated that the anatomical curvature contact surface design of TMJ implant can moderately improve the stability and the strain resulted in fixation screw holes in thinner TMJ implant was diminished in comparison with other thicknesses.

  7. Fiber pushout test: A three-dimensional finite element computational simulation

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.

    1990-01-01

    A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.

  8. Small female head and neck interaction with a deploying side airbag.

    PubMed

    Duma, Stefan M; Crandall, Jeff R; Rudd, Rodney W; Kent, Richard W

    2003-09-01

    This paper presents dummy and cadaver experiments designed to investigate the injury potential of an out-of-position small female head and neck from a deploying side airbag. Seat-mounted, thoracic-type, side airbags were selected for this study to represent those currently available on selected luxury automobiles. A computer simulation program was used to identify the worst case loading position for the small female head and neck. Once the initial position was identified, experiments were performed with the Hybrid III 5th percentile dummy and three small female cadavers, using three different inflators. Peak head center of gravity (CG) accelerations for the dummy ranged from 71x g to 154 x g, and were greater than cadaver values, which ranged from 68 x g to 103 x g. Peak neck tension as measured at the upper load cell of the dummy increased with inflator aggressivity from 992 to 1670N. A conservative modification of the US National Highway Traffic Safety Administration's (NHTSA's) N(ij) proposed neck injury criteria, which combines neck tension and bending, was used. All values were well below the 1.0 injury threshold for the dummy and suggested a very low possibility of neck injury. In agreement with this prediction, no injuries were observed. Even in a worst case position, small females are at low risk of head or neck injuries under loading from these thoracic-type airbags; however, injury risk increases with increasing inflator aggressivity.

  9. Research on the parallel load sharing principle of a novel self-decoupled piezoelectric six-dimensional force sensor.

    PubMed

    Li, Ying-Jun; Yang, Cong; Wang, Gui-Cong; Zhang, Hui; Cui, Huan-Yong; Zhang, Yong-Liang

    2017-09-01

    This paper presents a novel integrated piezoelectric six-dimensional force sensor which can realize dynamic measurement of multi-dimensional space load. Firstly, the composition of the sensor, the spatial layout of force-sensitive components, and measurement principle are analyzed and designed. There is no interference of piezoelectric six-dimensional force sensor in theoretical analysis. Based on the principle of actual work and deformation compatibility coherence, this paper deduces the parallel load sharing principle of the piezoelectric six-dimensional force sensor. The main effect factors which affect the load sharing ratio are obtained. The finite element model of the piezoelectric six-dimensional force sensor is established. In order to verify the load sharing principle of the sensor, a load sharing test device of piezoelectric force sensor is designed and fabricated. The load sharing experimental platform is set up. The experimental results are in accordance with the theoretical analysis and simulation results. The experiments show that the multi-dimensional and heavy force measurement can be realized by the parallel arrangement of the load sharing ring and the force sensitive element in the novel integrated piezoelectric six-dimensional force sensor. The ideal load sharing effect of the sensor can be achieved by appropriate size parameters. This paper has an important guide for the design of the force measuring device according to the load sharing mode. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers

    NASA Astrophysics Data System (ADS)

    Shrestha, Binita; Kühn, Martin

    2016-09-01

    The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.

  11. Dynamic Response of the Hybrid III 3 Year Old Dummy Head and Neck During Side Air Bag Loading

    PubMed Central

    Duma, Stefan M.; Crandall, Jeff R.; Pilkey, Walter D.; Seki, Kazuhiro; Aoki, Takashi

    1998-01-01

    This paper presents the results from fourteen (n = 14) tests designed to evaluate the response and injury potential of a Hybrid III 3 year old dummy subject to loading by a deploying seat mounted side air bag. An instrumented Hybrid III 3 year old dummy was used for tests in two different occupant positions chosen to maximize head and neck loading. Four seat mounted thoracic side air bags were used that varied only in the level of inflator output. NHTSA’s neck injury criteria for complex loading, referred to as Nij, was modified to include moment values for both anterioposterior and lateral directions. The results of this testing indicate that side air bag loading can result in forces and moments approaching injury threshold values. While there is considerable uncertainty as to the validity of published injury criteria due to the lack of child biomechanical data, this study demonstrates the sensitivity of child response to initial position which may provide insight into placement and geometry of side airbag systems. Furthermore, the data indicates a relationship between airbag inflator properties and child dummy response for a given airbag geometry. Recently, automobile manufacturers have begun implementing side air bags as a safety feature to mitigate injuries resulting from side impact collisions. Unlike the case for the passenger side air bag, the injury potential to an out-of-position child in side airbag loading has not been presented in the literature. The purpose of this research is to evaluate the response of a Hybrid III 3 year old dummy subject to loading by a deploying side air bag.

  12. Lincoln's craniofacial microsomia: three-dimensional laser scanning of 2 Lincoln life masks.

    PubMed

    Fishman, Ronald S; Da Silveira, Adriana

    2007-08-01

    Examination of 2 life masks of Abraham Lincoln's face was performed by means of 3-dimensional laser surface scanning. This technique enabled documentation and analysis of Lincoln's facial contours and demonstrated his marked facial asymmetry, particularly evident in the smaller left superior orbital rim. This may have led to retroplacement of the trochlea on the left side, leading, in turn, to the mild superior oblique paresis that was manifested intermittently during adulthood.

  13. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis.

    PubMed

    Jakupović, Selma; Anić, Ivica; Ajanović, Muhamed; Korać, Samra; Konjhodžić, Alma; Džanković, Aida; Vuković, Amra

    2016-01-01

    The present study aims to investigate the influence of presence and shape of cervical lesions on biomechanical behavior of mandibular first premolar, subjected to two types of occlusal loading using three-dimensional (3D) finite element method (FEM). 3D models of the mandibular premolar are created from a micro computed tomography X-ray image: model of sound mandibular premolar, model with the wedge-shaped cervical lesion (V lesion), and model with saucer-shaped cervical lesion (U lesion). By FEM, straining of the tooth tissues under functional and nonfunctional occlusal loading of 200 (N) is analyzed. For the analysis, the following software was used: CTAn program 1.10 and ANSYS Workbench (version 14.0). The results are presented in von Mises stress. Values of calculated stress in all tooth structures are higher under nonfunctional occlusal loading, while the functional loading is resulted in homogeneous stress distribution. Nonfunctional load in the cervical area of sound tooth model as well as in the sub-superficial layer of the enamel resulted with a significant stress (over 50 [MPa]). The highest stress concentration on models with lesions is noticed on the apex of the V-shaped lesion, while stress in saucer U lesion is significantly lower and distributed over wider area. The type of the occlusal teeth loading has the biggest influence on cervical stress intensity. Geometric shape of the existing lesion is very important in the distribution of internal stress. Compared to the U-shaped lesions, V-shaped lesions show significantly higher stress concentrations under load. Exposure to stress would lead to its progression.

  14. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    NASA Astrophysics Data System (ADS)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  15. Three dimensional microelectrode system for dielectrophoresis

    DOEpatents

    Dehlinger, Dietrich A; Rose, Klint A; Shusteff, Maxim; Bailey, Christopher G; Mariella, Jr., Raymond P

    2014-12-02

    A dielectrophoresis method for separating particles from a sample, including a dielectrophoresis channel, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa parallel to said first mesa; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode, and pumping a recovery fluid through said gap between said first electrode and into said space between at least one of said first mesa and said second side or said second mesa and said second side.

  16. Three-dimensional finite element analysis of vertical and angular misfit in implant-supported fixed prostheses.

    PubMed

    Assunção, Wirley Gonçalves; Gomes, Erica Alves; Rocha, Eduardo Passos; Delben, Juliana Aparecida

    2011-01-01

    Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 μm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 μm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 μm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system.

  17. A three-dimensional analysis of skeletal and dental characteristics in skeletal class III patients with facial asymmetry.

    PubMed

    Yu, Jinfeng; Hu, Yun; Huang, Mingna; Chen, Jun; Ding, Xiaoqian; Zheng, Leilei

    2018-03-15

    To evaluate the skeletal and dental characteristics in skeletal class III patients with facial asymmetry and to analyse the relationships among various parts of the stomatognathic system to provide a theoretical basis for clinical practice. Asymmetric cone-beam computed tomography data acquired from 56 patients were evaluated using Mimics 10.0 and 3-Matic software. Skeletal and dental measurements were performed to assess the three-dimensional differences between two sides. Pearson correlation analysis was used to determine the correlations among measurements. Linear measurements, such as ramal height, mandible body length, ramal height above the sigmoid notch (RHASN), maxillary height, condylar height, buccal and total cancellous bone thickness, and measurements of condylar size, were significantly larger on the nondeviated side than on the deviated side (P <  0.05). Crown root ratio and buccolingual angle of mandibular first molar were found to be significantly smaller on the nondeviated side than on the deviated side (P <  0.05). A negative correlation was also discovered between the buccolingual angle of mandibular first molar and the ramal height (P <  0.01). In patients with facial asymmetry, asymmetries in the mandible, maxilla and condylar morphology, and skeletal canting served as major components of skeletal asymmetry. Furthermore, a reduced thickness of buccal cancellous bone and a larger crown root ratio were found on the deviated side, indicating that orthodontic camouflage has limitations and potential risks. A combination of orthodontics and orthognathic surgery may be the advisable choice in patients with a menton deviation greater than 4 mm. An important association between vertical skeletal disharmony and dental compensation was also observed.

  18. Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering.

    PubMed

    Kumar, Alok; Akkineni, Ashwini R; Basu, Bikramjit; Gelinsky, Michael

    2016-03-01

    Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)2.74). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 ± 0.5 MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 ± 0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure. © The Author(s) 2015.

  19. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Long-term Nasal and Peri-oral Tightening by a Single Fractional Noninsulated Microneedle Radiofrequency Treatment

    PubMed Central

    2017-01-01

    Background: The skin tightening effects induced by non-insulated microneedle radiofrequency have proved long-lasting. Our previous three-dimensional volumetric assessment showed significant facial tightening for up to six months. However, nasal and peri-oral tightening effects lasted longer. The objective of this study was to investigate the distribution of the long-term volumetric reduction in facial area induced by a single fractional non-insulated microneedle radiofrequency treatment. Methods: Fifteen Asian patients underwent full facial skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with a novel fractionated pulse mode. Three-dimensional volumetric assessments were performed at six and 12 months post-treatment. Patients rated their satisfaction using a 5-point scale at each follow up. Results: Objective assessments with superimposed three-dimensional color images showed significant volumetric reduction in the nasal and peri-oral areas at 12 months post-treatment in all patients. Median volumetric reductions at six and 12 months post-treatment were 13.1 and 12.3ml, respectively. All of the patients were satisfied with their results 12 months post-treatment. Side effects were not observed. Conclusions: This single fractional NIMNRF treatment provided long-lasting nasal and peri-oral tightening as shown via 3D volumetric assessment. Moreover, NIMNRF produced minimal complications, downtime, and few side effects. This approach provides safe and effective treatment of skin tightening. PMID:28367261

  1. One-sided ultrasonic determination of third order elastic constants using angle-beam acoustoelasticity measurements

    NASA Astrophysics Data System (ADS)

    Muir, Dave D.

    This thesis describes procedures and theory for a family of one-sided ultrasonic methods for determining third order elastic constants (TOEC) using sets of angle-beam wedges mounted on one side of a specimen. The methods are based on the well-known acoustoelastic effect, which is the change of wave speed with applied loads and is a consequence of the mechanical nonlinearity of a material. Increases in material nonlinearity have been correlated to the progression of damage, indicating that tracking changes in TOECs may provide a practical means of monitoring damage accumulation at the microstructural level prior to formation of macroscopic defects. Ultrasonic methods are one of the only ways to measure TOECs, and most prior techniques have utilized wave propagation paths parallel and perpendicular to the loading directions. A few additional ultrasonic techniques reported in the literature have employed oblique paths but with immersion coupling. These reported techniques are generally unsuitable for field implementation. The one-sided contact approach described here is applicable for in situ measurements of TOECs and thus lays the foundation for tracking of TOECs with damage. Theory is reviewed and further developed for calculating predicted velocity changes, and thus time shifts, as a function of uniaxial tensile loading for longitudinal, shear vertical, and shear horizontal waves in the context of angle-beam transducers mounted on the surface of the specimen. A comparison is made to published results where possible. The inverse problem of determining the three TOECs of an isotropic material from three measurements employing three different angle beam configurations is comprehensively analyzed. Four configurations providing well-posed solutions are identified and examined. A detailed sensitivity analysis is carried out to identify the best mounting configuration, wave mode combinations, refracted angles and geometry requirements for recovering the three TOECs. Two transducer mounting configurations are considered: (1) attached (glued-on) transducers potentially suitable for in situ monitoring, and (2) floating (oil-coupled) transducers potentially suitable for single measurements. Limited experimental results are presented for the attached case using two longitudinal measurements and one shear vertical measurement. The floating case experiments utilized three of the four well-posed solutions, and measurements were made on several aluminum alloys and low carbon steel. Key experimental issues are identified and discussed for both transducer mounting configurations. The specific contributions of this thesis are: (1) Development of the general theory for determining TOECs of isotropic materials with a one-sided approach using contact angle-beam transducers. This development includes identification of four valid measurement configurations that result in a well-posed problem for recovering the three TOECs. (2) Development of the specific theory as applied to attached (i.e., glued-on) angle-beam transducers that have a variable separation distance with load. This coupling method is potentially suitable for in situ monitoring applications. (3) Development of the specific theory as applied to floating (i.e., liquid-coupled) angle-beam transducers where the separation distance does not change with load. This method is potentially suitable for single field or laboratory measurements. (4) Comparison of the eight valid TOEC recovery methods (four wave mode configurations, each having two mounting techniques) via numerical simulations and a detailed sensitivity analysis in which the effect of all expected measurement and parameter errors on determination of the TOECs is quantified. (5) Development of experimental methods that provide insight as to the relative merits of the attached vs. floating coupling methods.

  2. A three-dimensional inverse finite element analysis of the heel pad.

    PubMed

    Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet

    2012-03-01

    Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.

  3. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Yun-Xia; Liu, Le

    2017-03-01

    The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.

  5. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy

    PubMed Central

    Hosoda, Koh; Shimizu, Masahiro; Ikemoto, Shuhei; Nagura, Takeo; Seki, Hiroyuki; Kitashiro, Masateru; Imanishi, Nobuaki; Aiso, Sadakazu; Jinzaki, Masahiro; Ogihara, Naomichi

    2017-01-01

    The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot. PMID:29134100

  6. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    PubMed Central

    Liu, Da

    2017-01-01

    In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP) and a locking compression plate (LCP). CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing. PMID:29065654

  7. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals.

    PubMed

    Lynch, Maureen E; Chiou, Aaron E; Lee, Min Joon; Marcott, Stephen C; Polamraju, Praveen V; Lee, Yeonkyung; Fischbach, Claudia

    2016-08-01

    Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.

  8. Mechanics of evolutionary digit reduction in fossil horses (Equidae).

    PubMed

    McHorse, Brianna K; Biewener, Andrew A; Pierce, Stephanie E

    2017-08-30

    Digit reduction is a major trend that characterizes horse evolution, but its causes and consequences have rarely been quantitatively tested. Using beam analysis on fossilized centre metapodials, we tested how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage. Internal bone geometry was captured from 13 fossil horse genera that covered the breadth of the equid phylogeny and the spectrum of digit reduction and body sizes, from Hyracotherium to Equus To account for the load-bearing role of side digits, a novel, continuous measure of digit reduction was also established-toe reduction index (TRI). Our results show that without accounting for side digits, three-toed horses as late as Parahippus would have experienced physiologically untenable bone stresses. Conversely, when side digits are modelled as load-bearing, species at the base of the horse radiation through Equus probably maintained a similar safety factor to fracture stress. We conclude that the centre metapodial compensated for evolutionary digit reduction and body mass increases by becoming more resistant to bending through substantial positive allometry in internal geometry. These results lend support to two historical hypotheses: that increasing body mass selected for a single, robust metapodial rather than several smaller ones; and that, as horse limbs became elongated, the cost of inertia from the side toes outweighed their utility for stabilization or load-bearing. © 2017 The Author(s).

  9. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  10. A CFD analysis of blade row interactions within a high-speed axial compressor

    NASA Astrophysics Data System (ADS)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  11. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min

    2011-01-01

    In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.

  12. Strain of implants depending on occlusion types in mandibular implant-supported fixed prostheses

    PubMed Central

    Sohn, Byoung-Sup; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun

    2011-01-01

    PURPOSE This study investigated the strain of implants using a chewing simulator with strain gauges in mandibular implant-supported fixed prostheses under various dynamic loads. MATERIALS AND METHODS Three implant-supported 5-unit fixed prostheses were fabricated with three different occlusion types (Group I: Canine protected occlusion, Group II: Unilaterally balanced occlusion, Group III: Bilaterally balanced occlusion). Two strain gauges were attached to each implant abutment. The programmed dynamic loads (0 - 300 N) were applied using a chewing simulator (MTS 858 Mini Bionix II systems, MTS systems corp., Minn, USA) and the strains were monitored. The statistical analyses were performed using the paired t-test and the ANOVA. RESULTS The mean strain values (MSV) for the working sides were 151.83 µε, 176.23 µε, and 131.07 µε for Group I, Group II, and Group III, respectively. There was a significant difference between Group II and Group III (P < .05). Also, the MSV for non-working side were 58.29 µε, 72.64 µε, and 98.93 µε for Group I, Group II, and Group III, respectively. One was significantly different from the others with a 95% confidence interval (P < .05). CONCLUSION The MSV for the working side of Groups I and II were significantly different from that for the non-working side (Group I: t = 7.58, Group II: t = 6.25). The MSV for the working side of Group II showed significantly larger than that of Group III (P < .01). Lastly, the MSV for the non-working side of Group III showed significantly larger than those of Group I or Group II (P < .01). PMID:21503186

  13. Three-Dimensional Printing of Carbamazepine Sustained-Release Scaffold.

    PubMed

    Lim, Seng Han; Chia, Samuel Ming Yuan; Kang, Lifeng; Yap, Kevin Yi-Lwern

    2016-07-01

    Carbamazepine is the first-line anti-epileptic drug for focal seizures and generalized tonic-clonic seizures. Although sustained-release formulations exist, an initial burst of drug release is still present and this results in side effects. Zero-order release formulations reduce fluctuations in serum drug concentrations, thereby reducing side effects. Three-dimensional printing can potentially fabricate zero-order release formulations with complex geometries. 3D printed scaffolds with varying hole positions (side and top/bottom), number of holes (4, 8, and 12), and hole diameters (1, 1.5, and 2 mm) were designed. Dissolution tests and high performance liquid chromatography analysis were conducted. Good correlations in the linear release profiles of all carbamazepine-containing scaffolds with side holes (R(2) of at least 0.91) were observed. Increasing the hole diameters (1, 1.5, and 2 mm) resulted in increased rate of drug release in the scaffolds with 4 holes (0.0048, 0.0065, and 0.0074 mg/min) and 12 holes (0.0021, 0.0050, and 0.0092 mg/min), and the initial amount of carbamazepine released in the scaffolds with 8 holes (0.4348, 0.7246, and 1.0246 mg) and 12 holes (0.1995, 0.8598, and 1.4366 mg). The ultimate goal of this research is to improve the compliance of patients through a dosage form that provides a zero-order drug release profile for anti-epileptic drugs, so as to achieve therapeutic doses and minimize side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review

    NASA Astrophysics Data System (ADS)

    Yang, Xuetong; Xia, Ling; Song, Shaoxian

    2017-07-01

    Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.

  15. T-Craft Seabase Ramp Loads Model Test Data Report

    DTIC Science & Technology

    2010-12-01

    INTRODUCTION 1 TEST CONDITION MATRIX 2 MODEL DESCRIPTIONS 9 LMSR Model 15 Ramp Models 17 MODEL TEST SETUP 18 Side-by-Side Hull Configuration 19... INTRODUCTION The Office of Naval Research (ONR) sponsored a multiple bodied seakeeping model test designed to investigate vessel motions and loads on the hinge...C. 3. Side-by-Side configuration 137 Ramp Load cell 1.88 27.49 -CG ft I ^ -Hinged Connection 3.00 from CL to jauge • oad ce LMSR

  16. Overview of Aerothermodynamic Loads Definition Study

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1985-01-01

    The Aerothermodynamic Loads Definition were studied to develop methods to more accurately predict the operating environment in the space shuttle main engine (SSME) components. Development of steady and time-dependent, three-dimensional viscous computer codes and experimental verification and engine diagnostic testing are considered. The steady, nonsteady, and transient operating loads are defined to accurately predict powerhead life. Improvements in the structural durability of the SSME turbine drive systems depends on the knowledge of the aerothermodynamic behavior of the flow through the preburner, turbine, turnaround duct, gas manifold, and injector post regions.

  17. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.

  18. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.

    PubMed

    Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M

    2007-10-01

    We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.

  19. A discrete search algorithm for finding the structure of protein backbones and side chains.

    PubMed

    Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo

    2013-01-01

    Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.

  20. Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1987-01-01

    The time-dependent behavior of sidebranching deformations in the three-dimensional symmetric model of dendritic solidification is studied within a WKB approximation. Localized wave packets generated by pulses in the neighborhood of the tip are found to grow in amplitude and to spread and stretch as they move down the sides of the dendrite. This behavior is shown to imply that noise in the solidifying medium is selectively amplified in such a way as to produce a fluctuating train of sidebranches in qualitative agreement with experimental observations. A rough estimate indicates that purely thermal noise is probably not quite strong enough to fit the data.

  1. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf

    NASA Astrophysics Data System (ADS)

    Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin

    2016-09-01

    The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.

  2. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y.

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally andmore » numerically demonstrated to be maintained as long as the ratio was constant.« less

  3. 14 CFR 27.505 - Ski landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...

  4. 14 CFR 27.505 - Ski landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...

  5. 14 CFR 27.505 - Ski landing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the pedestal bearings. Water Loads ... the pedestal bearings; and (2) A vertical load of 1.33 P is applied at the pedestal bearings. (b) A side-load condition in which a side load of 0.35 Pn is applied at the pedestal bearings in a horizontal...

  6. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    NASA Astrophysics Data System (ADS)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  7. Optimal design of high-speed loading spindle based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  8. ASCENT Program

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Collier, Gary; Heckenlaible, Richard; Dougherty, Edward; Dolenz, James; Ross, Iain

    2012-01-01

    The ASCENT program solves the three-dimensional motion and attendant structural loading on a flexible vehicle incorporating, optionally, an active analog thrust control system, aerodynamic effects, and staging of multiple bodies. ASCENT solves the technical problems of loads, accelerations, and displacements of a flexible vehicle; staging of the upper stage from the lower stage; effects of thrust oscillations on the vehicle; a payload's relative motion; the effect of fluid sloshing on vehicle; and the effect of winds and gusts on the vehicle (on the ground or aloft) in a continuous analysis. The ATTACH ASCENT Loads program reads output from the ASCENT flexible body loads program, and calculates the approximate load indicators for the time interval under consideration. It calculates the load indicator values from pre-launch to the end of the first stage.

  9. Finite state modeling of aeroelastic systems

    NASA Technical Reports Server (NTRS)

    Vepa, R.

    1977-01-01

    A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.

  10. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 2: summary report: Shear web component fabrication

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Smith, D. D.; Zimmerman, D. K.

    1973-01-01

    The fabrication of two shear web test elements and three large scale shear web test components are reported. In addition, the fabrication of test fixtures for the elements and components is described. The center-loaded beam test fixtures were configured to have a test side and a dummy or permanent side. The test fixtures were fabricated from standard extruded aluminum sections and plates and were designed to be reuseable.

  11. 16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER BARS AND ORIGINAL SHIPLAP SIDING - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  12. Migrated Essure permanent birth control device: sonographic findings.

    PubMed

    Khati, Nadia Juliet; Gorodenker, Joseph; Brindle, Kathleen Ann

    2014-05-01

    We report a case of a migrated Essure permanent birth control device. The correct diagnosis was made on conventional two-dimensional and three-dimensional pelvic sonography 7 years after placement of the device when the patient presented with persistent right-sided pain. The 3-month post placement hysterosalpingogram had shown an appropriately occluded right fallopian tube but had overlooked the abnormal position of the right Essure device, which was too proximal and extending slightly in the uterine cavity. Copyright © 2013 Wiley Periodicals, Inc.

  13. Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications

    NASA Astrophysics Data System (ADS)

    Subramanian, S. V.

    1989-07-01

    The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points.

  14. Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data

    PubMed Central

    Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.

    2005-01-01

    The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787

  15. Conversion of NIMROD simulation results for graphical analysis using VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  16. Comparison of cryoablation with 3D mapping versus conventional mapping for the treatment of atrioventricular re-entrant tachycardia and right-sided paraseptal accessory pathways.

    PubMed

    Russo, Mario S; Drago, Fabrizio; Silvetti, Massimo S; Righi, Daniela; Di Mambro, Corrado; Placidi, Silvia; Prosperi, Monica; Ciani, Michele; Naso Onofrio, Maria T; Cannatà, Vittorio

    2016-06-01

    Aim Transcatheter cryoablation is a well-established technique for the treatment of atrioventricular nodal re-entry tachycardia and atrioventricular re-entry tachycardia in children. Fluoroscopy or three-dimensional mapping systems can be used to perform the ablation procedure. The aim of this study was to compare the success rate of cryoablation procedures for the treatment of right septal accessory pathways and atrioventricular nodal re-entry circuits in children using conventional or three-dimensional mapping and to evaluate whether three-dimensional mapping was associated with reduced patient radiation dose compared with traditional mapping. In 2013, 81 children underwent transcatheter cryoablation at our institution, using conventional mapping in 41 children - 32 atrioventricular nodal re-entry tachycardia and nine atrioventricular re-entry tachycardia - and three-dimensional mapping in 40 children - 24 atrioventricular nodal re-entry tachycardia and 16 atrioventricular re-entry tachycardia. Using conventional mapping, the overall success rate was 78.1 and 66.7% in patients with atrioventricular nodal re-entry tachycardia or atrioventricular re-entry tachycardia, respectively. Using three-dimensional mapping, the overall success rate was 91.6 and 75%, respectively (p=ns). The use of three-dimensional mapping was associated with a reduction in cumulative air kerma and cumulative air kerma-area product of 76.4 and 67.3%, respectively (p<0.05). The use of three-dimensional mapping compared with the conventional fluoroscopy-guided method for cryoablation of right septal accessory pathways and atrioventricular nodal re-entry circuits in children was associated with a significant reduction in patient radiation dose without an increase in success rate.

  17. Force Dependent Internalization of Magnetic Nanoparticles Results in Highly Loaded Endothelial Cells for Use as Potential Therapy Delivery Vectors

    PubMed Central

    MacDonald, Cristin; Barbee, Kenneth

    2015-01-01

    Purpose To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. Methods MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. Results MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Conclusions Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems. PMID:22234617

  18. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  19. Three-dimensional modeling of flexible pavements : research implementation plan.

    DOT National Transportation Integrated Search

    2006-02-14

    Many of the asphalt pavement analysis programs are based on linear elastic models. A linear viscoelastic models : would be superior to linear elastic models for analyzing the response of asphalt concrete pavements to loads. There : is a need to devel...

  20. Three-dimensional finite element analysis on canine teeth distalization by different accessories of bracket-free invisible orthodontics technology

    NASA Astrophysics Data System (ADS)

    Xu, Nuo; Lei, Xue; Yang, Xiaoli; Li, Xinhui; Ge, Zhenlin

    2018-04-01

    Objective: to compare canine tooth stress distribution condition during maxillary canine tooth distalization by different accessories of bracket-free invisible orthodontics technology after removal of maxillary first premolar, and provide basis for clinical design of invisible orthodontics technology. Method: CBCT scanning image of a patient with individual normal occlusion was adopted, Mimics, Geomagic and ProlE software were used for establishing three-dimensional models of maxilla, maxillary dentition, parodontium, invisible orthodontics appliance and accessories, ANSYS WORKBENCH was utilized as finite element analysis tools for analyzing stress distribution and movement pattern of canine tooth and parodontium when canine tooth was equipped with power arm and vertical rectangle accessory. Meanwhile, canine tooth none-accessory design group was regarded as a control. Result: teeth had even bistal surface stress distribution in the power arm group; stress was concentrated on distal tooth neck, and the stress was gradually deviated to mesial-labial side and distal lingual side in vertical rectangle group and none-accessory group. Conclusion: teeth tend to move as a whole in the Power arm group, vertical rectangle group has lower tooth gradient compared with the none-accessory group, teeth are inclined for movement in the none-accessory group, and canine teeth tend to rotate to the distal lingual side.

  1. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.

    PubMed

    Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W

    2011-10-15

    Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load magnitudes experienced by opossums are lower than those of most mammals. Thus, the evolutionary transition from crouched to upright posture in mammalian ancestors may have been accompanied by an increase in limb bone load magnitudes.

  2. A Special Investigation to Develop a General Method for Three-dimensional Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Frocht, M M; Guernsey, R , Jr

    1953-01-01

    The method of strain measurement after annealing is reviewed and found to be satisfactory for the materials available in this country. A new general method is described for the photoelastic determination of the principal stresses at any point of a general body subjected to arbitrary load. The method has been applied to a sphere subjected to diametrical compressive loads. The results show possibilities of high accuracy.

  3. The Effect of Load Carriage on Trunk Coordination during Treadmill Walking at Increasing Walking Speed

    DTIC Science & Technology

    2001-05-01

    Kinematic and Kinetic Data Collection Systems. Three-dimensional kinematic data were collected at 100 Hz through an Optotrak 3020 System (Northern...regardless of load. The Optotrak system unit provides an external trigger that was used to trigger the start of the force plate data collection, thereby...synchronizing the kinematic and kinetic data. Optotrak required the use of infrared light emitting diodes (IREDS), which were placed bilaterally on the

  4. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  5. [Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red tide algae].

    PubMed

    Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao

    2011-01-01

    The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.

  6. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  7. Three-Dimensional Soft Tissue Nasal Changes After Nasoalveolar Molding and Primary Cheilorhinoplasty in Infants With Unilateral Cleft Lip and Palate.

    PubMed

    Mancini, Laura; Gibson, Travis L; Grayson, Barry H; Flores, Roberto L; Staffenberg, David; Shetye, Pradip R

    2018-01-01

    To quantify 3-dimensional (3D) nasal changes in infants with unilateral cleft lip with or without cleft palate (UCL±P) treated by nasoalveolar molding (NAM) and cheilorhinoplasty and compare to noncleft controls. Retrospective case series of infants treated with NAM and primary cheilorhinoplasty between September, 2012 and July, 2016. Infants were included if they had digital stereophotogrammetric records at initial presentation (T1), completion of NAM (T2), and following primary cheilorhinoplasty (T3). Images were oriented in 3dMD Vultus software, and 16 nasolabial points identified. Twenty consecutively treated infants with UCL±P. Nasoalveolar molding and primary cheilorhinoplasty. Anthropometric measures of nasal symmetry and morphology were compared in the treatment group between time points using paired Student t tests. Postsurgical nasal morphology was compared to noncleft controls. Nasal tip protrusion increased, and at T3 was 2.64 mm greater than noncleft controls. Nasal base width decreased on the cleft side by 4.01 mm after NAM and by 6.73 mm after cheilorhinoplasty. Columellar length of the noncleft to cleft side decreased from 2:1 to 1:1 following NAM. Significant improvements in subnasale, columella, and nasal tip deviations from midsagittal plane were observed. Treatment improved symmetry of the alar morphology angle and the nasal base-columella angle between cleft and noncleft sides. Three-dimensional analysis of UCL±P patients demonstrated significant improvements in nasal projection, columella length, nasal symmetry, and nasal width. Compared to noncleft controls, nasal form was generally corrected, with overcorrection of nasal tip projection, columella angle, and outer nasal widths.

  8. Side-to-Side Cold Welding for Controllable Nanogap Formation from "Dumbbell" Ultrathin Gold Nanorods.

    PubMed

    Dai, Gaole; Wang, Binjun; Xu, Shang; Lu, Yang; Shen, Yajing

    2016-06-01

    Cold welding has been regarded as a promising bottom-up nanofabrication technique because of its ability to join metallic nanostructures at room temperature with low applied stress and without introducing damage. Usually, the cold welding process can be done instantaneously for ultrathin nanowires (diameter <10 nm) in "head-to-head" joining. Here, we demonstrate that "dumbbell" shaped ultrathin gold nanorods can be cold welded in the "side-to-side" mode in a highly controllable manner and can form an extremely small nanogap via a relatively slow welding process (up to tens of minutes, allowing various functional applications). By combining in situ high-resolution transmission electron microscopic analysis and molecular dynamic simulations, we further reveal the underlying mechanism for this "side-to-side" welding process as being dominated by atom kinetics instead of thermodynamics, which provides critical insights into three-dimensional nanosystem integration as well as the building of functional nanodevices.

  9. Three-dimensional finite element analysis of occipitocervical fixation using an anterior occiput-to-axis locking plate system: a pilot study.

    PubMed

    Cai, Xianhua; Yu, Yang; Liu, Zhichao; Zhang, Meichao; Huang, Weibing

    2014-08-01

    Although there are many techniques for occipitocervical fixation, there have been no reports regarding occipitocervical fixation via the use of an anterior anatomical locking plate system. The biomechanics of this new system were analyzed by a three-dimensional finite element to provide a theoretical basis for clinical application. This was a modeling study. We studied a 27-year-old healthy male volunteer in whom cervical disease was excluded via X-ray examination. The states of stress and strain of these two internal fixation devices were analyzed. A three-dimensional finite element model of normal occiput-C2 was established based on the anatomical data from a Chinese population. An unstable model of occipital-cervical region was established by subtracting several unit structures from the normal model. An anterior occiput-to-axis locking titanium plate system was then applied and an anterior occiput-to-axis screw fixation was performed on the unstable model. Limitation of motion was performed on the surface of the fixed model, and physiological loads were imposed on the surface of the skull base. Under various loads from different directions, the peak values of displacement of the anterior occiput-to-axis locking titanium plate system decreased 15.5%, 12.5%, 14.4%, and 23.7%, respectively, under the loads of flexion, extension, lateral bending, and axial rotation. Compared with the anterior occiput-to-axis screw fixation, the peak values of stress of the anterior occiput-to-axis locking titanium plate system also decreased 3.9%, 2.9%, 9.7%, and 7.2%, respectively, under the loads of flexion, extension, lateral bending, and axial rotation. The anterior occiput-to-axis locking titanium plate system proved superior to the anterior occiput-to-axis screw system both in the stress distribution and fixation stability based on finite element analysis. It provides a new clinical option for anterior occipitocervical fixation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Theoretical analysis for the optical deformation of emulsion droplets.

    PubMed

    Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya

    2014-02-24

    We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.

  11. Theoretical Analysis for the Optical Shaping of Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Tapp, David; Taylor, Jonathan; Lubanksy, Alex; Bain, Colin; Chakrabarti, Buddhapriya

    2014-03-01

    Motivated by recent experimental observations, I discuss a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and beyond, and assuming isotropic surface energy at the oil-water interface, the resulting shape equations are numerically solved to elucidate the three-dimensional droplet geometry. A plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry are obtained. Experimentally, two-dimensional emulsion droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. The model I present elucidates and quantifies this difference for the first time. Supported by funding from EPSRC via grant EP/I013377/1.

  12. Two-dimensional echo-cardiographic estimation of left atrial volume and volume load in patients with congenital heart disease.

    PubMed

    Kawaguchi, A; Linde, L M; Imachi, T; Mizuno, H; Akutsu, H

    1983-12-01

    To estimate the left atrial volume (LAV) and pulmonary blood flow in patients with congenital heart disease (CHD), we employed two-dimensional echocardiography (TDE). The LAV was measured in dimensions other than those obtained in conventional M-mode echocardiography (M-mode echo). Mathematical and geometrical models for LAV calculation using the standard long-axis, short-axis and apical four-chamber planes were devised and found to be reliable in a preliminary study using porcine heart preparations, although length (10%), area (20%) and volume (38%) were significantly and consistently underestimated with echocardiography. Those models were then applied and correlated with angiocardiograms (ACG) in 25 consecutive patients with suspected CHD. In terms of the estimation of the absolute LAV, accuracy seemed commensurate with the number of the dimensions measured. The correlation between data obtained by TDE and ACG varied with changing hemodynamics such as cardiac cycle, absolute LAV and presence or absence of volume load. The left atrium was found to become spherical and progressively underestimated with TDE at ventricular endsystole, in larger LAV and with increased volume load. Since this tendency became less pronounced in measuring additional dimensions, reliable estimation of the absolute LAV and volume load was possible when 2 or 3 dimensions were measured. Among those calculation models depending on 2 or 3 dimensional measurements, there was only a small difference in terms of accuracy and predictability, although algorithm used varied from one model to another. This suggests that accurate cross-sectional area measurement is critically important for volume estimation rather than any particular algorithm involved. Cross-sectional area measurement by TDE integrated into a three dimensional equivalent allowed a reliable estimate of the LAV or volume load in a variety of hemodynamic situations where M-mode echo was not reliable.

  13. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  14. Evaluation of wheelchair sling seat and sling back crashworthiness.

    PubMed

    Ha, D; Bertocci, G; Karg, P; Deemer, E

    2002-07-01

    Many wheelchairs are used as vehicle seats by those who cannot transfer to a vehicle seat. Although ANSI/RESNA WC-19 has been recently adopted as a standard to evaluate crashworthiness of the wheelchairs used as motor vehicle seats, replacement or after-market seats may not be tested to this standard. This study evaluated the crashworthiness of two specimens each of three unique sling backs and three unique sling seats using a static test procedure intended to simulate crash loading conditions. To pass the test, a sling back is required to withstand a 2290 lb load, and a sling seat should be capable of withstanding a 3750 lb load. All, but two sling back specimens which failed at 1567 lb and 1787 lb, withstood the test criterion load. Two of six tested sling seats failed to pass the test: one failed at 3123 lb and the other failed to sustain the load for 5 s although it reached the test criterion load. Most of the failures occurred at the seams of the side openings of upholsteries where the wheelchair frame inserts for attachment.

  15. Numerical Analysis of Laminated, Orthotropic Composite Structures

    DTIC Science & Technology

    1975-11-01

    the meridian plane. In the first model , a nine degree-of-freedom, straight sided, tri- angular element was used. In this element, the three...E ■ 13.79 GPa v«. ■ «25» 6.. ■ 4.82 GPa ns its V . « .25, G. « 4.82 GPa nt nt vst * ,4S» 6st * 1*379 6P...means zero values of axial accelera- tion, and angular acceleration and velocity for each load increment) NLINC (Number of load increments with time

  16. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell.

    PubMed

    Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen

    2017-07-15

    Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm -2 ). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm -2 , 1.855 ± 0.007 Wm -2 and 1.503 ± 0.005 Wm -2 for loading of 10, 6 and 2 mgcm -2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm -2 ). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm -2 ) to have the maximum power (P max ) of 5.746 ± 0.186 Wm -2 . At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm -2 ) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm -2 ).

  17. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  18. Biomechanics of cervical tooth region and noncarious cervical lesions of different morphology; three-dimensional finite element analysis

    PubMed Central

    Jakupović, Selma; Anić, Ivica; Ajanović, Muhamed; Korać, Samra; Konjhodžić, Alma; Džanković, Aida; Vuković, Amra

    2016-01-01

    Objective: The present study aims to investigate the influence of presence and shape of cervical lesions on biomechanical behavior of mandibular first premolar, subjected to two types of occlusal loading using three-dimensional (3D) finite element method (FEM). Materials and Methods: 3D models of the mandibular premolar are created from a micro computed tomography X-ray image: model of sound mandibular premolar, model with the wedge-shaped cervical lesion (V lesion), and model with saucer-shaped cervical lesion (U lesion). By FEM, straining of the tooth tissues under functional and nonfunctional occlusal loading of 200 (N) is analyzed. For the analysis, the following software was used: CTAn program 1.10 and ANSYS Workbench (version 14.0). The results are presented in von Mises stress. Results: Values of calculated stress in all tooth structures are higher under nonfunctional occlusal loading, while the functional loading is resulted in homogeneous stress distribution. Nonfunctional load in the cervical area of sound tooth model as well as in the sub-superficial layer of the enamel resulted with a significant stress (over 50 [MPa]). The highest stress concentration on models with lesions is noticed on the apex of the V-shaped lesion, while stress in saucer U lesion is significantly lower and distributed over wider area. Conclusion: The type of the occlusal teeth loading has the biggest influence on cervical stress intensity. Geometric shape of the existing lesion is very important in the distribution of internal stress. Compared to the U-shaped lesions, V-shaped lesions show significantly higher stress concentrations under load. Exposure to stress would lead to its progression. PMID:27403064

  19. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  20. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    PubMed

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  1. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    PubMed

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  3. Response of Composite Fuselage Sandwich Side Panels Subjected to Internal Pressure and Axial Tension

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Dopker, Bernard; Shah, Bharat

    1998-01-01

    The results from an experimental and analytical study of two composite sandwich fuselage side panels for a transport aircraft are presented. Each panel has two window cutouts and three frames and utilizes a distinctly different structural concept. These panels have been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on both panels. One of the sandwich panels was tested with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. A damage tolerance study was conducted on the two-frame panel by cutting a notch in the panel that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. Both the sandwich panel designs successfully satisfied all desired load requirements in the experimental part of the study, and experimental results from the two-frame panel with and without damage are fully explained by the analytical results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in. wide frame spacing to further reduce aircraft fuselage structural weight.

  4. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  5. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  6. In situ calibration of neutron activation system on the large helical device

    NASA Astrophysics Data System (ADS)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  7. Multi-camera volumetric PIV for the study of jumping fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  8. Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis.

    PubMed

    Choe, Leila H; Lee, Kelvin H

    2003-10-01

    We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.

  9. Artificial viscosity to cure the carbuncle phenomenon: The three-dimensional case

    NASA Astrophysics Data System (ADS)

    Rodionov, Alexander V.

    2018-05-01

    The carbuncle phenomenon (also known as the shock instability) has remained a serious computational challenge since it was first noticed and described [1,2]. In [3] the author presented a summary on this subject and proposed a new technique for curing the problem. Its idea is to introduce some dissipation in the form of right-hand sides of the Navier-Stokes equations into the basic method of solving Euler equations; in so doing, the molecular viscosity coefficient is replaced by the artificial viscosity coefficient. The new cure for the carbuncle flaw was tested and tuned for the case of using first-order schemes in two-dimensional simulations. Its efficiency was demonstrated on several well-known test problems. In this paper we extend the technique of [3] to the case of three-dimensional simulations.

  10. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  11. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  12. Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer

    NASA Astrophysics Data System (ADS)

    Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed

    2015-10-01

    Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.

  13. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  14. Three dimensional contact/impact methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less

  15. Three-dimensional flow characteristics of aluminum alloy in multi-pass equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek

    2010-06-01

    Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.

  16. [Analysis of the movement of long axis and the distribution of principal stress in abutment tooth retained by conical telescope].

    PubMed

    Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na

    2006-01-01

    To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.

  17. The effectiveness of element downsizing on a three-dimensional finite element model of bone trabeculae in implant biomechanics.

    PubMed

    Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R

    1999-04-01

    More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.

  18. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.

  19. Hydrophobic core malleability of a de novo designed three-helix bundle protein.

    PubMed

    Walsh, S T; Sukharev, V I; Betz, S F; Vekshin, N L; DeGrado, W F

    2001-01-12

    De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. Copyright 2001 Academic Press.

  20. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  1. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy

    PubMed Central

    Pierini, Michela; Bevilacqua, Alessandro; Torre, Maria Luisa; Lucarelli, Enrico

    2017-01-01

    Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device. PMID:28817694

  2. Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.

    1992-01-01

    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.

  3. Analytical Modeling of a Double-Sided Flux Concentrating E-Core Transverse Flux Machine with Pole Windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif

    In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in amore » two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.« less

  4. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less

  5. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less

  6. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics.

    PubMed

    Teixeira, E R; Sato, Y; Akagawa, Y; Shindoi, N

    1998-04-01

    Further validity of finite element analysis (FEA) in implant biomechanics requires an increase of modelled range and mesh refinement, and a consequent increase in element number and calculation time. To develop a new method that allows a decrease of the modelled range and element number (along with less calculation time and less computer memory), 10 FEA models of the mandible with different mesio-distal lengths and elements were constructed based on three-dimensional graphic data of the bone structure around an osseointegrated implant. Analysis of stress distribution followed by 100 N loading with the fixation of the most external planes of the models indicated that a minimal bone length of 4.2 mm of the mesial and distal sides was acceptable for FEA representation. Moreover, unification of elements located far away from the implant surface did not affect stress distribution. These results suggest that it may be possible to develop a replica FEA implant model of the mandible with less range and fewer elements without altering stress distribution.

  7. The effect of linear spring number at side load of McPherson suspension in electric city car

    NASA Astrophysics Data System (ADS)

    Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.

    2017-01-01

    The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.

  8. The sophisticated visual system of a tiny Cambrian crustacean: analysis of a stalked fossil compound eye

    PubMed Central

    Schoenemann, Brigitte; Castellani, Christopher; Clarkson, Euan N. K.; Haug, Joachim T.; Maas, Andreas; Haug, Carolin; Waloszek, Dieter

    2012-01-01

    Fossilized compound eyes from the Cambrian, isolated and three-dimensionally preserved, provide remarkable insights into the lifestyle and habitat of their owners. The tiny stalked compound eyes described here probably possessed too few facets to form a proper image, but they represent a sophisticated system for detecting moving objects. The eyes are preserved as almost solid, mace-shaped blocks of phosphate, in which the original positions of the rhabdoms in one specimen are retained as deep cavities. Analysis of the optical axes reveals four visual areas, each with different properties in acuity of vision. They are surveyed by lenses directed forwards, laterally, backwards and inwards, respectively. The most intriguing of these is the putatively inwardly orientated zone, where the optical axes, like those orientated to the front, interfere with axes of the other eye of the contralateral side. The result is a three-dimensional visual net that covers not only the front, but extends also far laterally to either side. Thus, a moving object could be perceived by a two-dimensional coordinate (which is formed by two axes of those facets, one of the left and one of the right eye, which are orientated towards the moving object) in a wide three-dimensional space. This compound eye system enables small arthropods equipped with an eye of low acuity to estimate velocity, size or distance of possible food items efficiently. The eyes are interpreted as having been derived from individuals of the early crustacean Henningsmoenicaris scutula pointing to the existence of highly efficiently developed eyes in the early evolutionary lineage leading towards the modern Crustacea. PMID:22048954

  9. Vibration studies of a lightweight three-sided membrane suitable for space application

    NASA Technical Reports Server (NTRS)

    Sewell, J. L.; Miserentino, R.; Pappa, R. S.

    1983-01-01

    Vibration studies carried out in a vacuum chamber are reported for a three-sided membrane with inwardly curved edges. Uniform tension was transmitted by thin steel cables encased in the edges. Variation of ambient air pressure from atmospheric to near vacuum resulted in increased response frequencies and amplitudes. The first few vibration modes measured in a near vacuum are shown to be predictable by a finite element structural analysis over a range of applied tension loads. The complicated vibration mode behavior observed during tests at various air pressures is studied analytically with a nonstructural effective air-mass approximation. The membrane structure is a candidate for reflective surfaces in space antennas.

  10. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  11. Deterministic Stress Modeling of Hot Gas Segregation in a Turbine

    NASA Technical Reports Server (NTRS)

    Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger

    1998-01-01

    Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.

  12. Three dimensional profile measurement using multi-channel detector MVM-SEM

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki

    2014-07-01

    In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.

  13. An automated two-dimensional optical force clamp for single molecule studies.

    PubMed Central

    Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M

    2002-01-01

    We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136

  14. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    NASA Astrophysics Data System (ADS)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  15. [A simulative biomechanical experiment on different position of none-cement acetabular components influencing the load distribution around acetabulum].

    PubMed

    Li, Dongsong; Liu, Jianguo; Li, Shuqiang; Fan, Honghui; Guan, Jikui

    2008-02-01

    In the present study, a three dimensional finite-element model of the human pelvic was reconstructed, and then, under different acetabular component position (the abduction angle ranges from 30 degrees to 70 degrees and the anteversion ranges from 5 degrees to 30degrees) the load distribution around the acetabular was evaluated by the computer biomechanical analysis program (Solidworks). Through the obtained load distribution results, the most even and reasonable range of the distribution was selected; therefore the safe range of the acetabular component implantation can be validated from the biomechanics aspect.

  16. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    PubMed

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals

    PubMed Central

    Lynch, Maureen E.; Chiou, Aaron E.; Lee, Min Joon; Marcott, Stephen C.; Polamraju, Praveen V.; Lee, Yeonkyung

    2016-01-01

    Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis. PMID:27401765

  18. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  19. PIV measurements in a compact return diffuser under multi-conditions

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Lu, W. G.; Shi, W. D.

    2013-12-01

    Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.

  20. Magnetoresistance of a nanostep junction based on topological insulators

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Hong, Jin-Bin; Zhai, Feng

    2018-06-01

    We investigate ballistic transport of helical electrons in a three-dimensional topological insulator traversing a nanostep junction. We find that a magnetic field perpendicular to its side surface shrinks the phase space for transmission, leading to magnetoresistance for the Fermi energy close to the Dirac point of the top surface. We also find transmission resonances and suppression of the Fano factor due to Landau-level-related quasibound states. The transmission blockade in the off-resonance case can result in a huge magnetoresistance for Fermi energy higher than the Dirac point of the side surface.

  1. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  2. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.

    PubMed

    Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N

    2016-09-01

    Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point

    NASA Astrophysics Data System (ADS)

    Dey, Pinkee; Suslov, Sergey A.

    2016-12-01

    A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.

  4. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.

  5. Crack surface roughness in three-dimensional random fuse networks

    NASA Astrophysics Data System (ADS)

    Nukala, Phani Kumar V. V.; Zapperi, Stefano; Šimunović, Srđan

    2006-08-01

    Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as Wtilde L0.5 and is consistent with the scaling of localization length ξ˜L0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution.

  6. Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Davila, C. G.; Camanho, P. P.; Iannucci, L.; Robinson, P.

    2005-01-01

    A set of three-dimensional failure criteria for laminated fiber-reinforced composites, denoted LaRC04, is proposed. The criteria are based on physical models for each failure mode and take into consideration non-linear matrix shear behaviour. The model for matrix compressive failure is based on the Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment angle and by the rotation of the fibers during compressive loading. The plane of fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can be used directly for design purposes. Several applications involving a broad range of load combinations are presented and compared to experimental data and other existing criteria. Predictions using LaRC04 correlate well with the experimental data, arguably better than most existing criteria. The good correlation seems to be attributable to the physical soundness of the underlying failure models.

  7. Microscopic full-field three-dimensional strain measurement during the mechanical testing of additively manufactured porous biomaterials.

    PubMed

    Genovese, Katia; Leeflang, Sander; Zadpoor, Amir A

    2017-05-01

    A custom-designed micro-digital image correlation system was used to track the evolution of the full-surface three-dimensional strain field of Ti6Al4V additively manufactured lattice samples under mechanical loading. The high-magnification capabilities of the method allowed to resolve the strain distribution down to the strut level and disclosed a highly heterogeneous mechanical response of the lattice structure with local strain concentrations well above the nominal global strain level. In particular, we quantified that strain heterogeneity appears at a very early stage of the deformation process and increases with load, showing a strain accumulation pattern with a clear correlation to the later onset of the fracture. The obtained results suggest that the unique opportunities offered by the proposed experimental method, in conjunction with analytical and computational models, could serve to provide novel important information for the rational design of additively manufactured porous biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A comparative analysis of restorative materials used in abfraction lesions in tooth with and without occlusal restoration: Three-dimensional finite element analysis

    PubMed Central

    Srirekha, A; Bashetty, Kusum

    2013-01-01

    Objectives: The present comparative analysis aimed at evaluating the mechanical behavior of various restorative materials in abfraction lesion in the presence and absence of occlusal restoration. Materials and Methods: A three-dimensional finite-element analysis was performed. Six experimental models of mandibular first premolar were generated and divided into two groups (groups A and B) of three each. All the groups had cervical abfraction lesion restored with materials and in addition group A had class I occlusal restoration. A load of 90 N, 200 N, and 400 N were applied at 45° loading angle on the buccal inclines of buccal cusp and Von Mises stresses was chosen for analysis. Results: In all the models, the values of stress recorded at the cervical margin of the restorations were at their maxima. Irrespective of the occlusal restoration, all the materials performed well at 90 N and 200 N. At 400 N, only low-shrink composite showed stresses lesser than its tensile strength indicating its success even at higher load. Conclusion: Irrespective of occlusal restoration, restorative materials with low modulus of elasticity are successful in abfraction lesions at moderate tensile stresses; whereas materials with higher modulus of elasticity and mechanical properties can support higher loads and resist wear. Significance: The model allows comparison of different restorative materials for restoration of abfraction lesions in the presence and absence of occlusal restoration. The model can be used to validate more sophisticated computational models as well as to conduct various optimization studies. PMID:23716970

  9. IPS-Empress II inlay-retained fixed partial denture reinforced with zirconia bar: three-dimensional finite element and in-vitro studies.

    PubMed

    Kermanshah, Hamid; Geramy, Allahyar; Ebrahimi, Shahram Farzin; Bitaraf, Tahereh

    2012-12-01

    This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb). In the Finite element analysis, six three-dimensional models of IRFPD were designed using Solid Works 2006. Five models were reinforced with different Zb and a model without Zb was considered as a control. The bridges were loaded by 200 and 500 N forces at the middle of the pontic on the occlusal surface. Subsequently, von Mises stress and displacement of the models were evaluated along a defined path. In the experimental part, 21 bar shape specimens were fabricated from lithium disilicate and zirconia ceramic in three different designs. The zirconia-IPS interfaces and the fractured surfaces of flexural test were observed using SEM. In the connector area, von Mises stress and displacement of the models with Zb under a load of 500 N were decreased compared to the model without the Zb; however, this difference was not considerable at a load of 200 N. In the mesial connector, Von Mises stress and displacement was decreased from 12.5 Mpa for the control model tested at 500 N to 7.0 Mpa for the model with Zb and from 0.0050-0.0041 mm, respectively. SEM analyses showed that, before fracture, interfacial gaps were not observed along the interfaces, but initiated cracks propagated along the interfaces after flexural loading. IPS IRFPD reinforced by Zb can tolerate higher stresses while still functioning effectively and the interfaces may have desirable adaption.

  10. Three-Dimensional Laminar Separation.

    DTIC Science & Technology

    1983-12-01

    and are due to the power supply. ........................... 51 Fig. 26 The actual experimental points shown together with the smoothed profile on...Flow visualizations of the regions of interest are presented and compared with the calculated results. Streamwlse and cross flow velocity profiles ...the leeward side at the fourth .station . ............................................... 52 Fig. 27 The u-component velocity profile . Horizontal and

  11. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohui; Zhou, Yingke; Tu, Xiaofeng; Zhang, Zhongtang; Du, Guodong

    2017-02-01

    A three-dimensional graphene aerogel supporting LiFePO4 nanoparticles (LFP/GA) has been synthesized by a hydrothermal process. The morphology and microstructure of LFP/GA were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis. The electrochemical properties were evaluated by constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. Well-distributed LFP nanoparticles are anchored on both sides of graphene and then assemble into a highly porous three-dimensional aerogel architecture. Conductive graphene networks provide abundant paths to facilitate the transfer of electrons, while the aerogel structures offer plenty of interconnected open pores for the storage of electrolyte to enable the fast supply of Li ions. The LFP and graphene aerogel composites present superior specific capacity, rate capability and cycling performance in comparison to the pristine LFP or LFP supported on graphene sheets and are thus promising for lithium-ion battery applications.

  12. Quantum transport through 3D Dirac materials

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Jafari, S. A.

    2015-08-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salehi, M.; Jafari, S.A., E-mail: jafari@physics.sharif.edu; Center of Excellence for Complex Systems and Condensed Matter

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances themore » 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.« less

  14. A geometry package for generation of input data for a three-dimensional potential-flow program

    NASA Technical Reports Server (NTRS)

    Halsey, N. D.; Hess, J. L.

    1978-01-01

    The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.

  15. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  16. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  17. Knee Kinetics during Squats of Varying Loads and Depths in Recreationally Trained Females.

    PubMed

    Flores, Victoria; Becker, James; Burkhardt, Eric; Cotter, Joshua

    2018-03-06

    The back squat exercise is typically practiced with varying squat depths and barbell loads. However, depth has been inconsistently defined, resulting in unclear safety precautions when squatting with loads. Additionally, females exhibit anatomical and kinematic differences to males which may predispose them to knee joint injuries. The purpose of this study was to characterize peak knee extensor moments (pKEMs) at three commonly practiced squat depths of above parallel, parallel, and full depth, and with three loads of 0% (unloaded), 50%, and 85% depth-specific one repetition maximum (1RM) in recreationally active females. Nineteen females (age, 25.1 ± 5.8 years; body mass, 62.5 ± 10.2 kg; height, 1.6 ± 0.10 m; mean ± SD) performed squats of randomized depth and load. Inverse dynamics were used to obtain pKEMs from three-dimensional knee kinematics. Depth and load had significant interaction effects on pKEMs (p = 0.014). Significantly greater pKEMs were observed at full depth compared to parallel depth with 50% 1RM load (p = 0.001, d = 0.615), and 85% 1RM load (p = 0.010, d = 0.714). Greater pKEMs were also observed at full depth compared to above parallel depth with 50% 1RM load (p = 0.003, d = 0.504). Results indicate effect of load on female pKEMs do not follow a progressively increasing pattern with either increasing depth or load. Therefore, when high knee loading is a concern, individuals are must carefully consider both the depth of squat being performed and the relative load they are using.

  18. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less

  19. Active Response Gravity Offload and Method

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  20. Computing Shapes Of Cascade Diffuser Blades

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Prueger, George H.

    1993-01-01

    Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.

Top