Sample records for three-dimensional spatial relationships

  1. Evaluation of an Online Three-Dimensional Interactive Resource for Undergraduate Neuroanatomy Education

    ERIC Educational Resources Information Center

    Allen, Lauren K.; Eagleson, Roy; de Ribaupierre, Sandrine

    2016-01-01

    Neuroanatomy is one of the most challenging subjects in anatomy, and novice students often experience difficulty grasping the complex three-dimensional (3D) spatial relationships. This study evaluated a 3D neuroanatomy e-learning module, as well as the relationship between spatial abilities and students' knowledge in neuroanatomy. The study's…

  2. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    PubMed

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  3. Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners.

    PubMed

    Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K

    2012-04-01

    (1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.

  4. Mathematical Skills in Ninth-graders: Relationship with Visuo-spatial Abilities and Working Memory.

    ERIC Educational Resources Information Center

    Reuhkala, Minna

    2001-01-01

    Investigates the relationship between working memory (WM) capacity (particularly visuo-spatial working memory (VSWM)), the ability to mentally rotate three-dimensional objects, and mathematical skills. Explains that in experiment 1, VSWM was examined; and in experiment 2, contributions of other WM components to mathematical skills was examined.…

  5. Spatial abilities and anatomy knowledge assessment: A systematic review.

    PubMed

    Langlois, Jean; Bellemare, Christian; Toulouse, Josée; Wells, George A

    2017-06-01

    Anatomy knowledge has been found to include both spatial and non-spatial components. However, no systematic evaluation of studies relating spatial abilities and anatomy knowledge has been undertaken. The objective of this study was to conduct a systematic review of the relationship between spatial abilities test and anatomy knowledge assessment. A literature search was done up to March 20, 2014 in Scopus and in several databases on the OvidSP and EBSCOhost platforms. Of the 556 citations obtained, 38 articles were identified and fully reviewed yielding 21 eligible articles and their quality were formally assessed. Non-significant relationships were found between spatial abilities test and anatomy knowledge assessment using essays and non-spatial multiple-choice questions. Significant relationships were observed between spatial abilities test and anatomy knowledge assessment using practical examination, three-dimensional synthesis from two-dimensional views, drawing of views, and cross-sections. Relationships between spatial abilities test and anatomy knowledge assessment using spatial multiple-choice questions were unclear. The results of this systematic review provide evidence for spatial and non-spatial methods of anatomy knowledge assessment. Anat Sci Educ 10: 235-241. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  6. A three-dimensional spatial mapping approach to quantify fine-scale heterogeneity among leaves within canopies1

    PubMed Central

    Wingfield, Jenna L.; Ruane, Lauren G.; Patterson, Joshua D.

    2017-01-01

    Premise of the study: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., “upper/lower”) fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. Methods: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). Results: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. Discussion: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens. PMID:29188145

  7. Defining the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus: a pilot study.

    PubMed

    Abu-Rustum, Reem S; Ziade, M Fouad; Abu-Rustum, Sameer E

    2012-09-01

    Our study aims at investigating the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus. This is a retrospective pilot study where three-dimensional and four-dimensional stored data sets were manipulated to retrieve eight anatomic planes starting from the midsagittal plane of the fetus. Standardization of volumes was performed at the level of the transverse abdominal circumference plane. Parallel shift was utilized and the spatial relationships between eight anatomic planes were established. The median and the range were calculated for each of the planes, and they were evaluated as a function of the fetal crown-rump length. P < 0.05 was considered statistically significant. A total of 63 volume data sets were analyzed. The eight anatomic planes were found to adhere to normal distribution curves, and most of the planes were in a definable relationship to each other with statistically significant correlations. To our knowledge, this is the first study to describe the possible spatial relationships between eight two-dimensional anatomic planes in the 11+6 to 13+6 weeks fetus, utilizing a standardized approach. Defining these spatial relationships may serve as the first step for the potential future development of automation software for fetal anatomic assessment at 11+6 to 13+6 weeks. © 2012 John Wiley & Sons, Ltd.

  8. Three-dimensional perspective software for representation of digital imagery data. [Olympic National Park, Washington

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1980-01-01

    A generalized three dimensional perspective software capability was developed within the framework of a low cost computer oriented geographically based information system using the Earth Resources Laboratory Applications Software (ELAS) operating subsystem. This perspective software capability, developed primarily to support data display requirements at the NASA/NSTL Earth Resources Laboratory, provides a means of displaying three dimensional feature space object data in two dimensional picture plane coordinates and makes it possible to overlay different types of information on perspective drawings to better understand the relationship of physical features. An example topographic data base is constructed and is used as the basic input to the plotting module. Examples are shown which illustrate oblique viewing angles that convey spatial concepts and relationships represented by the topographic data planes.

  9. Constructional ability in two- versus three-dimensions: relationship to spatial vision and locus of cerebrovascular lesion.

    PubMed

    Capruso, Daniel X; Hamsher, Kerry deS

    2011-06-01

    Clinical evaluation and research on constructional ability have come to rely almost exclusively on two-dimensional tasks such as graphomotor copying or mosaic Block Design (BD). A return to the inclusion of a third dimension in constructional tests may increase the spatial demands of the task, and improve understanding of the relationship between visual perception and constructional ability in patients with cerebral disease. Subjects were patients (n=43) with focal or multifocal cerebrovascular lesions as determined by CT or MRI. Tests of temporal orientation, verbal intelligence, language, object vision and spatial vision were used to determine which factors were predictive of performance on two-dimensional BD and Three-Dimensional Block Construction (3-DBC) tasks. Stepwise linear regression indicated that spatial vision predicted BD performance, and was even more strongly predictive of 3-DBC. Other cognitive domains did not account for significant additional variance in performance of either BD or 3-DBC. Bilateral cerebral lesions produced more severe deficits on BD than did unilateral cerebral lesions. The presence of a posterior cerebral lesion was the significant factor in producing deficits in 3-DBC. The spatial aspect of a constructional task is enhanced when the patient is required to assemble an object in all three dimensions of space. In the typical patient with cerebrovascular disease, constructional deficits typically occur in the context of a wider syndrome of deficits in spatial vision. Copyright © 2010 Elsevier Srl. All rights reserved.

  10. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  11. Make a Halley's Comet Orbit Model.

    ERIC Educational Resources Information Center

    Podmore, Francis; Fleet, Richard W.

    1985-01-01

    Describes a simple three-dimensional model of Halley's Comet orbit (which is much more informative than a two-dimensional drawing) to illustrate spatial relationships and visualize how the comet moves relative to the earth. Instructions for model assembly are given along with a template which can be photocopied and glued to cardboard. (JN)

  12. The Role of Cognitive Flexibility in the Spatial Representation of Children's Drawings

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Hagedorn, Helena

    2011-01-01

    Representing the spatial appearance of objects and scenes in drawings is a difficult task for young children in particular. In the present study, the relationship between spatial drawing and cognitive flexibility was investigated. Seven- to 11-year-olds (N = 60) were asked to copy a three-dimensional model in a drawing. The use of depth cues as an…

  13. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    PubMed

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  14. The Importance of Spatial Ability and Mental Models in Learning Anatomy

    ERIC Educational Resources Information Center

    Chatterjee, Allison K.

    2011-01-01

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing…

  15. Indoor 3D Route Modeling Based On Estate Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  16. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  17. Presentation of Anatomical Variations Using the Aurasma Mobile App

    PubMed Central

    Bézard, Georg; Lozanoff, Beth K; Labrash, Steven; Lozanoff, Scott

    2015-01-01

    Knowledge of anatomical variations is critical to avoid clinical complications and it enables an understanding of morphogenetic mechanisms. Depictions are comprised of photographs or illustrations often limiting appreciation of three-dimensional (3D) spatial relationships. The purpose of this study is to describe an approach for presenting anatomical variations utilizing video clips emphasizing 3D anatomical relationships delivered on personal electronic devices. An aberrant right subclavian artery (ARSA) was an incidental finding in a routine dissection of an 89-year-old man cadaver during a medical student instructional laboratory. The specimen was photographed and physical measurements were recorded. Three-dimensional models were lofted and rendered with Maya software and converted as Quicktime animations. Photographs of the first frame of the animations were recorded and registered with Aurasma Mobile App software (www.aurasma.com). Resulting animations were viewed on mobile devices. The ARSA model can be manipulated on the mobile device enabling the student to view and appreciate spatial relationships. Model elements can be de-constructed to provide even greater spatial resolution of anatomical relationships. Animations provide a useful approach for visualizing anatomical variations. Future work will be directed at creating a library of variants and underlying mechanism of formation for presentation through the Aurasma application. PMID:26793410

  18. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    PubMed

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  19. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization.

    PubMed

    Glaser, Joshua I; Zamft, Bradley M; Church, George M; Kording, Konrad P

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, "puzzle imaging," that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples.

  20. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    PubMed Central

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  1. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient.

    PubMed

    Santos, Andrés; Manzano, Gema

    2010-04-14

    As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus-Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B(4) predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B(4) obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.

  2. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  3. The Billion Cell Construct: Will Three-Dimensional Printing Get Us There?

    PubMed Central

    Miller, Jordan S.

    2014-01-01

    How structure relates to function—across spatial scales, from the single molecule to the whole organism—is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations. PMID:24937565

  4. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization

    PubMed Central

    Glaser, Joshua I.; Zamft, Bradley M.; Church, George M.; Kording, Konrad P.

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, “puzzle imaging,” that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples. PMID:26192446

  5. Using a Digital Planetarium for Teaching Seasons to Undergraduates

    ERIC Educational Resources Information Center

    Yu, Ka Chun; Sahami, Kamran; Sahami, Victoria; Sessions, Larry C.

    2015-01-01

    Computer-generated simulations and visualizations in digital planetariums have the potential to bridge the comprehension gap in astronomy education. Concepts involving three-dimensional spatial relationships can be difficult for the layperson to understand, since much of the traditional teaching materials used in astronomy education remain…

  6. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  7. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  8. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  9. How Students Solve Problems in Spatial Geometry while Using a Software Application for Visualizing 3D Geometric Objects

    ERIC Educational Resources Information Center

    Widder, Mirela; Gorsky, Paul

    2013-01-01

    In schools, learning spatial geometry is usually dependent upon a student's ability to visualize three dimensional geometric configurations from two dimensional drawings. Such a process, however, often creates visual obstacles which are unique to spatial geometry. Useful software programs which realistically depict three dimensional geometric…

  10. Methodology to study the three-dimensional spatial distribution of prostate cancer and their dependence on clinical parameters

    PubMed Central

    Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin

    2015-01-01

    Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5  ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5  ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756

  11. Validating two-dimensional leadership models on three-dimensionally structured fish schools

    PubMed Central

    Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa

    2017-01-01

    Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582

  12. The role of right frontal brain regions in integration of spatial relation.

    PubMed

    Han, Jiahui; Cao, Bihua; Cao, Yunfei; Gao, Heming; Li, Fuhong

    2016-06-01

    Previous studies have explored the neural mechanisms of spatial reasoning on a two-dimensional (2D) plane; however, it remains unclear how spatial reasoning is conducted in a three-dimensional (3D) condition. In the present study, we presented 3D geometric objects to 16 adult participants, and asked them to process the spatial relationship between different corners of the geometric objects. In premise-1, the first two corners of a geometric shape (e.g., A vs. B) were displayed. In premise-2, the second and third corners (e.g., B vs. C) were displayed. After integrating the two premises, participants were required to infer the spatial relationship between the first and the third corners (e.g., A and C). Finally, the participants were presented with a conclusion object, and they were required to judge whether the conclusion was true or false based on their inference. The event-related potential evoked by premise-2 revealed that (1) compared with 2D spatial reasoning, 3D reasoning elicited a smaller P3b component, and (2) in the right frontal areas, increased negativities were found in the 3D condition during the N400 and late negative components (LNC). These findings imply that higher brain activity in the right frontal brain regions were related with the integration and maintenance of spatial information in working memory for reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  14. Visualization of spatial-temporal data based on 3D virtual scene

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang

    2009-10-01

    The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.

  15. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2014-03-01

    Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.

  16. 3D chromosome rendering from Hi-C data using virtual reality

    NASA Astrophysics Data System (ADS)

    Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing

    2015-01-01

    Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.

  17. Learning Protein Structure with Peers in an AR-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Chen, Yu-Chien

    2013-01-01

    Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…

  18. Predicting student performance in sonographic scanning using spatial ability as an ability determinent of skill acquisition

    NASA Astrophysics Data System (ADS)

    Clem, Douglas Wayne

    Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.

  19. Spatial versus Object Visualisation: The Case of Mathematical Understanding in Three-Dimensional Arrays of Cubes and Nets

    ERIC Educational Resources Information Center

    Pitta-Pantazi, Demetra; Christou, Constantinos

    2010-01-01

    This paper investigates the relations of students' spatial and object visualisation with their analytic, creative and practical abilities in three-dimensional geometry. Fifty-three 11-year-olds were tested using a Greek modified version of the Object-Spatial Imagery Questionnaire (OSIQ) (Blajenkova, Kozhevnikov, & Motes, 2006) and two…

  20. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  1. Supra-domains: evolutionary units larger than single protein domains.

    PubMed

    Vogel, Christine; Berzuini, Carlo; Bashton, Matthew; Gough, Julian; Teichmann, Sarah A

    2004-02-20

    Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.

  2. Reconstructing spatial organizations of chromosomes through manifold learning

    PubMed Central

    Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-01-01

    Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992

  3. Reconstructing spatial organizations of chromosomes through manifold learning.

    PubMed

    Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-05-04

    Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.

  4. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  5. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  6. Visualizing phylogenetic tree landscapes.

    PubMed

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.

  7. Modeling Spatial Relationships within a Fuzzy Framework.

    ERIC Educational Resources Information Center

    Petry, Frederick E.; Cobb, Maria A.

    1998-01-01

    Presents a model for representing and storing binary topological and directional relationships between 2-dimensional objects that is used to provide a basis for fuzzy querying capabilities. A data structure called an abstract spatial graph (ASG) is defined for the binary relationships that maintains all necessary information regarding topology and…

  8. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  9. Data center thermal management

    DOEpatents

    Hamann, Hendrik F.; Li, Hongfei

    2016-02-09

    Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.

  10. Building Bridges to Spatial Reasoning

    ERIC Educational Resources Information Center

    Shumway, Jessica F.

    2013-01-01

    Spatial reasoning, which involves "building and manipulating mental representations of two-and three-dimensional objects and perceiving an object from different perspectives" is a critical aspect of geometric thinking and reasoning. Through building, drawing, and analyzing two-and three-dimensional shapes, students develop a foundation…

  11. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  12. An Energy Model of Place Cell Network in Three Dimensional Space.

    PubMed

    Wang, Yihong; Xu, Xuying; Wang, Rubin

    2018-01-01

    Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.

  13. Possibilities and limitations of current stereo-endoscopy.

    PubMed

    Mueller-Richter, U D A; Limberger, A; Weber, P; Ruprecht, K W; Spitzer, W; Schilling, M

    2004-06-01

    Stereo-endoscopy has become a commonly used technology. In many comparative studies striking advantages of stereo-endoscopy over two-dimensional presentation could not be proven. To show the potential and fields for further improvement of this technology is the aim of this article. The physiological basis of three-dimensional vision limitations of current stereo-endoscopes is discussed and fields for further research are indicated. New developments in spatial picture acquisition and spatial picture presentation are discussed. Current limitations of stereo-endoscopy that prevent a better ranking in comparative studies with two-dimensional presentation are mainly based on insufficient picture acquisition. Devices for three-dimensional picture presentation are at a more advanced developmental stage than devices for three-dimensional picture acquisition. Further research should emphasize the development of new devices for three-dimensional picture acquisition.

  14. An evaluation of three-dimensional sensors for the extravehicular activity helper/retreiver

    NASA Technical Reports Server (NTRS)

    Magee, Michael

    1993-01-01

    The Extravehicular Activity Retriever/Helper (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, accurate sensing of the operational environment and objects in the environment will therefore be critical. The qualitative and quantitative results of empirical studies of three sensors that are capable of providing three-dimensional information to the EVAHR, but using completely different hardware approaches are documented. The first of these devices is a phase shift laser with an effective operating range (ambiguity interval) of approximately 15 meters. The second sensor is a laser triangulation system designed to operate at much closer range and to provide higher resolution images. The third sensor is a dual camera stereo imaging system from which range images can also be obtained. The remainder of the report characterizes the strengths and weaknesses of each of these systems relative to quality of data extracted and how different object characteristics affect sensor operation.

  15. Alphatome--Enhancing Spatial Reasoning: A Simulation in Two and Three Dimensions

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2003-01-01

    Using refrigerator magnets, foam blocks, ink pads, and modeling clay, students manipulate the letters of the alphabet at multiple angles, reconstructing three-dimensional forms from two-dimensional data. This exercise increases students' spatial reasoning ability, an important component in many scientific disciplines. (Contains 5 figures.)

  16. Evaluation of an online three-dimensional interactive resource for undergraduate neuroanatomy education.

    PubMed

    Allen, Lauren K; Eagleson, Roy; de Ribaupierre, Sandrine

    2016-10-01

    Neuroanatomy is one of the most challenging subjects in anatomy, and novice students often experience difficulty grasping the complex three-dimensional (3D) spatial relationships. This study evaluated a 3D neuroanatomy e-learning module, as well as the relationship between spatial abilities and students' knowledge in neuroanatomy. The study's cross-over design divided the participants into two groups, each starting with tests for anatomy knowledge and spatial ability, followed by access to either the 3D online learning module or the gross anatomy laboratory. Participants completed a second knowledge test prior to accessing the other learning modality. Participants in both groups scored significantly higher on Quiz 1 than on the Pretest knowledge assessment (W = 47, P < 0.01; W = 30, P < 0.01). Students who initially accessed the 3D online resources scored significantly better on the Quiz 1 than students who accessed the gross anatomy resources (W = 397.5, P < 0.01). Scores significantly improved on Quiz 2 for participants who accessed the 3D learning module following exposure to the cadaveric resources (W = 94, P < 0.01). After exposure to both learning modalities, there were no significant differences between groups. Significant positive correlations were found between participants' spatial ability score and their performance on the Pretest, Quiz 1, and Quiz 2 assessments (r = 0.22, P = 0.04; r = 0.25, P = 0.02; r = 0.26, P = 0.02). These preliminary results found students appreciated working with the 3D e-learning module, and their learning outcomes significantly improved after accessing the resource. Anat Sci Educ 9: 431-439. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  17. Real three-dimensional objects: effects on mental rotation.

    PubMed

    Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I

    2011-08-01

    The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.

  18. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  19. Rotation is visualisation, 3D is 2D: using a novel measure to investigate the genetics of spatial ability

    PubMed Central

    Shakeshaft, Nicholas G.; Rimfeld, Kaili; Schofield, Kerry L.; Selzam, Saskia; Malanchini, Margherita; Rodic, Maja; Kovas, Yulia; Plomin, Robert

    2016-01-01

    Spatial abilities–defined broadly as the capacity to manipulate mental representations of objects and the relations between them–have been studied widely, but with little agreement reached concerning their nature or structure. Two major putative spatial abilities are “mental rotation” (rotating mental models) and “visualisation” (complex manipulations, such as identifying objects from incomplete information), but inconsistent findings have been presented regarding their relationship to one another. Similarly inconsistent findings have been reported for the relationship between two- and three-dimensional stimuli. Behavioural genetic methods offer a largely untapped means to investigate such relationships. 1,265 twin pairs from the Twins Early Development Study completed the novel “Bricks” test battery, designed to tap these abilities in isolation. The results suggest substantial genetic influence unique to spatial ability as a whole, but indicate that dissociations between the more specific constructs (rotation and visualisation, in 2D and 3D) disappear when tested under identical conditions: they are highly correlated phenotypically, perfectly correlated genetically (indicating that the same genetic influences underpin performance), and are related similarly to other abilities. This has important implications for the structure of spatial ability, suggesting that the proliferation of apparent sub-domains may sometimes reflect idiosyncratic tasks rather than meaningful dissociations. PMID:27476554

  20. Relationships between convective storms and their environment in AVE IV determined from a three-dimensional subsynoptic-scale, trajectory model

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1977-01-01

    The paper describes interrelationships between synoptic-scale and convective-scale systems obtained by following individual air parcels as they traveled within the convective storm environment of AVE IV. (NASA's fourth Atmospheric Variability Experiment, AVE IV, was a 36-hour study in April 1975 of the atmospheric variability and structure in regions of convective storms.) A three-dimensional trajectory model was used to calculate parcel paths, and manually digitized radar was employed to locate convective activity of various intensities and to determine those trajectories that traversed the storm environment. Spatial and temporal interrelationships are demonstrated by reference to selected time periods of AVE IV which contain the development and movement of the squall line in which the Neosho tornado was created.

  1. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision

    Treesearch

    Jonathan P. Dandois; Erle C. Ellis

    2013-01-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...

  2. Real-time spectral imaging in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Wenhai; Psaltis, Demetri; Barbastathis, George

    2002-05-01

    We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

  3. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Konopka, Allan; McKinely, Jim

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less

  4. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  5. Spatial analysis of agro-ecological data: Detection of spatial patterns combining three different methodical approaches

    NASA Astrophysics Data System (ADS)

    Heuer, A.; Casper, M. C.; Vohland, M.

    2009-04-01

    Processes in natural systems and the resulting patterns occur in ecological space and time. To study natural structures and to understand the functional processes it is necessary to identify the relevant spatial and temporal space at which these all occur; or with other words to isolate spatial and temporal patterns. In this contribution we will concentrate on the spatial aspects of agro-ecological data analysis. Data were derived from two agricultural plots, each of about 5 hectares, in the area of Newel, located in Western Palatinate, Germany. The plots had been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. Data about physical and chemical soil properties, vegetation and topography were i) collected by measurements in the field during three vegetation periods (2005-2008) and/or ii) derived from hyperspectral image data, acquired by a HyMap airborne imaging sensor (2005). To detect spatial variability within the plots, we applied three different approaches that examine and describe relationships among data. First, we used variography to get an overview of the data. A comparison of the experimental variograms facilitated to distinguish variables, which seemed to occur in related or dissimilar spatial space. Second, based on data available in raster-format basic cell statistics were conducted, using a geographic information system. Here we could make advantage of the powerful classification and visualization tool, which supported the spatial distribution of patterns. Third, we used an approach that is being used for visualization of complex highly dimensional environmental data, the Kohonen self-organizing map. The self-organizing map (SOM) uses multidimensional data that gets further reduced in dimensionality (2-D) to detect similarities in data sets and correlation between single variables. One of SOM's advantages is its powerful visualization capability. The combination of the three approaches leads to comprehensive and reasonable results, which will be presented in detail. It can be concluded, that the chosen strategy made it possible to complement preliminary findings, to validate the results of a single approach and to clearly delineate spatial patterns.

  6. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation.

    PubMed Central

    Kuppusamy, P; Chzhan, M; Vij, K; Shteynbuk, M; Lefer, D J; Giannella, E; Zweier, J L

    1994-01-01

    It has been hypothesized that free radical metabolism and oxygenation in living organs and tissues such as the heart may vary over the spatially defined tissue structure. In an effort to study these spatially defined differences, we have developed electron paramagnetic resonance imaging instrumentation enabling the performance of three-dimensional spectral-spatial images of free radicals infused into the heart and large vessels. Using this instrumentation, high-quality three-dimensional spectral-spatial images of isolated perfused rat hearts and rabbit aortas are obtained. In the isolated aorta, it is shown that spatially and spectrally accurate images of the vessel lumen and wall could be obtained in this living vascular tissue. In the isolated rat heart, imaging experiments were performed to determine the kinetics of radical clearance at different spatial locations within the heart during myocardial ischemia. The kinetic data show the existence of regional and transmural differences in myocardial free radical clearance. It is further demonstrated that EPR imaging can be used to noninvasively measure spatially localized oxygen concentrations in the heart. Thus, the technique of spectral-spatial EPR imaging is shown to be a powerful tool in providing spatial information regarding the free radical distribution, metabolism, and tissue oxygenation in living biological organs and tissues. Images PMID:8159757

  7. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography

    DOE PAGES

    Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...

    2016-11-21

    Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less

  8. Three-dimensional imaging and remote sensing imaging; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Astrophysics Data System (ADS)

    Robbins, Woodrow E.

    1988-01-01

    The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.

  9. Three-dimensional intraoperative ultrasound of vascular malformations and supratentorial tumors.

    PubMed

    Woydt, Michael; Horowski, Anja; Krauss, Juergen; Krone, Andreas; Soerensen, Niels; Roosen, Klaus

    2002-01-01

    The benefits and limits of a magnetic sensor-based 3-dimensional (3D) intraoperative ultrasound technique during surgery of vascular malformations and supratentorial tumors were evaluated. Twenty patients with 11 vascular malformations and 9 supratentorial tumors undergoing microsurgical resection or clipping were investigated with an interactive magnetic sensor data acquisition system allowing freehand scanning. An ultrasound probe with a mounted sensor was used after craniotomies to localize lesions, outline tumors or malformation margins, and identify supplying vessels. A 3D data set was obtained allowing reformation of multiple slices in all 3 planes and comparison to 2-dimensional (2D) intraoperative ultrasound images. Off-line gray-scale segmentation analysis allowed differentiation between tissue with different echogenicities. Color-coded information about blood flow was extracted from the images with a reconstruction algorithm. This allowed photorealistic surface displays of perfused tissue, tumor, and surrounding vessels. Three-dimensional intraoperative ultrasound data acquisition was obtained within 5 minutes. Off-line analysis and reconstruction time depends on the type of imaging display and can take up to 30 minutes. The spatial relation between aneurysm sac and surrounding vessels or the skull base could be enhanced in 3 out of 6 aneurysms with 3D intraoperative ultrasound. Perforating arteries were visible in 3 cases only by using 3D imaging. 3D ultrasound provides a promising imaging technique, offering the neurosurgeon an intraoperative spatial orientation of the lesion and its vascular relationships. Thereby, it may improve safety of surgery and understanding of 2D ultrasound images.

  10. Ambiguities and conventions in the perception of visual art.

    PubMed

    Mamassian, Pascal

    2008-09-01

    Vision perception is ambiguous and visual arts play with these ambiguities. While perceptual ambiguities are resolved with prior constraints, artistic ambiguities are resolved by conventions. Is there a relationship between priors and conventions? This review surveys recent work related to these ambiguities in composition, spatial scale, illumination and color, three-dimensional layout, shape, and movement. While most conventions seem to have their roots in perceptual constraints, those conventions that differ from priors may help us appreciate how visual arts differ from everyday perception.

  11. The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions.

    PubMed

    Marino, T A; Cook, P N; Cook, L T; Dwyer, S J

    1980-11-01

    Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.

  12. A tool for teaching three-dimensional dermatomes combined with distribution of cutaneous nerves on the limbs.

    PubMed

    Kooloos, Jan G M; Vorstenbosch, Marc A T M

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models. © 2013 American Association of Anatomists.

  13. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  14. Google Earth in the middle school geography classroom: Its impact on spatial literacy and place geography understanding of students

    NASA Astrophysics Data System (ADS)

    Westgard, Kerri S. W.

    Success in today's globalized, multi-dimensional, and connected world requires individuals to have a variety of skill sets -- i.e. oracy, numeracy, literacy, as well as the ability to think spatially. Student's spatial literacy, based on various national and international assessment results, indicates that even though there have been gains in U.S. scores over the past decade, overall performance, including those specific to spatial skills, are still below proficiency. Existing studies focused on the potential of virtual learning environment technology to reach students in a variety of academic areas, but a need still exists to study specifically the phenomenon of using Google Earth as a potentially more useful pedagogical tool to develop spatial literacy than the currently employed methods. The purpose of this study was to determine the extent to which graphicacy achievement scores of students who were immersed in a Google Earth environment were different from students who were provided with only two-dimensional instruction for developing spatial skills. Situated learning theory and the work of Piaget and Inhelder's Child's Conception of Space provided the theoretical grounding from which this study evolved. The National Research Council's call to develop spatial literacy, as seen in Learning to Think Spatially , provided the impetus to begin research. The target population (N = 84) for this study consisted of eighth grade geography students at an upper Midwest Jr. High School during the 2009-2010 academic year. Students were assigned to the control or experimental group based on when they had geography class. Control group students ( n = 44) used two-dimensional PowerPoint images to complete activities, while experimental group students (n = 40) were immersed in the three-dimensional Google Earth world for activity completion. Research data was then compiled and statistically analyzed to answer five research questions developed for this study. One-way ANOVAs were run on data collected and no statistically significant difference was found between the control and experimental group. However, two of the five research questions yielded practically significant data that indicates students who used Google Earth outperformed their counterparts who used PowerPoint on pattern prediction and spatial relationship understanding.

  15. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  16. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  17. Three-dimensional cell to tissue assembly process

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Lewis, Marian L. (Inventor); Cross, John H. (Inventor); Huls, Mary H. (Inventor)

    1992-01-01

    The present invention relates a 3-dimensional cell to tissue and maintenance process, more particularly to methods of culturing cells in a culture environment, either in space or in a gravity field, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  18. Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.

    1987-01-01

    Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.

  19. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes

    NASA Astrophysics Data System (ADS)

    Kurumisawa, Kiyofumi; Haga, Kazuko; Hayashi, Daisuke; Owada, Hitoshi

    2017-06-01

    It is very important to predict alterations in the concrete used for fabricating disposal containers for radioactive waste. Therefore, it is necessary to understand the alteration of cementitious materials caused by calcium leaching when they are in contact with ground water in the long term. To evaluate the long-term transport characteristics of cementitious materials, the microstructural behavior of these materials should be considered. However, many predictive models of transport characteristics focus on the pore structure, while only few such models consider both, the spatial distribution of calcium silicate hydrate (C-S-H), portlandite, and the pore spaces. This study focused on the spatial distribution of these cement phases. The auto-correlation function of each phase of cementitious materials was calculated from two-dimensional backscattered electron imaging, and the three-dimensional spatial image of the cementitious material was produced using these auto-correlation functions. An attempt was made to estimate the diffusion coefficient of chloride from the three-dimensional spatial image. The estimated diffusion coefficient of the altered sample from the three-dimensional spatial image was found to be comparable to the measured value. This demonstrated that it is possible to predict the diffusion coefficient of the altered cement paste by using the proposed model.

  20. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.

    PubMed

    Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef

    2017-01-01

    To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.

  1. Development of a geotechnical GIS for subsurface characterization with three dimensional modeling capabilities.

    DOT National Transportation Integrated Search

    2006-06-01

    The New Hampshire Department of Transportation initiated this research to develop a geographical information system (GIS) that : visualizes subsurface conditions three dimensionally by pulling together geotechnical data containing spatial references....

  2. Incremental Value of Three-Dimensional Transesophageal Echocardiography over the Two-Dimensional Technique in the Assessment of a Thrombus in Transit through a Patent Foramen Ovale.

    PubMed

    Thind, Munveer; Ahmed, Mustafa I; Gok, Gulay; Joson, Marisa; Elsayed, Mahmoud; Tuck, Benjamin C; Townsley, Matthew M; Klas, Berthold; McGiffin, David C; Nanda, Navin C

    2015-05-01

    We report a case of a right atrial thrombus traversing a patent foramen ovale into the left atrium, where three-dimensional transesophageal echocardiography provided considerable incremental value over two-dimensional transesophageal echocardiography in its assessment. As well as allowing us to better spatially characterize the thrombus, three-dimensional transesophageal echocardiography provided a more quantitative assessment through estimation of total thrombus burden. © 2015, Wiley Periodicals, Inc.

  3. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  4. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  5. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  6. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  7. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  8. Reconstruction of electrocardiogram using ionic current models for heart muscles.

    PubMed

    Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R

    1986-11-01

    A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.

  9. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  10. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  11. Three-Dimensional Dispaly Of Document Set

    DOEpatents

    Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.

    2003-06-24

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  12. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

    2006-09-26

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  13. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA

    2001-10-02

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  14. Three-dimensional display of document set

    DOEpatents

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA

    2009-06-30

    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  15. Simulation of wave propagation in three-dimensional random media

    NASA Astrophysics Data System (ADS)

    Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1995-04-01

    Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of

  16. Joint Remote State Preparation Schemes for Two Different Quantum States Selectively

    NASA Astrophysics Data System (ADS)

    Shi, Jin

    2018-05-01

    The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.

  17. Quantifying forest vertical structure to determine bird habitat quality in the Greenbelt Corridor, Denton, TX

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Shiho

    This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.

  18. Three-dimensional spatial cognition in a benthic fish, Corydoras aeneus.

    PubMed

    Davis, V A; Holbrook, R I; Schumacher, S; Guilford, T; de Perera, T Burt

    2014-11-01

    The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Imaging of downward-looking linear array SAR using three-dimensional spatial smoothing MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Siqian; Kuang, Gangyao

    2014-10-01

    In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.

  20. The Transcriptional Regulator CBP Has Defined Spatial Associations within Interphase Nuclei

    PubMed Central

    McManus, Kirk J; Stephens, David A; Adams, Niall M; Islam, Suhail A; Freemont, Paul S; Hendzel, Michael J

    2006-01-01

    It is becoming increasingly clear that nuclear macromolecules and macromolecular complexes are compartmentalized through binding interactions into an apparent three-dimensionally ordered structure. This ordering, however, does not appear to be deterministic to the extent that chromatin and nonchromatin structures maintain a strict 3-D arrangement. Rather, spatial ordering within the cell nucleus appears to conform to stochastic rather than deterministic spatial relationships. The stochastic nature of organization becomes particularly problematic when any attempt is made to describe the spatial relationship between proteins involved in the regulation of the genome. The CREB–binding protein (CBP) is one such transcriptional regulator that, when visualised by confocal microscopy, reveals a highly punctate staining pattern comprising several hundred individual foci distributed within the nuclear volume. Markers for euchromatic sequences have similar patterns. Surprisingly, in most cases, the predicted one-to-one relationship between transcription factor and chromatin sequence is not observed. Consequently, to understand whether spatial relationships that are not coincident are nonrandom and potentially biologically important, it is necessary to develop statistical approaches. In this study, we report on the development of such an approach and apply it to understanding the role of CBP in mediating chromatin modification and transcriptional regulation. We have used nearest-neighbor distance measurements and probability analyses to study the spatial relationship between CBP and other nuclear subcompartments enriched in transcription factors, chromatin, and splicing factors. Our results demonstrate that CBP has an order of spatial association with other nuclear subcompartments. We observe closer associations between CBP and RNA polymerase II–enriched foci and SC35 speckles than nascent RNA or specific acetylated histones. Furthermore, we find that CBP has a significantly higher probability of being close to its known in vivo substrate histone H4 lysine 5 compared with the closely related H4 lysine 12. This study demonstrates that complex relationships not described by colocalization exist in the interphase nucleus and can be characterized and quantified. The subnuclear distribution of CBP is difficult to reconcile with a model where chromatin organization is the sole determinant of the nuclear organization of proteins that regulate transcription but is consistent with a close link between spatial associations and nuclear functions. PMID:17054391

  1. Three-dimensional analysis of magnetometer array data

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  2. Spatial and temporal aspects of chromatic adaptation and their functional significance for colour constancy.

    PubMed

    Werner, Annette

    2014-11-01

    Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^

    NASA Astrophysics Data System (ADS)

    Wellner, Karen Linette

    1995-01-01

    This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study: (1) The teaching of spatially dependent content to students without prerequisite spatial structures results in understanding no further beyond that which can be memorized; (2) assessment for projective spatial structures should precede science lessons dealing with time-space relationships, and (3) a student's level of spatial ability may directly impact upon interpretation of three-dimensional models.

  4. Preservation of three-dimensional spatial structure in the gut microbiome.

    PubMed

    Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G

    2017-01-01

    Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  5. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  6. The Effects of 3-Dimensional CADD Modeling on the Development of the Spatial Ability of Technology Education Students

    ERIC Educational Resources Information Center

    Basham, K. Lynn; Kotrlik, Joe W.

    2008-01-01

    Spatial abilities are fundamental to human functioning in the physical world. Spatial reasoning allows people to use concepts of shape, features, and relationships in both concrete and abstract ways, to make and use things in the world, to navigate, and to communicate. Surgeons, pilots, architects, engineers, mechanics, builders, farmers, trades…

  7. Connecting Geometry and Chemistry: A Three-Step Approach to Three-Dimensional Thinking

    ERIC Educational Resources Information Center

    Donaghy, Kelley J.; Saxton, Kathleen J.

    2012-01-01

    A three-step active-learning approach is described to enhance the spatial abilities of general chemistry students with respect to three-dimensional molecular drawing and visualization. These activities are used in a medium-sized lecture hall with approximately 150 students in the first semester of the general chemistry course. The first activity…

  8. Comparison of Commercial Structure-From Photogrammety Software Used for Underwater Three-Dimensional Modeling of Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Burns, J. H. R.; Delparte, D.

    2017-02-01

    Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.

  9. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  10. Postural tasks are associated with center of pressure spatial patterns of three-dimensional statokinesigrams in young and elderly healthy subjects.

    PubMed

    Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur

    2013-12-01

    The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    PubMed

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms.

  12. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors

    PubMed Central

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385

  13. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.

    PubMed

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.

  14. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    PubMed

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  15. Three Dimensional High-Resolution Reconstruction of the Ionosphere Over the Very Large Array

    DTIC Science & Technology

    2010-12-15

    Watts Progress Report, Dec 10; 1 Final Report: Three Dimensional High-Resolution Reconstruction of the Ionosphere over the Very Large Array...proposed research is reconstruct the three-dimensional regional electron density profile of Earth’s ionosphere with spatial resolution of better than 10 km...10x better sensitivity to total electron content (TEC, or chord integrated density) in the ionosphere that does GPS. The proposal funds the

  16. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.

    PubMed

    Hof, Kevin S; Bastings, Maartje M C

    2017-06-28

    The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.

  17. Disruption of spatial organization and interjoint coordination in Parkinson's disease, progressive supranuclear palsy, and multiple system atrophy.

    PubMed

    Leiguarda, R; Merello, M; Balej, J; Starkstein, S; Nogues, M; Marsden, C D

    2000-07-01

    Patients with basal ganglia diseases may exhibit ideomotor apraxia. To define the nature of the impairment of the action production system, we studied a repetitive gesture of slicing bread by three-dimensional computergraphic analysis in eight nondemented patients with Parkinson's disease in the "on" state, five with progressive supranuclear palsy and four with multiple system atrophy. Two patients with Parkinson's disease and two with progressive supranuclear palsy showed ideomotor apraxia for transitive movements on standard testing. A Selspott II system was used for kinematic analysis of wrist trajectories and angular motions of the shoulder and elbow joints. Patients with Parkinson's disease, progressive supranuclear palsy, and even some with multiple system atrophy exhibited kinematic deficits in the spatial precision of movement and velocity-curvature relationships; in addition, they failed to maintain proper angle/angle relationships and to apportion their relative joint amplitudes normally. Spatial disruption of wrist trajectories was more severe in patients with ideomotor apraxia. We posit that the basal ganglia are part of the parallel parieto-frontal circuits devoted to sensorimotor integration for object-oriented behavior. The severity and characteristics of spatial abnormalities of a transitive movement would therefore depend on the location and distribution of the pathologic process within these circuits.

  18. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    PubMed Central

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325

  19. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm(3) and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

  20. Chromosome organizaton in simple and complex unicellular organisms.

    PubMed

    O'Sullivan, Justin M

    2011-01-01

    The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.

  1. Effects of two-dimensional versus three-dimensional landmark geometry and layout on young children's recall of locations from new viewpoints.

    PubMed

    Negen, James; Roome, Hannah E; Keenaghan, Samantha; Nardini, Marko

    2018-06-01

    Spatial memory is an important aspect of adaptive behavior and experience, providing both content and context to the perceptions and memories that we form in everyday life. Young children's abilities in this realm shift from mainly egocentric (self-based) to include allocentric (world-based) codings at around 4 years of age. However, information about the cognitive mechanisms underlying acquisition of these new abilities is still lacking. We examined allocentric spatial recall in 4.5- to 8.5-year-olds, looking for continuity with navigation as previously studied in 2- to 4-year-olds and other species. We specifically predicted an advantage for three-dimensional landmarks over two-dimensional ones and for recalling targets "in the middle" versus elsewhere. However, we did not find compelling evidence for either of these effects, and indeed some analyses even support the opposite of each of these conclusions. There were also no significant interactions with age. These findings highlight the incompleteness of our overall theories of the development of spatial cognition in general and allocentric spatial recall in particular. They also suggest that allocentric spatial recall involves processes that have separate behavioral characteristics from other cognitive systems involved in navigation earlier in life and in other species. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  3. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  4. A virtual display system for conveying three-dimensional acoustic information

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Wightman, Frederic L.; Foster, Scott H.

    1988-01-01

    The development of a three-dimensional auditory display system is discussed. Theories of human sound localization and techniques for synthesizing various features of auditory spatial perceptions are examined. Psychophysical data validating the system are presented. The human factors applications of the system are considered.

  5. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  6. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.

    PubMed

    Muzikant, A L; Henriquez, C S

    1998-04-01

    A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.

  7. Volumetric MRI of the lungs during forced expiration.

    PubMed

    Berman, Benjamin P; Pandey, Abhishek; Li, Zhitao; Jeffries, Lindsie; Trouard, Theodore P; Oliva, Isabel; Cortopassi, Felipe; Martin, Diego R; Altbach, Maria I; Bilgin, Ali

    2016-06-01

    Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Executive function in middle childhood and the relationship with theory of mind.

    PubMed

    Wilson, Jennifer; Andrews, Glenda; Hogan, Christy; Wang, Si; Shum, David H K

    2018-01-01

    A group of 126 typically developing children (aged 5-12 years) completed three cool executive function tasks (spatial working memory, stop signal, intra-extra dimensional shift), two hot executive function tasks (gambling, delay of gratification), one advanced theory of mind task (strange stories with high versus low affective tone), and a vocabulary test. Older children performed better than younger children, consistent with the protracted development of hot and cool executive functions and theory of mind. Multiple regression analyses showed that hot and cool executive functions were correlated but they predicted theory of mind in different ways.

  9. Analysis of high-rise constructions with the using of three-dimensional models of rods in the finite element program PRINS

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir

    2018-03-01

    The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.

  10. Training, transfer, and retention of three-dimensional spatial memory in virtual environments

    NASA Technical Reports Server (NTRS)

    Richards, Jason T.; Oman, Charles M.; Shebilske, Wayne L.; Beall, Andrew C.; Liu, Andrew; Natapoff, Alan

    2002-01-01

    Human orientation requires one to remember and visualize spatial arrangements of landmarks from different perspectives. Astronauts have reported difficulties remembering relationships between environmental landmarks when imagined in arbitrary 3D orientations. The present study investigated the effects of strategy training on humans' 1) ability to infer their orientation from landmarks presented ahead and below, 2) performance when subsequently learning a different array, and 3) retention of configurational knowledge over time. On the first experiment day, 24 subjects were tested in a virtual cubic chamber in which a picture of an animal was drawn on each wall. Through trial-by-trial exposures, they had to memorize the spatial relationships among the six pictures around them and learn to predict the direction to a specific picture when facing any view direction, and in any roll orientation. Half of the subjects ("strategy group") were taught methods for remembering picture groupings, while the remainder received no such training ("control group"). After learning one picture array, the procedure was repeated in a second. Accuracy (% correct) and response time learning curves were measured. Performance for the second array and configurational memory of both arrays were also retested 1, 7, and 30 days later. Results showed that subjects "learned how to learn" this generic 3D spatial memory task regardless of their relative orientation to the environment, that ability and configurational knowledge was retained for at least a month, that figure rotation ability and field independence correlate with performance, and that teaching subjects specific strategies in advance significantly improves performance. Training astronauts to perform a similar generic 3D spatial memory task, and suggesting strategies in advance, may help them orient in three dimensions.

  11. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    ERIC Educational Resources Information Center

    Hackett, Matthew; Proctor, Michael

    2016-01-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…

  12. A spatial model of wind shear and turbulence for flight simulation. Ph.D. Thesis - Colorado State Univ.

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    A three dimensional model which combines measurements of wind shear in the real atmosphere with three dimensional Monte Carlo simulated turbulence was developed. The wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated.

  13. Full High-definition three-dimensional gynaecological laparoscopy--clinical assessment of a new robot-assisted device.

    PubMed

    Tuschy, Benjamin; Berlit, Sebastian; Brade, Joachim; Sütterlin, Marc; Hornemann, Amadeus

    2014-01-01

    To investigate the clinical assessment of a full high-definition (HD) three-dimensional robot-assisted laparoscopic device in gynaecological surgery. This study included 70 women who underwent gynaecological laparoscopic procedures. Demographic parameters, type and duration of surgery and perioperative complications were analyzed. Fifteen surgeons were postoperatively interviewed regarding their assessment of this new system with a standardized questionnaire. The clinical assessment revealed that three-dimensional full-HD visualisation is comfortable and improves spatial orientation and hand-to-eye coordination. The majority of the surgeons stated they would prefer a three-dimensional system to a conventional two-dimensional device and stated that the robotic camera arm led to more relaxed working conditions. Three-dimensional laparoscopy is feasible, comfortable and well-accepted in daily routine. The three-dimensional visualisation improves surgeons' hand-to-eye coordination, intracorporeal suturing and fine dissection. The combination of full-HD three-dimensional visualisation with the robotic camera arm results in very high image quality and stability.

  14. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    NASA Astrophysics Data System (ADS)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  15. Simulating geriatric home safety assessments in a three-dimensional virtual world.

    PubMed

    Andrade, Allen D; Cifuentes, Pedro; Mintzer, Michael J; Roos, Bernard A; Anam, Ramanakumar; Ruiz, Jorge G

    2012-01-01

    Virtual worlds could offer inexpensive and safe three-dimensional environments in which medical trainees can learn to identify home safety hazards. Our aim was to evaluate the feasibility, usability, and acceptability of virtual worlds for geriatric home safety assessments and to correlate performance efficiency in hazard identification with spatial ability, self-efficacy, cognitive load, and presence. In this study, 30 medical trainees found the home safety simulation easy to use, and their self-efficacy was improved. Men performed better than women in hazard identification. Presence and spatial ability were correlated significantly with performance. Educators should consider spatial ability and gender differences when implementing virtual world training for geriatric home safety assessments.

  16. Technical aspects of a demonstration tape for three-dimensional sound displays

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    This document was developed to accompany an audio cassette that demonstrates work in three-dimensional auditory displays, developed at the Ames Research Center Aerospace Human Factors Division. It provides a text version of the audio material, and covers the theoretical and technical issues of spatial auditory displays in greater depth than on the cassette. The technical procedures used in the production of the audio demonstration are documented, including the methods for simulating rotorcraft radio communication, synthesizing auditory icons, and using the Convolvotron, a real-time spatialization device.

  17. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  18. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  19. Visions of visualization aids - Design philosophy and observations

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1989-01-01

    Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two-dimensional or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or a parsimonious description of phenomena implicit in the data. Useful visualization, in contrast to glitzy, high-tech, computer-graphics imagery, is generally based on preexisting theoretical beliefs concerning the underlying phenomena. These beliefs guide selection and formatting of the plotted variables. Visualization tools are useful for understanding naturally three-dimensional data bases such as those used by pilots or astronauts. Two examples of such aids for spatial maneuvering illustrate that informative geometric distortion may be introduced to assist visualization and that visualization of complex dynamics alone may not be adequate to provide the necessary insight into the underlying processes.

  20. ’MBTI3D’ (A Three-Dimensional Interpretation)

    DTIC Science & Technology

    1993-04-01

    preferential relationship --individuals are pigeonholed into personality types based solely on preference inclination and with disregard for actual preference...values. Consequently, individual and group relationships , as represented by the MBTI, are not integrated the way most organizations perceive. The MBTI’s...somewhat cerebral definition and its two-dimensional visual display present a limited portrayal of real life multi-dimensional relationships . This

  1. A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy

    NASA Astrophysics Data System (ADS)

    Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.

    1989-05-01

    A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.

  2. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    PubMed

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  3. Three-Dimensional Dynamic Bone Histomorphometry

    PubMed Central

    Slyfield, C.R.; Tkachenko, E.V.; Wilson, D.L.; Hernandez, C.J.

    2011-01-01

    Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. While dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique’s two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we use a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We perform this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrate the spatial relationship between resorption cavities and formation events consistent with the hemi-osteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm−2 SHAM v. 3.86 ± 0.35 mm−2 OVX, mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38 ± 0.06% SHAM v. 1.12 ± 0.18% OVX, p < 0.001), but no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. Additionally, we find that established ovariectomy is associated with increased size of bone formation events due to merging of formation events (23,700 ± 6,890 μm2 SHAM v. 33,300 ± 7,950 μm2 OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events. PMID:22028195

  4. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    PubMed

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  6. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  8. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  9. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  10. Lagrangian Formulation of a Magnetostatic Field in the Presence of a Minimal Length Scale Based on the Kempf Algebra

    NASA Astrophysics Data System (ADS)

    Moayedi, S. K.; Setare, M. R.; Khosropour, B.

    2013-11-01

    In the 1990s, Kempf and his collaborators Mangano and Mann introduced a D-dimensional (β, β‧)-two-parameter deformed Heisenberg algebra which leads to an isotropic minimal length (\\triangle Xi)\\min = \\hbar √ {Dβ +β '}, \\forall i\\in \\{1, 2, ..., D\\}. In this work, the Lagrangian formulation of a magnetostatic field in three spatial dimensions (D = 3) described by Kempf algebra is presented in the special case of β‧ = 2β up to the first-order over β. We show that at the classical level there is a similarity between magnetostatics in the presence of a minimal length scale (modified magnetostatics) and the magnetostatic sector of the Abelian Lee-Wick model in three spatial dimensions. The integral form of Ampere's law and the energy density of a magnetostatic field in the modified magnetostatics are obtained. Also, the Biot-Savart law in the modified magnetostatics is found. By studying the effect of minimal length corrections to the gyromagnetic moment of the muon, we conclude that the upper bound on the isotropic minimal length scale in three spatial dimensions is 4.42×10-19 m. The relationship between magnetostatics with a minimal length and the Gaete-Spallucci nonlocal magnetostatics [J. Phys. A: Math. Theor. 45, 065401 (2012)] is investigated.

  11. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    ERIC Educational Resources Information Center

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  12. Experimental Evidence for Improved Neuroimaging Interpretation Using Three-Dimensional Graphic Models

    ERIC Educational Resources Information Center

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…

  13. Three-Dimensional Numerical Simulation of Water Quality and Sediment-Associated Processes with Application to a Mississippi Delta Lake

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...

  14. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  15. Developing 3D Spatial Skills for K-12 Students

    ERIC Educational Resources Information Center

    Sorby, Sheryl A.

    2006-01-01

    Three-dimensional spatial skills have been shown to be critical to success in engineering and other technological fields. Well-developed 3D spatial skills are particularly important for success in engineering graphics courses. Further, 3D spatial skills of women lag significantly behind those of their male counterparts, which could hinder their…

  16. A novel three-dimensional tool for teaching human neuroanatomy.

    PubMed

    Estevez, Maureen E; Lindgren, Kristen A; Bergethon, Peter R

    2010-01-01

    Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first-year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color-coded physical models of the periventricular structures, while the control group re-examined 2D brain cross-sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F₁(,)₈₅ = 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ² = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Copyright © 2010 American Association of Anatomists.

  17. A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy

    PubMed Central

    Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.

    2011-01-01

    Three-dimensional (3-D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3-D neuroanatomy to first-year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2-D methods. Then, during laboratory review, the experimental group constructed 3-D color-coded physical models of the periventricular structures, while the control group re-examined 2-D brain cross-sections. At the end of the course, 2-D and 3-D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2-D or 3-D visualization, only the scores for the 3-D questions were significantly higher in the experimental group (F1,85 = 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3-D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3-D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3-D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. PMID:20939033

  18. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  19. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    PubMed

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  20. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study

    PubMed Central

    Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M.

    2017-01-01

    Objectives (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Design Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. Participants 747 students (51.3% girls) from Cordoba, Spain, aged 12–17 years (M=13.8; SD=1.21). Results The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach’s alpha and McDonald’s omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. Conclusions This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. PMID:28951400

  1. Exploring the parahippocampal cortex response to high and low spatial frequency spaces.

    PubMed

    Zeidman, Peter; Mullally, Sinéad L; Schwarzkopf, Dietrich Samuel; Maguire, Eleanor A

    2012-05-30

    The posterior parahippocampal cortex (PHC) supports a range of cognitive functions, in particular scene processing. However, it has recently been suggested that PHC engagement during functional MRI simply reflects the representation of three-dimensional local space. If so, PHC should respond to space in the absence of scenes, geometric layout, objects or contextual associations. It has also been reported that PHC activation may be influenced by low-level visual properties of stimuli such as spatial frequency. Here, we tested whether PHC was responsive to the mere sense of space in highly simplified stimuli, and whether this was affected by their spatial frequency distribution. Participants were scanned using functional MRI while viewing depictions of simple three-dimensional space, and matched control stimuli that did not depict a space. Half the stimuli were low-pass filtered to ascertain the impact of spatial frequency. We observed a significant interaction between space and spatial frequency in bilateral PHC. Specifically, stimuli depicting space (more than nonspatial stimuli) engaged the right PHC when they featured high spatial frequencies. In contrast, the interaction in the left PHC did not show a preferential response to space. We conclude that a simple depiction of three-dimensional space that is devoid of objects, scene layouts or contextual associations is sufficient to robustly engage the right PHC, at least when high spatial frequencies are present. We suggest that coding for the presence of space may be a core function of PHC, and could explain its engagement in a range of tasks, including scene processing, where space is always present.

  2. Non-Abelian fractional topological insulators in three spatial dimensions from coupled wires

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    The study of topological order in three spatial dimensions constitutes a major frontier in theoretical condensed matter physics. Recently, substantial progress has been made in constructing (3+1)-dimensional Abelian topological states of matter from arrays of coupled quantum wires. In this talk, I will illustrate how wire constructions based on non-Abelian bosonization can be used to build and characterize non-Abelian symmetry-enriched topological phases in three dimensions. In particular, I will describe a family of states of matter, constructed in this way, that constitute a natural non-Abelian generalization of strongly correlated three dimensional fractional topological insulators. These states of matter support strongly interacting symmetry-protected gapless surface states, and host non-Abelian pointlike and linelike excitations in the bulk.

  3. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  4. A parametric multiclass Bayes error estimator for the multispectral scanner spatial model performance evaluation

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.

  5. Neuroanatomy: The added value of the Klingler method.

    PubMed

    Silva, Susana M; Andrade, José Paulo

    2016-11-01

    Undergraduate neuroanatomy students are usually not able to achieve a clear comprehension of the spatial relationships existing between the white matter fiber tracts in spite of numerous neuroanatomy textbooks, atlases and multimedia tools. The objective of this paper is to show the educational value of the application of the Klingler fiber dissection technique and the use of these dissections in the understanding of the three-dimensional intrinsic anatomy of the brain white matter for medical students. Four formalin-fixed brains were dissected using the Klingler methodology in order to reveal the inner anatomical organization of the brain white matter. The most important fiber systems were dissected and their relationships to the cerebral and cerebellar gray matter structures visualized. These dissections were used as a learning tool in teaching the brain white matter structural and topographical connectivity. The white matter fiber systems were presented to undergraduate medical students during a neuroanatomy course. They observed and manipulated the dissected specimens leading to a thorough understanding of the configuration and location of the white matter fiber tracts, and their relationships to the ventricular system and gray matter structures. Subsequently, students were asked to answer a survey concerning the importance of the utilization of this material in their understanding of the three-dimensional intrinsic anatomy of the brain white matter. The knowledge acquired with this technique, complemented by conventional formalin-fixed sections may improve the neuroanatomical knowledge and future retention of medical students. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Visualising elastic anisotropy: theoretical background and computational implementation

    NASA Astrophysics Data System (ADS)

    Nordmann, J.; Aßmus, M.; Altenbach, H.

    2018-02-01

    In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of uc(Young)'s modulus and bulk modulus as well as plane representations of shear modulus and uc(Poisson)'s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.

  7. Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

    PubMed Central

    2014-01-01

    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026

  8. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  9. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  10. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning

    PubMed Central

    Anselmi, Francesca; Ventalon, Cathie; Bègue, Aurélien; Ogden, David; Emiliani, Valentina

    2011-01-01

    Access to three-dimensional structures in the brain is fundamental to probe signal processing at multiple levels, from integration of synaptic inputs to network activity mapping. Here, we present an optical method for independent three-dimensional photoactivation and imaging by combination of digital holography with remote-focusing. We experimentally demonstrate compensation of spherical aberration for out-of-focus imaging in a range of at least 300 μm, as well as scanless imaging along oblique planes. We apply this method to perform functional imaging along tilted dendrites of hippocampal pyramidal neurons in brain slices, after photostimulation by multiple spots glutamate uncaging. By bringing extended portions of tilted dendrites simultaneously in-focus, we monitor the spatial extent of dendritic calcium signals, showing a shift from a widespread to a spatially confined response upon blockage of voltage-gated Na+ channels. PMID:22074779

  11. Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy.

    PubMed

    Gu, Min; Bird, Damian

    2003-05-01

    The three-dimensional optical transfer function is derived for analyzing the imaging performance in fiber-optical two-photon fluorescence microscopy. Two types of fiber-optical geometry are considered: The first involves a single-mode fiber for delivering a laser beam for illumination, and the second is based on the use of a single-mode fiber coupler for both illumination delivery and signal collection. It is found that in the former case the transverse and axial cutoff spatial frequencies of the three-dimensional optical transfer function are the same as those in conventional two-photon fluorescence microscopy without the use of a pinhole.However, the transverse and axial cutoff spatial frequencies in the latter case are 1.7 times as large as those in the former case. Accordingly, this feature leads to an enhanced optical sectioning effect when a fiber coupler is used, which is consistent with our recent experimental observation.

  12. Three-Dimensional Interpretation of Sculptural Heritage with Digital and Tangible 3D Printed Replicas

    ERIC Educational Resources Information Center

    Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz

    2017-01-01

    Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…

  13. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  14. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  15. Sex Differences in Spatial Abilities of Medical Graduates Entering Residency Programs

    ERIC Educational Resources Information Center

    Langlois, Jean; Wells, Georges A.; Lecourtois, Marc; Bergeron, Germain; Yetisir, Elizabeth; Martin, Marcel

    2013-01-01

    Sex differences favoring males in spatial abilities have been known by cognitive psychologists for more than half a century. Spatial abilities have been related to three-dimensional anatomy knowledge and the performance in technical skills. The issue of sex differences in spatial abilities has not been addressed formally in the medical field. The…

  16. Characterizing and Improving Spatial Visualization Skills

    ERIC Educational Resources Information Center

    Titus, Sarah; Horsman, Eric

    2009-01-01

    Three-dimensional spatial visualization is an essential skill for geoscientists. We conducted two evaluations of students' spatial skills to examine whether their skills improve after enrollment in a geology course or courses. First, we present results of pre- and post-course survey of abstract visualization skills used to characterize the range…

  17. Three-dimensional ultrasonic scanning.

    PubMed

    Fredfeldt, K E; Holm, H H; Pedersen, J F

    1984-01-01

    Simple experiments which form the basis for a true 3-D demonstration of sectional images are presented and a method for genuine 3-D display of dynamic ultrasound images is described. Eight ultrasound images are recorded with a slightly different angulation of the transducer. The images are extracted from the video signal from a conventional ultrasound scanner and stored in eight digital memories. After recording, each image is displayed on an oscilloscope screen, which is viewed via a fast oscillating mirror. The position of the mirror determines which of the eight images are to be displayed and thereby ensures a correct spatial relationship of the images, resulting in a true 3-D scan presentation.

  18. Three-Dimensional Spatial Distribution of Synapses in the Neocortex: A Dual-Beam Electron Microscopy Study

    PubMed Central

    Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; González, Santiago; Robles, Víctor; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha

    2014-01-01

    In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm3 from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented. PMID:23365213

  19. Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study.

    PubMed

    Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; González, Santiago; Robles, Víctor; Defelipe, Javier; Larrañaga, Pedro; Bielza, Concha

    2014-06-01

    In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.

  20. Distribution of subtidal sedimentary bedforms in a macrotidal setting: The Bay of Fundy, Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Todd, Brian J.; Shaw, John; Li, Michael Z.; Kostylev, Vladimir E.; Wu, Yongsheng

    2014-07-01

    The Bay of Fundy, Canada, a large macrotidal embayment with the World's highest recorded tides, was mapped using multibeam sonar systems. High-resolution imagery of seafloor terrain and backscatter strength, combined with geophysical and sampling data, reveal for the first time the morphology, architecture, and spatial relationships of a spectrum of bedforms: (1) flow-transverse bedforms occur as both discrete large two-dimensional dunes and as three-dimensional dunes in sand sheets; (2) flow-parallel bedforms are numerous straight ridges described by others as horse mussel bioherms; (3) sets of banner banks that flank prominent headlands and major shoals. The suite of bedforms developed during the Holocene, as tidal energy increased due to the bay approaching resonance. We consider the evolution of these bedforms, their migration potential and how they may place limitations on future in-stream tidal power development in the Bay of Fundy.

  1. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study.

    PubMed

    Herrera-López, Mauricio; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M

    2017-09-25

    (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. 747 students (51.3% girls) from Cordoba, Spain, aged 12-17 years (M=13.8; SD=1.21). The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach's alpha and McDonald's omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. A neural network approach for image reconstruction in electron magnetic resonance tomography.

    PubMed

    Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran

    2007-10-01

    An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.

  3. Free-energy landscape for cage breaking of three hard disks.

    PubMed

    Hunter, Gary L; Weeks, Eric R

    2012-03-01

    We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.

  4. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  5. Surface Deformation and Source Model at Semisopochnoi Volcano from InSAR and Seismic Analysis During the 2014 and 2015 Seismic Swarms

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2016-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi volcano in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs differential SAR techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The interferograms created from the SAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in a Mogi model in order to define the three-dimensional location and volume change required for a source at Semisopochnoi to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. While no direct conclusions as to the relationship of these seismic events and the observed surface deformation can be made at this time, these techniques are both complimentary and efficient forms of remotely monitoring volcanic activity that provide much deeper insights into the processes involved without having to risk hazardous or costly field work.

  6. Interactive 3-D graphics workstations in stereotaxy: clinical requirements, algorithms, and solutions

    NASA Astrophysics Data System (ADS)

    Ehricke, Hans-Heino; Daiber, Gerhard; Sonntag, Ralf; Strasser, Wolfgang; Lochner, Mathias; Rudi, Lothar S.; Lorenz, Walter J.

    1992-09-01

    In stereotactic treatment planning the spatial relationships between a variety of objects has to be taken into account in order to avoid destruction of vital brain structures and rupture of vasculature. The visualization of these highly complex relations may be supported by 3-D computer graphics methods. In this context the three-dimensional display of the intracranial vascular tree and additional objects, such as neuroanatomy, pathology, stereotactic devices, or isodose surfaces, is of high clinical value. We report an advanced rendering method for a depth-enhanced maximum intensity projection from magnetic resonance angiography (MRA) and a walk-through approach to the analysis of MRA volume data. Furthermore, various methods for a multiple-object 3-D rendering in stereotaxy are discussed. The development of advanced applications in medical imaging can hardly be successful if image acquisition problems are disregarded. We put particular emphasis on the use of conventional MRI and MRA for stereotactic guidance. The problem of MR distortion is discussed and a novel three- dimensional approach to the quantification and correction of the distortion patterns is presented. Our results suggest that the sole use of MR for stereotactic guidance is highly practical. The true three-dimensionality of the acquired datasets opens up new perspectives to stereotactic treatment planning. For the first time it is possible now to integrate all the necessary information into 3-D scenes, thus enabling an interactive 3-D planning.

  7. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  8. Spatial Reasoning with External Visualizations: What Matters Is What You See, Not whether You Interact

    ERIC Educational Resources Information Center

    Keehner, Madeleine; Hegarty, Mary; Cohen, Cheryl; Khooshabeh, Peter; Montello, Daniel R.

    2008-01-01

    Three experiments examined the effects of interactive visualizations and spatial abilities on a task requiring participants to infer and draw cross sections of a three-dimensional (3D) object. The experiments manipulated whether participants could interactively control a virtual 3D visualization of the object while performing the task, and…

  9. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.

    PubMed

    Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter

    2017-06-01

    To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2  = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2  = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Three-dimensional reconstruction of TMJ MR images: a technical note and case report.

    PubMed

    Kitai, Noriyuki; Eriksson, Lars; Kreiborg, Sven; Wagner, Aase; Takada, Kenji

    2004-01-01

    MR images of the temporomandibular joint at occlusion and at various stages of mouth opening were registered and reconstructed three-dimensionally before and after a modified condylotomy in a patient with painful disk displacement. Following the condylotomy, the condyle/disk relationship had become normalized in all three planes of space at closed mouth and during mouth opening. The post-operative distances of the condylar and diskal paths had increased when compared with the preoperative distances. The three-dimensional visualizing method may, besides providing diagnostic advantages, be a valuable tool for qualitative and quantitative documentation of the efficiency of different treatment methods for normalization of the disk/condyle relationship in patients with TMJ disk displacement.

  11. Statistics of Advective Stretching in Three-dimensional Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Natarajan; Kellogg, Louise H.; Turcotte, Donald L.

    2009-09-01

    We present a method to quantify kinematic stretching in incompressible, unsteady, isoviscous, three-dimensional flows. We extend the method of Kellogg and Turcotte (J. Geophys. Res. 95:421-432, 1990) to compute the axial stretching/thinning experienced by infinitesimal ellipsoidal strain markers in arbitrary three-dimensional incompressible flows and discuss the differences between our method and the computation of Finite Time Lyapunov Exponent (FTLE). We use the cellular flow model developed in Solomon and Mezic (Nature 425:376-380, 2003) to study the statistics of stretching in a three-dimensional unsteady cellular flow. We find that the probability density function of the logarithm of normalised cumulative stretching (log S) for a globally chaotic flow, with spatially heterogeneous stretching behavior, is not Gaussian and that the coefficient of variation of the Gaussian distribution does not decrease with time as t^{-1/2} . However, it is observed that stretching becomes exponential log S˜ t and the probability density function of log S becomes Gaussian when the time dependence of the flow and its three-dimensionality are increased to make the stretching behaviour of the flow more spatially uniform. We term these behaviors weak and strong chaotic mixing respectively. We find that for strongly chaotic mixing, the coefficient of variation of the Gaussian distribution decreases with time as t^{-1/2} . This behavior is consistent with a random multiplicative stretching process.

  12. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields

    NASA Astrophysics Data System (ADS)

    Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang

    2017-10-01

    The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff generator and the two-dimensional hydraulic model implementing the routing scheme for surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics on a grid scale can be used to investigate the relationship between the intensity of flood characteristics and associated loss extent. The modeling framework was applied for a 50-year return period flood that occurred in Jilin province, Northeast China, which caused large agricultural losses in August 2013. The modeling results indicated that (a) the flow velocity was the most influential factor that caused spring corn, rice and soybean yield losses from extreme storm event in the mountainous regions; (b) the power function archived the best results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating the influence of historical flood event on crop production and investigating the relationship between flood characteristics and crop yield losses.

  13. Effects of 3-D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-train satellite data

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny

    2014-01-01

    Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.

  14. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  15. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    NASA Astrophysics Data System (ADS)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  16. Sex Differences in Mental Rotation and Spatial Visualization Ability: Can They Be Accounted for by Differences in Working Memory Capacity?

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry

    2007-01-01

    Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…

  17. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages

    DOE PAGES

    Carlton, Holly D.; Elmer, John W.; Li, Yan; ...

    2016-04-13

    For this study synchrotron radiation micro-­tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.

  18. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    PubMed

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.

  19. Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

    NASA Astrophysics Data System (ADS)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-11-01

    We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

  20. Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

    NASA Astrophysics Data System (ADS)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2018-06-01

    We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

  1. Numerical simulation of steady supersonic flow. [spatial marching

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Steger, J. L.

    1981-01-01

    A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.

  2. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…

  3. Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research

    PubMed Central

    Zhang, Shaocun; Cao, Xiaocang; Huang, He

    2017-01-01

    Identifying intestinal microbiota is arguably an important task that is performed to determine the pathogenesis of inflammatory bowel diseases (IBD); thus, it is crucial to collect and analyze intestinally-associated microbiota. Analyzing a single niche to categorize individuals does not enable researchers to comprehensively study the spatial variations of the microbiota. Therefore, characterizing the spatial community structures of the inflammatory bowel disease microbiome is critical for advancing our understanding of the inflammatory landscape of IBD. However, at present there is no universally accepted consensus regarding the use of specific sampling strategies in different biogeographic locations. In this review, we discuss the spatial distribution when screening sample collections in IBD microbiota research. Here, we propose a novel model, a three-dimensional spatial community structure, which encompasses the x-, y-, and z-axis distributions; it can be used in some sampling sites, such as feces, colonoscopic biopsy, the mucus gel layer, and oral cavity. On the basis of this spatial model, this article also summarizes various sampling and processing strategies prior to and after DNA extraction and recommends guidelines for practical application in future research. PMID:28286741

  4. Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Pandey, R. B.; Lavoie, D. L.

    Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.

  5. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  6. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    PubMed

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  7. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  8. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  9. The Abilities of Understanding Spatial Relations, Spatial Orientation, and Spatial Visualization Affect 3D Product Design Performance: Using Carton Box Design as an Example

    ERIC Educational Resources Information Center

    Liao, Kun-Hsi

    2017-01-01

    Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…

  10. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  11. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  12. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  13. Gravitational instantons, self-duality, and geometric flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourliot, F.; Estes, J.; Petropoulos, P. M.

    2010-05-15

    We discuss four-dimensional 'spatially homogeneous' gravitational instantons. These are self-dual solutions of Euclidean vacuum Einstein equations. They are endowed with a product structure RxM{sub 3} leading to a foliation into three-dimensional subspaces evolving in Euclidean time. For a large class of homogeneous subspaces, the dynamics coincides with a geometric flow on the three-dimensional slice, driven by the Ricci tensor plus an so(3) gauge connection. The flowing metric is related to the vielbein of the subspace, while the gauge field is inherited from the anti-self-dual component of the four-dimensional Levi-Civita connection.

  14. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Treesearch

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  15. Does Collocation Inform the Impact of Collaboration?

    PubMed Central

    Lee, Kyungjoon; Brownstein, John S.; Mills, Richard G.; Kohane, Isaac S.

    2010-01-01

    Background It has been shown that large interdisciplinary teams working across geography are more likely to be impactful. We asked whether the physical proximity of collaborators remained a strong predictor of the scientific impact of their research as measured by citations of the resulting publications. Methodology/Principal Findings Articles published by Harvard investigators from 1993 to 2003 with at least two authors were identified in the domain of biomedical science. Each collaboration was geocoded to the precise three-dimensional location of its authors. Physical distances between any two coauthors were calculated and associated with corresponding citations. Relationship between distance of coauthors and citations for four author relationships (first-last, first-middle, last-middle, and middle-middle) were investigated at different spatial scales. At all sizes of collaborations (from two authors to dozens of authors), geographical proximity between first and last author is highly informative of impact at the microscale (i.e. within building) and beyond. The mean citation for first-last author relationship decreased as the distance between them increased in less than one km range as well as in the three categorized ranges (in the same building, same city, or different city). Such a trend was not seen in other three author relationships. Conclusions/Significance Despite the positive impact of emerging communication technologies on scientific research, our results provide striking evidence for the role of physical proximity as a predictor of the impact of collaborations. PMID:21179507

  16. Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zheng, Z. C.

    1997-01-01

    This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.

  17. The spectral signature of cloud spatial structure in shortwave irradiance

    PubMed Central

    Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.

    2017-01-01

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698

  18. The spectral signature of cloud spatial structure in shortwave irradiance.

    PubMed

    Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M

    2016-11-08

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.

  19. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat

    Treesearch

    Daniele Tonina; John M. Buffington

    2009-01-01

    A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...

  20. "Building" 3D visualization skills in mineralogy

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Ajoku, C. N.; McCarthy, B. S.; Lambart, S.

    2016-12-01

    Studying mineralogy is fundamental for understanding the composition and physical behavior of natural materials in terrestrial and extraterrestrial environments. However, some students struggle and ultimately get discouraged with mineralogy course material because they lack well-developed spatial visualization skills that are needed to deal with three-dimensional (3D) objects, such as crystal forms or atomic-scale structures, typically represented in two-dimensional (2D) space. Fortunately, spatial visualization can improve with practice. Our presentation demonstrates a set of experiential learning activities designed to support the development and improvement of spatial visualization skills in mineralogy using commercially available magnetic building tiles, rods, and spheres. These instructional support activities guide students in the creation of 3D models that replicate macroscopic crystal forms and atomic-scale structures in a low-pressure learning environment and at low cost. Students physically manipulate square and triangularly shaped magnetic tiles to build 3D open and closed crystal forms (platonic solids, prisms, pyramids and pinacoids). Prismatic shapes with different closing forms are used to demonstrate the relationship between crystal faces and Miller Indices. Silica tetrahedra and octahedra are constructed out of magnetic rods (bonds) and spheres (oxygen atoms) to illustrate polymerization, connectivity, and the consequences for mineral formulae. In another activity, students practice the identification of symmetry elements and plane lattice types by laying magnetic rods and spheres over wallpaper patterns. The spatial visualization skills developed and improved through our experiential learning activities are critical to the study of mineralogy and many other geology sub-disciplines. We will also present pre- and post- activity assessments that are aligned with explicit learning outcomes.

  1. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    DOE PAGES

    Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...

    2016-03-02

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less

  2. Lattice Three-Species Models of the Spatial Spread of Rabies among FOXES

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; Boccara, N.; Chakib, H.; Ez-Zahraouy, H.

    Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.

  3. Spatial Visualization by Isometric View

    ERIC Educational Resources Information Center

    Yue, Jianping

    2007-01-01

    Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…

  4. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  5. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  6. Spatial Abilities of Medical Graduates and Choice of Residency Programs

    ERIC Educational Resources Information Center

    Langlois, Jean; Wells, George A.; Lecourtois, Marc; Bergeron, Germain; Yetisir, Elizabeth; Martin, Marcel

    2015-01-01

    Spatial abilities have been related in previous studies to three-dimensional (3D) anatomy knowledge and the performance in technical skills. The objective of this study was to relate spatial abilities to residency programs with different levels of content of 3D anatomy knowledge and technical skills. The hypothesis was that the choice of residency…

  7. Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei

    PubMed Central

    Biot, Eric; Adenot, Pierre-Gaël; Hue-Beauvais, Cathy; Houba-Hérin, Nicole; Duranthon, Véronique; Devinoy, Eve; Beaujean, Nathalie; Gaudin, Valérie; Maurin, Yves; Debey, Pascale

    2010-01-01

    In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear “compartments”. Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types. PMID:20628576

  8. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.

    PubMed

    Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S

    2009-04-22

    Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.

  9. Segmentation of Fluorescence Microscopy Images for Quantitative Analysis of Cell Nuclear Architecture

    PubMed Central

    Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.

    2009-01-01

    Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481

  10. Scaling relations for watersheds

    NASA Astrophysics Data System (ADS)

    Fehr, E.; Kadau, D.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, H. J.

    2011-09-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions 1.10≤df≤1.15 observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invasion percolation, as well as relations between exponents conjectured in previous studies with two dimensional systems, are now confirmed by our results in three dimensions.

  11. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  12. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.

  13. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  14. Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.

    2005-01-01

    The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.

  15. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  16. Visions of visualization aids: Design philosophy and experimental results

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1990-01-01

    Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two- or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or parsimonious description of the phenomena underlying the data. Indeed, the communication of the essential meaning of some multidimensional data may be obscured by presentation in a spatially distributed format. Useful visualization is generally based on pre-existing theoretical beliefs concerning the underlying phenomena which guide selection and formatting of the plotted variables. Two examples from chaotic dynamics are used to illustrate how a visulaization may be an aid to insight. Two examples of displays to aid spatial maneuvering are described. The first, a perspective format for a commercial air traffic display, illustrates how geometric distortion may be introduced to insure that an operator can understand a depicted three-dimensional situation. The second, a display for planning small spacecraft maneuvers, illustrates how the complex counterintuitive character of orbital maneuvering may be made more tractable by removing higher-order nonlinear control dynamics, and allowing independent satisfaction of velocity and plume impingement constraints on orbital changes.

  17. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  18. Three-dimensional spatial grouping affects estimates of the illuminant

    NASA Astrophysics Data System (ADS)

    Perkins, Kenneth R.; Schirillo, James A.

    2003-12-01

    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  19. Studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics

    NASA Technical Reports Server (NTRS)

    Ritman, E. L.; Wood, E. H.

    1973-01-01

    The current status and application are described of the biplane video roentgen densitometry, videometry and video digitization systems. These techniques were developed, and continue to be developed for studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics in intact animals and man. Progress is reported in the field of lung dynamics and three-dimensional reconstruction of the dynamic thoracic contents from roentgen video images. It is anticipated that these data will provide added insight into the role of shape and internal spatial relationships (which is altered particularly by acceleration and position of the body) of these organs as an indication of their functional status.

  20. [Worker's Health Surveillance

    PubMed

    Machado

    1997-01-01

    This paper is part of a broader discussion on the need for more in-depth study of workers' health surveillance practices, which are most often developed empirically, without well-defined theoretical or technical foundations. The paper presents a concept of surveillance in workers' health as a fulcrum for actions in the relationship between the work process and health. It emphasizes the exposure-based perspective involved in the epidemiological approach. Risk situations and effects are placed in spatial and technological context. The model provides an interdisciplinary approach with a technological, social, and epidemiological basis in a three-dimensional structure. A matrix for planning actions in workers' health surveillance is also presented, focusing on the connections between effects, risks, territory, and activities.

  1. Extracellular oxygen concentration mapping with a confocal multiphoton laser scanning microscope and TCSPC card

    NASA Astrophysics Data System (ADS)

    Hosny, Neveen A.; Lee, David A.; Knight, Martin M.

    2010-02-01

    Extracellular oxygen concentrations influence cell metabolism and tissue function. Fluorescence Lifetime Imaging Microscopy (FLIM) offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods show limited spatial resolution and/or require custom made systems. This study describes a new optimised approach for quantitative extracellular oxygen detection, providing an off-the-shelf system with high spatial resolution and an improved lifetime determination over previous techniques, while avoiding systematic photon pile-up. Fluorescence lifetime detection of an oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was measured using a Becker&Hickl time-correlated single photon counting (TCSPC) card with excitation provided by a multi-photon laser. This technique was able to identify a subpopulation of isolated chondrocyte cells, seeded in three-dimensional agarose gel, displaying a significant spatial oxygen gradient. Thus this technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  2. Three-dimensional high-definition neuroendoscopic surgery: a controlled comparative laboratory study with two-dimensional endoscopy and clinical application.

    PubMed

    Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto

    2013-11-01

    The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.

  3. Cochlear implant-related three-dimensional characteristics determined by micro-computed tomography reconstruction.

    PubMed

    Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei

    2017-01-01

    To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Application of Combined Two-Dimensional and Three-Dimensional Transvaginal Contrast Enhanced Ultrasound in the Diagnosis of Endometrial Carcinoma

    PubMed Central

    Zhou, Hui-li; Xiang, Hong; Duan, Li; Shahai, Gulinaer; Liu, Hui; Li, Xiang-hong; Mou, Rui-xue

    2015-01-01

    Objective. The goal of this study was to explore the clinical value of combining two-dimensional (2D) and three-dimensional (3D) transvaginal contrast-enhanced ultrasounds (CEUS) in diagnosis of endometrial carcinoma (EC). Methods. In this prospective diagnostic study, transvaginal 2D and 3D CEUS were performed on 68 patients with suspected EC, and the results of the obtained 2D-CEUS and 3D-CEUS images were compared with the gold standard for statistical analysis. Results. 2D-CEUS benign endometrial lesions showed the normal uterine perfusion phase while EC cases showed early arrival and early washout of the contrast agent and nonuniform enhancement. The 3D-CEUS images differed in central blood vessel manifestation, blood vessel shape, and vascular pattern between benign and malignant endometrial lesions (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of transvaginal 2D-CEUS and 2D-CEUS combined with 3D-CEUS for diagnosis of benign and malignant endometrial lesions were 76.9%, 73.8%, 64.5%, 83.8%, and 75.0% and 84.6%, 83.3%, 75.9%, 89.7%, and 83.8%, respectively. Conclusion. 3D-CEUS is a useful supplement to 2D-CEUS and can clearly reveal the angioarchitecture spatial relationships between vessels and depth of myometrial invasion in EC. The combined use of 2D and 3D-CEUS can offer direct, accurate, and comprehensive diagnosis of early EC. PMID:26090396

  5. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Shin, Sanghoon; Yu, Younghun

    2018-04-01

    For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.

  6. Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals

    NASA Astrophysics Data System (ADS)

    Holmgren, Stefan J.; Pasiskevicius, Valdas; Wang, Shunhua; Laurell, Fredrik

    2003-09-01

    A novel technique for characterization of the second-order nonlinearity in nonlinear crystals is presented. It utilizes group-velocity walk-off between femtosecond pulses in type II SHG to achieve three-dimensional resolution of the nonlinearity. The longitudinal and transversal spatial resolution can be set independently. The technique is especially useful for characterizing quasi-phase-matched nonlinear crystals, and it is demonstrated in potassium titanyl phosphate.

  7. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  8. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos.

    PubMed

    Hiraoka, Y; Agard, D A; Sedat, J W

    1990-12-01

    The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high-resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.

  9. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.

    PubMed

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A

    2018-03-02

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.

  10. Crossover between two- and three-dimensional turbulence in spatial mixing layers

    NASA Astrophysics Data System (ADS)

    Biancofiore, Luca

    2016-11-01

    We investigate how the domain depth affects the turbulent behaviour in spatially developing mixing layers by means of large-eddy simulations (LES) based on a spectral vanishing viscosity technique. Analyses of spectra of the vertical velocity, of Lumley's diagrams, of the turbulent kinetic energy and of the vortex stretching show that a two-dimensional behaviour of the turbulence is promoted in spatial mixing layers by constricting the fluid motion in one direction. This finding is in agreement with previous works on turbulent systems constrained by a geometric anisotropy, pioneered by Smith, Chasnov & Waleffe. We observe that the growth of the momentum thickness along the streamwise direction is damped in a confined domain. A full two-dimensional turbulent behaviour is observed when the momentum thickness is of the same order of magnitude as the confining scale.

  11. Pickup Ion Distributions from Three Dimensional Neutral Exospheres

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sarantos, M.; Sittler, E. C., Jr.

    2011-01-01

    Pickup ions formed from ionized neutral exospheres in flowing plasmas have phase space distributions that reflect their source's spatial distributions. Phase space distributions of the ions are derived from the Vlasov equation with a delta function source using three.dimensional neutral exospheres. The ExB drift produced by plasma motion picks up the ions while the effects of magnetic field draping, mass loading, wave particle scattering, and Coulomb collisions near a planetary body are ignored. Previously, one.dimensional exospheres were treated, resulting in closed form pickup ion distributions that explicitly depend on the ratio rg/H, where rg is the ion gyroradius and H is the neutral scale height at the exobase. In general, the pickup ion distributions, based on three.dimensional neutral exospheres, cannot be written in closed form, but can be computed numerically. They continue to reflect their source's spatial distributions in an implicit way. These ion distributions and their moments are applied to several bodies, including He(+) and Na(+) at the Moon, H(+2) and CH(+4) at Titan, and H+ at Venus. The best places to use these distributions are upstream of the Moon's surface, the ionopause of Titan, and the bow shock of Venus.

  12. Three-dimensional vision enhances task performance independently of the surgical method.

    PubMed

    Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A

    2012-10-01

    Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.

  13. A three-dimensional structural dissection of Drosophila polytene chromosomes.

    PubMed

    Urata, Y; Parmelee, S J; Agard, D A; Sedat, J W

    1995-10-01

    We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three-dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present.

  14. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  15. A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1988-01-01

    A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.

  16. Predicting Student Performance in Sonographic Scanning Using Spatial Ability as an Ability Determinent of Skill Acquisition

    ERIC Educational Resources Information Center

    Clem, Douglas Wayne

    2012-01-01

    Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and…

  17. Technical note: a landmark-based approach to the study of the ear ossicles using ultra-high-resolution X-ray computed tomography data.

    PubMed

    Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T

    2011-08-01

    Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. Copyright © 2011 Wiley-Liss, Inc.

  18. Visual-Spatial Thinking in Hypertexts.

    ERIC Educational Resources Information Center

    Johnson-Sheehan, Richard; Baehr, Craig

    2001-01-01

    Explores what it means to think visually and spatially in hypertexts and how users react and maneuver in real and virtual three-dimensional spaces. Offers four principles of visual thinking that can be applied when developing hypertexts. Applies these principles to actual hypertexts, demonstrating how selectivity, fixation, depth discernment, and…

  19. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    PubMed

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  20. Disparities in visuo-spatial constructive abilities in Williams syndrome patients with typical deletion on chromosome 7q11.23.

    PubMed

    Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho

    2017-02-01

    Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Hybrid methods for simulating hydrodynamics and heat transfer in multiscale (1D-3D) models

    NASA Astrophysics Data System (ADS)

    Filimonov, S. A.; Mikhienkova, E. I.; Dekterev, A. A.; Boykov, D. V.

    2017-09-01

    The work is devoted to application of different-scale models in the simulation of hydrodynamics and heat transfer of large and/or complex systems, which can be considered as a combination of extended and “compact” elements. The model consisting of simultaneously existing three-dimensional and network (one-dimensional) elements is called multiscale. The paper examines the relevance of building such models and considers three main options for their implementation: the spatial and the network parts of the model are calculated separately; spatial and network parts are calculated simultaneously (hydraulically unified model); network elements “penetrate” the spatial part and are connected through the integral characteristics at the tube/channel walls (hydraulically disconnected model). Each proposed method is analyzed in terms of advantages and disadvantages. The paper presents a number of practical examples demonstrating the application of multiscale models.

  2. Spatial carrier color digital speckle pattern interferometry for absolute three-dimensional deformation measurement

    NASA Astrophysics Data System (ADS)

    Gao, Xinya; Wang, Yonghong; Li, Junrui; Dan, Xizuo; Wu, Sijin; Yang, Lianxiang

    2017-06-01

    It is difficult to measure absolute three-dimensional deformation using traditional digital speckle pattern interferometry (DSPI) when the boundary condition of an object being tested is not exactly given. In practical applications, the boundary condition cannot always be specifically provided, limiting the use of DSPI in real-world applications. To tackle this problem, a DSPI system that is integrated by the spatial carrier method and a color camera has been established. Four phase maps are obtained simultaneously by spatial carrier color-digital speckle pattern interferometry using four speckle interferometers with different illumination directions. One out-of-plane and two in-plane absolute deformations can be acquired simultaneously without knowing the boundary conditions using the absolute deformation extraction algorithm based on four phase maps. Finally, the system is proved by experimental results through measurement of the deformation of a flat aluminum plate with a groove.

  3. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels

    NASA Astrophysics Data System (ADS)

    Deforest, Cole A.; Tirrell, David A.

    2015-05-01

    Although biochemically patterned hydrogels are capable of recapitulating many critical aspects of the heterogeneous cellular niche, exercising spatial and temporal control of the presentation and removal of biomolecular signalling cues in such systems has proved difficult. Here, we demonstrate a synthetic strategy that exploits two bioorthogonal photochemistries to achieve reversible immobilization of bioactive full-length proteins with good spatial and temporal control within synthetic, cell-laden biomimetic scaffolds. A photodeprotection-oxime-ligation sequence permits user-defined quantities of proteins to be anchored within distinct subvolumes of a three-dimensional matrix, and an ortho-nitrobenzyl ester photoscission reaction facilitates subsequent protein removal. By using this approach to pattern the presentation of the extracellular matrix protein vitronectin, we accomplished reversible differentiation of human mesenchymal stem cells to osteoblasts in a spatially defined manner. Our protein-patterning approach should provide further avenues to probe and direct changes in cell physiology in response to dynamic biochemical signalling.

  4. Monte Carlo grain growth modeling with local temperature gradients

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.

    2017-09-01

    This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.

  5. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination

    NASA Astrophysics Data System (ADS)

    Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-07-01

    Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ~15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ~100 μm in tumour spheroids.

  6. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  7. Fast generations of tree-type three-dimensional entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2016-01-01

    Recently, a novel three-dimensional entangled state called tree-type entanglement, which is likely to have applications for improving quantum communication security, was prepared via adiabatic passage by Song et al. Here we propose two schemes for fast generating tree-type three-dimensional entanglement among three spatially separated atoms via shortcuts to adiabatic passage. With the help of quantum Zeno dynamics, two kinds of different but equivalent methods, Lewis-Riesenfeld invariants and transitionless quantum driving, are applied to construct shortcuts to adiabatic passage. The comparisons between the two methods are discussed. The strict numerical simulations show that the tree-type three-dimensional entangled states can be fast prepared with quite high fidelities and the two schemes are both robust against the variations in the parameters, atomic spontaneous emissions and the cavity-fiber photon leakages. PMID:27667583

  8. Ray tracing a three dimensional scene using a grid

    DOEpatents

    Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

    2013-02-26

    Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

  9. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  10. A fully 3D approach for metal artifact reduction in computed tomography.

    PubMed

    Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M

    2012-11-01

    In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.

  11. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    PubMed

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Mid-twentieth-century anatomical transparencies and the depiction of three-dimensional form.

    PubMed

    Wall, Shelley

    2010-11-01

    Before the advent of digital visualization, the "anatomical transparency"--layered images of organ systems, printed on a transparent medium--flourished in the mid-twentieth century as an interactive means to represent complex anatomical relationships to medical professionals and lay audiences. This article introduces the transparency work of medical illustrators Gladys McHugh and Ernest W. Beck, situating it in the historical context of strategies to represent three-dimensional anatomical relationships using print media.

  13. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  14. An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes

    NASA Astrophysics Data System (ADS)

    Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan

    2016-04-01

    Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.

  15. A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization

    PubMed Central

    Zuo, Renguang

    2016-01-01

    This paper reports a nonlinear controlling function of geological features on magmatic–hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε−(De−a), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cεa−2. When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines. PMID:27255794

  16. A nonlinear controlling function of geological features on magmatic-hydrothermal mineralization.

    PubMed

    Zuo, Renguang

    2016-06-03

    This paper reports a nonlinear controlling function of geological features on magmatic-hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε(-(De-a)), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cε(a-2). When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines.

  17. Visuo-Vestibular Interactions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  18. Leak detection utilizing analog binaural (VLSI) techniques

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  19. Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.

    PubMed

    Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J

    2016-11-01

    Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.

  20. Mechanisms for Human Spatial Competence

    DTIC Science & Technology

    2007-01-01

    Published as Lecture Note: Gunzelmann, G., & Lyon, D. R. (2007). Mechanisms of human spatial competence. In M . K. T. Barkowsky, G. Ligozat, & D...the ACT-R community. References 1. Richardson, A., Montello, D., Hegarty, M .: Spatial Knowledge Acquisition from Maps, and from Navigation in Real...Rotation of Three-Dimensional Objects. Science 171, 701–703 (1971) 7. Just, M ., Carpenter, P.: Cognitive Coordinate Systems: Accounts of Mental

  1. A Navier-Stokes solution of the three-dimensional viscous compressible flow in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.

    1977-01-01

    A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.

  2. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  3. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Marshall, Matthew J.; Xiong, Yijia

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  4. Flow transition with 2-D roughness elements in a 3-D channel

    NASA Technical Reports Server (NTRS)

    Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.

    1993-01-01

    We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.

  5. Quantitative three-dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body

    NASA Technical Reports Server (NTRS)

    Sturm, R. E.; Ritman, E. L.; Wood, E. H.

    1975-01-01

    The background for, and design of a third generation, general purpose, all electronic spatial scanning system, the DSR is described. Its specified performance capabilities provide dynamic and stop action three dimensional spatial reconstructions of any portion of the body based on a minimum exposure time of 0.01 second for each 28 multiplanar 180 deg scanning set, a maximum scan repetition rate of sixty 28 multiplane scan sets per second, each scan set consisting of a maximum of 240 parallel cross sections of a minimum thickness of 0.9 mm, and encompassing a maximum cylindrical volume about 23 cm in length and up to 38 cm in diameter.

  6. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    NASA Astrophysics Data System (ADS)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to rotate structures. Some students had difficulty obtaining the correct angle required to properly interpret spatial relationships. This led to frustration and caused some students to quit trying before they could answer questions fully. Even though there were some difficulties, outcomes were not affected. Higher scores, however, may have been achieved had the students been proficient in VRML maneuvering.

  7. Dimensionality and the sample unit

    Treesearch

    Francis A. Roesch

    2009-01-01

    The sample unit and its implications for the Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis program are discussed in light of a generalized three-dimensional concept of continuous forest inventories. The concept views the sampled population as a spatial-temporal cube and the sample as a finite partitioning of the cube. The sample...

  8. Analysis of spatial thermal field in a magnetic bearing

    NASA Astrophysics Data System (ADS)

    Wajnert, Dawid; Tomczuk, Bronisław

    2018-03-01

    This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.

  9. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    PubMed

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  10. Standardized acquisition, storing and provision of 3D enabled spatial data

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Maier, S.; Peinsipp-Byma, E.

    2017-05-01

    In the area of working with spatial data, in addition to the classic, two-dimensional geometrical data (maps, aerial images, etc.), the needs for three-dimensional spatial data (city models, digital elevation models, etc.) is increasing. Due to this increased demand the acquiring, storing and provision of 3D enabled spatial data in Geographic Information Systems (GIS) is more and more important. Existing proprietary solutions quickly reaches their limits during data exchange and data delivery to other systems. They generate a large workload, which will be very costly. However, it is noticeable that these expenses and costs can generally be significantly reduced using standards. The aim of this research is therefore to develop a concept in the field of three-dimensional spatial data that runs on existing standards whenever possible. In this research, the military image analysts are the preferred user group of the system. To achieve the objective of the widest possible use of standards in spatial 3D data, existing standards, proprietary interfaces and standards under discussion have been analyzed. Since the here used GIS of the Fraunhofer IOSB is already using and supporting OGC (Open Geospatial Consortium) and NATO-STANAG (NATO-Standardization Agreement) standards for the most part of it, a special attention for possible use was laid on their standards. The most promising standard is the OGC standard 3DPS (3D Portrayal Service) with its occurrences W3DS (Web 3D Service) and WVS (Web View Service). A demo system was created, using a standardized workflow from the data acquiring, storing and provision and showing the benefit of our approach.

  11. An update on intraoperative three-dimensional transesophageal echocardiography

    PubMed Central

    2017-01-01

    Transesophageal echocardiography (TEE) was first used routinely in the operating rooms in the 1980s to facilitate surgical decision-making. Since then, TEE has evolved from the standard two-dimensional (2D) exam to include focused real-time three-dimensional (RT-3D) imaging both inside and outside the operating rooms. Improved spatial and temporal resolution due to technological advances has expedited surgical interventions in diseased valves. 3D imaging has also emerged as a crucial adjunct in percutaneous interventions for structural heart disease. With continued advancement in software, RT-3D TEE will continue to impact perioperative decisions. PMID:28540070

  12. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  13. Optimizing random searches on three-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing

    2018-07-01

    Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.

  14. A hyperspectral imagery anomaly detection algorithm based on local three-dimensional orthogonal subspace projection

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Wen, Gongjian

    2015-10-01

    Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.

  15. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  16. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Hand skin reconstruction from skeletal landmarks.

    PubMed

    Lefèvre, P; Van Sint Jan, S; Beauthier, J P; Rooze, M

    2007-11-01

    Many studies related to three-dimensional facial reconstruction have been previously reported. On the other hand, no extensive work has been found in the literature about hand reconstruction as an identification method. In this paper, the feasibility of virtual reconstruction of hand skin based on (1) its skeleton and (2) another hand skin and skeleton used as template was assessed. One cadaver hand and one volunteer's hand have been used. For the two hands, computer models of the bones and skin were obtained from computerized tomography. A customized software allowed locating spatial coordinates of bony anatomical landmarks on the models. From these landmarks, the spatial relationships between the models were determined and used to interpolate the missing hand skin. The volume of the interpolated skin was compared to the real skin obtained from medical imaging for validation. Results seem to indicate that such a method is of interest to give forensic investigators morphological clues related to an individual hand skin based on its skeleton. Further work is in progress to finalize the method.

  18. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  19. A polyhedron made of tRNAs.

    PubMed

    Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc

    2010-09-01

    Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.

  20. Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal.

    PubMed

    Zhou, Zong-Quan; Hua, Yi-Lin; Liu, Xiao; Chen, Geng; Xu, Jin-Shi; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2015-08-14

    Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.

  1. Mental Rotation with Tangible Three-Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4- to 8-year-old Children

    ERIC Educational Resources Information Center

    Hawes, Zachary; LeFevre, Jo-Anne; Xu, Chang; Bruce, Catherine D.

    2015-01-01

    There is an emerging consensus that spatial thinking is fundamental to later success in math and science. The goals of this study were to design and evaluate a novel test of three-dimensional (3D) mental rotation for 4- to 8-year-old children (N?=?165) that uses tangible 3D objects. Results revealed that the measure was both valid and reliable and…

  2. Hydrology team

    NASA Technical Reports Server (NTRS)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  3. Smooth 2D manifold extraction from 3D image stack

    PubMed Central

    Shihavuddin, Asm; Basu, Sreetama; Rexhepaj, Elton; Delestro, Felipe; Menezes, Nikita; Sigoillot, Séverine M; Del Nery, Elaine; Selimi, Fekrije; Spassky, Nathalie; Genovesio, Auguste

    2017-01-01

    Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy. PMID:28561033

  4. Three dimensional reconstruction of a human breast carcinoma using routine laboratory equipment and immunohistochemistry

    PubMed Central

    Kurien, T; Boyce, R W G; Paish, E C; Ronan, J; Maddison, J; Rakha, E A; Green, A R; Ellis, I O

    2005-01-01

    Aims: To establish a three dimensional reconstruction of an invasive breast carcinoma using basic laboratory equipment to evaluate and characterise the spatial arrangement of the parenchymal cells of the breast. Methods: One hundred and twenty eight sequential 4 μm sections (20 μm apart) of the tumour were stained immunohistochemically with an epithelial specific marker (AE1/AE3) or tumour specific marker (c-erbB-2) to reconstruct two different three dimensional images of the normal and malignant parenchymal cells. Sections were digitally imaged using a microscope, scanner, and digital camera linked to a conventional personal computer. Accurate alignment of the digitalised images was carried out using a semiautomatic graphical method of manual interaction, using the cross correlation coefficient as a goodness of fit measure, and an automatic search algorithm using the Fibonacci search algorithm for automatic alignment. The volume was reconstructed using maximum, minimum point projection and “back to front” opacity blending. Results: The quality of the reconstructed images was distinct and perfect, providing a comprehensive and explicit view of the normal and malignant parenchymal tissues of the breast that is not possible by viewing two dimensional histological sections. Specifically, this approach showed the spatial arrangement of the tumour cells and their relation to the surrounding tissues at a high resolution. Conclusion: This simple and reproducible approach enables the spread and infiltration of invasive carcinoma to be understood and could also be used to analyse the spatial relation between atypical hyperplastic and malignant in situ lesions of the breast. PMID:16126880

  5. Spatial Cognition Support for Exploring the Design Mechanics of Building Structures

    ERIC Educational Resources Information Center

    Rudy, Margit; Hauck, Richard

    2008-01-01

    A web-based tool for visualizing the simulated structural behavior of building models was developed to support the teaching of structural design to architecture and engineering students by activating their spatial cognition capabilities. The main didactic issues involved establishing a consistent and complete three-dimensional vocabulary (3D)…

  6. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  7. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  8. Integration of Hand and Finger Location in External Spatial Coordinates for Tactile Localization

    ERIC Educational Resources Information Center

    Heed, Tobias; Backhaus, Jenny; Roder, Brigitte

    2012-01-01

    Tactile stimulus location is automatically transformed from somatotopic into external spatial coordinates, rendering information about the location of touch in three-dimensional space. This process is referred to as tactile remapping. Whereas remapping seems to occur automatically for the hands and feet, the fingers may constitute an exception in…

  9. NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER. 2. SPATIAL MOMENTS AND THE ADVECTION AND DISPERSION OF NONREACTIVE TRACERS

    EPA Science Inventory

    The three-dimensional movement of a tracer plume containing bromide and chloride is investigated using the data base from a large-scale natural gradient field experiment on groundwater solute transport. The analysis focuses on the zeroth-, first-, and second-order spatial moments...

  10. A Longitudinal Evaluative Study of Student Difficulties with Engineering Graphics

    ERIC Educational Resources Information Center

    Potter, Charles; Van Der Merwe, Errol; Kaufman, Wendy; Delacour, Julie

    2006-01-01

    We have previously reported in this journal that spatial ability influences academic performance in engineering. We have also reported that spatial ability is trainable, and can be increased through instruction focused on using perception and mental imagery in three-dimensional representation. In this article, we present the results of a…

  11. Measuring Spatial Ability with a Computer Managed Task.

    ERIC Educational Resources Information Center

    McDaniel, Ernest; And Others

    This study presents data augmenting the validity studies of the Wheatley Cube (McDaniel and Kroll, 1984), a computer managed test of spatial visualization. Twenty-one students in pilot training are administered several instruments designed to measure the ability to construct a cognitive three-dimensional space, including: (1) the Wheatley Cube,…

  12. Optimum Particle Size for Gold-Catalyzed CO Oxidation

    PubMed Central

    2018-01-01

    The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098

  13. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  14. Three-dimensional FLASH Laser Radar Range Estimation via Blind Deconvolution

    DTIC Science & Technology

    2009-10-01

    scene can result in errors due to several factors including the optical spatial impulse response, detector blurring, photon noise , timing jitter, and...estimation error include spatial blur, detector blurring, noise , timing jitter, and inter-sample targets. Unlike previous research, this paper ac- counts...for pixel coupling by defining the range image mathematical model as a 2D convolution between the system spatial impulse response and the object (target

  15. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.

    PubMed

    Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-07-06

    The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.

  17. Usability and potential of geostatistics for spatial discrimination of multiple sclerosis lesion patterns.

    PubMed

    Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg

    2014-01-01

    In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.

  18. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  19. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  20. Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children.

    PubMed

    Passig, D; Eden, S

    2001-12-01

    The aim of this study was to investigate whether the practice of rotating Virtual Reality (VR) three-dimensional (3D) objects will enhance the spatial rotation thinking of deaf and hard-of-hearing children compared to the practice of rotating two-dimensional (2D) objects. Two groups were involved in this study: an experimental group, which included 21 deaf and hardof-hearing children, who played a VR 3D game, and a control group of 23 deaf and hard-of-hearing children, who played a similar 2D (not VR) game. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved the children's performance of spatial rotation, which enhanced their ability to perform better in other intellectual skills as well as in their sign language skills.

  1. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  2. The modifiable areal unit problem (MAUP) in the relationship between exposure to NO2 and respiratory health

    PubMed Central

    2011-01-01

    Background Many Canadian population health studies, including those focusing on the relationship between exposure to air pollution and health, have operationalized neighbourhoods at the census tract scale. At the same time, the conceptualization of place at the local scale is one of the weakest theoretical aspects in health geography. The modifiable areal unit problem (MAUP) raises issues when census tracts are used as neighbourhood proxies, and no other alternate spatial structure is used for sensitivity analysis. In the literature, conclusions on the relationship between NO2 and health outcomes are divided, and this situation may in part be due to the selection of an inappropriate spatial structure for analysis. Here, we undertake an analysis of NO2 and respiratory health in Ottawa, Canada using three different spatial structures in order to elucidate the effects that the spatial unit of analysis can have on analytical results. Results Using three different spatial structures to examine and quantify the relationship between NO2 and respiratory morbidity, we offer three main conclusions: 1) exploratory spatial analytical methods can serve as an indication of the potential effect of the MAUP; 2) OLS regression results differ significantly using different spatial representations, and this could be a contributing factor to the lack of consensus in studies that focus on the relation between NO2 and respiratory health at the area-level; and 3) the use of three spatial representations confirms no measured effect of NO2 exposure on respiratory health in Ottawa. Conclusions Area units used in population health studies should be delineated so as to represent the a priori scale of the expected scale interaction between neighbourhood processes and health. A thorough understanding of the role of the MAUP in the study of the relationship between NO2 and respiratory health is necessary for research into disease pathways based on statistical models, and for decision-makers to assess the scale at which interventions will have maximum benefit. In general, more research on the role of spatial representation in health studies is needed. PMID:22040001

  3. Complementing forest inventory data with information from unmanned aerial vehicle imagery and photogrammetry

    Treesearch

    Nikolay S. Strigul; Demetrios Gatziolis; Jean F. Liénard; Andre Vogs

    2015-01-01

    Although a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity, measurements conducive to three-dimensional (3D) representations of individual trees are seldom part of forest inventory operations. This is in part because until recently our ability to measure the dimensionality, spatial arrangement, and shape of trees and...

  4. Children's Schemes for Anticipating the Validity of Nets for Solids

    ERIC Educational Resources Information Center

    Wright, Vince; Smith, Ken

    2017-01-01

    There is growing acknowledgement of the importance of spatial abilities to student achievement across a broad range of domains and disciplines. Nets are one way to connect three-dimensional shapes and their two-dimensional representations and are a common focus of geometry curricula. Thirty-four students at year 6 (upper primary school) were…

  5. Uncertainty relations for angular momentum eigenstates in two and three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Bracher, Christian

    2011-03-01

    I reexamine Heisenberg's uncertainty relation for two- and three-dimensional wave packets with fixed angular momentum quantum numbers m or ℓ. A simple proof shows that the product of the average extent Δr and Δp of a two-dimensional wave packet in position and momentum space is bounded from below by ΔrΔp ≥ℏ(|m|+1). The minimum uncertainty is attained by modified Gaussian wave packets that are special eigenstates of the two-dimensional isotropic harmonic oscillator, which include the ground states of electrons in a uniform magnetic field. Similarly, the inequality ΔrΔp ≥ℏ(ℓ +3/2) holds for three-dimensional wave packets with fixed total angular momentum ℓ and the equality holds for a Gaussian radial profile. I also discuss some applications of these uncertainty relations.

  6. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.

    PubMed

    Grossberg, S

    1997-07-01

    This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.

  7. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  8. Understanding relationships among ecosystem services across spatial scales and over time

    NASA Astrophysics Data System (ADS)

    Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.

    2018-05-01

    Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.

  9. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography

    DOE PAGES

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...

    2018-03-02

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less

  10. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less

  11. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  12. Three-Dimensional Displacement of Nine Different Abutments for an Implant with an Internal Hexagon Platform.

    PubMed

    Gilbert, Andy B; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L; Chien, Hua-Hong

    2015-01-01

    Clinicians need to know whether there are any differences among the many abutment options available for restoring a particular implant. This study aims to compare nine abutments for one implant system for positional changes between hand tightening and torqueing. Nine Tapered Screw-Vent (TSV) implants were placed into a resin block. Five specimens of nine different abutments (n = 45) were tried in one of the nine implants. Initially, the abutments were torqued to 20 Ncm to represent hand tightening. Abutments were tightened to 30 Ncm using a torque driver as recommended by the manufacturer for final seating. Images were recorded in 12-second intervals for approximately 10 minutes after the torque was applied. The spatial relationship of the abutments to the resin block was determined using three-dimensional digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the nine different abutments were calculated in all three dimensions and for overall displacement in space. A t test with a step-down Bonferroni correction was used for a pairwise comparison of each abutment's mean displacements to the other abutments to determine statistical differences (α = .05). The Atlantis titanium, Inclusive titanium, and Legacy zirconia abutments showed mean displacements that were statistically significantly higher than other abutments in the horizontal direction. The overall three-dimensional displacement of the Atlantis titanium abutment after an applied 30-Ncm torque was significantly higher than that of six of the other eight abutments (P < .0144). Within the limitations of this in vitro study, the Zimmer PSA demonstrated less displacement between hand tightening and torqueing than the Atlantis titanium or Inclusive titanium abutments when used to restore a TSV implant.

  13. The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary

    2012-01-01

    In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic…

  14. Development of an integrated model of personality, personality disorders and severe axis I disorders, with special reference to major affective disorders.

    PubMed

    von Zerssen, Detlev

    2002-04-01

    A unidimensional model of the relationships between normal temperament, psychopathic variants of it and the two main forms of so-called endogenous psychoses (major affective disorders and schizophrenia) was derived from Kretschmer's constitutional typology. It was, however, not confirmed by means of a biometric approach nor was Kretschmer's broad concept of cyclothymia as a correlate of physical stoutness on the one hand and major affective disorders on the other supported by empirical data. Yet the concept of the 'melancholic type' of personality of patients with severe unipolar major depression (melancholia) which resembles descriptions by psychoanalysts could be corroborated. This was also true for the 'manic type' of personality as a (premorbid) correlate of predominantly manic forms of a bipolar I disorder. As predicted from a spectrum concept of major affective disorders, the ratio of traits of either type co-varied with the ratio of the depressive and the manic components in the long-term course of such a disorder. The two types of premorbid personality and a rare variant of the 'manic type', named 'relaxed, easy-going type', were conceived as 'affective types' dominating in major affective disorders. They are opposed to three 'neurotoid types' prevailing in so-called neurotic disorders as well as in schizophrenic psychoses. The similarity among the types can be visualized as spatial relationships in a circular, i.e. a two-dimensional, model (circumplex). Personality disorders as maladapted extreme variants of personality are, by definition, located outside the circle, mainly along its 'neurotoid' side. However, due to their transitional nature, axis I disorders cannot be represented adequately within the plane which represents (adapted as well as maladapted) forms of habitual behaviour (personality types and disorders, respectively). To integrate them into the spatial model of similarity interrelations, a dimension of actual psychopathology has to be added to the two-dimensional plane as a third (orthogonal) axis. The distance of a case from the 'ground level' of habitual behaviour corresponds with the severity of the actual psychopathological state. The specific form of that state (e.g. manic or depressive), however, varies along one the axes which define the circumplex of habitual behaviour. This three-dimensional model is, by its very nature, more complex than the unidimensional one derived from Kretschmer's typological concept, but it is clearly more in accordance with empirical data.

  15. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet transform coder was used for the two-dimensional compression. The third case used a three dimensional extension of this same algorithm.

  16. Unsteady three-dimensional marginal separation, including breakdown

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    A situation involving a three-dimensional marginal separation is considered, where a (steady) boundary layer flow is on the verge of separating at a point (located along a line of symmetry/centerline). At this point, a triple-deck is included, thereby permitting a small amount of interaction to occur. Unsteadiness is included within this interaction region through some external means. It is shown that the problem reduces to the solution of a nonlinear, unsteady, partial-integro system, which is solved numerically by means of time-marching together with a pseudo-spectral method spatially. A number of solutions to this system are presented which strongly suggest a breakdown of this system may occur, at a finite spatial position, at a finite time. The structure and details of this breakdown are then described.

  17. A topological multilayer model of the human body.

    PubMed

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  18. Plant light interception can be explained via computed tomography scanning: demonstration with pyramidal cedar (Thuja occidentalis, Fastigiata).

    PubMed

    Dutilleul, Pierre; Han, Liwen; Smith, Donald L

    2008-01-01

    Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO(2) recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer-Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). The three-dimensional version of the Beer-Lambert law based on FD alone provided a much better explanation of plant light interception (R(2) = 0.858) than those using the product LV*FD (0.589) or LV alone (0.548). While values of all three regressors were found to increase over time, FD in the Beer-Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity.

  19. Plant Light Interception Can Be Explained via Computed Tomography Scanning: Demonstration with Pyramidal Cedar (Thuja occidentalis, Fastigiata)

    PubMed Central

    Dutilleul, Pierre; Han, Liwen; Smith, Donald L.

    2008-01-01

    Background and Aims Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO2 recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer–Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Methods Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). Key Results The three-dimensional version of the Beer–Lambert law based on FD alone provided a much better explanation of plant light interception (R2 = 0·858) than those using the product LV*FD (0·589) or LV alone (0·548). While values of all three regressors were found to increase over time, FD in the Beer–Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. Conclusions The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity. PMID:17981879

  20. Three-dimensional co-culture process

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    1992-01-01

    The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.

  1. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  2. Cognitive factors affecting student understanding of geologic time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-04-01

    A critical element of the earth sciences is reconstructing geological structures and systems that have developed over time. A survey of the science education literature shows that there has been little attention given to this concept. In this study, we present a model, based on Montagnero's ([1996]) model of diachronic thinking, which describes how students reconstruct geological transformations over time. For geology, three schemes of diachronic thinking are relevant: 1. Transformation, which is a principle of change; in geology it is understood through actualistic thinking (the idea that present proceeses can be used to model the past). 2. Temporal organization, which defines the sequential order of a transformation; in geology it is based on the three-dimensional relationship among strata. 3. Interstage linkage, which is the connections between successive stages of a transformation; in geology it is based on both actualism and causal reasoning. Three specialized instruments were designed to determine the factors which influence reconstructive thinking: (a) the GeoTAT which tests diachronic thinking skills, (b) the TST which tests the relationship between spatial thinking and temporal thinking, and (c) the SFT which tests the influence of dimensional factors on temporal awareness. Based on the model constructed in this study we define the critical factors influencing reconstructive thinking: (a) the transformation scheme which influences the other diachronic schemes, (b) knowledge of geological processes, and (c) extracognitive factors. Among the students tested, there was a significant difference between Grade 9-12 students and Grade 7-8 students in their ability to reconstruct geological phenomena using diachronic thinking. This suggests that somewhere between Grades 7 and 8 it is possible to start teaching some of the logical principles used in geology to reconstruct geological structures.

  3. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  4. An Essential Protein Repair Enzyme: Investigation of the Molecular Recognition Mechanism of Methionine Sulfoxide Reductase A

    DTIC Science & Technology

    2008-05-01

    4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure

  5. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  6. Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1980-01-01

    A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.

  7. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality.

    PubMed

    Lan, Xiang; Chen, Zhong; Dai, Gaole; Lu, Xuxing; Ni, Weihai; Wang, Qiangbin

    2013-08-07

    Discrete three-dimensional (3D) plasmonic nanoarchitectures with well-defined spatial configuration and geometry have aroused increasing interest, as new optical properties may originate from plasmon resonance coupling within the nanoarchitectures. Although spherical building blocks have been successfully employed in constructing 3D plasmonic nanoarchitectures because their isotropic nature facilitates unoriented localization, it still remains challenging to assemble anisotropic building blocks into discrete and rationally tailored 3D plasmonic nanoarchitectures. Here we report the first example of discrete 3D anisotropic gold nanorod (AuNR) dimer nanoarchitectures formed using bifacial DNA origami as a template, in which the 3D spatial configuration is precisely tuned by rationally shifting the location of AuNRs on the origami template. A distinct plasmonic chiral response was experimentally observed from the discrete 3D AuNR dimer nanoarchitectures and appeared in a spatial-configuration-dependent manner. This study represents great progress in the fabrication of 3D plasmonic nanoarchitectures with tailored optical chirality.

  8. An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

    PubMed Central

    Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.

    2015-01-01

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216

  9. An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials.

    PubMed

    Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J

    2015-11-08

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

  10. Shape Recognition Inputs to Figure-Ground Organization in Three-Dimensional Displays.

    ERIC Educational Resources Information Center

    Peterson, Mary A.; Gibson, Bradley S.

    1993-01-01

    Three experiments with 29 college students and 8 members of a university community demonstrate that shape recognition processes influence perceived figure-ground relationships in 3-dimensional displays when the edge between 2 potential figural regions is both a luminance contrast edge and a disparity edge. Implications for shape recognition and…

  11. 3D-quantitative structure-activity relationship study for the design of novel enterovirus A71 3C protease inhibitors.

    PubMed

    Nie, Quandeng; Xu, Xiaoyi; Zhang, Qi; Ma, Yuying; Yin, Zheng; Shang, Luqing

    2018-06-07

    A three-dimensional quantitative structure-activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein-ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three-dimensional quantitative structure-activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds (I-III) were designed and evaluated for their biochemical activity against 3C protease and anti-enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC 50 =0.031 ± 0.005 μM, EC 50 =0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure-activity relationships model to develop potent inhibitors for enterovirus A71 3C protease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Using a cross section to train veterinary students to visualize anatomical structures in three dimensions

    NASA Astrophysics Data System (ADS)

    Provo, Judy; Lamar, Carlton; Newby, Timothy

    2002-01-01

    A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.

  13. Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.

  14. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  15. Image fusion for visualization of hepatic vasculature and tumors

    NASA Astrophysics Data System (ADS)

    Chou, Jin-Shin; Chen, Shiuh-Yung J.; Sudakoff, Gary S.; Hoffmann, Kenneth R.; Chen, Chin-Tu; Dachman, Abraham H.

    1995-05-01

    We have developed segmentation and simultaneous display techniques to facilitate the visualization of the three-dimensional spatial relationships between organ structures and organ vasculature. We concentrate on the visualization of the liver based on spiral computed tomography images. Surface-based 3-D rendering and maximal intensity projection algorithms are used for data visualization. To extract the liver in the serial of images accurately and efficiently, we have developed a user-friendly interactive program with a deformable-model segmentation. Surface rendering techniques are used to visualize the extracted structures, adjacent contours are aligned and fitted with a Bezier surface to yield a smooth surface. Visualization of the vascular structures, portal and hepatic veins, is achieved by applying a MIP technique to the extracted liver volume. To integrate the extracted structures they are surface-rendered and their MIP images are aligned and a color table is designed for simultaneous display of the combined liver/tumor and vasculature images. By combining the 3-D surface rendering and MIP techniques, portal veins, hepatic veins, and hepatic tumor can be inspected simultaneously and their spatial relationships can be more easily perceived. The proposed technique will be useful for visualization of both hepatic neoplasm and vasculature in surgical planning for tumor resection or living-donor liver transplantation.

  16. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics.

    PubMed

    Bark, David L; Dasi, Lakshmi P

    2016-05-01

    We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.

  17. Three-dimensional interstitial space mediates predator foraging success in different spatial arrangements.

    PubMed

    Hesterberg, Stephen G; Duckett, C Cole; Salewski, Elizabeth A; Bell, Susan S

    2017-04-01

    Identifying and quantifying the relevant properties of habitat structure that mediate predator-prey interactions remains a persistent challenge. Most previous studies investigate effects of structural density on trophic interactions and typically quantify refuge quality using one or two-dimensional metrics. Few consider spatial arrangement of components (i.e., orientation and shape) and often neglect to measure the total three-dimensional (3D) space available as refuge. This study tests whether the three-dimensionality of interstitial space, an attribute produced by the spatial arrangement of oyster (Crassostrea virginica) shells, impacts the foraging success of nektonic predators (primary blue crab, Callinectes sapidus) on mud crab prey (Eurypanopeus depressus) in field and mesocosm experiments. Interstices of 3D-printed shell mimics were manipulated by changing either their orientation (angle) or internal shape (crevice or channel). In both field and mesocosm experiments, under conditions of constant structural density, predator foraging success was influenced by 3D aspects of interstitial space. Proportional survivorship of tethered mud crabs differed significantly as 3D interstitial space varied by orientation, displaying decreasing prey survivorship as angle of orientation increased (0° = 0.76, 22.5° = 0.13, 45° = 0.0). Tethered prey survivorship was high when 3D interstitial space of mimics was modified by internal shape (crevice survivorship = 0.89, channel survivorship = 0.96) and these values did not differ significantly. In mesocosms, foraging success of blue crabs varied with 3D interstitial space as mean proportional survivorship (± SE) of mud crabs was significantly lower in 45° (0.27 ± 0.06) vs. 0° (0.86 ± 0.04) orientations and for crevice (0.52 ± 0.11) vs. channel shapes (0.95 ± 0.02). These results suggest that 3D aspects of interstitial space, which have direct relevance to refuge quality, can strongly influence foraging success in our oyster reef habitat. Our findings highlight the importance of spatial arrangement in mediating consumptive pathways in hard-structured habitats and demonstrate how quantifying the three-dimensionality of living space captures aspects of habitat structure that have been missing from previous empirical studies of trophic interactions and structural complexity. © 2017 by the Ecological Society of America.

  18. Distinctive Features of Spatial Perspective-Taking in the Elderly

    ERIC Educational Resources Information Center

    Watanabe, Masayuki

    2011-01-01

    This study aimed to ascertain the characteristics of spatial perspective-taking ability--assumed to be a form of imaginary body movement in three-dimensional space--in the elderly. A new task was devised to evaluate the development of this function: 20 children, 20 university students, and 20 elderly people (each group comprising 10 men and 10…

  19. How Spatial Abilities Enhance, and Are Enhanced by, Dental Education

    ERIC Educational Resources Information Center

    Hegarty, Mary; Keehner, Madeleine; Khooshabeh, Peter; Montello, Daniel R.

    2009-01-01

    In two studies with a total of 324 participants, dentistry students were assessed on psychometric measures of spatial ability, reasoning ability, and on new measures of the ability to infer the appearance of a cross-section of a three-dimensional (3-D) object. We examined how these abilities and skills predict success in dental education programs,…

  20. Growing And Assembling Cells Into Tissues

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.; Lewis, Marian L.; Cross, John H.; Huls, M. Helen

    1990-01-01

    Laboratory process for growth and assembly of mammalian cells into tissue-like masses demonstrated with hamster and rat cells. New process better able to provide culture environment with reduced fluid shear stress, freedom for three-dimensional spatial orientation of particles suspended in culture medium, and localization of particles of different or similar sedimentation properties in similar spatial region.

  1. Reflecting on Classroom Practice: Spatial Reasoning and Simple Coding

    ERIC Educational Resources Information Center

    King, Alessandra

    2015-01-01

    Spatial reasoning--the ability to visualise and play with shapes in one's mind--is essential in many fields, and crucial in any Science, Technology, Engineering, Mathematics [STEM] discipline. It is, for example, the ability that the engineer needs to build bridges; the chemist to see the three-dimensional structure of a molecule; the architect to…

  2. Recurrence Methods for the Identification of Morphogenetic Patterns

    PubMed Central

    Facchini, Angelo; Mocenni, Chiara

    2013-01-01

    This paper addresses the problem of identifying the parameters involved in the formation of spatial patterns in nonlinear two dimensional systems. To this aim, we perform numerical experiments on a prototypical model generating morphogenetic Turing patterns, by changing both the spatial frequency and shape of the patterns. The features of the patterns and their relationship with the model parameters are characterized by means of the Generalized Recurrence Quantification measures. We show that the recurrence measures Determinism and Recurrence Entropy, as well as the distribution of the line lengths, allow for a full characterization of the patterns in terms of power law decay with respect to the parameters involved in the determination of their spatial frequency and shape. A comparison with the standard two dimensional Fourier transform is performed and the results show a better performance of the recurrence indicators in identifying a reliable connection with the spatial frequency of the patterns. Finally, in order to evaluate the robustness of the estimation of the power low decay, extensive simulations have been performed by adding different levels of noise to the patterns. PMID:24066062

  3. Lack of awareness for spatial and verbal constructive apraxia.

    PubMed

    Rinaldi, Maria Cristina; Piras, Federica; Pizzamiglio, Luigi

    2010-05-01

    It is still a matter of debate whether constructive apraxia (CA) should be considered a form of apraxia or, rather, the motor expression of a more pervasive impairment in visuo-spatial processing. Constructive disorders were linked to visuo-spatial disorders and to deficits in appreciating spatial relations among component sub-parts or problems in reproducing three-dimensionality. We screened a large population of brain-damaged patients for CA. Only patients with constructive disorders and no signs of neglect and/or aphasia were selected. Five apractic subjects were tested with both visuo-spatial and verbal tasks requiring constructive abilities. The former ones were tests such as design copying, while the latter were experimental tasks built to transpose into the linguistic domain the constructive process as phrasing by arranging paper scraps into a sentence. A first result showed a constructive impairment in both the visuo-spatial and the linguistic domain; this finding challenges the idea that CA is confined to the visuo-spatial domain. A second result showed a systematic association between CA and unawareness for constructive disorders. Third, lack of awareness was always associated with a lesion in the right dorsolateral prefrontal cortex, a region deemed as involved in managing a conflict between intentions and sensory feed-back. Anosognosia for constructive disorders and the potential role of the right prefrontal cortex in generating the impairment, are discussed in the light of current models of action control. The core of CA could be the inability to detect any inconsistency between intended and executed action rather than a deficit in reproducing spatial relationship. 2010 Elsevier Ltd. All rights reserved.

  4. X-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  5. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  6. Roadmap to Long-Term Monitoring Optimization

    EPA Pesticide Factsheets

    This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...

  7. Direct Simulation of Evolution and Control of Three-Dimensional Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1995-01-01

    The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.

  8. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  9. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  10. Visualizing Sun-Earth-Moon Relationships through Hands-On Modeling

    NASA Astrophysics Data System (ADS)

    Morton, Abby

    2013-04-01

    "Tell me and I forget, teach me and I may remember, involve me and I learn." -Benjamin Franklin Understanding the spatial relationships between the sun, Earth and Moon is fundamental to any basic earth science education. Since both of the following concepts involve shadows on three-dimensional spheres, seeing them on paper is not often conducive to understanding. In the first activity, students use five Styrofoam balls painted to look like the sun and the four positions of the earth in each season. Students position the Earth-balls in their correct order around the sun and translate what they are seeing onto paper. In the second activity, students hold up a Styrofoam ball painted half white, half black. A picture of the sun is projected at the front of the classroom. They move the ball around their heads as if they were the Earth, keeping the lit side of the moon always facing the sun. They then draw the phases of the moon as they see them.

  11. Effects of spatial curvature and anisotropy on the asymptotic regimes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.; Toporensky, Alexey

    2018-05-01

    In this paper we address two important issues which could affect reaching the exponential and Kasner asymptotes in Einstein-Gauss-Bonnet cosmologies—spatial curvature and anisotropy in both three- and extra-dimensional subspaces. In the first part of the paper we consider the cosmological evolution of spaces that are the product of two isotropic and spatially curved subspaces. It is demonstrated that the dynamics in D=2 (the number of extra dimensions) and D ≥ 3 is different. It was already known that for the Λ -term case there is a regime with "stabilization" of extra dimensions, where the expansion rate of the three-dimensional subspace as well as the scale factor (the "size") associated with extra dimensions reaches a constant value. This regime is achieved if the curvature of the extra dimensions is negative. We demonstrate that it takes place only if the number of extra dimensions is D ≥ 3. In the second part of the paper we study the influence of the initial anisotropy. Our study reveals that the transition from Gauss-Bonnet Kasner regime to anisotropic exponential expansion (with three expanding and contracting extra dimensions) is stable with respect to breaking the symmetry within both three- and extra-dimensional subspaces. However, the details of the dynamics in D=2 and D ≥ 3 are different. Combining the two described effects allows us to construct a scenario in D ≥ 3, where isotropization of outer and inner subspaces is reached dynamically from rather general anisotropic initial conditions.

  12. Dorello's Canal for Laymen: A Lego-Like Presentation.

    PubMed

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-06-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.

  13. Dorello's Canal for Laymen: A Lego-Like Presentation

    PubMed Central

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-01-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547

  14. Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia

    NASA Astrophysics Data System (ADS)

    Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich

    2018-05-01

    Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.

  15. The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students' Performance of Spatial Cognition Tasks

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, Hee-Sun

    2010-02-01

    We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.

  16. Statistical comparison of coherent structures in fully developed turbulent pipe flow with and without drag reduction

    NASA Astrophysics Data System (ADS)

    Sogaro, Francesca; Poole, Robert; Dennis, David

    2014-11-01

    High-speed stereoscopic particle image velocimetry has been performed in fully developed turbulent pipe flow at moderate Reynolds numbers with and without a drag-reducing additive (an aqueous solution of high molecular weight polyacrylamide). Three-dimensional large and very large-scale motions (LSM and VLSM) are extracted from the flow fields by a detection algorithm and the characteristics for each case are statistically compared. The results show that the three-dimensional extent of VLSMs in drag reduced (DR) flow appears to increase significantly compared to their Newtonian counterparts. A statistical increase in azimuthal extent of DR VLSM is observed by means of two-point spatial autocorrelation of the streamwise velocity fluctuation in the radial-azimuthal plane. Furthermore, a remarkable increase in length of these structures is observed by three-dimensional two-point spatial autocorrelation. These results are accompanied by an analysis of the swirling strength in the flow field that shows a significant reduction in strength and number of the vortices for the DR flow. The findings suggest that the damping of the small scales due to polymer addition results in the undisturbed development of longer flow structures.

  17. Understanding the relationship between audiomagnetotelluric data and models, and borehole data in a hydrological environment

    USGS Publications Warehouse

    McPhee, D.K.; Pellerin, L.

    2008-01-01

    Audiomagnetotelluric (AMT) data and resulting models are analyzed with respect to geophysical and geological borehole logs in order to clarify the relationship between the two methodologies of investigation of a hydrological environment. Several profiles of AMT data collected in basins in southwestern United States are being used for groundwater exploration and hydrogeological framework studies. In a systematic manner, the AMT data and models are compared to borehole data by computing the equivalent one-dimensional AMT model and comparing with the two-dimensional (2-D) inverse AMT model. The spatial length is used to determine if the well is near enough to the AMT profile to quantify the relationship between the two datasets, and determine the required resolution of the AMT data and models. The significance of the quality of the borehole data when compared to the AMT data is also examined.

  18. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  19. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach.

    PubMed

    Brind'Amour, Anik; Boisclair, Daniel; Dray, Stéphane; Legendre, Pierre

    2011-03-01

    Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.

  20. Phase slip process and charge density wave dynamics in a one dimensional conductor

    NASA Astrophysics Data System (ADS)

    Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.

    In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.

  1. Spectral analysis of magnetic anomalies in and around the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Ishihara, T.

    2009-12-01

    Regional compilations of lithospheric structure from various methods and data and comparison among them are useful to understand lithospheric structure and the processes behind its formation and evolution. We present constraints on the regional variations of the magnetic thicknesses in and around the Philippine Sea. We used a new global magnetic anomaly data [Quesnel et al, 2009], which is CM4-corrected [Comprehensive Model 4; Sabaka et al., 2004], cleaned and leveled to clarify the three-dimensional crustal magnetic structure of the Philippine Sea. The Philippine Sea is one of the largest marginal seas of the world. The north-south-trending Kyushu-Palau Ridge divides it into two parts: the West Philippine Basin and the Daito Ridge province in the west and the Shikoku and Parece Vela Basins in the east. The age of the basins increases westward [Karig, 1971]. And, there are three ridges in the Daito Ridge province west of the Kyushu-Palau Ridge; the Oki-Daito, Daito Ridges and the Amami Plateau from south to north, and small basins among them. Two-dimensional spectral analysis of marine magnetic anomalies is used to estimate the centroid of magnetic sources (Zo) to constrain the lithospheric structure [Tanaka and Ishihara, 2008]. The method is based on that of Spector and Grant [1970]. Zo distribution of the Philippine Sea shows occurrence of shallow magnetic layer areas with approximately less than 10 km in the Shikoku Basin. It also shows variations in deep and shallow magnetic layer areas in the Amami-Daito Province. These patters correspond to spatial variations of the crustal thickness deduced from the three-dimensional gravity modeling [Ishihara and Koda, 2007] and acoustic basement structures [Higuchi et al., 2007]. These three spatial distributions are roughly consistent with each other, although they may contain some scatters and bias due to the different characteristics and errors. This two-dimensional spectral analysis method is based upon an assumption that source distribution is random; therefore when magnetic anomalies represent linear features, this analysis based on ensembles of thin prisms may produce unreliable results. In this case, one-dimensional spectrum analysis based on a thin plate model composed of long bars is preferable. Makino and Okubo [1988] developed one-dimensional spectral analysis for marine linear magnetic anomalies. A linear relationship between the natural log of (power-density spectrum of magnetic profile) and wavelength gives the centroid depth of magnetic sources. The same method is applied to this area. This analysis requires a long profile to see deeper structure. It may not be possible to find good enough data. However, both methods give consistent results, and the obtained Zo distribution provides a comprehensive view of regional-scale features. The correlation between crustal thickness and Zo and its correspondence with tectonic regime indicates that Zo is useful to delineate regional crustal thermal structure. It is expected that Zo combined with multidisciplinary data should help to infer geophysical and geological information in the less explored regions.

  2. Compact microwave imaging system to measure spatial distribution of plasma density

    NASA Astrophysics Data System (ADS)

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  3. The Cutplane - A tool for interactive solid modeling

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Kessler, William; Leifer, Larry

    1988-01-01

    A geometric modeling system which incorporates a new concept for intuitively and unambiguously specifying and manipulating points or features in three dimensional space is presented. The central concept, the Cutplane, consists of a plane that moves through space under control of a mouse or similar input device. The intersection of the plane and any object is highlighted, and only this highlighted section can be selected for manipulation. Selection is accomplished with a crosshair that is constrained to remain within the plane, so that the relationship between the crosshair and the feature of interest is immediately evident. Although the idea of a section view is not new, previously it has been used as a way to reveal hidden structure, not as a means of manipulating objects or indicating spatial position, as is proposed here.

  4. Analysis of retinal and cortical components of Retinex algorithms

    NASA Astrophysics Data System (ADS)

    Yeonan-Kim, Jihyun; Bertalmío, Marcelo

    2017-05-01

    Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.

  5. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    NASA Technical Reports Server (NTRS)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  6. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  7. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  8. Squeezing the Efimov effect

    NASA Astrophysics Data System (ADS)

    Sandoval, J. H.; Bellotti, F. F.; Yamashita, M. T.; Frederico, T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2018-03-01

    The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.

  9. Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.

  10. Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture

    NASA Technical Reports Server (NTRS)

    Gloersen, Per (Inventor)

    2004-01-01

    An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.

  11. [Nasolabial muscle finite-element study and clinical application].

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Wang, Yongqian; Song, Tao; Ma, Hengyuan

    2015-05-01

    To investigate the nasolabial muscle anatomy and biomechanical characteristics. Micro-computed tomography scan was performed in 8 cases of spontaneous abortion fetus lip nasal specimens to construct a three-dimensional model. The nasolabial muscle structure was analyzed using Mimics software. The three-dimensional configuration model of nasolabial muscle was established based on local anatomy and tissue section, and compared with tissue section. Three dimensional finite element analysis was performed on lip nasal muscle related biomechanics and surface deformation in Application verification was carried out in 263 cases of microform cleft lip surgery. There was close relationship between nasolabial muscle. The nasolabial muscle tension system was constituted, based on which a new cleft lip repair surgery was designed and satisfied results were achieved. There is close relationship among nasolabial muscle in anatomy, histology and biomechanics. To obtain better effect, cleft lip repair should be performed on the basis of recovering muscle tension system.

  12. Does Spatial Ability Help the Learning of Anatomy in a Biomedical Science Course?

    ERIC Educational Resources Information Center

    Sweeney, Kevin; Hayes, Jennifer A.; Chiavaroli, Neville

    2014-01-01

    A three-dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent…

  13. Origami Instruction in the Middle School Mathematics Classroom: Its Impact on Spatial Visualization and Geometry Knowledge of Students

    ERIC Educational Resources Information Center

    Boakes, Norma J.

    2009-01-01

    Within the study of geometry in the middle school curriculum is the natural development of students' spatial visualization, the ability to visualize two- and three-dimensional objects. The national mathematics standards call specifically for the development of such skills through hands-on experiences. A commonly accepted method is through the…

  14. A Numeric Study of the Dependence of the Surface Temperature of Beta-Layered Regions on Absolute Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.

    2000-01-15

    Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less

  15. Topological magnetoelectric pump in three dimensions

    NASA Astrophysics Data System (ADS)

    Fukui, Takahiro; Fujiwara, Takanori

    2017-11-01

    We study the topological pump for a lattice fermion model mainly in three spatial dimensions. We first calculate the U(1) current density for the Dirac model defined in continuous space-time to review the known results as well as to introduce some technical details convenient for the calculations of the lattice model. We next investigate the U(1) current density for a lattice fermion model, a variant of the Wilson-Dirac model. The model we introduce is defined on a lattice in space but in continuous time, which is suited for the study of the topological pump. For such a model, we derive the conserved U(1) current density and calculate it directly for the (1 +1 )-dimensional system as well as (3 +1 )-dimensional system in the limit of the small lattice constant. We find that the current includes a nontrivial lattice effect characterized by the Chern number, and therefore the pumped particle number is quantized by the topological reason. Finally, we study the topological temporal pump in 3 +1 dimensions by numerical calculations. We discuss the relationship between the second Chern number and the first Chern number, the bulk-edge correspondence, and the generalized Streda formula which enables us to compute the second Chern number using the spectral asymmetry.

  16. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair.

    PubMed

    Kiraly, Laszlo; Tofeig, Magdi; Jha, Neerod Kumar; Talo, Haitham

    2016-02-01

    Three-dimensional (3D) printed prototypes of malformed hearts have been used for education, communication, presurgical planning and simulation. We present a case of a 5-month old infant with complex obstruction at the neoaortic to transverse arch and descending aortic junction following the neonatal modified Norwood-1 procedure for hypoplastic left heart syndrome. Digital 3D models were created from a routine 64-slice CT dataset; then life-size solid and magnified hollow models were printed with a 3D printer. The solid model provided further insights into details of the anatomy, whereas the surgical approach and steps of the operation were simulated on the hollow model. Intraoperative assessment confirmed the anatomical accuracy of the 3D models. The operation was performed in accordance with preoperative simulation: sliding autologous flaps achieved relief of the obstruction without additional patching. Knowledge gained from the models fundamentally contributed to successful outcome and improved patient safety. This case study presents an effective use of 3D models in exploring complex spatial relationship at the aortic arch and in simulation-based planning of the operative procedure. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Grayscale lithography-automated mask generation for complex three-dimensional topography

    NASA Astrophysics Data System (ADS)

    Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.

    2016-01-01

    Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.

  18. Spatial Experiences of High Academic Achievers: Insights from a Developmental Perspective

    ERIC Educational Resources Information Center

    Weckbacher, Lisa Marie; Okamoto, Yukari

    2012-01-01

    The study explored the relationship between types of spatial experiences and spatial abilities among 13- to 14-year-old high academic achievers. Each participant completed two spatial tasks and a survey assessing favored spatial activities across five categories (computers, toys, sports, music, and art) and three developmental periods (early…

  19. Cooperative single-photon subradiant states in a three-dimensional atomic array

    NASA Astrophysics Data System (ADS)

    Jen, H. H.

    2016-11-01

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.

  20. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    PubMed

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness.

  1. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States

    PubMed Central

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. PMID:25101782

  2. A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.

    1986-12-01

    A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.

  3. Relationships between Organizations and Publics: Development of a Multi-Dimensional Organization-Public Relationship Scale.

    ERIC Educational Resources Information Center

    Bruning, Stephen D.; Ledingham, John A.

    1999-01-01

    Attempts to design a multiple-item, multiple-dimension organization/public relationship scale. Finds that organizations and key publics have three types of relationships: professional, personal, and community. Provides an instrument that can be used to measure the influence that perceptions of the organization/public relationship have on consumer…

  4. DNA Brick Crystals with Prescribed Depth

    PubMed Central

    Ke, Yonggang; Ong, Luvena L.; Sun, Wei; Song, Jie; Dong, Mingdong; Shih, William M.; Yin, Peng

    2014-01-01

    We describe a general framework for constructing two-dimensional crystals with prescribed depth and sophisticated three-dimensional features. These crystals may serve as scaffolds for the precise spatial arrangements of functional materials for diverse applications. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micron-size in the lateral dimensions with precisely controlled depth up to 80 nanometers. They can be designed to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels, and to pack DNA helices at parallel and perpendicular angles relative to the plane of the crystals. PMID:25343605

  5. Enhanced mixing and spatial instability in concentrated bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Goldstein, Raymond E.; Feldchtein, Felix I.; Aranson, Igor S.

    2009-09-01

    High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.

  6. Program of research in severe storms

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.

  7. Direct Harmonic Linear Navier-Stokes Methods for Efficient Simulation of Wave Packets

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1998-01-01

    Wave packets produced by localized disturbances play an important role in transition in three-dimensional boundary layers, such as that on a swept wing. Starting with the receptivity process, we show the effects of wave-space energy distribution on the development of packets and other three-dimensional disturbance patterns. Nonlinearity in the receptivity process is specifically addressed, including demonstration of an effect which can enhance receptivity of traveling crossflow disturbances. An efficient spatial numerical simulation method is allowing most of the simulations presented to be carried out on a workstation.

  8. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  9. Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet.

    PubMed

    Wang, Qiong-Hua; Li, Xiao-Fang; Zhou, Lei; Wang, Ai-Hong; Li, Da-Hai

    2011-03-01

    A method is proposed to alleviate the cross talk in multiview autostereoscopic three-dimensional displays based on a lenticular sheet. We analyze the positional relationship between subpixels on the image panel and the lenticular sheet. According to this relationship, optimal synthetic images are synthesized to minimize cross talk by correcting the positions of subpixels on the image panel. Experimental results show that the proposed method significantly reduces the cross talk of view images and improves the quality of stereoscopic images. © 2010 Optical Society of America

  10. Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.

    PubMed

    Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter

    2018-04-09

    Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  12. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomy Concepts: A Qualitative Analysis. Research Report

    ERIC Educational Resources Information Center

    Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas

    2004-01-01

    In this study, we explore an alternate mode for teaching and learning the dynamic, three-dimensional (3D) relationships that are central to understanding astronomical concepts. To this end, we implemented an innovative undergraduate course in which we used inexpensive computer modeling tools. As the second of a two-paper series, this report…

  13. Data System for Structural Geology and Tectonics

    NASA Astrophysics Data System (ADS)

    Newman, Julie; Walker, J. Douglas; Tikoff, Basil; Good, Jessica; Michels, Zachary; Ash, Jason; Andrew, Joseph; Williams, Randolph

    2016-04-01

    We are prototyping a Data System for Structural Geology and Tectonics (SG&T) data that is platform independent (from mobile device to desktop) to enable collection and sharing of data from field to laboratory settings. The goals of this effort, funded by US National Science Foundation, are to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successfully implement the development of a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot is an observation or relationship with an area of significance. A Spot can be a single measurement, an aggregate of individual measurements, or even relationships between numerous other Spots. We address the second problem of software design through the use of a graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow and that serves the needs of the community, we are engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the quality and usability of this data system. These activities have included Town Halls at GSA and AGU, subdiscipline-specific workshops to develop community standards, and pilot projects to test the data system in the field during the study of a variety of geologic structures.

  14. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  15. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JiangTao Cheng; Ping Yu; William Headley

    2001-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.« less

  16. Referential shift in Nicaraguan Sign Language: a transition from lexical to spatial devices

    PubMed Central

    Kocab, Annemarie; Pyers, Jennie; Senghas, Ann

    2015-01-01

    Even the simplest narratives combine multiple strands of information, integrating different characters and their actions by expressing multiple perspectives of events. We examined the emergence of referential shift devices, which indicate changes among these perspectives, in Nicaraguan Sign Language (NSL). Sign languages, like spoken languages, mark referential shift grammatically with a shift in deictic perspective. In addition, sign languages can mark the shift with a point or a movement of the body to a specified spatial location in the three-dimensional space in front of the signer, capitalizing on the spatial affordances of the manual modality. We asked whether the use of space to mark referential shift emerges early in a new sign language by comparing the first two age cohorts of deaf signers of NSL. Eight first-cohort signers and 10 second-cohort signers watched video vignettes and described them in NSL. Narratives were coded for lexical (use of words) and spatial (use of signing space) devices. Although the cohorts did not differ significantly in the number of perspectives represented, second-cohort signers used referential shift devices to explicitly mark a shift in perspective in more of their narratives. Furthermore, while there was no significant difference between cohorts in the use of non-spatial, lexical devices, there was a difference in spatial devices, with second-cohort signers using them in significantly more of their narratives. This suggests that spatial devices have only recently increased as systematic markers of referential shift. Spatial referential shift devices may have emerged more slowly because they depend on the establishment of fundamental spatial conventions in the language. While the modality of sign languages can ultimately engender the syntactic use of three-dimensional space, we propose that a language must first develop systematic spatial distinctions before harnessing space for grammatical functions. PMID:25713541

  17. Referential shift in Nicaraguan Sign Language: a transition from lexical to spatial devices.

    PubMed

    Kocab, Annemarie; Pyers, Jennie; Senghas, Ann

    2014-01-01

    Even the simplest narratives combine multiple strands of information, integrating different characters and their actions by expressing multiple perspectives of events. We examined the emergence of referential shift devices, which indicate changes among these perspectives, in Nicaraguan Sign Language (NSL). Sign languages, like spoken languages, mark referential shift grammatically with a shift in deictic perspective. In addition, sign languages can mark the shift with a point or a movement of the body to a specified spatial location in the three-dimensional space in front of the signer, capitalizing on the spatial affordances of the manual modality. We asked whether the use of space to mark referential shift emerges early in a new sign language by comparing the first two age cohorts of deaf signers of NSL. Eight first-cohort signers and 10 second-cohort signers watched video vignettes and described them in NSL. Narratives were coded for lexical (use of words) and spatial (use of signing space) devices. Although the cohorts did not differ significantly in the number of perspectives represented, second-cohort signers used referential shift devices to explicitly mark a shift in perspective in more of their narratives. Furthermore, while there was no significant difference between cohorts in the use of non-spatial, lexical devices, there was a difference in spatial devices, with second-cohort signers using them in significantly more of their narratives. This suggests that spatial devices have only recently increased as systematic markers of referential shift. Spatial referential shift devices may have emerged more slowly because they depend on the establishment of fundamental spatial conventions in the language. While the modality of sign languages can ultimately engender the syntactic use of three-dimensional space, we propose that a language must first develop systematic spatial distinctions before harnessing space for grammatical functions.

  18. Parasitism alters three power laws of scaling in a metazoan community: Taylor’s law, density-mass allometry, and variance-mass allometry

    PubMed Central

    Lagrue, Clément; Poulin, Robert; Cohen, Joel E.

    2015-01-01

    How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor’s law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution. PMID:25550506

  19. Parasitism alters three power laws of scaling in a metazoan community: Taylor's law, density-mass allometry, and variance-mass allometry.

    PubMed

    Lagrue, Clément; Poulin, Robert; Cohen, Joel E

    2015-02-10

    How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.

  20. EPR oximetry in three spatial dimensions using sparse spin distribution

    NASA Astrophysics Data System (ADS)

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan

    2008-08-01

    A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.

  1. Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining

    PubMed Central

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro

    2017-01-01

    Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607

  2. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  3. Understanding the brain through its spatial structure

    NASA Astrophysics Data System (ADS)

    Morrison, Will Zachary

    The spatial location of cells in neural tissue can be easily extracted from many imaging modalities, but the information contained in spatial relationships between cells is seldom utilized. This is because of a lack of recognition of the importance of spatial relationships to some aspects of brain function, and the reflection in spatial statistics of other types of information. The mathematical tools necessary to describe spatial relationships are also unknown to many neuroscientists, and biologists in general. We analyze two cases, and show that spatial relationships can be used to understand the role of a particular type of cell, the astrocyte, in Alzheimer's disease, and that the geometry of axons in the brain's white matter sheds light on the process of establishing connectivity between areas of the brain. Astrocytes provide nutrients for neuronal metabolism, and regulate the chemical environment of the brain, activities that require manipulation of spatial distributions (of neurotransmitters, for example). We first show, through the use of a correlation function, that inter-astrocyte forces determine the size of independent regulatory domains in the cortex. By examining the spatial distribution of astrocytes in a mouse model of Alzheimer's Disease, we determine that astrocytes are not actively transported to fight the disease, as was previously thought. The paths axons take through the white matter determine which parts of the brain are connected, and how quickly signals are transmitted. The rules that determine these paths (i.e. shortest distance) are currently unknown. By measurement of axon orientation distributions using three-point correlation functions and the statistics of axon turning and branching, we reveal that axons are restricted to growth in three directions, like a taxicab traversing city blocks, albeit in three-dimensions. We show how geometric restrictions at the small scale are related to large-scale trajectories. Finally we discuss the implications of this finding for experimental and theoretical connectomics.

  4. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  5. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.

    PubMed

    Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo

    2014-11-01

    Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  7. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  8. Three-dimensional temperature fields of the North Patagonian Sea recorded by Magellanic penguins as biological sampling platforms

    NASA Astrophysics Data System (ADS)

    Sala, Juan E.; Pisoni, Juan P.; Quintana, Flavio

    2017-04-01

    Temperature is a primary determinant of biogeographic patterns and ecosystem processes. Standard techniques to study the ocean temperature in situ are, however, particularly limited by their time and spatial coverage, problems which might be partially mitigated by using marine top predators as biological platforms for oceanographic sampling. We used small archival tags deployed on 33 Magellanic penguins (Spheniscus magellanicus), and obtained 21,070 geo-localized profiles of water temperature, during late spring of 2008, 2011, 2012 and 2013; in a region of the North Patagonian Sea with limited oceanographic records in situ. We compared our in situ data of sea surface temperature (SST) with those available from satellite remote sensing; to describe the three-dimensional temperature fields around the area of influence of two important tidal frontal systems; and to study the inter-annual variation in the three-dimensional temperature fields. There was a strong positive relationship between satellite- and animal-derived SST data although there was an overestimation by remote-sensing by a maximum difference of +2 °C. Little inter-annual variability in the 3-dimensional temperature fields was found, with the exception of 2012 (and to a lesser extent in 2013) where the SST was significantly higher. In 2013, we found weak stratification in a region which was unexpected. In addition, during the same year, a warm small-scale vortex is indicated by the animal-derived temperature data. This allowed us to describe and better understand the dynamics of the water masses, which, so far, have been mainly studied by remote sensors and numerical models. Our results highlight again the potential of using marine top predators as biological platforms to collect oceanographic data, which will enhance and accelerate studies on the Southwest Atlantic Ocean. In a changing world, threatened by climate change, it is urgent to fill information gaps on the coupled ocean-atmosphere system allowing to link the hydrothermal process to the at-sea distribution of top predators.

  9. Organization of the Macaque Extrastriate Visual Cortex Re-Examined Using the Principle of Spatial Continuity of Function

    PubMed Central

    Aflalo, T. N.

    2011-01-01

    How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269

  10. Stereo chromatic contrast sensitivity model to blue-yellow gratings.

    PubMed

    Yang, Jiachen; Lin, Yancong; Liu, Yun

    2016-03-07

    As a fundamental metric of human visual system (HVS), contrast sensitivity function (CSF) is typically measured by sinusoidal gratings at the detection of thresholds for psychophysically defined cardinal channels: luminance, red-green, and blue-yellow. Chromatic CSF, which is a quick and valid index to measure human visual performance and various retinal diseases in two-dimensional (2D) space, can not be directly applied into the measurement of human stereo visual performance. And no existing perception model considers the influence of chromatic CSF of inclined planes on depth perception in three-dimensional (3D) space. The main aim of this research is to extend traditional chromatic contrast sensitivity characteristics to 3D space and build a model applicable in 3D space, for example, strengthening stereo quality of 3D images. This research also attempts to build a vision model or method to check human visual characteristics of stereo blindness. In this paper, CRT screen was clockwise and anti-clockwise rotated respectively to form the inclined planes. Four inclined planes were selected to investigate human chromatic vision in 3D space and contrast threshold of each inclined plane was measured with 18 observers. Stimuli were isoluminant blue-yellow sinusoidal gratings. Horizontal spatial frequencies ranged from 0.05 to 5 c/d. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. According to the relationship between spatial frequency of inclined plane and horizontal spatial frequency, the chromatic contrast sensitivity characteristics in 3D space have been modeled based on the experimental data. The results show that the proposed model can well predicted human chromatic contrast sensitivity characteristics in 3D space.

  11. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Treesearch

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  12. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  13. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  14. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  15. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography.

    PubMed

    Koddenberg, Tim; Militz, Holger

    2018-05-05

    The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.

  16. Toy-playing behavior, sex-role orientation, spatial ability, and science achievement

    NASA Astrophysics Data System (ADS)

    Tracy, Dyanne M.

    The purpose of this correlational study was to examine the possible relationships among children's extracurricular toy-playing habits, sex-role orientations, spatial abilities, and science achievement. Data were gathered from 282 midwestern, suburban, fifth-grade students. It was found that boys had significantly higher spatial skills than girls. No significant differences in spatial ability were found among students with different sex-role orientations. No significant differences in science achievement were found between girls and boys, or among students with the four different sex-role orientations. Students who had high spatial ability also had significantly higher science achievement scores than students with low spatial ability. Femininely oriented boys who reported low playing in the two-dimensional, gross-body-movement, and proportional-arrangement toy categories scored significantly higher on the test of science achievement than girls with the same sex-role and toy-playing behavior.

  17. Investigating Geosparql Requirements for Participatory Urban Planning

    NASA Astrophysics Data System (ADS)

    Mohammadi, E.; Hunter, A. J. S.

    2015-06-01

    We propose that participatory GIS (PGIS) activities including participatory urban planning can be made more efficient and effective if spatial reasoning rules are integrated with PGIS tools to simplify engagement for public contributors. Spatial reasoning is used to describe relationships between spatial entities. These relationships can be evaluated quantitatively or qualitatively using geometrical algorithms, ontological relations, and topological methods. Semantic web services utilize tools and methods that can facilitate spatial reasoning. GeoSPARQL, introduced by OGC, is a spatial reasoning standard used to make declarations about entities (graphical contributions) that take the form of a subject-predicate-object triple or statement. GeoSPARQL uses three basic methods to infer topological relationships between spatial entities, including: OGC's simple feature topology, RCC8, and the DE-9IM model. While these methods are comprehensive in their ability to define topological relationships between spatial entities, they are often inadequate for defining complex relationships that exist in the spatial realm. Particularly relationships between urban entities, such as those between a bus route, the collection of associated bus stops and their overall surroundings as an urban planning pattern. In this paper we investigate common qualitative spatial reasoning methods as a preliminary step to enhancing the capabilities of GeoSPARQL in an online participatory GIS framework in which reasoning is used to validate plans based on standard patterns that can be found in an efficient/effective urban environment.

  18. The Three-Dimensional Structure of HH 32 from GMOS IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Riera, A.; Raga, A. C.; Aspin, C.

    2004-01-01

    We present new high-resolution spectroscopic observations of the Herbig-Haro object HH 32 from system verification observations made with the GMOS IFU at Gemini North Observatory. The three-dimensional spectral data cover a 8.7"×5.85" spatial field and 4820-7040 Å spectral region centered on the HH 32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Hα line, as well as line ratio velocity channel maps of [O III] λ5007/Hα, [O I] λ6300/Hα, [N II] λ6583/Hα, [S II] λλ(6716+6730)/Hα, and [S II] λ6716/λ6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1" and over velocities of ~50 km s-1. A ``3/2-dimensional'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data, and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superposed bow shocks with separations of ~3", which we interpret as evidence of a line-of-sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the NSF, the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  19. A virtual reality atlas of craniofacial anatomy.

    PubMed

    Smith, Darren M; Oliker, Aaron; Carter, Christina R; Kirov, Miro; McCarthy, Joseph G; Cutting, Court B

    2007-11-01

    Head and neck anatomy is complex and represents an educational challenge to the student. Conventional two-dimensional illustrations inherently fall short in conveying intricate anatomical relationships that exist in three dimensions. A gratis three-dimensional virtual reality atlas of craniofacial anatomy is presented in an effort to address the paucity of readily accessible and customizable three-dimensional educational material available to the student of head and neck anatomy. Three-dimensional model construction was performed in Alias Maya 4.5 and 6.0. A basic three-dimensional skull model was altered to include surgical landmarks and proportions. Some of the soft tissues were adapted from previous work, whereas others were constructed de novo. Texturing was completed with Adobe Photoshop 7.0 and Maya. The Internet application was designed in Viewpoint Enliven 1.0. A three-dimensional computer model of craniofacial anatomy (bone and soft tissue) was completed. The model is compatible with many software packages and can be accessed by means of the Internet or downloaded to a personal computer. As the three-dimensional meshes are publicly available, they can be extensively manipulated by the user, even at the polygonal level. Three-dimensional computer graphics has yet to be fully exploited for head and neck anatomy education. In this context, the authors present a publicly available computer model of craniofacial anatomy. This model may also find applications beyond clinical medicine. The model can be accessed gratis at the Plastic and Reconstructive Surgery Web site or obtained as a three-dimensional mesh, also gratis, by contacting the authors.

  20. Dimensional metrology of micro structure based on modulation depth in scanning broadband light interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.

  1. Three-dimensional Bayesian geostatistical aquifer characterization at the Hanford 300 Area using tracer test data

    NASA Astrophysics Data System (ADS)

    Chen, Xingyuan; Murakami, Haruko; Hahn, Melanie S.; Hammond, Glenn E.; Rockhold, Mark L.; Zachara, John M.; Rubin, Yoram

    2012-06-01

    Tracer tests performed under natural or forced gradient flow conditions can provide useful information for characterizing subsurface properties, through monitoring, modeling, and interpretation of the tracer plume migration in an aquifer. Nonreactive tracer experiments were conducted at the Hanford 300 Area, along with constant-rate injection tests and electromagnetic borehole flowmeter tests. A Bayesian data assimilation technique, the method of anchored distributions (MAD) (Rubin et al., 2010), was applied to assimilate the experimental tracer test data with the other types of data and to infer the three-dimensional heterogeneous structure of the hydraulic conductivity in the saturated zone of the Hanford formation.In this study, the Bayesian prior information on the underlying random hydraulic conductivity field was obtained from previous field characterization efforts using constant-rate injection and borehole flowmeter test data. The posterior distribution of the conductivity field was obtained by further conditioning the field on the temporal moments of tracer breakthrough curves at various observation wells. MAD was implemented with the massively parallel three-dimensional flow and transport code PFLOTRAN to cope with the highly transient flow boundary conditions at the site and to meet the computational demands of MAD. A synthetic study proved that the proposed method could effectively invert tracer test data to capture the essential spatial heterogeneity of the three-dimensional hydraulic conductivity field. Application of MAD to actual field tracer data at the Hanford 300 Area demonstrates that inverting for spatial heterogeneity of hydraulic conductivity under transient flow conditions is challenging and more work is needed.

  2. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction.

    PubMed

    Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin

    2010-08-01

    The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  4. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  5. Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory

    NASA Astrophysics Data System (ADS)

    Lappi, T.; Peuron, J.

    2018-02-01

    We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.

  6. High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hikage, Haruki; Nosaka, Nami; Matsuo, Shigeki

    2017-11-01

    By irradiation with 0.5 ns laser pulses at a wavelength λ = 1.064 µm, laser-induced periodic surface structures (LIPSS) were fabricated on a steel substrate. In addition to low-spatial-frequency LIPSS (LSFL), a high-spatial-frequency LIPSS (HSFL) of period Λ ∼ 0.4λ with two-dimensional expansion was formed, although it is generally recognized that HSFL are formed only by ultrafast laser pulses. The wavevector of the observed HSFL was perpendicular to the electric field of the irradiated laser pulse (each ridge/groove of the HSFL was parallel to the electric field). We discuss the relationship between the formation of HSFL and the pulse duration.

  7. Classification of topological insulators and superconductors in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W.

    2008-11-01

    We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral (px±ipy) -wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to “weak pairing”) and topologically trivial (analogous to “strong pairing”) 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.

  8. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.

  9. The effects of mental representation on performance in a navigation task

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Healy, Alice F.

    2002-01-01

    In three experiments, we investigated the mental representations employed when instructions were followed that involved navigation in a space displayed as a grid on a computer screen. Performance was affected much more by the number of instructional units than by the number of words per unit. Performance in a three-dimensional space was independent of the number of dimensions along which participants navigated. However, memory for and accuracy in following the instructions were reduced when the task required mentally representing a three-dimensional space, as compared with representing a two-dimensional space, although the words used in the instructions were identical in the two cases. These results demonstrate the interdependence of verbal and spatial memory representations, because individuals' immediate memory for verbal navigation instructions is affected by their mental representation of the space referred to by the instructions.

  10. Three-dimensional bio-printing.

    PubMed

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  11. Visualization of traumatic tricuspid insufficiency by three-dimensional echocardiography.

    PubMed

    Nishimura, Kazuhisa; Okayama, Hideki; Inoue, Katsuji; Saito, Makoto; Nagai, Takayuki; Suzuki, Jun; Ogimoto, Akiyoshi; Ohtsuka, Tomoaki; Higaki, Jitsuo

    2010-01-01

    A 19-year-old male was admitted to the emergency room of our hospital after a motor vehicle accident. During his first physical examination, a holosystolic murmur was heard at the fourth left parasternal border. Transthoracic echocardiography showed severe tricuspid insufficiency, but the cause of tricuspid insufficiency was unclear. Therefore, three-dimensional echocardiography was performed and demonstrated flail anterior, posterior and septal leaflets of the tricuspid valve. The diagnosis was tricuspid insufficiency due to papillary muscle rupture secondary to chest blunt trauma. Surgical repair of the tricuspid valve was performed in this patient. After surgery, the signs and symptoms of right ventricular heart failure were relieved. In this case, three-dimensional echocardiography was very useful for the evaluation of spatial destruction of the tricuspid valve and papillary muscle. 2009 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Microfabrication technology by femtosecond laser direct scanning using two-photon photo-polymerization

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng

    2005-01-01

    Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.

  13. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    USGS Publications Warehouse

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  14. Inflation from extra dimensions

    NASA Astrophysics Data System (ADS)

    Levin, Janna J.

    1995-02-01

    A gravity-driven inflation is shown to arise from a simple higher-dimensional universe. In vacuum, the shear of n > 1 contracting dimensions is able to inflate the remaining three spatial dimensions. Said another way, the expansion of the 3-volume is accelerated by the contraction of the n-volume. Upon dimensional reduction, the theory is equivalent to a four-dimensional cosmology with a dynamical Planck mass. A connection can therefore be made to recent examples of inflation powered by a dilaton kinetic energy. Unfortunately, the graceful exit problem encountered in dilaton cosmologies will haunt this cosmology as well.

  15. Spectral Dimensionality and Scale of Urban Radiance

    NASA Technical Reports Server (NTRS)

    Small, Christopher

    2001-01-01

    Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.

  16. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  17. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  18. Three-dimensional hydrogeological modelling application to the Alverà mudslide (Cortina d'Ampezzo, Italy)

    NASA Astrophysics Data System (ADS)

    Bonomi, Tullia; Cavallin, Angelo

    1999-10-01

    Within the framework of Geographic Information System (GIS), the distributed three-dimensional groundwater model MODFLOW has been applied to evaluate the groundwater processes of the hydrogeological system in the Alverà mudslide (Cortina d'Ampezzo, Italy; test site in the TESLEC Project of the European Union). The application of this model has permitted an analysis of the spatial distribution of the structure (DTM and landslide bottom) and the mass transfer elements of the hydrogeological system. The field survey suggested zoning the area on the basis of the recharge, groundwater fluctuation and drainage system. For each zone, a hydraulic conductivity value to simulate the different recharge and the drainage responses has been assigned. The effect of rainfall infiltration into the ground and its effect on the groundwater table, with different intensity related to different time periods, have been simulated to reproduce the real condition of the area. The applied model can simulate the positive fluctuations of the water table on the whole landslide, with a different response of the hydrogeological system in each zone. The spatial simulated water level distribution is in accordance with the real one, with very small difference between them. The application of distributed three-dimensional models, within the framework of GIS, is an approach which permits data to be continually updated, standardised and integrated.

  19. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  20. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction.

    PubMed

    Zhang, Li; Athavale, Prashant; Pop, Mihaela; Wright, Graham A

    2017-08-01

    To enable robust reconstruction for highly accelerated three-dimensional multicontrast late enhancement imaging to provide improved MR characterization of myocardial infarction with isotropic high spatial resolution. A new method using compressed sensing with low rank and spatially varying edge-preserving constraints (CS-LASER) is proposed to improve the reconstruction of fine image details from highly undersampled data. CS-LASER leverages the low rank feature of the multicontrast volume series in MR relaxation and integrates spatially varying edge preservation into the explicit low rank constrained compressed sensing framework using weighted total variation. With an orthogonal temporal basis pre-estimated, a multiscale iterative reconstruction framework is proposed to enable the practice of CS-LASER with spatially varying weights of appropriate accuracy. In in vivo pig studies with both retrospective and prospective undersamplings, CS-LASER preserved fine image details better and presented tissue characteristics with a higher degree of consistency with histopathology, particularly in the peri-infarct region, than an alternative technique for different acceleration rates. An isotropic resolution of 1.5 mm was achieved in vivo within a single breath-hold using the proposed techniques. Accelerated three-dimensional multicontrast late enhancement with CS-LASER can achieve improved MR characterization of myocardial infarction with high spatial resolution. Magn Reson Med 78:598-610, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…

  2. Three-dimensional reconstruction of tetraploid↔diploid chimaeric mouse blastocysts

    PubMed Central

    EVERETT, CLARE A.; STARK, MARGARET H.; WEST, JOHN D.; DAVIDSON, DUNCAN; BALDOCK, RICHARD A.

    2000-01-01

    Studies of tetraploid↔diploid (4n↔2n) mouse chimaeras have demonstrated unequal contributions of 4n cells to different tissues of the midgestation conceptus. Such a pattern has also been reported in chimaeras as early as E3.5d, which show an enhanced contribution of 4n cells to the mural trophectoderm (Everett & West, 1996). In this study, sectioned 4n↔2n and 2n↔2n control chimaeric blastocysts were digitised and reconstructed in 3 dimensions (3-D). The 3-D images revealed only limited mixing of cells from the 2 contributing embryos of individual blastocysts in both chimaera groups. Consequently, the distribution pattern of the 2 cell types was dependent on the spatial relationship between the orientation of the blastocyst and the boundary between the 2 clusters of cells. The distribution patterns observed were not strikingly different for 4n↔2n and 2n↔2n chimaeras, each showing some transgenic positive cell contribution in all 3 identifiable developmental lineages. It was notable, however, that in all 4n↔2n blastocysts at least some 4n cells were located adjacent to the blastocyst cavity. Such a consistent pattern was not evident in 2n↔2n chimaeras. This study has demonstrated the value of 3-D reconstructions for the analysis of spatial relationships of 2 cell populations in chimaeric mouse blastocysts. PMID:10853956

  3. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  4. Amplitude interpretation and visualization of three-dimensional reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enachescu, M.E.

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less

  5. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    NASA Technical Reports Server (NTRS)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  6. Development of Structural Geology and Tectonics Data System with Field and Lab Interface

    NASA Astrophysics Data System (ADS)

    Newman, J.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.; Andrew, J.; Williams, R. T.; Richard, S. M.

    2015-12-01

    We have developed a prototype Data System for Structural Geology and Tectonics (SG&T). The goal of this effort is to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successful implement the step of developing a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot, in this sense, is analogous to the beam size of analytical equipment used for in situ analysis of rocks; it is the size over which a measurement or quantity is applicable. A Spot can be a single measurement, an aggregation of individual measurements, or even establish relationships between numerous other Spots. We address the second problem through the use of a Graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow, and that serves the needs of the community, we have begun the process of engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the quality and usability of this data system. These activities have included Town Halls, subdiscipline-specific workshops to develop community standards, and pilot projects to test the data system in the field during the study of a variety of geologic structures.

  7. Response of a shell structure subject to distributed harmonic excitation

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Bolton, J. Stuart

    2016-09-01

    Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires.

  8. Fundamental differences between glassy dynamics in two and three dimensions.

    PubMed

    Flenner, Elijah; Szamel, Grzegorz

    2015-06-12

    The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions.

  9. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    PubMed

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  10. [Prenatal diagnosis of isolated otocefalia. Usefulness of three-dimensional ultrasound].

    PubMed

    Escribano Abad, David; Arbués Gabarre, Juan; Gómez Montes, Enery; Puente Agueda, José Manuel; Herraiz García, Ignacio; Galindo Izquierdo, Alberto

    2011-08-01

    Otocephaly is a rare and lethal congenital malformation characterized by the presence of agnathia, microstomia, aglossia and synotia. Despite its frequent association with severe malformations, diagnosis in the few published cases is usually made at III trimester. In this case, three-dimensional ultrasound scan was performed in a Chinese primigravida with no remarkable personal nor familiar history since mandible was difficulty visualized with two-dimensional sonography at 21 weeks of gestation. Multiplanar and rendering mode showed the typical cervicofacial features of otocephaly without associated malformations. After parental counselling, they opted for termination of pregnancy and necropsy confirmed our prenatal findings. Our case shows the usefulness of three-dimensional ultrasound in assessing fetal cervicofacial pathology. Volumetric capture allows a delayed study of fetal anatomy and multiplanar mode offers the reconstruction of views whose achivement is difficult with conventional 2D ultrasound. Surface rendering provides excellent spatial vision and enables parents to understand the severity of the malformation thus helping with their decisions.

  11. An implicit higher-order spatially accurate scheme for solving time dependent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tomaro, Robert F.

    1998-07-01

    The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.

  12. Spatial geometry of the human pelvis.

    DOT National Transportation Integrated Search

    1982-03-01

    This report presents a three-dimensional description of adult female and male pelvis from the Hamann-Todd skeletal collection, Cleveland Museum of Natural History. Based on a linear height/weight matching strategy and the 1961- 1964 U.S. Health and E...

  13. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  14. The Various Applications of 3D Printing in Cardiovascular Diseases.

    PubMed

    El Sabbagh, Abdallah; Eleid, Mackram F; Al-Hijji, Mohammed; Anavekar, Nandan S; Holmes, David R; Nkomo, Vuyisile T; Oderich, Gustavo S; Cassivi, Stephen D; Said, Sameh M; Rihal, Charanjit S; Matsumoto, Jane M; Foley, Thomas A

    2018-05-10

    To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.

  15. Trace gas emissions to the atmosphere by biomass burning in the west African savannas. Final report, 1 October 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frouin, R.J.; Iacobellis, S.F.; Razafimpanilo, H.

    1994-08-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer (AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of North African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linearmore » method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.« less

  16. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  17. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  18. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  19. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  20. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Hosny, Neveen A.; Lee, David A.; Knight, Martin M.

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  1. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    PubMed

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  2. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  3. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  4. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film.

    PubMed

    Zhang, Wenchao; Yin, Baoqing; Shen, Ruiqi; Ye, Jiahai; Thomas, Jason A; Chao, Yimin

    2013-01-23

    A three-dimensionally ordered macroporous Fe(2)O(3)/Al nanothermite membrane has been prepared with a polystyrene spheres template. The nanothermite, with an enhanced interfacial contact between fuel and oxidizer, outputs 2.83 kJ g(-1) of energy. This is significantly more than has been reported before. This approach, fully compatible with MEMS technology, provides an efficient way to produce micrometer thick three-dimensionally ordered nanostructured thermite films with overall spatial uniformity. These exciting achievements will greatly facilitate potential for the future development of applications of nanothermites.

  5. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  6. Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography

    PubMed Central

    Rosen, Joseph; Kelner, Roy

    2016-01-01

    Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators. PMID:28757811

  7. Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification.

    PubMed

    Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R

    2013-05-31

    We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.

  8. Formation of three-dimensional fetal myocardial tissue cultures from rat for long-term cultivation.

    PubMed

    Just, Lothar; Kürsten, Anne; Borth-Bruhns, Thomas; Lindenmaier, Werner; Rohde, Manfred; Dittmar, Kurt; Bader, Augustinus

    2006-08-01

    Three-dimensional cardiomyocyte cultures offer new possibilities for the analysis of cardiac cell differentiation, spatial cellular arrangement, and time-specific gene expression in a tissue-like environment. We present a new method for generating homogenous and robust cardiomyocyte tissue cultures with good long-term viability. Ventricular heart cells prepared from fetal rats at embryonic day 13 were cultured in a scaffold-free two-step process. To optimize the cell culture model, several digestion protocols and culture conditions were tested. After digestion of fetal cardiac ventricles, the resultant cell suspension of isolated cardiocytes was shaken to initialize cell aggregate formation. In the second step, these three-dimensional cell aggregates were transferred onto a microporous membrane to allow further microstructure formation. Autonomously beating cultures possessed more than 25 cell layers and a homogenous distribution of cardiomyocytes without central necrosis after 8 weeks in vitro. The cardiomyocytes showed contractile elements, desmosomes, and gap junctions analyzed by immunohistochemistry and electron microscopy. The beat frequency could be modulated by adrenergic agonist and antagonist. Adenoviral green fluorescent protein transfer into cardiomyocytes was possible and highly effective. This three-dimensional tissue model proved to be useful for studying cell-cell interactions and cell differentiation processes in a three-dimensional cell arrangement.

  9. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    PubMed

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  10. Different Mental Rotation Performance in Students of Music, Sport and Education

    ERIC Educational Resources Information Center

    Pietsch, Stefanie; Jansen, Petra

    2012-01-01

    In this study the effect of long-term physical and musical activity on spatial cognitive performance, measured by mental rotation performance, is investigated in detail. Mental rotation performance is the ability to rotate a three-dimensional object using the imagination. Three groups, each consisting of 40 students, and divided by the subjects,…

  11. Spatial Ability, Gender, and the Ability To Visualize Anatomy in Three Dimensions.

    ERIC Educational Resources Information Center

    Provo, Judy A.; Lamar, Carlton H.; Newby, Timothy J.

    This research aims to devise an intervention that can enhance three-dimensional anatomical understanding and develop testing instruments that can be used to measure this understanding. First year veterinary medicine students (N=62) participated in a study that explored: (1) whether participants who use a cross section for learning the anatomy of…

  12. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  13. A Method of Three-Dimensional Recording of Mandibular Movement Based on Two-Dimensional Image Feature Extraction

    PubMed Central

    Li, Zhongke; Yang, Huifang; Lü, Peijun; Wang, Yong; Sun, Yuchun

    2015-01-01

    Background and Objective To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions. Methods A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject’s upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests. Results The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05) Conclusions Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording accuracy of approximately ± 0.1 mm, and is therefore suitable for clinical application. Certainly, further research is necessary to confirm the clinical applications of the method. PMID:26375800

  14. Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.

    PubMed

    Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George

    2010-09-01

    Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.

  15. Spatial Reasoning Influences Students' Performance on Mathematics Tasks

    ERIC Educational Resources Information Center

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2016-01-01

    Although the psychological literature has demonstrated that spatial reasoning and mathematics performance are correlated, there is scant research on these relationships in the middle years. The current study examined the commonalities and differences in students' performance on instruments that measured three spatial reasoning constructs and two…

  16. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey

    2014-01-01

    The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.

  17. On the three dimensional structure of stratospheric material transport associated with various types of waves

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Sato, K.

    2016-12-01

    The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.

  18. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  19. Comparison of roadway roughness derived from LIDAR and SFM 3D point clouds.

    DOT National Transportation Integrated Search

    2015-10-01

    This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point : clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially : cont...

  20. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

Top