Sample records for three-dimensional structure factor

  1. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study

    PubMed Central

    Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M.

    2017-01-01

    Objectives (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Design Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. Participants 747 students (51.3% girls) from Cordoba, Spain, aged 12–17 years (M=13.8; SD=1.21). Results The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach’s alpha and McDonald’s omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. Conclusions This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. PMID:28951400

  2. Suitability of a three-dimensional model to measure empathy and its relationship with social and normative adjustment in Spanish adolescents: a cross-sectional study.

    PubMed

    Herrera-López, Mauricio; Gómez-Ortiz, Olga; Ortega-Ruiz, Rosario; Jolliffe, Darrick; Romera, Eva M

    2017-09-25

    (1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school. Transversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used. 747 students (51.3% girls) from Cordoba, Spain, aged 12-17 years (M=13.8; SD=1.21). The original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach's alpha and McDonald's omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy. This research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Three-dimensional periodic dielectric structures having photonic Dirac points

    DOEpatents

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  4. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  5. The factorial validity of the Maslach Burnout Inventory-Student Survey in China.

    PubMed

    Hu, Qiao; Schaufeli, Wilmar B

    2009-10-01

    The dimensional structure of the Maslach Burnout Inventory-Student Survey (MBI-SS) was investigated using data collected from three samples of Chinese students in two high schools, a university, and a nursing school, respectively (total N = 1,499; 36% males, 64% females; M age 19.0 yr., SD = 1.3). Single group Confirmatory Factor Analyses corroborated the hypothesized three-factor model for the composite sample as well as for the three independent samples. Subsequent multigroup analyses revealed that the three-dimensional structure of the MBI-SS is partially invariant across three samples. It is concluded that the MBI-SS can be used to assess burnout in Chinese students.

  6. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  7. Three-dimensional electron diffraction of plant light-harvesting complex

    PubMed Central

    Wang, Da Neng; Kühlbrandt, Werner

    1992-01-01

    Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817

  8. Dimensionality of organizational justice in a call center context.

    PubMed

    Flint, Douglas; Haley, Lynn M; McNally, Jeffrey J

    2012-04-01

    Summary.-Employees in three call centers were surveyed about their perceptions of organizational justice. Four factors were measured: distributive justice, procedural justice, interpersonal justice, and informational justice. Structural equation modeling was employed to test whether a two-, three-, or four-factor model best fit the call center data. A three-factor model of distributive, procedural, and informational justice provided the best fit to these data. The three-factor model that showed the best fit does not conform to any of the more traditional models identified in the organizational justice literature. This implies that the context in which organizational justice is measured may play a role in identifying which justice factors are relevant to employees. Findings add to the empirical evidence on the dimensionality of organizational justice and imply that dimensionality of organizational justice is more context-dependent than previously thought.

  9. Studies of the structure-activity relationships of peptides and proteins involved in growth and development based on their three-dimensional structures.

    PubMed

    Nagata, Koji

    2010-01-01

    Peptides and proteins with similar amino acid sequences can have different biological functions. Knowledge of their three-dimensional molecular structures is critically important in identifying their functional determinants. In this review, I describe the results of our and other groups' structure-based functional characterization of insect insulin-like peptides, a crustacean hyperglycemic hormone-family peptide, a mammalian epidermal growth factor-family protein, and an intracellular signaling domain that recognizes proline-rich sequence.

  10. [Advances in the research of application of hydrogels in three-dimensional bioprinting].

    PubMed

    Yang, J; Zhao, Y; Li, H H; Zhu, S H

    2016-08-20

    Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.

  11. A Taxometric Study of the Latent Structure of Disgust Sensitivity: Converging Evidence for Dimensionality

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Broman-Fulks, Joshua J.

    2007-01-01

    Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…

  12. Cross-National Invariance of Attention-Deficit/Hyperactivity Disorder Factors in Japanese and U.S. University Students

    ERIC Educational Resources Information Center

    Davis, J. Mark; Cheung, Shu Fai; Takahashi, Tomone; Shinoda, Haruo; Lindstrom, William A.

    2011-01-01

    Prior research with children generally supports the two-dimensional structure of Attention-Deficit/Hyperactivity Disorder (ADHD; inattentive and hyperactive/impulsive factors) of the DSM-IV-TR as well as invariance of the two-factor structure across nations and cultures. Research with adults supports either a two-factor or three-factor structure…

  13. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.

  14. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  15. Method of fabricating free-form, high-aspect ratio components for high-current, high-speed microelectrics

    DOEpatents

    Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W

    2014-03-11

    Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.

  16. Dimensional structure of bodily panic attack symptoms and their specific connections to panic cognitions, anxiety sensitivity and claustrophobic fears.

    PubMed

    Drenckhan, I; Glöckner-Rist, A; Rist, F; Richter, J; Gloster, A T; Fehm, L; Lang, T; Alpers, G W; Hamm, A O; Fydrich, T; Kircher, T; Arolt, V; Deckert, J; Ströhle, A; Wittchen, H-U; Gerlach, A L

    2015-06-01

    Previous studies of the dimensional structure of panic attack symptoms have mostly identified a respiratory and a vestibular/mixed somatic dimension. Evidence for additional dimensions such as a cardiac dimension and the allocation of several of the panic attack symptom criteria is less consistent. Clarifying the dimensional structure of the panic attack symptoms should help to specify the relationship of potential risk factors like anxiety sensitivity and fear of suffocation to the experience of panic attacks and the development of panic disorder. In an outpatient multicentre study 350 panic patients with agoraphobia rated the intensity of each of the ten DSM-IV bodily symptoms during a typical panic attack. The factor structure of these data was investigated with nonlinear confirmatory factor analysis (CFA). The identified bodily symptom dimensions were related to panic cognitions, anxiety sensitivity and fear of suffocation by means of nonlinear structural equation modelling (SEM). CFA indicated a respiratory, a vestibular/mixed somatic and a cardiac dimension of the bodily symptom criteria. These three factors were differentially associated with specific panic cognitions, different anxiety sensitivity facets and suffocation fear. Taking into account the dimensional structure of panic attack symptoms may help to increase the specificity of the associations between the experience of panic attack symptoms and various panic related constructs.

  17. Relations between structural and dynamic thermal characteristics of building walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossecka, E.; Kosny, J.

    1996-10-01

    The effect of internal thermal structure on dynamic characteristics of walls is analyzed. The concept of structure factors is introduced and the conditions they impose on response factors are given. Simple examples of multilayer walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between structure factors and response factors. The idea of the ``thermally equivalent wall``, a plane multilayer structure, with dynamic characteristics similar to those of a complex structure, in which three-dimensional heat flow occurs, is presented.

  18. Three Dimensional Modeling of the Attenuation Structure in the Part of the Kumaon Himalaya, India Using Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Joshi, A.; LAL, S.

    2017-12-01

    Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.

  19. Structural Biology of Tumor Necrosis Factor Demonstrated for Undergraduates Instruction by Computer Simulation

    ERIC Educational Resources Information Center

    Roy, Urmi

    2016-01-01

    This work presents a three-dimensional (3D) modeling exercise for undergraduate students in chemistry and health sciences disciplines, focusing on a protein-group linked to immune system regulation. Specifically, the exercise involves molecular modeling and structural analysis of tumor necrosis factor (TNF) proteins, both wild type and mutant. The…

  20. Factor Structure of a Multidimensional Gender Identity Scale in a Sample of Chinese Elementary School Children

    PubMed Central

    Yu, Lu; Xie, Dong; Shek, Daniel T. L.

    2012-01-01

    This study examined the factor structure of a scale based on the four-dimensional gender identity model (Egan and Perry, 2001) in 726 Chinese elementary school students. Exploratory factor analyses suggested a three-factor model, two of which corresponded to “Felt Pressure” and “Intergroup Bias” in the original model. The third factor “Gender Compatibility” appeared to be a combination of “Gender Typicality” and “Gender Contentment” in the original model. Follow-up confirmatory factor analysis (CFA) indicated that, relative to the initial four-factor structure, the three-factor model fits the current Chinese sample better. These results are discussed in light of cross-cultural similarities and differences in development of gender identity. PMID:22701363

  1. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  2. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  3. The underlying structure of diagnostic systems of schizophrenia: a comprehensive polydiagnostic approach.

    PubMed

    Peralta, Victor; Cuesta, Manuel J

    2005-11-15

    The objective was to ascertain the underlying factor structure of alternative definitions of schizophrenia, and to examine the distribution of schizophrenia-related variables against the resulting factor solution. Twenty-three diagnostic schemes of schizophrenia were applied to 660 patients presenting with psychotic symptoms regardless of the specific diagnosis of psychotic disorder. Factor analysis of the 23 diagnostic schemes yielded three interpretable factors explaining 58% of the variance, the first factor (general schizophrenia factor) accounting for most of the variance (36%). On the basis of the general schizophrenia factor score, the sample was divided in quintile groups representing 5 levels of schizophrenia definition (absent, doubtful, very broad, broad and narrow) and the distribution of a number of schizophrenia-related variables was examined across the groups. This grouping procedure was used for examining the comparative validity of alternative levels of categorically defined schizophrenia and an ordinal (i.e. dimensional) definition. Overall, schizophrenia-related variables displayed a dose-response relationship with level of schizophrenia definition. Logistic regression analyses revealed that the dimensional definition explained more variance in the schizophrenia-related variables than the alternative levels for defining schizophrenia categorically. These results are consistent with a unitary and dimensional construct of schizophrenia with no clear "points of rarity" at its boundaries, thus supporting the continuum hypothesis of the psychotic illness.

  4. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  5. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  6. Dimensionality of the 9-item Utrecht Work Engagement Scale revisited: A Bayesian structural equation modeling approach.

    PubMed

    Fong, Ted C T; Ho, Rainbow T H

    2015-01-01

    The aim of this study was to reexamine the dimensionality of the widely used 9-item Utrecht Work Engagement Scale using the maximum likelihood (ML) approach and Bayesian structural equation modeling (BSEM) approach. Three measurement models (1-factor, 3-factor, and bi-factor models) were evaluated in two split samples of 1,112 health-care workers using confirmatory factor analysis and BSEM, which specified small-variance informative priors for cross-loadings and residual covariances. Model fit and comparisons were evaluated by posterior predictive p-value (PPP), deviance information criterion, and Bayesian information criterion (BIC). None of the three ML-based models showed an adequate fit to the data. The use of informative priors for cross-loadings did not improve the PPP for the models. The 1-factor BSEM model with approximately zero residual covariances displayed a good fit (PPP>0.10) to both samples and a substantially lower BIC than its 3-factor and bi-factor counterparts. The BSEM results demonstrate empirical support for the 1-factor model as a parsimonious and reasonable representation of work engagement.

  7. Three-dimensional simulations of cumulus congestus clouds on GATE day 261

    NASA Technical Reports Server (NTRS)

    Simpson, J.; Van Helvoirt, G.; Mccumber, M.

    1982-01-01

    Schlesinger's (1978) three-dimensional cumulus model is applied to showering congestus clouds on day 261 of GATE. Model results are compared with each other and with observations to analyze the effects of varying shear and altered sounding. Relationships between shear, mesovortices and dynamic entrainment are examined, as well as the model clouds' impact on the environment as a function of shear. The simulations appear to resemble reality in many important aspects. Altostratus layers observed on day 261 are found to be a by-product of convection in three-dimensional shear. Rapid erosion of cloud base to 3.6 km is related to the ambient thermal structure, with wind shear and initial perturbation playing a secondary role. Some of the apparent conflict regarding lateral versus cloud-top entrainment is clarified, as well as some factors governing convective downdraft structure and intensity.

  8. Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.

    PubMed

    Kim, Hwi; Hahn, Joonku; Lee, Byoungho

    2009-04-13

    Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.

  9. Research on the development of space target detecting system and three-dimensional reconstruction technology

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  10. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells.

    PubMed

    Geng, Yijie; Feng, Bradley

    2016-07-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  11. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  12. The Teacher Efficacy for Inclusive Practices (TEIP) Scale: Dimensionality and Factor Structure

    ERIC Educational Resources Information Center

    Park, Mi-Hwa; Dimitrov, Dimiter M.; Das, Ajay; Gichuru, Margaret

    2016-01-01

    The "Teacher Efficacy for Inclusive Practices" (TEIP) scale is designed to measure teacher-self efficacy to teach in inclusive classrooms. The original study identified three scale factors: "efficacy in using inclusive instruction" ("EII"), "efficacy in collaboration" ("EC"), and "efficacy in…

  13. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  14. Adaptation of the three-dimensional wisdom scale (3D-WS) for the Korean cultural context.

    PubMed

    Kim, Seungyoun; Knight, Bob G

    2014-10-23

    ABSTRACT Background: Previous research on wisdom has suggested that wisdom is comprised of cognitive, reflective, and affective components and has developed and validated wisdom measures based on samples from Western countries. To apply the measurement to Eastern cultures, the present study revised an existing wisdom scale, the three-dimensional wisdom scale (3D-WS, Ardelt, 2003) for the Korean cultural context. Methods: Participants included 189 Korean heritage adults (age range 19-96) living in Los Angeles. We added a culturally specific factor of wisdom to the 3D-WS: Modesty and Unobtrusiveness (Yang, 2001), which captures an Eastern aspect of wisdom. The structure and psychometrics of the scale were tested. By latent cluster analysis, we determined acculturation subgroups and examined group differences in the means of factors in the revised wisdom scale (3D-WS-K). Results: Three factors, Cognitive Flexibility, Viewpoint Relativism, and Empathic Modesty were found using confirmatory factor analysis. Respondents with high biculturalism were higher on Viewpoint Relativism and lower on Empathic Modesty. Conclusion: This study discovered that a revised wisdom scale had a distinct factor structure and item content in a Korean heritage sample. We also found acculturation influences on the meaning of wisdom.

  15. Alignment hierarchies: engineering architecture from the nanometre to the micrometre scale.

    PubMed

    Kureshi, Alvena; Cheema, Umber; Alekseeva, Tijna; Cambrey, Alison; Brown, Robert

    2010-12-06

    Natural tissues are built of metabolites, soluble proteins and solid extracellular matrix components (largely fibrils) together with cells. These are configured in highly organized hierarchies of structure across length scales from nanometre to millimetre, with alignments that are dominated by anisotropies in their fibrillar matrix. If we are to successfully engineer tissues, these hierarchies need to be mimicked with an understanding of the interaction between them. In particular, the movement of different elements of the tissue (e.g. molecules, cells and bulk fluids) is controlled by matrix structures at distinct scales. We present three novel systems to introduce alignment of collagen fibrils, cells and growth factor gradients within a three-dimensional collagen scaffold using fluid flow, embossing and layering of construct. Importantly, these can be seen as different parts of the same hierarchy of three-dimensional structure, as they are all formed into dense collagen gels. Fluid flow aligns collagen fibrils at the nanoscale, embossed topographical features provide alignment cues at the microscale and introducing layered configuration to three-dimensional collagen scaffolds provides microscale- and mesoscale-aligned pathways for protein factor delivery as well as barriers to confine protein diffusion to specific spatial directions. These seemingly separate methods can be employed to increase complexity of simple extracellular matrix scaffolds, providing insight into new approaches to directly fabricate complex physical and chemical cues at different hierarchical scales, similar to those in natural tissues.

  16. The Mental Representation of Social Connections: Generalizability Extended to Beijing Adults

    PubMed Central

    Hawkley, Louise C.; Gu, Yuanyuan; Luo, Yue-Jia; Cacioppo, John T.

    2012-01-01

    Social connections are essential for the survival of a social species like humans. People differ in the degree to which they are sensitive to perceived deficits in their social connections, but evidence suggests that they nevertheless construe the nature of their social connections similarly. This construal can be thought of as a mental representation of a multi-faceted social experience. A three-dimensional mental representation has been identified with the UCLA Loneliness Scale and consists of Intimate, Relational, and Collective Connectedness reflecting beliefs about one's individual, dyadic, and collective (group) social value, respectively. Moreover, this mental representation has been replicated with other scales and validated across age, gender, and racial/ethnic lines in U.S. samples. The purpose of this study is to evaluate the extent to which this three-dimensional representation applies to people whose social lives are experienced in a collectivistic rather than individualistic culture. To that end, we used confirmatory factor analyses to assess the fit of the three-dimensional mental structure to data collected from Chinese people living in China. Two hundred sixty-seven young adults (16–25 yrs) and 250 older adults (50–65 yrs) in Beijing completed the revised UCLA Loneliness Scale and demographic and social activity questionnaires. Results revealed adequate fit of the structure to data from young and older Chinese adults. Moreover, the structure exhibited equivalent fit in young and older Chinese adults despite changes in the Chinese culture that exposed these two generations to different cultural experiences. Social activity variables that discriminated among the three dimensions in the Chinese samples corresponded well with variables that discriminated among the three dimensions in the U.S.-based samples, indicating cultural commonalities in the factors predicting dimensions of people's representations of their social connections. Equivalence of the three-dimensional structure is relevant for an understanding of cultural differences in the sources of loneliness and social connectedness. PMID:23028486

  17. The mental representation of social connections: generalizability extended to Beijing adults.

    PubMed

    Hawkley, Louise C; Gu, Yuanyuan; Luo, Yue-Jia; Cacioppo, John T

    2012-01-01

    Social connections are essential for the survival of a social species like humans. People differ in the degree to which they are sensitive to perceived deficits in their social connections, but evidence suggests that they nevertheless construe the nature of their social connections similarly. This construal can be thought of as a mental representation of a multi-faceted social experience. A three-dimensional mental representation has been identified with the UCLA Loneliness Scale and consists of Intimate, Relational, and Collective Connectedness reflecting beliefs about one's individual, dyadic, and collective (group) social value, respectively. Moreover, this mental representation has been replicated with other scales and validated across age, gender, and racial/ethnic lines in U.S. samples. The purpose of this study is to evaluate the extent to which this three-dimensional representation applies to people whose social lives are experienced in a collectivistic rather than individualistic culture. To that end, we used confirmatory factor analyses to assess the fit of the three-dimensional mental structure to data collected from Chinese people living in China. Two hundred sixty-seven young adults (16-25 yrs) and 250 older adults (50-65 yrs) in Beijing completed the revised UCLA Loneliness Scale and demographic and social activity questionnaires. Results revealed adequate fit of the structure to data from young and older Chinese adults. Moreover, the structure exhibited equivalent fit in young and older Chinese adults despite changes in the Chinese culture that exposed these two generations to different cultural experiences. Social activity variables that discriminated among the three dimensions in the Chinese samples corresponded well with variables that discriminated among the three dimensions in the U.S.-based samples, indicating cultural commonalities in the factors predicting dimensions of people's representations of their social connections. Equivalence of the three-dimensional structure is relevant for an understanding of cultural differences in the sources of loneliness and social connectedness.

  18. Method for making a bio-compatible scaffold

    DOEpatents

    Cesarano, III, Joseph; Stuecker, John N [Albuquerque, NM; Dellinger, Jennifer G [Champaigne, IL; Jamison, Russell D [Urbana, IL

    2006-01-31

    A method for forming a three-dimensional, biocompatible, porous scaffold structure using a solid freeform fabrication technique (referred to herein as robocasting) that can be used as a medical implant into a living organism, such as a human or other mammal. Imaging technology and analysis is first used to determine the three-dimensional design required for the medical implant, such as a bone implant or graft, fashioned as a three-dimensional, biocompatible scaffold structure. The robocasting technique is used to either directly produce the three-dimensional, porous scaffold structure or to produce an over-sized three-dimensional, porous scaffold lattice which can be machined to produce the designed three-dimensional, porous scaffold structure for implantation.

  19. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  20. Three-Dimensional Model of Strengths: Examination of Invariance Across Gender, Age, Education Levels, and Marriage Status.

    PubMed

    Duan, Wenjie; Ho, Samuel Mun Yin

    2017-02-01

    Strengths are positive qualities that significantly contributed to well-being of individuals and community. Therefore, a reliable and valid measure of strengths for research and practice is needed. The Brief Strengths Scale (BSS) is a newly developed tool for measuring the three-dimensional strengths model (i.e., temperance, intellectual, and interpersonal strength). However, empirical support for the measurement invariance of the BSS has not been obtained. This study examined the three-factor structure of BSS across gender, age, education, and marriage groups in a community sample (n = 375) using multi-group confirmatory factor analysis. After removing one item of each subscale from the original version, the revised model provided a good fit to the data at different subgroups. The revised nine-item BSS indicated that measurement invariance across gender and age groups was achieved. In addition, the measurement was more influenced by social-cultural factors than biological factors.

  1. Dimensionality of the California Preschool Social Competency Scale.

    ERIC Educational Resources Information Center

    Flint, David L.; And Others

    1980-01-01

    Structure and construct validity of the California Preschool Social Competency Scale was investigated. Five factors were interpreted: considerateness; extraversion; task orientation; verbal facility; and response to the unfamiliar. The first three were found to be similar to the three dimensions of the Classroom Behavior Inventory. (Author/BW)

  2. Psychometric properties of the Brief Symptom Inventory-18 in a Spanish breast cancer sample.

    PubMed

    Galdón, Ma José; Durá, Estrella; Andreu, Yolanda; Ferrando, Maite; Murgui, Sergio; Pérez, Sandra; Ibañez, Elena

    2008-12-01

    The objective of this work was to study the psychometric and structural properties of the Brief Symptom Inventory-18 (BSI-18) in a sample of breast cancer patients (N=175). Confirmatory factor analyses were conducted. Two models were tested: the theoretical model with the original structure (three-dimensional), and the empirical model (a four-factor structure) obtained through exploratory factor analysis initially performed by the authors of the BSI-18. The eligible structure was the original proposal consisting of three dimensions: somatization, depression, and anxiety scores. These measures also showed good internal consistency. The results of this study support the reliability and structural validity of the BSI-18 as a standardized instrument for screening purposes in breast cancer patients, with the added benefits of simplicity and ease of application.

  3. Improving the Factor Structure of Psychological Scales

    PubMed Central

    Zhang, Xijuan; Savalei, Victoria

    2015-01-01

    Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format, which replaces each response option in the Likert scale with a full sentence. We hypothesized that this format would result in a cleaner factor structure as compared with the Likert format. We tested this hypothesis on three popular psychological scales: the Rosenberg Self-Esteem scale, the Conscientiousness subscale of the Big Five Inventory, and the Beck Depression Inventory II. Scales in both formats showed comparable reliabilities. However, scales in the Expanded format had better (i.e., lower and more theoretically defensible) dimensionalities than scales in the Likert format, as assessed by both exploratory factor analyses and confirmatory factor analyses. We encourage further study and wider use of the Expanded format, particularly when a scale’s dimensionality is of theoretical interest. PMID:27182074

  4. Mobile three-dimensional visualisation technologies for clinician-led fall prevention assessments.

    PubMed

    Hamm, Julian; Money, Arthur G; Atwal, Anita; Ghinea, Gheorghita

    2017-08-01

    The assistive equipment provision process is routinely carried out with patients to mitigate fall risk factors via the fitment of assistive equipment within the home. However, currently, over 50% of assistive equipment is abandoned by the patients due to poor fit between the patient and the assistive equipment. This paper explores clinician perceptions of an early stage three-dimensional measurement aid prototype, which provides enhanced assistive equipment provision process guidance to clinicians. Ten occupational therapists trialled the three-dimensional measurement aid prototype application; think-aloud and semi-structured interview data was collected. Usability was measured with the System Usability Scale. Participants scored three-dimensional measurement aid prototype as 'excellent' and agreed strongly with items relating to the usability and learnability of the application. The qualitative analysis identified opportunities for improving existing practice, including, improved interpretation/recording measurements; enhanced collaborative practice within the assistive equipment provision process. Future research is needed to determine the clinical utility of this application compared with two-dimensional counterpart paper-based guidance leaflets.

  5. Measuring the effects of socioeconomic factors on mental health among migrants in urban China: a multiple indicators multiple causes model.

    PubMed

    Guan, Ming

    2017-01-01

    Since 1978, rural-urban migrants mainly contribute Chinese urbanization. The purpose of this paper is to examine the effects of socioeconomic factors on mental health of them. Their mental health was measured by 12-item general health questionnaire (GHQ-12). The study sample comprised 5925 migrants obtained from the 2009 rural-to-urban migrants survey (RUMiC). The relationships among the instruments were assessed by the correlation analysis. The one-factor (overall items), two-factor (positive vs. negative items), and model conducted by principal component analysis were tested in the confirmatory factor analysis (CFA). On the basis of three CFA models, the three multiple indicators multiple causes (MIMIC) models with age, gender, marriage, ethnicity, and employment were constructed to investigate the concurrent associations between socioeconomic factors and GHQ-12. Of the sample, only 1.94% were of ethnic origin and mean age was 31.63 (SD = ±10.43) years. The one-factor, two-factor, and three-factor structure (i.e. semi-positive/negative/independent usefulness) had good model fits in the CFA analysis and gave order (i.e. 2 factor>3 factor>1 factor), which suggests that the three models can be used to assess psychological symptoms of migrants in urban China. All MIMIC models had acceptable fit and gave order (i.e. one-dimensional model>two-dimensional model>three-dimensional model). There were weak associations of socioeconomic factors with mental health among migrants in urban China. Policy discussion suggested that improvement of socioeconomic status of rural-urban migrants and mental health systems in urban China should be highlighted and strengthened.

  6. An HCG-rich microenvironment contributes to ovarian cancer cell differentiation into endothelioid cells in a three-dimensional culture system.

    PubMed

    Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan

    2015-11-01

    We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.

  7. Effects of biomotor structures on performance of competitive gymnastics elements in elementary school female sixth-graders.

    PubMed

    Delas, Suncica; Babin, Josip; Katić, Ratko

    2007-12-01

    In order to identify biomotor systems that determine performance of competitive gymnastics elements in elementary school female sixth-graders, factor structures of morphological characteristics and basic motor abilities were determined first, followed by relations of the morphological-motor system factors obtained with a set of criterion variables evaluating specific motor skills in competitive gymnastics in 126 female children aged 12 years +/- 3 months. Factor analysis of 17 morphological measures yielded three morphological factors: factor of mesoendomorphy and/or adipose body voluminosity; factor of longitudinal body dimensionality; and factor of transverse arm dimensionality. Factor analysis of 16 motor variables produced four motor factors: general motoricity factor (motor system); general speed factor; factor of explosive strength of throwing type (arm explosiveness); and factor of arm and leg flexibility. Three significant canonical correlations, i.e. linear combinations, explained the association between the set of seven latent variables of the morphological and basic motor system, and five variables evaluating the knowledge in competitive gymnastics. The first canonical linear combination was based on a favorable and predominant impact of the general motor factor (a system integrating whole body coordination, leg explosiveness, relative arm strength, arm movement frequency and body flexibility) on performance of gymnastics elements, cartwheel, handstand and backward pullover mount in particular, and to a lesser extent front scale and double leg pirouette for 180 degrees. The relation of the second pair of canonical factors additionally explained the role of transverse dimensionality of arm skeleton, arm flexibility and explosiveness in performing cartwheel and squat vault, whereas the relation of the third pair of canonical factors explained the unfavorable impact of adipose voluminosity on the performance of squat vault and backward pullover mount.

  8. Modeling drying of three-dimensional pulp molded structures. Part I, Experimental program

    Treesearch

    Heike Nyist; John F. Hunt; Margit Tamasy-Bano

    1998-01-01

    Researchers at the USDA Forest Products Laboratory have developed a new three-dimensional structural panel, called FPL Spaceboard. This panel is formed using a U.S. patented three-dimensional mold capable of using a variety of fibrous materials with either the wet- or dry-forming process. Structurally, the panel departs from the traditional two-dimensional panel by...

  9. Quantifying forest vertical structure to determine bird habitat quality in the Greenbelt Corridor, Denton, TX

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Shiho

    This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.

  10. Attenuation Tomography Based on Strong Motion Data: Case Study of Central Honshu Region, Japan

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Joshi, A.; Verma, O. P.

    2013-12-01

    Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by H ashida and S himazaki (J Phys Earth. 32, 299-316, 1984) and has been used and modified by J oshi (Curr Sci. 90, 581-585, 2006; Nat Hazards. 43, 129-146, 2007) and J oshi et al. (J. Seismol. 14, 247-272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.

  11. Factors Influencing Undergraduate Students' Acceptance of a Haptic Interface for Learning Gross Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek L.; Fluck, Andrew Edward; Sale, Arthur

    2017-01-01

    Purpose: This study aims to evaluate factors influencing undergraduate students' acceptance of a computer-aided learning resource using the Phantom Omni haptic stylus to enable rotation, touch and kinaesthetic feedback and display of names of three-dimensional (3D) human anatomical structures on a visual display. Design/methodology/approach: The…

  12. Three-dimensional structure of photosystem II from Thermosynechococcus elongates in complex with terbutryn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabdulkhakov, A. G., E-mail: azat@vega.protes.ru; Dontsova, M. V.; Saenger, W.

    Photosystem II is a key component of the photosynthetic pathway producing oxygen at the thylakoid membrane of cyanobacteria, green algae, and plants. The three-dimensional structure of photosystem II from the cyanobacterium Thermosynechococcus elongates in a complex with herbicide terbutryn (a photosynthesis inhibitor) was determined for the first time by X-ray diffraction and refined at 3.2 Angstrom-Sign resolution (R{sub factor} = 26.9%, R{sub free} = 29.9%, rmsd for bond lengths is 0.013 Angstrom-Sign , and rmsd for bond angles is 2.2 Degree-Sign ). The terbutryn molecule was located in the binding pocket of the mobile plastoquinone. The atomic coordinates of themore » refined structure of photosystem II in a complex with terbutryn were deposited in the Protein Data Bank.« less

  13. Work Engagement among Rescue Workers: Psychometric Properties of the Portuguese UWES

    PubMed Central

    Sinval, Jorge; Marques-Pinto, Alexandra; Queirós, Cristina; Marôco, João

    2018-01-01

    Rescue workers have a stressful and risky occupation where being engaged is crucial to face physical and emotional risks in order to help other persons. This study aims to estimate work engagement levels of rescue workers (namely comparing nurses, firefighters, and police officers) and to assess the validity evidence related to the internal structure of the Portuguese versions of the UWES-17 and UWES-9, namely, dimensionality, measurement invariance between occupational groups, and reliability of the scores. To evaluate the dimensionality, we compared the fit of the three-factor model with the fit of a second-order model. A Portuguese version of the instrument was applied to a convenience sample of 3,887 rescue workers (50% nurses, 39% firefighters, and 11% police officers). Work engagement levels were moderate to high, with firefighters being the highest and nurses being the lowest engaged. Psychometric properties were evaluated in the three-factor original structure revealing acceptable fit to the data in the UWES-17, although the UWES-9 had better psychometric properties. Given the observed statistically significant correlations between the three original factors, we proposed a 2nd hierarchal structure that we named work engagement. The UWES-9 first-order model obtained full uniqueness measurement invariance, and the second-order model obtained partial (metric) second-order invariance. PMID:29403403

  14. Multiparticle collision simulations of two-dimensional one-component plasmas: Anomalous transport and dimensional crossovers

    NASA Astrophysics Data System (ADS)

    Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido

    2017-04-01

    By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.

  15. Hamiltonian structure of three-dimensional gravity in Vielbein formalism

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2018-01-01

    Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.

  16. On the dimensionality of the stress-related growth scale: one, three, or seven factors?

    PubMed

    Roesch, Scott C; Rowley, Anthony A; Vaughn, Allison A

    2004-06-01

    We examined the factorial validity and dimensionality of the Stress-Related Growth Scale (SRGS; Park, Cohen, & Murch, 1996) using a large multiethnic sample (n = 1,070). Exploratory and confirmatory factor analyses suggested that a multidimensional representation of the SRGS fit better than a unidimensional representation. Specifically, we cross-validated both a 3-factor model and a 7-factor model using confirmatory factor analysis and were shown to be invariant across gender and ethnic groups. The 3-factor model was represented by global dimensions of growth that included rational/mature thinking, affective/emotional growth, and religious/spiritual growth. We replicated the 7-factor model of Armeli, Gunthert, and Cohen (2001) and it represented more specific components of growth such as Self-Understanding and Treatment of Others. However, some factors of the 7-factor model had questionable internal consistency and were strongly intercorrelated, suggesting redundancy. The findings support the notion that the factor structure of both the original 1-factor and revised 7-factor models are unstable and that the 3-factor model developed in this research has more reliable psychometric properties and structure.

  17. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  18. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less

  19. Environmental and biotic controls over aboveground biomass throughout a tropical rainforest

    Treesearch

    G.P. Asner; R.F. Hughes; T.A. Varga; D.E. Knapp; T. Kennedy-Bowdoin

    2009-01-01

    The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the...

  20. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  1. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study.

    PubMed

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  2. Profile formation of academic self-concept in elementary school students in grades 1 to 4.

    PubMed

    Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis

    2017-01-01

    Academic self-concept (ASC) is comprised of individual perceptions of one's own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one's own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons.

  3. Profile formation of academic self-concept in elementary school students in grades 1 to 4

    PubMed Central

    Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis

    2017-01-01

    Academic self-concept (ASC) is comprised of individual perceptions of one’s own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one’s own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons. PMID:28542384

  4. Subconstructs of the Edinburgh Postnatal Depression Scale in a multi-ethnic inner-city population in the U.S.

    PubMed

    Chiu, Yueh-Hsiu Mathilda; Sheffield, Perry E; Hsu, Hsiao-Hsien Leon; Goldstein, Jonathan; Curtin, Paul C; Wright, Rosalind J

    2017-12-01

    The ten-item Edinburgh Postnatal Depression Scale (EPDS) is one of the most widely used self-report measures of postpartum depression. Although originally described as a one-dimensional measure, the recognition that depressive symptoms may be differentially experienced across cultural and racial/ethnic groups has led to studies examining structural equivalence of the EPDS in different populations. Variation of the factor structure remains understudied across racial/ethnic groups of US women. We examined the factor structure of the EPDS assessed 6 months postpartum in 515 women (29% black, 53% Hispanic, 18% white) enrolled in an urban Boston longitudinal birth cohort. Exploratory factor analysis (EFA) identified that a three-factor model, including depression, anxiety, and anhedonia subscales, was the most optimal fit in our sample as a whole and across race/ethnicity. Confirmatory factor analysis (CFA) was used to examine the fit of both the two- and three-factor models reported in prior research. CFA confirmed the best fit for a three-factor model, with minimal differences across race/ethnicity. "Things get on top of me" loaded on the anxiety factor among Hispanics, but loaded on the depression factor in whites and African Americans. These findings suggest that EPDS factor structure may need to be adjusted for diverse samples and warrants further study.

  5. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  6. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties

    ERIC Educational Resources Information Center

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha

    2009-01-01

    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer's generative theory of multimedia learning. Simulations might lead to a…

  7. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  8. Establishing a coherent and replicable measurement model of the Edinburgh Postnatal Depression Scale.

    PubMed

    Martin, Colin R; Redshaw, Maggie

    2018-06-01

    The 10-item Edinburgh Postnatal Depression Scale (EPDS) is an established screening tool for postnatal depression. Inconsistent findings in factor structure and replication difficulties have limited the scope of development of the measure as a multi-dimensional tool. The current investigation sought to robustly determine the underlying factor structure of the EPDS and the replicability and stability of the most plausible model identified. A between-subjects design was used. EPDS data were collected postpartum from two independent cohorts using identical data capture methods. Datasets were examined with confirmatory factor analysis, model invariance testing and systematic evaluation of relational and internal aspects of the measure. Participants were two samples of postpartum women in England assessed at three months (n = 245) and six months (n = 217). The findings showed a three-factor seven-item model of the EPDS offered an excellent fit to the data, and was observed to be replicable in both datasets and invariant as a function of time point of assessment. Some EPDS sub-scale scores were significantly higher at six months. The EPDS is multi-dimensional and a robust measurement model comprises three factors that are replicable. The potential utility of the sub-scale components identified requires further research to identify a role in contemporary screening practice. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. From Two- to Three-Dimensional Structures of a Supertetrahedral Boran Using Density Functional Calculations.

    PubMed

    Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I

    2017-08-14

    With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. The Structure of Infant Cognition at 1 Year

    ERIC Educational Resources Information Center

    Rose, S.A.; Feldman, J.F.; Jankowski, J.J.

    2005-01-01

    The present study explored the dimensionality of cognition at 12 months by factor analyzing data from a large cohort of preterm and full-term infants (N=182). Two analyses were done. In the first, using only measures used earlier, when the infants were 7 months of age, the same three factors emerged at 12 months as at the earlier age-namely,…

  11. Microholography of Living Organisms.

    ERIC Educational Resources Information Center

    Solem, Johndale C.; Baldwin, George C.

    1982-01-01

    By using intense pulsed coherent x-ray sources it will be possible to obtain magnified three-dimensional images of living elementary biological structures at precisely defined instants. Discussed are sources/geometrics for x-ray holography, x-radiation interactions, factors affecting resolution, recording the hologram, high-intensity holography,…

  12. Softly-confined water cluster between freestanding graphene sheets

    NASA Astrophysics Data System (ADS)

    Agustian, Rifan; Akaishi, Akira; Nakamura, Jun

    2018-01-01

    Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.

  13. Experiments on an unsteady, three-dimensional separation

    NASA Technical Reports Server (NTRS)

    Henk, R. W.; Reynolds, W. C.; Reed, H. L.

    1992-01-01

    Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.

  14. Biomotor structures in elite female handball players.

    PubMed

    Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir

    2007-09-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.

  15. Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Cai, Juntao; Chen, Xiaobin; Xu, Xiwei; Tang, Ji; Wang, Lifeng; Guo, Chunling; Han, Bing; Dong, Zeyi

    2017-02-01

    A three-dimensional (3-D) resistivity model around the 2014 Ms6.5 Ludian earthquake was obtained. The model shows that the aftershocks were mainly distributed in a shallow inverse L-shaped conductive angular region surrounded by resistive structures. The presences of this shallow conductive zone may be the key factor leading to the severe damage and surface rupture of the Ludian earthquake. A northwest trending local resistive belt along the Baogunao-Xiaohe fault interrupts the northeast trending conductive zone at the Zhaotong-Lianfeng fault zone in the middle crust, which may be the seismogenic structure of the main shock. Based on the 3-D electrical model, combining with GPS, thermal structure, and seismic survey results, a geodynamic model is proposed to interpret the seismotectonics, deep seismogenic background, and deformation characterized by a sinistral strike slip with a tensile component of the Ludian earthquake.

  16. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  17. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, Manoel; Diaz, Marcos

    2009-12-15

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less

  18. Re-analysis of correlations among four impulsivity scales.

    PubMed

    Gallardo-Pujol, David; Andrés-Pueyo, Antonio

    2006-08-01

    Impulsivity plays a key role in normal and pathological behavior. Although there is some consensus about its conceptualization, there have been many attempts to build a multidimensional tool due to the lack of agreement in how to measure it. A recent study claimed support for a three-dimensional structure of impulsivity, however with weak empirical support. By re-analysing those data, a four-factor structure was found to describe the correlation matrix much better. The debate remains open and further research is needed to clarify the factor structure. The desirability of constructing new measures, perhaps analogously to the Wechsler Intelligence Scale, is emphasized.

  19. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  20. Three dimensional electron microscopy and in silico tools for macromolecular structure determination

    PubMed Central

    Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru

    2013-01-01

    Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033

  1. Three-dimensional wide-field pump-probe structured illumination microscopy

    PubMed Central

    Kim, Yang-Hyo; So, Peter T.C.

    2017-01-01

    We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning. PMID:28380860

  2. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    ERIC Educational Resources Information Center

    Lazarowitz, Reuven; Naim, Raphael

    2014-01-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular…

  3. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    DTIC Science & Technology

    2006-12-01

    initial activity after 10 days at 24°C. The ability to generate three- dimensional structures with enhanced loading capacity for biosensing molecules...dimensional structures for biosensors (Charles et al. 2004). Silicon samples that had been washed but not activated with APTS did not retain any enzyme...preparation. The use of silica particles to build a 3-dimensional structure not only provides an increased capacity for the immobilization of β

  4. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  5. Modeling hygroelastic properties of genetically modified aspen

    Treesearch

    Laszlo Horvath; Perry Peralta; Ilona Peszlen; Levente Csoka; Balazs Horvath; Joseph Jakes

    2012-01-01

    Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin...

  6. A Cross-National Study of Leisure Activities.

    ERIC Educational Resources Information Center

    Beatty, Sharon E.; And Others

    1994-01-01

    Choice of leisure activity expressed by students and one parent each from four countries supports a three-dimensional factor structure of leisure dimensions, identified as aesthetic-intellectual, sports, and social-entertainment. Subjects were 642 U.S., 174 French, 243 Danish, and 139 New Zealand college students and their parents. (SLD)

  7. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    NASA Astrophysics Data System (ADS)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  8. Directional reflectance factor distributions of a cotton row crop

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  9. Atomic structure of unligated laccase from Cerrena maxima at 1.76 A with molecular oxygen and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukova, Yu. N., E-mail: amm@ns.crys.ras.ru; Lyashenko, A. V.; Lashkov, A. A.

    2010-05-15

    The three-dimensional structure of unligated laccase from Cerrena maxima was established by X-ray diffraction at 1.76-A resolution; R{sub work} = 18.07%, R{sub free} = 21.71%, rmsd of bond lengths, bond angles, and chiral angles are 0.008 A, 1.19{sup o}, and 0.077{sup o}, respectively. The coordinate error for the refined structure estimated from the Luzzati plot is 0.195 A. The maximum average error in the atomic coordinates is 0.047 A. A total of 99.4% of amino-acid residues of the polypeptide chain are in the most favorable, allowable, and accessible regions of the Ramachandran plot. The three-dimensional structures of the complexes ofmore » laccase from C. maxima with molecular oxygen and hydrogen peroxide were determined by the molecular simulation. These data provide insight into the structural aspect of the mechanism of the enzymatic cycle. The structure factors and the refined atomic coordinates were deposited in the Protein Data Bank (PDB-ID code is 3DIV).« less

  10. Vfold: a web server for RNA structure and folding thermodynamics prediction.

    PubMed

    Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2014-01-01

    The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".

  11. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  12. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  13. Functionally Graded Metal-Metal Composite Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A. (Inventor)

    2017-01-01

    Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.

  14. Small-angle scattering from 3D Sierpinski tetrahedron generated using chaos game

    NASA Astrophysics Data System (ADS)

    Slyamov, Azat

    2017-12-01

    We approximate a three dimensional version of deterministic Sierpinski gasket (SG), also known as Sierpinski tetrahedron (ST), by using the chaos game representation (CGR). Structural properties of the fractal, generated by both deterministic and CGR algorithms are determined using small-angle scattering (SAS) technique. We calculate the corresponding monodisperse structure factor of ST, using an optimized Debye formula. We show that scattering from CGR of ST recovers basic fractal properties, such as fractal dimension, iteration number, scaling factor, overall size of the system and the number of units composing the fractal.

  15. One-dimensional, two-dimensional, and three-dimensional photonic crystals fabricated with interferometric techniques on ultrafine-grain silver halide emulsions

    NASA Astrophysics Data System (ADS)

    Ulibarrena, Manuel; Carretero, Luis; Acebal, Pablo; Madrigal, Roque; Blaya, Salvador; Fimia, Antonio

    2004-09-01

    Holographic techniques have been used for manufacturing multiple band one-dimensional, two-dimensional, and three-dimensional photonic crystals with different configurations, by multiplexing reflection and transmission setups on a single layer of holographic material. The recording material used for storage is an ultra fine grain silver halide emulsion, with an average grain size around 20 nm. The results are a set of photonic crystals with the one-dimensional, two-dimensional, and three-dimensional index modulation structure consisting of silver halide particles embedded in the gelatin layer of the emulsion. The characterisation of the fabricated photonic crystals by measuring their transmission band structures has been done and compared with theoretical calculations.

  16. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  17. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  18. Thermal solitons as revealed by the static structure factor

    NASA Astrophysics Data System (ADS)

    Gawryluk, Krzysztof; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2017-04-01

    We study, within a framework of the classical fields approximation, the static structure factor of a weakly interacting Bose gas at thermal equilibrium. As in a recent experiment [R. Schley et al., Phys. Rev. Lett. 111, 055301 (2013), 10.1103/PhysRevLett.111.055301], we find that the thermal distribution of phonons in a three-dimensional Bose gas follows the Planck distribution. On the other hand we find a disagreement between the Planck and phonon (calculated just as for the bulk gas) distributions in the case of elongated quasi-one-dimensional systems. We attribute this discrepancy to the existence of spontaneous dark solitons [i.e., thermal solitons as reported in T. Karpiuk et al., Phys. Rev. Lett. 109, 205302 (2012), 10.1103/PhysRevLett.109.205302] in an elongated Bose gas at thermal equilibrium.

  19. Inter-subband structure factor for a quasi-one-dimensional polaron gas

    NASA Astrophysics Data System (ADS)

    Machado, Paulo César Miranda; Osório, Francisco Aparecido Pinto; Borges, Antônio Newton

    2016-08-01

    In this work, the collective excitation spectra of quasi-one-dimensional plasmon in a rectangular GaAs quantum wire is investigated. Our calculations are performed within the Singwi, Tosi, Land and Sjölander (STLS) self-consistent theory taking into account the plasmon-longitudinal optical (LO) phonon coupling effects. We have employed a three subband model with only the first subband occupied by electrons and we have considered intra-subband and inter-subband transitions. We show that the polaronic effects cause the appearance of dips and oscillations in the static structure factor dispersion relation, which are directly related with the oscillator strength transfer between the collective excitation energy branches. We have also observed oscillations in the pair-correlation function that are characteristic of inter-subband transitions and it denotes partial localization of the particle.

  20. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  1. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  2. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  3. The Three-Dimensional Culture System with Matrigel and Neurotrophic Factors Preserves the Structure and Function of Spiral Ganglion Neuron In Vitro.

    PubMed

    Sun, Gaoying; Liu, Wenwen; Fan, Zhaomin; Zhang, Daogong; Han, Yuechen; Xu, Lei; Qi, Jieyu; Zhang, Shasha; Gao, Bradley T; Bai, Xiaohui; Li, Jianfeng; Chai, Renjie; Wang, Haibo

    2016-01-01

    Whole organ culture of the spiral ganglion region is a resourceful model system facilitating manipulation and analysis of live sprial ganglion neurons (SGNs). Three-dimensional (3D) cultures have been demonstrated to have many biomedical applications, but the effect of 3D culture in maintaining the SGNs structure and function in explant culture remains uninvestigated. In this study, we used the matrigel to encapsulate the spiral ganglion region isolated from neonatal mice. First, we optimized the matrigel concentration for the 3D culture system and found the 3D culture system protected the SGNs against apoptosis, preserved the structure of spiral ganglion region, and promoted the sprouting and outgrowth of SGNs neurites. Next, we found the 3D culture system promoted growth cone growth as evidenced by a higher average number and a longer average length of filopodia and a larger growth cone area. 3D culture system also significantly elevated the synapse density of SGNs. Last, we found that the 3D culture system combined with neurotrophic factors had accumulated effects in promoting the neurites outgrowth compared with 3D culture or NFs treatment only groups. Together, we conclude that the 3D culture system preserves the structure and function of SGN in explant culture.

  4. [Does the GHQ-12 scoring system affect its factor structure? An exploratory study of Ibero American students].

    PubMed

    Urzúa, Alfonso; Caqueo-Urízar, Alejandra; Bargsted, Mariana; Irarrázaval, Matías

    2015-06-01

    This study aimed to evaluate whether the scoring system of the General Health Questionnaire (GHQ-12) alters the instrument's factor structure. The method considered 1,972 university students from nine Ibero American countries. Modeling was performed with structural equations for 1, 2, and 3 latent factors. The mechanism for scoring the questions was analyzed within each type of structure. The results indicate that models with 2 and 3 factors show better goodness-of-fit. In relation to scoring mechanisms, procedure 0-1-1-1 for models with 2 and 3 factors showed the best fit. In conclusion, there appears to be a relationship between the response format and the number of factors identified in the instrument's structure. The model with the best fit was 3-factor 0-1-1-1-formatted, but 0-1-2-3 has acceptable and more stable indicators and provides a better format for two- and three-dimensional models.

  5. Zeroing In on Mindfulness Facets: Similarities, Validity, and Dimensionality across Three Independent Measures.

    PubMed

    Siegling, Alex B; Petrides, K V

    2016-01-01

    The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ's four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness.

  6. Zeroing In on Mindfulness Facets: Similarities, Validity, and Dimensionality across Three Independent Measures

    PubMed Central

    Siegling, Alex B.; Petrides, K. V.

    2016-01-01

    The field of mindfulness has seen a proliferation of psychometric measures, characterised by differences in operationalisation and conceptualisation. To illuminate the scope of, and offer insights into, the diversity apparent in the burgeoning literature, two distinct samples were used to examine the similarities, validity, and dimensionality of mindfulness facets and subscales across three independent measures: the Five Facet Mindfulness Questionnaire (FFMQ), Philadelphia Mindfulness Scale (PHLMS), and Toronto Mindfulness Scale (TMS). Results revealed problematic associations of FFMQ Observe with the other FFMQ facets and supported a four-factor structure (omitting this facet), while disputing the originally envisaged five-factor model; thus, solidifying a pattern in the literature. Results also confirmed the bidimensional nature of the PHLMS and TMS subscales, respectively. A joint Confirmatory Factor Analysis showed that PHLMS Acceptance could be assimilated within the FFMQ’s four-factor model (as a distinct factor). The study offers a way of understanding interrelationships between the available mindfulness scales, so as to help practitioners and researchers make a more informed choice when conceptualising and operationalising mindfulness. PMID:27055017

  7. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  8. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    NASA Technical Reports Server (NTRS)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.

  9. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.

    PubMed

    Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-08-01

    Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.

  10. Examining the Factor Structure of the MLQ Transactional and Transformational Leadership Dimensions in Nursing Context.

    PubMed

    Boamah, Sheila A; Tremblay, Paul

    2018-05-01

    The Multifactor Leadership Questionnaire (MLQ) is the most widely used instrument for assessing dimensions of leadership style; yet, most studies have failed to reproduce the original MLQ factor structure. The current study evaluates the dimensionality and nomological validity of Bass's transactional and transformational leadership model using the MLQ in a sample of registered nurses working in acute care hospitals in Canada. A combination of exploratory and confirmatory factor analyses were used to evaluate the hypothetical factor structure of the MLQ consisting of five transformational factors, and three transactional factors. Results suggest that the eight-factor solution displayed best fit indices; however, two transactional factors should be extracted due to high interscale correlations and lack of differential relationships with the two leadership variables. The findings support a scale refinement and the need for new theory concerning the five transformational leadership and contingent reward dimensions of the MLQ.

  11. Label-free imaging of the dynamics of cell-to-cell string-like structure bridging in the free-space by low-coherent quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2013-03-01

    We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.

  12. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  13. Early changes in coronary artery wall structure detected by microcomputed tomography in experimental hypercholesterolemia.

    PubMed

    Zhu, Xiang-Yang; Bentley, Michael D; Chade, Alejandro R; Ritman, Erik L; Lerman, Amir; Lerman, Lilach O

    2007-09-01

    Changes in the structure of the artery wall commence shortly after exposure to cardiovascular risk factors, such as hypercholesterolemia (HC), but may be difficult to detect. The ability to study vascular wall structure could be helpful in evaluation of the factors that instigate atherosclerosis and its pathomechanisms. The present study tested the hypothesis that early morphological changes in coronary arteries of hypercholesterolemic (HC) pigs can be detected using the novel X-ray contrast agent OsO(4) and three-dimensional micro-computed tomography (CT). Two groups of pigs were studied after they were fed a normal or an HC (2% cholesterol) diet for 12 wk. Hearts were harvested, coronary arteries were injected with 1% OsO(4) solution, and cardiac samples (6-mum-thick) were scanned by micro-CT. Layers of the epicardial coronary artery wall, early lesions, and perivascular OsO(4) accumulation were determined. Leakage of OsO(4) from myocardial microvessels was used to assess vascular permeability, which was correlated with immunoreactivity of vascular endothelial growth factor in corresponding histological cross sections. OsO(4) enhanced the visualization of coronary artery wall layers and facilitated detection of early lesions in HC in longitudinal tomographic sections of vascular segments. Increased density of perivascular OsO(4) in HC was correlated with increased vascular endothelial growth factor expression and suggested increased microvascular permeability. The use of OsO(4) as a contrast agent in micro-CT allows three-dimensional visualization of coronary artery wall structure, early lesion formation, and changes in vascular permeability. Therefore, this technique can be a useful tool in atherosclerosis research.

  14. Determination of the structure of subsurface layers by means of coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Teplov, S. V.; Rabalais, J. W.

    1994-05-01

    It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.

  15. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds. 2010 Elsevier Ltd. All rights reserved.

  16. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  17. The Structure Lacuna

    PubMed Central

    Boeyens, Jan C.A.; Levendis, Demetrius C.

    2012-01-01

    Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753

  18. Recent developments in structural proteomics for protein structure determination.

    PubMed

    Liu, Hsuan-Liang; Hsu, Jyh-Ping

    2005-05-01

    The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.

  19. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  20. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].

    PubMed

    Bantignies, Frédéric

    2013-01-01

    As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function. © Société de Biologie, 2013.

  1. Three-dimensional imaging and remote sensing imaging; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Astrophysics Data System (ADS)

    Robbins, Woodrow E.

    1988-01-01

    The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.

  2. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.

    2010-01-15

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-bindingmore » site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.« less

  3. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  4. Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Tan, Siyu; Yan, Fengping; Wang, Wei; Zhou, Hong; Hou, Yafei

    2018-05-01

    Planar metasurfaces and metamaterial absorbers have shown great promise for label-free sensing applications at microwaves, optical and terahertz frequencies. The realization of high-quality-factor resonance in these structures is of significant interest to enhance the sensing sensitivities to detect minute frequency shifts. We propose and demonstrate in this manuscript an ultrasensitive terahertz metamaterial absorber sensor based on a three-dimensional split ring resonator absorber with a high quality factor of 60.09. The sensing performance of the proposed absorber sensor was systematically investigated through detailed numerical calculations and a maximum refractive index sensitivity of 34.40% RIU‑1 was obtained. Furthermore, the absorber sensor can maintain a high sensitivity for a wide range of incidence angles up to 60° under TM polarization incidence. These findings would improve the design flexibility of the absorber sensors and further open up new avenues to achieve ultrasensitive sensing in the terahertz regime.

  5. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  6. Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Hathaway, A. W.

    1978-01-01

    Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.

  7. Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Peón-Nieto, C.

    2018-05-01

    We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.

  8. A polyhedron made of tRNAs.

    PubMed

    Severcan, Isil; Geary, Cody; Chworos, Arkadiusz; Voss, Neil; Jacovetty, Erica; Jaeger, Luc

    2010-09-01

    Supramolecular assembly is a powerful strategy used by nature to build nanoscale architectures with predefined sizes and shapes. With synthetic systems, however, numerous challenges remain to be solved before precise control over the synthesis, folding and assembly of rationally designed three-dimensional nano-objects made of RNA can be achieved. Here, using the transfer RNA molecule as a structural building block, we report the design, efficient synthesis and structural characterization of stable, modular three-dimensional particles adopting the polyhedral geometry of a non-uniform square antiprism. The spatial control within the final architecture allows the precise positioning and encapsulation of proteins. This work demonstrates that a remarkable degree of structural control can be achieved with RNA structural motifs for the construction of thermostable three-dimensional nano-architectures that do not rely on helix bundles or tensegrity. RNA three-dimensional particles could potentially be used as carriers or scaffolds in nanomedicine and synthetic biology.

  9. Modeling and numerical simulations of growth and morphologies of three dimensional aggregated silver films

    NASA Astrophysics Data System (ADS)

    Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.

    2012-11-01

    We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.

  10. WebCSD: the online portal to the Cambridge Structural Database

    PubMed Central

    Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.

    2010-01-01

    WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776

  11. Helical structures in vertically aligned dust particle chains in a complex plasma

    NASA Astrophysics Data System (ADS)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  12. [Dimensional structure of the Brazilian version of the Scale of Satisfaction with Interpersonal Processes of General Medical Care].

    PubMed

    Nascimento, Maria Isabel do; Reichenheim, Michael Eduardo; Monteiro, Gina Torres Rego

    2011-12-01

    The objective of this study was to reassess the dimensional structure of a Brazilian version of the Scale of Satisfaction with Interpersonal Processes of General Medical Care, proposed originally as a one-dimensional instrument. Strict confirmatory factor analysis (CFA) and exploratory factor analysis modeled within a CFA framework (E/CFA) were used to identify the best model. An initial CFA rejected the one-dimensional structure, while an E/CFA suggested a two-dimensional structure. The latter structure was followed by a new CFA, which showed that the model without cross-loading was the most parsimonious, with adequate fit indices (CFI = 0.982 and TLI = 0.988), except for RMSEA (0.062). Although the model achieved convergent validity, discriminant validity was questionable, with the square-root of the mean variance extracted from dimension 1 estimates falling below the respective factor correlation. According to these results, there is not sufficient evidence to recommend the immediate use of the instrument, and further studies are needed for a more in-depth analysis of the postulated structures.

  13. Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.

    PubMed

    Tegze, Miklós; Bortel, Gábor

    2016-07-01

    The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.

  14. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  15. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  16. Attention-deficit/hyperactivity disorder dimensionality: the reliable 'g' and the elusive 's' dimensions.

    PubMed

    Wagner, Flávia; Martel, Michelle M; Cogo-Moreira, Hugo; Maia, Carlos Renato Moreira; Pan, Pedro Mario; Rohde, Luis Augusto; Salum, Giovanni Abrahão

    2016-01-01

    The best structural model for attention-deficit/hyperactivity disorder (ADHD) symptoms remains a matter of debate. The objective of this study is to test the fit and factor reliability of competing models of the dimensional structure of ADHD symptoms in a sample of randomly selected and high-risk children and pre-adolescents from Brazil. Our sample comprised 2512 children aged 6-12 years from 57 schools in Brazil. The ADHD symptoms were assessed using parent report on the development and well-being assessment (DAWBA). Fit indexes from confirmatory factor analysis were used to test unidimensional, correlated, and bifactor models of ADHD, the latter including "g" ADHD and "s" symptom domain factors. Reliability of all models was measured with omega coefficients. A bifactor model with one general factor and three specific factors (inattention, hyperactivity, impulsivity) exhibited the best fit to the data, according to fit indices, as well as the most consistent factor loadings. However, based on omega reliability statistics, the specific inattention, hyperactivity, and impulsivity dimensions provided very little reliable information after accounting for the reliable general ADHD factor. Our study presents some psychometric evidence that ADHD specific ("s") factors might be unreliable after taking common ("g" factor) variance into account. These results are in accordance with the lack of longitudinal stability among subtypes, the absence of dimension-specific molecular genetic findings and non-specific effects of treatment strategies. Therefore, researchers and clinicians might most effectively rely on the "g" ADHD to characterize ADHD dimensional phenotype, based on currently available symptom items.

  17. Ray tracing a three-dimensional scene using a hierarchical data structure

    DOEpatents

    Wald, Ingo; Boulos, Solomon; Shirley, Peter

    2012-09-04

    Ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. One example embodiment is a method for ray tracing a three-dimensional scene made up of geometric primitives that are spatially partitioned into a hierarchical data structure. In this example embodiment, the hierarchical data structure includes at least a parent node and a corresponding plurality of child nodes. The method includes a first act of determining that a first active ray in the packet hits the parent node and a second act of descending to each of the plurality of child nodes.

  18. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  19. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  20. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  1. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  2. The third-order structure function in two dimensions: The Rashomon effect

    NASA Astrophysics Data System (ADS)

    Cerbus, Rory T.; Chakraborty, Pinaki

    2017-11-01

    We study the third-order longitudinal structure function, S3(r), in two-dimensional turbulence. In three dimensions, there is considerable theoretical, experimental, and numerical consensus regarding the validity of Kolmogorov's arch-famous " /4 5 th law" for S3(r). By contrast, in two dimensions, two disparate cascades, changed dissipation anomalies, a large-scale drag, and other factors conspire to create several versions of the S3(r) "law." This single quantity can vary considerably when viewed from different perspectives, reminiscent of the "Rashomon effect" in anthropology. After reviewing the history and usage of S3(r) in two-dimensional turbulence, we show that S3(r) generically embodies a mixture of energy and enstrophy fluxes. Building on this result, we derive S3(r) laws for freely decaying and forced two-dimensional turbulent flows, where we also account for the effects of a large-scale drag, an inextricable feature of quasi two-dimensional turbulence in experimental and atmospheric flows. We draw attention to the caution needed in interpreting S3(r) in two-dimensional turbulence.

  3. The latent structure of the functional dyspepsia symptom complex: a taxometric analysis.

    PubMed

    Van Oudenhove, L; Jasper, F; Walentynowicz, M; Witthöft, M; Van den Bergh, O; Tack, J

    2016-07-01

    Rome III introduced a subdivision of functional dyspepsia (FD) into postprandial distress syndrome and epigastric pain syndrome, characterized by early satiation/postprandial fullness, and epigastric pain/burning, respectively. However, evidence on their degree of overlap is mixed. We aimed to investigate the latent structure of FD to test whether distinguishable symptom-based subgroups exist. Consecutive tertiary care Rome II FD patients completed the dyspepsia symptom severity scale. Confirmatory factor analysis (CFA) was used to compare the fit of a single factor model, a correlated three-factor model based on Rome III subgroups and a bifactor model consisting of a general FD factor and orthogonal subgroup factors. Taxometric analyses were subsequently used to investigate the latent structure of FD. Nine hundred and fifty-seven FD patients (71.1% women, age 41 ± 14.8) participated. In CFA, the bifactor model yielded a significantly better fit than the two other models (χ² difference tests both p < 0.001). All symptoms had significant loadings on both the general and the subgroup-specific factors (all p < 0.05). Somatization was associated with the general (r = 0.72, p < 0.01), but not the subgroup-specific factors (all r < 0.13, p > 0.05). Taxometric analyses supported a dimensional structure of FD (all CCFI<0.38). We found a dimensional rather than categorical latent structure of the FD symptom complex in tertiary care. A combination of a general dyspepsia symptom reporting factor, which was associated with somatization, and symptom-specific factors reflecting the Rome III subdivision fitted the data best. This has implications for classification, pathophysiology, and treatment of FD. © 2016 John Wiley & Sons Ltd.

  4. Concept mapping as an approach for expert-guided model building: The example of health literacy.

    PubMed

    Soellner, Renate; Lenartz, Norbert; Rudinger, Georg

    2017-02-01

    Concept mapping served as the starting point for the aim of capturing the comprehensive structure of the construct of 'health literacy.' Ideas about health literacy were generated by 99 experts and resulted in 105 statements that were subsequently organized by 27 experts in an unstructured card sorting. Multidimensional scaling was applied to the sorting data and a two and three-dimensional solution was computed. The three dimensional solution was used in subsequent cluster analysis and resulted in a concept map of nine "clusters": (1) self-regulation, (2) self-perception, (3) proactive approach to health, (4) basic literacy and numeracy skills, (5) information appraisal, (6) information search, (7) health care system knowledge and acting, (8) communication and cooperation, and (9) beneficial personality traits. Subsequently, this concept map served as a starting point for developing a "qualitative" structural model of health literacy and a questionnaire for the measurement of health literacy. On the basis of questionnaire data, a "quantitative" structural model was created by first applying exploratory factor analyses (EFA) and then cross-validating the model with confirmatory factor analyses (CFA). Concept mapping proved to be a highly valuable tool for the process of model building up to translational research in the "real world". Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher; Robinson, David B.

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  6. A Numerical Model of Exchange Chromatography Through 3D Lattice Structures

    DOE PAGES

    Salloum, Maher; Robinson, David B.

    2018-01-30

    Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less

  7. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims

    PubMed Central

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Background Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. Objective Using CFA, four different models of the latent structure of ASD were specified and tested: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. Method The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. Results The results showed that the five factor model provided the best fit to the data. Conclusions The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5. PMID:22893845

  8. Assessing a dysphoric arousal model of acute stress disorder symptoms in a clinical sample of rape and bank robbery victims.

    PubMed

    Hansen, Maj; Armour, Cherie; Elklit, Ask

    2012-01-01

    Since the introduction of Acute Stress Disorder (ASD) into the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) research has focused on the ability of ASD to predict PTSD rather than focusing on addressing ASD's underlying latent structure. The few existing confirmatory factor analytic (CFA) studies of ASD have failed to reach a clear consensus regarding ASD's underlying dimensionality. Although, the discrepancy in the results may be due to varying ASD prevalence rates, it remains possible that the model capturing the latent structure of ASD has not yet been put forward. One such model may be a replication of a new five-factor model of PTSD, which separates the arousal symptom cluster into Dysphoric and Anxious Arousal. Given the pending DSM-5, uncovering ASD's latent structure is more pertinent than ever. USING CFA, FOUR DIFFERENT MODELS OF THE LATENT STRUCTURE OF ASD WERE SPECIFIED AND TESTED: the proposed DSM-5 model, the DSM-IV model, a three factor model, and a five factor model separating the arousal symptom cluster. The analyses were based on a combined sample of rape and bank robbery victims, who all met the diagnostic criteria for ASD (N = 404) using the Acute Stress Disorder Scale. The results showed that the five factor model provided the best fit to the data. The results of the present study suggest that the dimensionality of ASD may be best characterized as a five factor structure which separates dysphoric and anxious arousal items into two separate factors, akin to recent research on PTSD's latent structure. Thus, the current study adds to the debate about how ASD should be conceptualized in the pending DSM-5.

  9. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 2. Teaching Units that Utilize an Interactive Web-Accessible Subset of the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2010-01-01

    A series of online interactive teaching units have been developed that illustrate the use of experimentally measured three-dimensional (3D) structures to teach fundamental chemistry concepts. The units integrate a 500-structure subset of the Cambridge Structural Database specially chosen for their pedagogical value. The units span a number of key…

  10. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 4. Examples of Discovery-Based Learning Using the Complete Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  11. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 3. The Cambridge Structural Database System: Information Content and Access Software in Educational Applications

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  12. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  13. Research on the printability of hydrogels in 3D bioprinting

    PubMed Central

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509

  14. Research on the printability of hydrogels in 3D bioprinting

    NASA Astrophysics Data System (ADS)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  15. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    PubMed

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  16. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  17. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure.

    PubMed

    Meitinger, T; Meindl, A; Bork, P; Rost, B; Sander, C; Haasemann, M; Murken, J

    1993-12-01

    The X-lined gene for Norrie disease, which is characterized by blindness, deafness and mental retardation has been cloned recently. This gene has been thought to code for a putative extracellular factor; its predicted amino acid sequence is homologous to the C-terminal domain of diverse extracellular proteins. Sequence pattern searches and three-dimensional modelling now suggest that the Norrie disease protein (NDP) has a tertiary structure similar to that of transforming growth factor beta (TGF beta). Our model identifies NDP as a member of an emerging family of growth factors containing a cystine knot motif, with direct implications for the physiological role of NDP. The model also sheds light on sequence related domains such as the C-terminal domain of mucins and of von Willebrand factor.

  18. Modeling the structural, dynamical, and magnetic properties of liquid Al1-xMnx ( x=0.14 , 0.2, and 0.4): A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-07-01

    We report the results of first-principles molecular dynamics simulations of liquid Al1-xMnx alloys at three different compositions. The local structure as defined by the Bhatia-Thornton partial structure factors is found to display significant changes at x=0.4 . In addition, a structural analysis using three-dimensional pair-analysis techniques evidences a fivefold symmetry around x=0.14 , in agreement with the experimental quasicrystal-forming range, and an increasing complexity of the Frank-Kasper polytetrahedral symmetry around Mn atoms at x=0.4 . We also examine the time evolution of the configurations at the three compositions in terms of the mean-square displacements and self-diffusion coefficients. Finally, we show a strong interplay between the structural changes and the evolution of the magnetic properties of the Mn atoms as a function of composition.

  19. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  20. Quantized vortices and superflow in arbitrary dimensions: structure, energetics and dynamics

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Bora, Florin

    2009-05-01

    The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of a superfluid in arbitrary dimensions. The vortices may be idealized as objects of codimension 2, such as one-dimensional loops and two-dimensional closed surfaces, respectively, in the cases of three- and four-dimensional superfluidity. By using the analogy between the vortical superflow and Ampère-Maxwell magnetostatics, the equilibrium superflow containing any specified collection of vortices is constructed. The energy of the superflow is found to take on a simple form for vortices that are smooth and asymptotically large, compared with the vortex core size. The motion of vortices is analyzed in general, as well as for the special cases of hyper-spherical and weakly distorted hyper-planar vortices. In all dimensions, vortex motion reflects vortex geometry. In dimension 4 and higher, this includes not only extrinsic but also intrinsic aspects of the vortex shape, which enter via the first and second fundamental forms of classical geometry. For hyper-spherical vortices, which generalize the vortex rings of three-dimensional superfluidity, the energy-momentum relation is determined. Simple scaling arguments recover the essential features of these results, up to numerical and logarithmic factors.

  1. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  2. Peptide-directed self-assembly of hydrogels

    PubMed Central

    Kopeček, Jindřich; Yang, Jiyuan

    2009-01-01

    This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513

  3. Power-scaling performance of a three-dimensional tritium betavoltaic diode

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan

    2009-12-01

    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.

  4. Three dimensional cross-correlation dynamic light scattering by non-ergodic turbid media.

    PubMed

    Haro-Pérez, C; Ojeda-Mendoza, G J; Rojas-Ochoa, L F

    2011-06-28

    We investigate dynamic light scattering by non-ergodic turbid media with an adapted version of the method proposed by Pusey and van Megen [Physica A 157, 705 (1989)]. Our formulation follows the derivation of the original method by extending it to the three dimensional cross-correlation scheme (3DDLS). The main finding is an expression to obtain the dynamic structure factor from light scattering that takes into account the system turbidity and the peculiarities of the 3D geometry. From 3DDLS measurements in well-controlled solid-like systems of different turbidity, we confirm that our results can be interpreted reasonably well by the theoretical approach described here. Good agreement is found with earlier reported results on similar systems.

  5. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  6. The Reconstruction of Three-Dimensional Morphological and Electrical Paraneters from Two-Dimensional Sections of Neurones

    NASA Astrophysics Data System (ADS)

    Brawn, A. D.; Wheal, H. V.

    1986-07-01

    A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.

  7. Brazil-Portugal Transcultural Adaptation of the UWES-9: Internal Consistency, Dimensionality, and Measurement Invariance

    PubMed Central

    Sinval, Jorge; Pasian, Sonia; Queirós, Cristina; Marôco, João

    2018-01-01

    The aim of this paper is to present a revision of international versions of the Utrecht Work Engagement Scale and to describe the psychometric properties of a Portuguese version of the UWES-9 developed simultaneously for Brazil and Portugal, the validity evidence related with the internal structure, namely, Dimensionality, measurement invariance between Brazil and Portugal, and Reliability of the scores. This is the first UWES version developed simultaneously for both countries, and it is an important instrument for understanding employees' work engagement in the organizations, allowing human resources departments to better use workforces, especially when they are migrants. A total of 524 Brazilian workers and 522 Portuguese workers participated in the study. Confirmatory Factor Analysis, group comparisons, and Reliability estimates were used. The use of workers who were primarily professionals or administrative support, according to ISCO-08, reinforced the need to collect data on other professional occupations. Confirmatory factor analysis showed acceptable fit for the UWES-9 original three-factor solution, and a second-order factor structure has been proposed that presented an acceptable fit. Full-scale invariance was obtained between the Portuguese and Brazilian samples, both for the original three-factor first-order and second-order models. Data revealed that Portuguese and Brazilian workers didn't show statistically significant differences in the work engagement dimensions. This version allows for direct comparisons of means and, consequently, for performance of comparative and cross-cultural studies between these two countries. PMID:29618995

  8. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. II - Shell and three-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Kennedy, Ronald; Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.

  9. Extreme Soft Limit Observation of Quantum Hall Effect in a 3-d Semiconductor

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Michael; Yin, Ming; Amirzadeh, Jafar; Preston, Harry; Datta, Timir

    2004-03-01

    We report on the evidence for quantum hall effect at 38K and in magnetic fields (B) as low as 1k-Orsted. Our specimens were semiconducting, carbon replica opal (CRO) structures. CRO are three dimensional bulk systems where the carbon is grown by CVD into the porous regions in artificial silica opals. The carbon forms layers on top of the silica spheres as eggshells. The shells are of uneven thickness and are perforated at the contacts points of the opal spheres and form a closed packed, three dimensional crystal structure. Plateaus in inverse R_xy that are conjugated with well-defined Subnikov-deHass modulations in R_xx were observed. The quantum steps that are particularly prominent were the states with fill factors v = p/q (p,q are integers) were the well know fractions, 1/3, 1/2, 3/5, 1 and 5/2. QHE steps indicate that the carriers are localized in two-dimensional regions, which may be due to the extremely large surface to volume ratio associated with replica opal structure. From the B-1 vs v straight line, the effective surface carrier density, ns = 2.2 x 10^14 m-2. To the best of our knowledge, the current work is the first to report fractional quantum hall plateaus in a bulk system.

  10. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  11. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  12. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns.

    PubMed

    Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A

    2017-01-01

    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

  13. Biomotor structures in elite female handball players according to performance.

    PubMed

    Cavala, Marijana; Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka; Katić, Ratko

    2008-03-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.

  14. Structure and topology of three-dimensional hydrocarbon polymers.

    PubMed

    Kondrin, Mikhail V; Lebed, Yulia B; Brazhkin, Vadim V

    2016-08-01

    A new family of three-dimensional hydrocarbon polymers which are more energetically favorable than benzene is proposed. Although structurally these polymers are closely related to well known diamond and lonsdaleite carbon structures, using topological arguments we demonstrate that they have no known structural analogs. Topological considerations also give some indication of possible methods of synthesis. Taking into account their exceptional optical, structural and mechanical properties these polymers might have interesting applications.

  15. Internal structure of the Community Assessment of Psychic Experiences-Positive (CAPE-P15) scale: Evidence for a general factor.

    PubMed

    Núñez, D; Arias, V; Vogel, E; Gómez, L

    2015-07-01

    Psychotic-like experiences (PLEs) are prevalent in the general population and are associated with poor mental health and a higher risk of psychiatric disorders. The Community Assessment of Psychic Experiences-Positive (CAPE-P15) scale is a self-screening questionnaire to address subclinical positive psychotic symptoms (PPEs) in community contexts. Although its psychometric properties seem to be adequate to screen PLEs, further research is needed to evaluate certain validity aspects, particularly its internal structure and its functioning in different populations. To uncover the optimal factor structure of the CAPE-P15 scale in adolescents aged 13 to 18 years using factorial analysis methods suitable to manage categorical variables. A sample of 727 students from six secondary public schools and 245 university students completed the CAPE-P15. The dimensionality of the CAPE-P15 was tested through exploratory structural equation models (ESEMs). Based on the ESEM results, we conducted a confirmatory factor analysis (CFA) to contrast two factorial structures that potentially underlie the symptoms described by the scale: a) three correlated factors and b) a hierarchical model composed of a general PLE factor plus three specific factors (persecutory ideation, bizarre experiences, and perceptual abnormalities). The underlying structure of PLEs assessed by the CAPE-P15 is consistent with both multidimensional and hierarchical solutions. However, the latter show the best fit. Our findings reveal the existence of a strong general factor underlying scale scores. Compared with the specific factors, the general factor explains most of the common variance observed in subjects' responses. The findings suggest that the factor structure of subthreshold psychotic experiences addressed by the CAPE-P15 can be adequately represented by a general factor and three separable specific traits, supporting the hypothesis according to which there might be a common source underlying PLEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  17. Three-dimensional organization of dermal fibroblasts by macromass culture.

    PubMed

    Deshpande, Manisha

    2008-01-01

    The three-dimensional organization of cells by high-cell-seeding-density culture, termed 'macromass culture', is described. By macromass culture, dermal fibroblasts can be made to organize themselves into a unified three-dimensional form without the aid of a scaffold, and macroscopic constructs, named macromasses, can be made wholly from cells. The sole factor causing three-dimensional organization is culture of cells at high cell seeding density per unit area. No scaffold or extraneous matrix is used for the generation of macromasses; they are of completely cellular origin. No other agents or external influences such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, centrifugation etc. are employed for macromass formation, and all seeded cells become part of the cohesive construct. These three-dimensional constructs have the potential for use as in vitro tissue analogues, and a possible application for in vitro cytotoxicity testing is demonstrated.

  18. A three-dimensional neural spheroid model for capillary-like network formation.

    PubMed

    Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane

    2018-04-01

    In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Factor structure and psychometric properties of the Body Appreciation Scale among adults in Hong Kong.

    PubMed

    Ng, Siu-Kuen; Barron, David; Swami, Viren

    2015-03-01

    Previous research has suggested that the factor structure of Body Appreciation Scale (BAS), a widely-used measure of positive body image, may not be cross-culturally equivalent. Here, we used confirmatory factor analysis to evaluate the conceptual equivalence of a Chinese (Cantonese) translation of the BAS among women (n=1319) and men (n=1084) in Hong Kong. Results showed that neither the one-dimensional nor proposed two-dimensional factor structures had adequate fit. Instead, a modified two-dimensional structure, which retained 9 of the 13 BAS items in two factors, had the best fit. However, only one of these factors, reflective of General Body Appreciation, had adequate internal consistency. This factor also had good patterns of construct validity, as indicated through significant correlations with participant body mass index, self-esteem, and (among women) actual-ideal weight discrepancy. The present results suggest that there may be cultural differences in the concept and experience of body appreciation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Simulation studies of ionic liquids: Orientational correlations and static dielectric properties

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Rudas, T.; Steinhauser, O.

    2006-12-01

    The ionic liquids BMIM+I-, BMIM+BF4-, and BMIM+PF6- were simulated by means of the molecular dynamics method over a time period of more than 100ns. Besides the common structural analysis, e.g., radial distribution functions and three dimensional occupancy plots, a more sophisticated orientational analysis was performed. The angular correlation functions g00110(r) and g00101(r) are the first distance dependent coefficients of the pairwise orientational distribution function g(rij,Ω1,Ω2,Ω12). These functions help to interpret the three dimensional plot and reveal interesting insights into the local structure of the analyzed ionic liquids. Furthermore, the collective network of ionic liquids can be characterized by the Kirkwood factor Gκ(r ) [J. Chem. Phys. 7, 911 (1939)]. The short-range behavior (r<10Å) of this factor may be suitable to predict the water miscibility of the ionic liquid. The long-range limit of Gk∞ is below 1 which demonstrates the strongly coupled nature of the ionic liquid networks. In addition, this factor relates the orientational structure and the dielectric properties of the ionic liquids. The static dielectric constant ɛ(ω =0) for the simulated system is 8.9-9.5. Since in ionic liquids the very same molecule contributes to the total dipole moment as well as carries a net charge, a small, but significant contribution of the cross term between the total dipole moment and the electric current to ɛ(ω =0) is observed.

  1. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  2. Cognitive factors affecting student understanding of geologic time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-04-01

    A critical element of the earth sciences is reconstructing geological structures and systems that have developed over time. A survey of the science education literature shows that there has been little attention given to this concept. In this study, we present a model, based on Montagnero's ([1996]) model of diachronic thinking, which describes how students reconstruct geological transformations over time. For geology, three schemes of diachronic thinking are relevant: 1. Transformation, which is a principle of change; in geology it is understood through actualistic thinking (the idea that present proceeses can be used to model the past). 2. Temporal organization, which defines the sequential order of a transformation; in geology it is based on the three-dimensional relationship among strata. 3. Interstage linkage, which is the connections between successive stages of a transformation; in geology it is based on both actualism and causal reasoning. Three specialized instruments were designed to determine the factors which influence reconstructive thinking: (a) the GeoTAT which tests diachronic thinking skills, (b) the TST which tests the relationship between spatial thinking and temporal thinking, and (c) the SFT which tests the influence of dimensional factors on temporal awareness. Based on the model constructed in this study we define the critical factors influencing reconstructive thinking: (a) the transformation scheme which influences the other diachronic schemes, (b) knowledge of geological processes, and (c) extracognitive factors. Among the students tested, there was a significant difference between Grade 9-12 students and Grade 7-8 students in their ability to reconstruct geological phenomena using diachronic thinking. This suggests that somewhere between Grades 7 and 8 it is possible to start teaching some of the logical principles used in geology to reconstruct geological structures.

  3. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    NASA Astrophysics Data System (ADS)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  4. An examination of the factor structure and sex invariance of a French translation of the Body Appreciation Scale-2 in university students.

    PubMed

    Kertechian, Sevag; Swami, Viren

    2017-06-01

    The Body Appreciation Scale-2 (BAS-2) is a measure of positive body image that has been found that have a one-dimensional factor structure in a number of different cultural groups. Here, we examined the factor structure and sex-based measurement invariance of a French translation of the BAS-2. A total of 652 university students (age M=21.33, SD=3.18) completed a newly-translated French version of the BAS-2. Exploratory factor analyses with a randomly selected split-half subsample revealed that the BAS-2 had a one-dimensional factor structure in both sexes. Confirmatory factor analyses with a second split-half subsample indicated that the one-dimensional factor structure had adequate fit following modifications and was invariant across sex. French BAS-2 scores had adequate internal consistency and men had significantly higher body appreciation than women (ds=.16-.23). These results provide preliminary support for the factorial validity of the French BAS-2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    PubMed

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  6. Nonhydrostatic simulation of hyperpycnal river plumes on sloping continental shelves: Flow structures and nonhydrostatic effect

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Yung; Chou, Yi-Ju

    2018-04-01

    A three-dimensional nonhydrostatic coastal model SUNTANS is used to study hyperpycnal plumes on sloping continental shelves with idealized domain setup. The study aims to examine the nonhydrostatic effect of the plunging hyperpycnal plume and the associated flow structures on different shelf slopes. The unstructured triangular grid in SUNTANS allows for local refinement of the grid size for regions in which the flow varies abruptly, while retaining low-cost computation using the coarse grid resolution for regions in which the flow is more uniform. These nonhydrostatic simulations reveal detailed three-dimensional flow structures in both transient and steady states. Via comparison with the hydrostatic simulation, we show that the nonhydrostatic effect is particularly important before plunging, when the plume is subject to significant changes in both the along-shore and vertical directions. After plunging, where the plume becomes an undercurrent that is more spatially uniform, little difference is found between the hydrostatic and nonhydrostatic simulations in the present gentle- and mild-slope cases. A grid-dependence study shows that the nonhydrostatic effect can be seen only when the grid resolution is sufficiently fine that the calculation is not overly diffusive. A depth-integrated momentum budget analysis is then conducted to show that the flow convergence due to plunging is an important factor in the three-dimensional flow structures. Moreover, it shows that the nonhydrostatic effect becomes more important as the slope increases, and in the steep-slope case, neglect of transport of the vertical momentum during plunging in the hydrostatic case further leads to an erroneous prediction for the undercurrent.

  7. The role of structural parameters in DNA cyclization

    DOE PAGES

    Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; ...

    2016-02-04

    The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.

  8. Validating two-dimensional leadership models on three-dimensionally structured fish schools

    PubMed Central

    Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa

    2017-01-01

    Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582

  9. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  10. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R., E-mail: mawr@ns.crys.ras.ru

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  11. Modelling the drying of three-dimensional pulp moulded structures. Part II, Drying data obtained from flat panels using virgin and recycled paper fibre

    Treesearch

    John F. Hunt; Margit Tamasy-Bano; Heike Nyist

    1999-01-01

    A three-dimensional structural panel, called FPL Spaceboard, was developed at the USDA Forest Products Laboratory. Spaceboard panels have been formed using a variety of fibrous materials using either a wet- or dry-forming process. Geometrically, the panel departs from the traditional two-dimensional flat panel by integrally forming an array of perpendicular ribs and...

  12. Balancing Newtonian gravity and spin to create localized structures

    NASA Astrophysics Data System (ADS)

    Bush, Michael; Lindner, John

    2015-03-01

    Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.

  13. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  14. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  15. An approach to large scale identification of non-obvious structural similarities between proteins

    PubMed Central

    Cherkasov, Artem; Jones, Steven JM

    2004-01-01

    Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence. PMID:15147578

  16. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Three-dimensional bioprinting is not only about cell-laden structures.

    PubMed

    Zhang, Hong-Bo; Xing, Tian-Long; Yin, Rui-Xue; Shi, Yong; Yang, Shi-Mo; Zhang, Wen-Jun

    2016-08-01

    In this review, we focused on a few obstacles that hinder three-dimensional (3D) bioprinting process in tissue engineering. One of the obstacles is the bioinks used to deliver cells. Hydrogels are the most widely used bioink materials; however, they aremechanically weak in nature and cannot meet the requirements for supporting structures, especially when the tissues, such as cartilage, require extracellular matrix to be mechanically strong. Secondly and more importantly, tissue regeneration is not only about building all the components in a way that mimics the structures of living tissues, but also about how to make the constructs function normally in the long term. One of the key issues is sufficient nutrient and oxygen supply to the engineered living constructs. The other is to coordinate the interplays between cells, bioactive agents and extracellular matrix in a natural way. This article reviews the approaches to improve the mechanical strength of hydrogels and their suitability for 3D bioprinting; moreover, the key issues of multiple cell lines coprinting with multiple growth factors, vascularization within engineered living constructs etc. were also reviewed.

  18. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  19. Phonons, Diffusons, and the Boson Peak in Two-Dimensional Lattices with Random Bonds

    NASA Astrophysics Data System (ADS)

    Konyukh, D. A.; Bel'tyukov, Ya. M.; Parshin, D. A.

    2018-02-01

    Within the model of stable random matrices possessing translational invariance, a two-dimensional (on a square lattice) disordered oscillatory system with random strongly fluctuating bonds is considered. By a numerical analysis of the dynamic structure factor S( q, ω), it is shown that vibrations with frequencies below the Ioffe-Regel frequency ωIR are ordinary phonons with a linear dispersion law ω( q) ∝ q and a reciprocal lifetime б q 3. Vibrations with frequencies above ωIR, although being delocalized, cannot be described by plane waves with a definite dispersion law ω( q). They are characterized by a diffusion structure factor with a reciprocal lifetime б q 2, which is typical of a diffusion process. In the literature, they are often referred to as diffusons. It is shown that, as in the three-dimensional model, the boson peak at the frequency ωb in the reduced density of vibrational states g(ω)/ω is on the order of the frequency ωIR. It is located in the transition region between phonons and diffusons and is proportional to the Young's modulus of the lattice, ω b ≃ E.

  20. Quasi-three-dimensional particle imaging with digital holography.

    PubMed

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  1. Three-Dimensional, Inelastic Response of Single-Edge Notch Bend Specimens Subjected to Impact Loading

    DTIC Science & Technology

    1993-08-01

    measure the inherent fracture toughness of a material. A thor- ough understanding of the test specimen behavior is a prerequisite to the application of...measured material properties in structural applications . Three- dimensional dynamic analyses are performed for three different specimen configurations...derstanding of the test specimen behavior is a prerequisite to the application of measured ma- terial properties in structural applications . Three

  2. Gestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development.

    PubMed

    Nassar, Rula; Kaczkurkin, Antonia N; Xia, Cedric Huchuan; Sotiras, Aristeidis; Pehlivanova, Marieta; Moore, Tyler M; Garcia de La Garza, Angel; Roalf, David R; Rosen, Adon F G; Lorch, Scott A; Ruparel, Kosha; Shinohara, Russell T; Davatzikos, Christos; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D

    2018-04-21

    Prematurity is associated with diverse developmental abnormalities, yet few studies relate cognitive and neurostructural deficits to a dimensional measure of prematurity. Leveraging a large sample of children, adolescents, and young adults (age 8-22 years) studied as part of the Philadelphia Neurodevelopmental Cohort, we examined how variation in gestational age impacted cognition and brain structure later in development. Participants included 72 preterm youth born before 37 weeks' gestation and 206 youth who were born at term (37 weeks or later). Using a previously-validated factor analysis, cognitive performance was assessed in three domains: (1) executive function and complex reasoning, (2) social cognition, and (3) episodic memory. All participants completed T1-weighted neuroimaging at 3 T to measure brain volume. Structural covariance networks were delineated using non-negative matrix factorization, an advanced multivariate analysis technique. Lower gestational age was associated with both deficits in executive function and reduced volume within 11 of 26 structural covariance networks, which included orbitofrontal, temporal, and parietal cortices as well as subcortical regions including the hippocampus. Notably, the relationship between lower gestational age and executive dysfunction was accounted for in part by structural network deficits. Together, these findings emphasize the durable impact of prematurity on cognition and brain structure, which persists across development.

  3. Kirigami-based three-dimensional OLED concepts for architectural lighting

    NASA Astrophysics Data System (ADS)

    Kim, Taehwan; Price, Jared S.; Grede, Alex; Lee, Sora; Jackson, Thomas N.; Giebink, Noel C.

    2017-08-01

    Dramatic improvements in white organic light emitting diode (OLED) performance and lifetime over the past decade are driving commercialization of this technology for solid-state lighting applications. As white OLEDs attempt to gain a foothold in the market, however, the biggest challenge outside of lowering their manufacturing cost arguably now lies in creating an architecturally adaptable form factor that will drive public adoption and differentiate OLED lighting from established LED products. Here, we present concepts based on kirigami (the Japanese art of paper cutting and folding) that enable intricate three-dimensional (3D) OLED lighting structures from two dimensional layouts. Using an ultraflexible, encapsulated OLED device architecture on 25 60 μm thick clear polyimide film substrate with simple cut and fold patterns, we demonstrate a series of different lighting concepts ranging from a simple `pop up' structure to more complex designs such as stretchable window blind-like panel, candle flame, and multi-element globe lamp. We only find slight degradation in OLED electrical performance when these designs are shaped into 3D. Our results point to an alternate paradigm for OLED lighting that moves beyond traditional 2D panels toward 3D designs that deliver unique and creative new opportunities for lighting.

  4. Job satisfaction of Slovenian hospital nursing workforce.

    PubMed

    Prosen, Mirko; Piskar, Franka

    2015-03-01

    To test the psychometric properties of the McCloskey-Mueller Satisfaction Scale and to assess which of the McCloskey-Mueller Satisfaction Scale dimensionalities have a considerable impact on job satisfaction of nursing employees in three public Slovenian hospitals. Job satisfaction of nurses is linked to productivity, turnover, absenteeism and patient outcomes. Little is known about the factors contributing to job satisfaction among Slovenian hospital nurses. Understanding the contributing factors could help nurse managers to take appropriate measures. A cross-sectional survey study was used to obtain a sample of 169 registered nursing assistants and 74 registered nurses working in three public hospitals in Slovenia, from which data was obtained using the McCloskey-Mueller Satisfaction Scale. Dimensionality was tested using exploratory factor analysis. A seven-factor structure of 29 items was obtained, which accounted for 54.3% of the total variance in job satisfaction, and was internally consistent (Cronbach's alpha coefficient of the instrument was 0.78). The first factor 'Satisfaction with Interaction Opportunities', which is a component of the social rewards dimension in the McCloskey-Mueller Satisfaction Scale, explained 30.6% of the variation. The registered nursing assistants' job dissatisfaction was higher than that of the registered nurses. Both were mostly dissatisfied with professional opportunities. Using the factor analysis, a seven-factor structure was found instead of the originally introduced eight-factor model, which suggests a need for further redevelopment of the McCloskey-Mueller Satisfaction Scale. The results suggest that operational management needs to revitalize the work environment by ensuring proactive leadership and allowing participation in the decision-making process, while health-care organisations need to support the professional development of registered nursing assistants and registered nurses in order to achieve sustainable effects in job satisfaction. © 2013 John Wiley & Sons Ltd.

  5. Automated integration of lidar into the LANDFIRE product suite

    Treesearch

    Birgit Peterson; Kurtis J. Nelson; Carl Seielstad; Jason Stoker; W. Matt Jolly; Russell Parsons

    2015-01-01

    Accurate information about three-dimensional canopy structure and wildland fuel across the landscape is necessary for fire behaviour modelling system predictions. Remotely sensed data are invaluable for assessing these canopy characteristics over large areas; lidar data, in particular, are uniquely suited for quantifying three-dimensional canopy structure. Although...

  6. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei

    The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.

  7. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  8. Selective Mutism Questionnaire: measurement structure and validity.

    PubMed

    Letamendi, Andrea M; Chavira, Denise A; Hitchcock, Carla A; Roesch, Scott C; Shipon-Blum, Elisa; Stein, Murray B

    2008-10-01

    To evaluate the factor structure, reliability, and validity of the 17-item Selective Mutism Questionnaire (SMQ). Diagnostic interviews were administered via telephone to 102 parents of children identified with selective mutism (SM) and 43 parents of children without SM from varying U.S. geographic regions. Children were between the ages of 3 and 11 inclusive and comprised 58% girls and 42% boys. SM diagnoses were determined using the Anxiety Disorders Interview Schedule for Children-Parent Version; SM severity was assessed using the 17-item SMQ; and behavioral and affective symptoms were assessed using the Child Behavior Checklist. An exploratory factor analysis was conducted to investigate the dimensionality of the SMQ and a modified parallel analysis procedure was used to confirm exploratory factor analysis results. Internal consistency, construct validity, and incremental validity were also examined. The exploratory factor analysis yielded a 13-item solution consisting of three factors: social situations outside of school, school situations, and home and family situations. Internal consistency of SMQ factors and total scale ranged from moderate to high. Convergent and incremental validity was also well supported. Measure structure findings are consistent with the three-factor solution found in a previous psychometric evaluation of the SMQ. Results also suggest that the SMQ provides useful and unique information in the prediction of SM phenomena beyond other child anxiety measures.

  9. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  10. Hydroelastic behaviour of a structure exposed to an underwater explosion

    PubMed Central

    Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.

    2015-01-01

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585

  11. Three dimensional finite-element analysis of finite-thickness fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1977-01-01

    The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.

  12. Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design.

    PubMed

    Gu, Wenwen; Chen, Ying; Li, Yu

    2017-08-01

    Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.

  13. Modeling of bioheat equation for skin and a preliminary study on a noninvasive diagnostic method for skin burn wounds.

    PubMed

    Lee, Shong-Leih; Lu, Yung-Hsiang

    2014-08-01

    Heat transfer in a unit three-dimensional skin tissue with an embedded vascular system of actual histology structure is computed in the present work. The tissue temperature and the blood temperatures in artery and vein vessels are solved with a multi-grid system. The mean temperature of the tissue over the cross-section of the unit skin area is evaluated. The resulting one-dimensional function is regarded as the temperature of healthy tissue (or injured skin but the blood perfusion is still normally working) for large area of skin in view of the symmetric and periodic structure of the paired artery-vein vessels in nature. A three-dimensional bioheat equation then is formulated by the superposition of the skin burn wound effect and the healthy skin temperature with and without thermal radiation exposure. When this bioheat equation is employed to simulate ADT process on burn wounds, the decaying factor of the skin surface temperature is found to be a sharply decreasing function of time in the self-cooling stage after a thermal radiation heating. Nevertheless, the boundary of non-healing (needing surgery) and healing regions in a large burn wound can be estimated by tracking the peak of the gradient of decaying factor within 30 s after the thermal radiation is turned off. Experimental studies on the full ADT procedure are needed to justify the assumptions in the present computation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  14. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  15. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  16. Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.

    2017-10-01

    Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.

  17. Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D

    DOE PAGES

    King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...

    2015-07-01

    DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less

  18. Polyallylamine-Rh nanosheet nanoassemblies-carbon nanotubes organic-inorganic nanohybrids: A electrocatalyst superior to Pt for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu

    2018-05-01

    Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.

  19. SUPIN: A Computational Tool for Supersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2016-01-01

    A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.

  20. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  1. Plasma sheath structure surrounding a large powered spacecraft

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Jongeward, G. A.; Katz, I.

    1984-01-01

    Various factors determining the floating potential of a highly biased (about 4-kV) spacecraft in low earth orbit are discussed. While the common rule of thumb (90 percent negative; 10 percent positive) is usually a good guide, different biasing and grounding patterns can lead to high positive potentials. The NASCAP/LEO code can be used to predict spacecraft floating potential for complex three-dimensional spacecraft.

  2. Perfectionism among Chinese Gifted and Nongifted Students in Hong Kong: The Use of the Revised Almost Perfect Scale

    ERIC Educational Resources Information Center

    Chan, David W.

    2011-01-01

    This study investigated the structure of perfectionism based on the almost Perfect Scale-Revised with a sample of 320 gifted students aged 7 to 12 and a sample of 882 nongifted students of similar ages in Hong Kong. Multigroup confirmatory factor analyses across the two student groups supported a common three-dimensional model that included…

  3. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  4. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  5. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].

    PubMed

    Wu, Tianqi; Yang, Chunxi

    2016-04-01

    To summarize the research progress of several three-dimensional (3-D)-printing scaffold materials in bone tissue engineering. The recent domestic and international articles about 3-D printing scaffold materials were reviewed and summarized. Compared with conventional manufacturing methods, 3-D printing has distinctive advantages, such as enhancing the controllability of the structure and increasing the productivity. In addition to the traditional metal and ceramic scaffolds, 3-D printing scaffolds carrying seeding cells and tissue factors as well as scaffolds filling particular drugs for special need have been paid more and more attention. The development of 3-D printing porous scaffolds have revealed new perspectives in bone repairing. But it is still at the initial stage, more basic and clinical researches are still needed.

  6. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  7. Assessment of tinnitus-related impairments and disabilities using the German THI-12: sensitivity and stability of the scale over time.

    PubMed

    Görtelmeyer, Roman; Schmidt, Jürgen; Suckfüll, Markus; Jastreboff, Pawel; Gebauer, Alexander; Krüger, Hagen; Wittmann, Werner

    2011-08-01

    To evaluate the reliability, dimensionality, predictive validity, construct validity, and sensitivity to change of the THI-12 total and sub-scales as diagnostic aids to describe and quantify tinnitus-evoked reactions and evaluate treatment efficacy. Explorative analysis of the German tinnitus handicap inventory (THI-12) to assess potential sensitivity to tinnitus therapy in placebo-controlled randomized studies. Correlation analysis, including Cronbach's coefficient α and explorative common factor analysis (EFA), was conducted within and between assessments to demonstrate the construct validity, dimensionality, and factorial structure of the THI-12. N = 618 patients suffering from subjective tinnitus who were to be screened to participate in a randomized, placebo-controlled, 16-week, longitudinal study. The THI-12 can reliably diagnose tinnitus-related impairments and disabilities and assess changes over time. The test-retest coefficient for neighboured visits was r > 0.69, the internal consistency of the THI-12 total score was α ≤ 0.79 and α ≤ 0.89 at subsequent visits. Predictability of THI-12 total score and overall variance increased with successive measurements. The three-factorial structure allowed for evaluation of factors that affect aspects of patients' health-related quality of life. The THI-12, with its three-factorial structure, is a simple, reliable, and valid instrument for the diagnosis and assessment of tinnitus and associated impairment over time.

  8. Three dimensional contact/impact methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulak, R.F.

    1987-01-01

    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crashmore » on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.« less

  9. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  10. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  11. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.

    PubMed

    Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung

    2011-09-01

    Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.

  12. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  13. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  14. A new idea for broad band reflector and tunable multichannel filter of one dimensional symmetric photonic crystal with magnetized cold plasma defects

    NASA Astrophysics Data System (ADS)

    Kumar, Asish; Singh, Prabal P.; Thapa, Khem B.

    2018-05-01

    The optical properties of one-dimensional periodic structure composed by SiO2 and dielectric (air) layers with asymmetric and symmetric forms studied. The transmittance for symmetric periodic defective structure analyzed by introducing one, two, three layers of magnetized cold plasma (MCP) in one-dimensional periodic structure. We found better result for symmetric defect of three layer of the MCP compare to the other defective structures. On the basis of our calculated results, we proposed a new idea for broadband reflector at lower frequency range as well as the multichannel filter at higher frequency range.

  15. A comprehensive study on the influence of strength and stiffness eccentricities to the on-plan rotation of asymmetric structure

    NASA Astrophysics Data System (ADS)

    Rashidi, Azida; Majid, Taksiah A.; Fadzli, M. N.; Faisal, Ade; Noor, Suhaila M.

    2017-10-01

    All buildings are subjected to some degree of torsion which in turn changes the member torsional demands from that of translation only. Torsional effects on buildings subjected to earthquakes are not found directly in structural analysis unless full three-dimensional inelastic dynamic time history analysis is conducted. Since design is often conducted using two-dimensional analysis, these effects are not directly considered. There is currently an understanding on how different factors may influence torsion, however, the degree to which these factors influence torsion is relatively unknown. Slab rotation effect is considered a major response parameter to represent the severity of the torsional response of eccentric systems; hence, it is considered in this study. The centre of strength (CR) and centre of stiffness (CS) are the two main factors under considerations. A comprehensive analysis on eighty different CR and CS conditions are applied to a three-dimensional, asymmetric building and their influences to slab rotation are observed. The CR/CS conditions are applied by varying strength eccentricities (er) and stiffness eccentricities (es) using two condition models. Then, earthquake ground motions are applied in z-direction under elastic and inelastic conditions. The results interpreted using a simple approach shows important slab rotation behaviour that forms interesting findings from this study. The slab rotation demand is found to reduce as strength eccentricity moves away from the Centre of Mass (CoM) but is independent of the stiffness eccentricity. The study also confirms finding of previous works which states that stiffness eccentricity plays a minor role when assessing the torsional behaviour of a ductile systems. Results from inelastic analysis shows slab rotation demand increases as strength eccentricity is closer to the CoM but it remains constant for elastic analysis.

  16. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  17. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.

    PubMed Central

    Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.

    1994-01-01

    The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597

  18. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei

    2016-03-28

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less

  19. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    ERIC Educational Resources Information Center

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  20. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  1. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  2. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and the generalized Timoshenko beam are discussed in this chapter. VABS is also used to obtain the beam constitutive properties and warping functions for stress recovery. Several 3D-beam joint examples are presented to show the convergence and accuracy of the analysis. Accuracy is accessed by comparing the joint results with the full 3D analysis. The fourth chapter provides conclusions from present studies and recommendations for future work.

  3. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  4. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  5. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    NASA Astrophysics Data System (ADS)

    Lazarowitz, Reuven; Naim, Raphael

    2013-08-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular learning material in an expository mode (which use one- or two-dimensional cell structures as are presented in charts, textbooks and microscopic slides). The sample included 669, 9th-grade students from 25 classes who were taught by 22 Biology teachers. Students were randomly assigned to the three modes of instruction, and two tests in content knowledge in Biology were used. Data were treated with multiple analyses of variance. The results indicate that entry behavior in Biology was equal for all the study groups and types of schools. The "hands-on" learning group who build three-dimensional models through the learning process achieved significantly higher on academic achievements and on the high and low cognitive questions' levels than the other two groups. The study indicates the advantages students may have being actively engaged in the learning process through the "hands-on" mode of instruction/learning.

  6. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  7. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications

    NASA Astrophysics Data System (ADS)

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-01

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m2g-1 to ~345 m2g-1, while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 +/- 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  8. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications.

    PubMed

    Pham, Tung Ngoc; Samikannu, Ajaikumar; Kukkola, Jarmo; Rautio, Anne-Riikka; Pitkänen, Olli; Dombovari, Aron; Lorite, Gabriela Simone; Sipola, Teemu; Toth, Geza; Mohl, Melinda; Mikkola, Jyri-Pekka; Kordas, Krisztian

    2014-11-06

    In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, J.S.; Technical Research Laboratories, POSCO, Pohang 790-300; Seol, Jae-Bok, E-mail: j.seol@mpie.de

    We investigated the microstructural evolution of high strength low alloy steel, Fe–2.0Mn–0.15Si–0.05C (wt.%), by varying the continuous cooling rates from 1 K/s to 50 K/s using three-dimensional electron backscatter diffraction and transmission electron microscopy. Granular bainitic microstructure was prevalent under a slow cooling rate of 1–10 K/s, while lath-type bainite was dominant at a high cooling rate of 50 K/s. The acicular ferrite that was the major microstructure under the intermediate ranges of cooling rates between 10 K/s and 30 K/s was tangled with each other, leading to a three-dimensional interwoven structure with highly misoriented grains. Because of the formationmore » of three-dimensional structures, we propose that the terms “acicular ferrite” and “bainitic ferrite,” which are currently used in steel, be replaced by the terms “interwoven acicular bainite” and “lath bainite,” respectively. Moreover, we also confirmed that the cooling rate is an important factor in determining whether bainitic microstructures occur in the form of granular bainite, interwoven bainite, or lath bainite. - Highlights: • The morphology of bainitic grains was characterized by 3D-EBSD. • The ‘interwoven bainite’ and ‘lath bainite’ were suggested. • Interwoven bainite consisted of lenticular plates that were interlinked in 3D regime. • The packets of lath bainite were aligned in a specific direction.« less

  10. The Factor Structure and Dimensional Scoring of the Generalized Anxiety Disorder Questionnaire for "DSM-IV"

    ERIC Educational Resources Information Center

    Rodebaugh, Thomas L.; Holaway, Robert M.; Heimberg, Richard G.

    2008-01-01

    Despite favorable psychometric properties, the Generalized Anxiety Disorder Questionnaire for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.) (GAD-Q-IV) does not have a known factor structure, which calls into question use of its original weighted scoring system (usually referred to as the dimensional score).…

  11. Psychometric properties of the School Anxiety Inventory-Short Version in Spanish secondary education students.

    PubMed

    García-Fernández, José M; Inglés, Cándido J; Marzo, Juan C; Martínez-Monteagudo, María C

    2014-05-01

    The School Anxiety Inventory (SAI) can be applied in different fields of psychology. However, due to the inventory's administration time, it may not be useful in certain situations. To address this concern, the present study developed a short version of the SAI (the SAI-SV). This study examined the reliability and validity evidence drawn from the scores of the School Anxiety Inventory-Short Version (SAI-SV) using a sample of 2,367 (47.91% boys) Spanish secondary school students, ranging from 12 to 18 years of age. To analyze the dimensional structure of the SAI-SV, exploratory and confirmatory factor analyses were applied. Internal consistency and test-retest reliability were calculated for SAI-SV scores. A correlated three-factor structure related to school situations (Anxiety about Aggression, Anxiety about Social Evaluation, and Anxiety about Academic Failure) and a three-factor structure related to the response systems of anxiety (Physiological Anxiety, Cognitive Anxiety, and Behavioral Anxiety) were identified and supported. The internal consistency and test-retest reliability were determined to be appropriate. The reliability and validity evidence based on the internal structure of SAI-SV scores was satisfactory.

  12. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  13. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  14. Evaluation of three presets for four-dimensional cone beam CT in lung radiotherapy verification by visual grading analysis.

    PubMed

    Kember, Sally A; Hansen, Vibeke N; Fast, Martin F; Nill, Simeon; McDonald, Fiona; Ahmed, Merina; Thomas, Karen; McNair, Helen A

    2016-07-01

    To evaluate three image acquisition presets for four-dimensional cone beam CT (CBCT) to identify an optimal preset for lung tumour image quality while minimizing dose and acquisition time. Nine patients undergoing radical conventionally fractionated radiotherapy for lung cancer had verification CBCTs acquired using three presets: Preset 1 on Day 1 (11 mGy dose, 240 s acquisition time), Preset 2 on Day 2 (9 mGy dose, 133 s acquisition time) and Preset 3 on Day 3 (9 mGy dose, 67 s acquisition time). The clarity of the tumour and other thoracic structures, and the acceptability of the match, were retrospectively graded by visual grading analysis (VGA). Logistic regression was used to identify the most appropriate preset and any factors that might influence the result. Presets 1 and 2 met a clinical requirement of 75% of structures to be rated "Clear" or above and 75% of matches to be rated "Acceptable" or above. Clarity is significantly affected by preset, patient, observer and structure. Match acceptability is significantly affected by preset. The application of VGA in this initial study enabled a provisional selection of an optimal preset (Preset 2) to be made. This was the first application of VGA to the investigation of presets for CBCT.

  15. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.

    2009-03-15

    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R{sub work} = 16.1% and R{sub free} = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042{sup o}, and 0.071{sup o}, respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure ofmore » the homodimer St UPh in the complex with a K{sup +} ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).« less

  16. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  17. Hydroelastic behaviour of a structure exposed to an underwater explosion.

    PubMed

    Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M

    2015-01-28

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  19. Correcting pervasive errors in RNA crystallography through enumerative structure prediction.

    PubMed

    Chou, Fang-Chieh; Sripakdeevong, Parin; Dibrov, Sergey M; Hermann, Thomas; Das, Rhiju

    2013-01-01

    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R(free) factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.

  20. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  1. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  2. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  3. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  4. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  5. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  6. Photodeposition Method For Fabricating A Three-Dimensional, Patterned Polymer Microstructure

    DOEpatents

    Walt, David R.; Healey, Brian G.

    2001-03-13

    The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.

  7. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale.

    PubMed

    Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M

    2002-01-01

    A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.

  8. Cosmetic sequelae after oncoplastic surgery of the breast. Classification and factors for prevention.

    PubMed

    Acea Nebril, Benigno; Cereijo Garea, Carmen; García Novoa, Alejandra

    2015-02-01

    Oncoplastic surgery is an essential tool in the surgical approach to women with breast cancer. These techniques are not absolute guarantee for a good cosmetic result and therefore some patients will have cosmetic sequelae secondary to poor surgical planning, the effects of adjuvant treatments or the need for resection greater than originally planned. The high frequency of these cosmetic sequelae in oncology practice makes it necessary to classify them for optimal surgical planning. The aim of this paper is to present a classification of cosmetic sequelae after oncoplastic procedures to identify those factors that are crucial to its prevention. This classification contains 4 groups: breast contour deformities, asymmetries, alterations in nipple-aréola complex (NAC) and defects in the three dimensional structure of the breast. A significant group of these sequelae (asymmetries and deformities) are associated with breast irradiation and need an accurate information process with patients to set realistic expectations about cosmetic results. Finally, there is another group of sequelae (NAC disorders and three-dimensional structure) that are related to poor planning and deficiencies in surgical approach, therfore specific training is essential for learning these surgical techniques. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  10. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  11. Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images

    PubMed Central

    Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali

    2015-01-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077

  12. Uniform electron gases. III. Low-density gases on three-dimensional spheres.

    PubMed

    Agboola, Davids; Knol, Anneke L; Gill, Peter M W; Loos, Pierre-François

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids - the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) - and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  13. Three-dimensional macro-structures of two-dimensional nanomaterials.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng

    2016-10-21

    If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.

  14. Applications to car bodies - Generalized layout design of three-dimensional shells

    NASA Technical Reports Server (NTRS)

    Fukushima, Junichi; Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    We shall describe applications of the homogenization method, formulated in Part 1, to design layout of car bodies represented by three-dimensional shell structures based on a multi-loading optimization.

  15. [Three-dimensional finite element study on the change of glossopharyngeum in patient with obstructive sleep apnea hypopnea syndrome during titrated mandible advancement].

    PubMed

    Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling

    2013-04-01

    To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.

  16. On the three dimensional structure of stratospheric material transport associated with various types of waves

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Sato, K.

    2016-12-01

    The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.

  17. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.

    PubMed

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-11

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  18. Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki

    2016-10-01

    Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.

  19. Dorello's Canal for Laymen: A Lego-Like Presentation.

    PubMed

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-06-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.

  20. Dorello's Canal for Laymen: A Lego-Like Presentation

    PubMed Central

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-01-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547

  1. RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction

    PubMed Central

    Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric

    2012-01-01

    We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291

  2. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix

    NASA Astrophysics Data System (ADS)

    Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi

    2017-02-01

    Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.

  3. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  4. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    NASA Astrophysics Data System (ADS)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  5. Fracture Analysis of Semi-Elliptical Surface Cracks in Ductile Materials

    NASA Technical Reports Server (NTRS)

    Daniewicz, S. R.; Newman, J. C., Jr.; Leach, A. M.

    2004-01-01

    Accurate life assessment of structural components may require advanced life prediction criteria and methodologies. Structural components often exhibit several different types of defects, among the most prevalent being surface cracks. A semi-elliptical surface crack subjected to monotonic loading will exhibit stable crack growth until the crack has reached a critical size, at which the crack loses stability and fracture ensues (Newman, 2000). The shape and geometry of the flaw are among the most influential factors. When considering simpler crack configurations, such as a through-the-thickness crack, a three-dimensional (3D) geometry may be modeled under the approximation of two-dimensional (2D) plane stress or plane strain. The more complex surface crack is typically modeled numerically with the Finite Element Method (FEM). A semi-elliptical surface crack is illustrated in Figure 1-1.

  6. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package

    PubMed Central

    Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang

    2006-01-01

    Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074

  7. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  8. Meaning profiles of dwellings, pathways, and metaphors in design: implications for education

    NASA Astrophysics Data System (ADS)

    Casakin, Hernan; Kreitler, Shulamith

    2017-11-01

    The study deals with the roles and interrelations of the meaning-based assessments of dwellings, pathways and metaphors in design performance. It is grounded in the Meaning Theory [Kreitler, S., and H. Kreitler. 1990. The Cognitive Foundations of Personality Traits. New York: Plenum], which enables identifying the cognitive contents and processes underlying cognitive performance in different domains, thus rendering them more accessible to educational training. The objectives were to identify the components of the meaning profiles of dwellings, pathways, and metaphors as perceived by design students; to analyse their interrelations; and to examine which of the identified components of these constructs serve as best predictors of design performance aided by the use of metaphors. Participants were administered a design task and questionnaires about the Dimensional Profiles of Dwellings, Pathways, and Metaphors, based on the meaning system. Factors based on the factor analyses of the responses to the three questionnaires were used in regression analyses as predictors of the performance score in a design task. The following three factors of the dimensional meaning profiles of metaphors were significant predictors of design performance: sensory, functional, and structural evaluations. Implications for design education are discussed, primarily concerning the important role of metaphor in design problem-solving.

  9. Far-field coupling in nanobeam photonic crystal cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out ofmore » GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.« less

  10. Test-retest reliability of the underlying latent factor structure of alcohol subjective response.

    PubMed

    Lutz, Joseph A; Childs, Emma

    2017-04-01

    Alcohol subjective experiences are multi-dimensional and demonstrate wide inter-individual variability. Recent efforts have sought to establish a clearer understanding of subjective alcohol responses by identifying core constructs derived from multiple measurement instruments. The aim of this study was to evaluate the temporal stability of this approach to conceptualizing alcohol subjective experiences across successive alcohol administrations in the same individuals. Healthy moderate alcohol drinkers (n = 104) completed six experimental sessions each, three with alcohol (0.8 g/kg), and three with a non-alcoholic control beverage. Participants reported subjective mood and drug effects using standardized questionnaires before and at repeated times after beverage consumption. We explored the underlying latent structure of subjective responses for all alcohol administrations using exploratory factor analysis and then tested measurement invariance over the three successive administrations using multi-group confirmatory factor analyses. Exploratory factor analyses on responses to alcohol across all administrations yielded four factors representing "Positive mood," "Sedation," "Stimulation/Euphoria," and "Drug effects and Urges." A confirmatory factor analysis on the separate administrations indicated acceptable configural and metric invariance and moderate scalar invariance. In this study, we demonstrate temporal stability of the underlying constructs of subjective alcohol responses derived from factor analysis. These findings strengthen the utility of this approach to conceptualizing subjective alcohol responses especially for use in prospective and longitudinal alcohol challenge studies relating subjective response to alcohol use disorder risk.

  11. Targeted analyte deconvolution and identification by four-way parallel factor analysis using three-dimensional gas chromatography with mass spectrometry data.

    PubMed

    Watson, Nathanial E; Prebihalo, Sarah E; Synovec, Robert E

    2017-08-29

    Comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry (GC 3 -TOFMS) creates an opportunity to explore a new paradigm in chemometric analysis. Using this newly described instrument and the well understood Parallel Factor Analysis (PARAFAC) model we present one option for utilization of the novel GC 3 -TOFMS data structure. We present a method which builds upon previous work in both GC 3 and targeted analysis using PARAFAC to simplify some of the implementation challenges previously discovered. Conceptualizing the GC 3 -TOFMS instead as a one-dimensional gas chromatograph with GC × GC-TOFMS detection we allow the instrument to create the PARAFAC target window natively. Each first dimension modulation thus creates a full GC × GC-TOFMS chromatogram fully amenable to PARAFAC. A simple mixture of 115 compounds and a diesel sample are interrogated through this methodology. All test analyte targets are successfully identified in both mixtures. In addition, mass spectral matching of the PARAFAC loadings to library spectra yielded results greater than 900 in 40 of 42 test analyte cases. Twenty-nine of these cases produced match values greater than 950. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    NASA Astrophysics Data System (ADS)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  13. Exploring the Roles of Proline in Three-Dimensional Domain Swapping from Structure Analysis and Molecular Dynamics Simulations.

    PubMed

    Huang, Yongqi; Gao, Meng; Su, Zhengding

    2018-02-01

    Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.

  14. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  15. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    ERIC Educational Resources Information Center

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  16. Computer program determines vibration in three-dimensional space of hydraulic lines excited by forced displacements

    NASA Technical Reports Server (NTRS)

    Dodge, W. G.

    1968-01-01

    Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.

  17. Three-dimensional flow visualization and vorticity dynamics in revolving wings

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan

    2013-01-01

    We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.

  18. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  19. Three-dimensional cross-linking composite of graphene, carbon nanotubes and Si nanoparticles for lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Tian, Suyun; Zhu, Guannan; Tang, Yanping; Xie, Xiaohua; Wang, Qian; Ma, Yufei; Ding, Guqiao; Xie, Xiaoming

    2018-03-01

    Various graphene-based Si nanocomposites have been reported to improve the performance of active materials in Li-ion batteries. However, these candidates still yield severe capacity fading due to the electrical disconnection and fractures caused by the huge volume changes over extended cycles. Therefore, we have designed a novel three-dimensional cross-linked graphene and single-wall carbon nanotube structure to encapsulate the Si nanoparticles. The synthesized three-dimensional structure is attributed to the excellent self-assembly of carbon nanotubes with graphene oxide as well as a thermal treatment process at 900 °C. This special structure provides sufficient void spaces for the volume expansion of Si nanoparticles and channels for the diffusion of ions and electrons. In addition, the cross-linking of the graphene and single-wall carbon nanotubes also strengthens the stability of the structure. As a result, the volume expansion of the Si nanoparticles is restrained. The specific capacity remains at 1450 mAh g-1 after 100 cycles at 200 mA g-1. This well-defined three-dimensional structure facilitates superior capacity and cycling stability in comparison with bare Si and a mechanically mixed composite electrode of graphene, single-wall carbon nanotubes and silicon nanoparticles.

  20. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  1. Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.

    ERIC Educational Resources Information Center

    Hagekull, Berit; And Others

    1980-01-01

    The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…

  2. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology.

    PubMed

    Wolff, Jonas O; van der Meijden, Arie; Herberstein, Marie E

    2017-07-26

    Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures. © 2017 The Author(s).

  3. Graphic kinematics, visual virtual work and elastographics

    PubMed Central

    Konstantatou, Marina; Athanasopoulos, Georgios; Hannigan, Laura

    2017-01-01

    In this paper, recent progress in graphic statics is combined with Williot displacement diagrams to create a graphical description of both statics and kinematics for two- and three-dimensional pin-jointed trusses. We begin with reciprocal form and force diagrams. The force diagram is dissected into its component cells which are then translated relative to each other. This defines a displacement diagram which is topologically equivalent to the form diagram (the structure). The various contributions to the overall Virtual Work appear as parallelograms (for two-dimensional trusses) or parallelopipeds (for three-dimensional trusses) that separate the force and the displacement pieces. Structural mechanisms can be identified by translating the force cells such that their shared faces slide across each other without separating. Elastic solutions can be obtained by choosing parallelograms or parallelopipeds of the appropriate aspect ratio. Finally, a new type of ‘elastographic’ diagram—termed a deformed Maxwell–Williot diagram (two-dimensional) or a deformed Rankine–Williot diagram (three-dimensional)—is presented which combines the deflected structure with the forces carried by its members. PMID:28573030

  4. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    NASA Astrophysics Data System (ADS)

    Ardentov, Andrei A.; Sachkov, Yuri L.

    2017-12-01

    We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

  5. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  6. A three-dimensional wide-angle BPM for optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2007-01-01

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  7. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  8. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  9. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  10. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  11. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, Michael S.; Strip, David R.

    1996-01-01

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.

  12. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  13. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    NASA Astrophysics Data System (ADS)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to rotate structures. Some students had difficulty obtaining the correct angle required to properly interpret spatial relationships. This led to frustration and caused some students to quit trying before they could answer questions fully. Even though there were some difficulties, outcomes were not affected. Higher scores, however, may have been achieved had the students been proficient in VRML maneuvering.

  14. Ultrathin thermoresponsive self-folding 3D graphene

    PubMed Central

    Xu, Weinan; Qin, Zhao; Chen, Chun-Teh; Kwag, Hye Rin; Ma, Qinli; Sarkar, Anjishnu; Buehler, Markus J.; Gracias, David H.

    2017-01-01

    Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures. The methodology involves the surface functionalization of monolayer graphene using ultrathin noncovalently bonded mussel-inspired polydopamine and thermoresponsive poly(N-isopropylacrylamide) brushes. The functionalized graphene is micropatterned and self-folds into ordered 3D structures with reversible deformation under a full control by temperature. The structures are characterized using spectroscopy and microscopy, and self-folding is rationalized using a multiscale molecular dynamics model. Our work demonstrates the potential to design and fabricate ordered 3D graphene structures with predictable shape and dynamics. We highlight applicability by encapsulating live cells and creating nonlinear resistor and creased transistor devices. PMID:28989963

  15. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  16. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    PubMed

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers

    NASA Astrophysics Data System (ADS)

    Guo, Yuqing; Chen, Lu; Zhu, Jiali; Ni, Haibin; Xia, Wei; Wang, Ming

    2017-07-01

    Three dimensional photonic crystals are a kind of promising sensing materials in biology and chemistry. A compact structure, consists of planner colloidal crystals and 45 degree angle polished fiber, is proposed as a platform for accurate, fast, reliable three dimensional photonic crystals sensing in practice. This structure show advantages in compact size for integration and it is ease for large scale manufacture. Reflectivity of the 45 degree angle polished surface with and without a layer of Ag film are simulated by FDTD simulation. Refractive index sensing properties as well as mode distribution of this structure consists of both polystyrene opal and silica inverse opal film is investigated, and an experimental demonstration of silica inverse opal film is performed, which shows a sensitivity of 733 nm/RIU. Different kinds of three dimensional photonic crystals can also be applied in this structure for particular purpose.

  18. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling. © 2015 AlphaMed Press.

  19. Dimensional assessment of personality pathology in patients with eating disorders.

    PubMed

    Goldner, E M; Srikameswaran, S; Schroeder, M L; Livesley, W J; Birmingham, C L

    1999-02-22

    This study examined patients with eating disorders on personality pathology using a dimensional method. Female subjects who met DSM-IV diagnostic criteria for eating disorder (n = 136) were evaluated and compared to an age-controlled general population sample (n = 68). We assessed 18 features of personality disorder with the Dimensional Assessment of Personality Pathology - Basic Questionnaire (DAPP-BQ). Factor analysis and cluster analysis were used to derive three clusters of patients. A five-factor solution was obtained with limited intercorrelation between factors. Cluster analysis produced three clusters with the following characteristics: Cluster 1 members (constituting 49.3% of the sample and labelled 'rigid') had higher mean scores on factors denoting compulsivity and interpersonal difficulties; Cluster 2 (18.4% of the sample) showed highest scores in factors denoting psychopathy, neuroticism and impulsive features, and appeared to constitute a borderline psychopathology group; Cluster 3 (32.4% of the sample) was characterized by few differences in personality pathology in comparison to the normal population sample. Cluster membership was associated with DSM-IV diagnosis -- a large proportion of patients with anorexia nervosa were members of Cluster 1. An empirical classification of eating-disordered patients derived from dimensional assessment of personality pathology identified three groups with clinical relevance.

  20. [Research progress of three-dimensional digital model for repair and reconstruction of knee joint].

    PubMed

    Tong, Lu; Li, Yanlin; Hu, Meng

    2013-01-01

    To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

  1. Part A: Investigations of the Synthesis of Pyrazinochlorins and Other Porphyrin Derivatives. Part B: investigations of Student Translation Between 2-D/3-D Representations of Molecules

    NASA Astrophysics Data System (ADS)

    Dean, Michelle L.

    This dissertation will be composed of two parts. The first part was completed under the direction of Dr. Christian Bruckner and outlines the synthesis of porphyrins and related derivatives. It explores specifically the synthesis of pyrazinoporphyrin, a pyrrole-modified porphyrin, the use of microwaves for porphyrin synthesis, and the synthesis of a novel building block for use in an expanded porphyrin structure. Lastly, this part will describe a laboratory experiment, suitable for an organic chemistry course, which investigates the photophysical properties of porphyrins using brown eggs as a source of protoporphyrin IX. The second part, under the advisement of Dr. Tyson Miller, will detail research conducted on students' ability to translate between two-dimensional and three-dimensional representations of molecules. Using the Grounded Theory and a formal interview it was investigated what errors students make as they translate from a two-dimensional drawing to a three-dimensional model, and visa versa. This part also seeks to gain an understanding, through the use of phenomenography what was factors contribute to cognitive overload when drawing chiral centers.

  2. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  3. Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions.

    PubMed

    Ishiguro, H; Koike, K

    1998-09-11

    Behavior of ice crystals and human red blood cells during extracellular-freezing was investigated in three-dimensions using a confocal laser scanning microscope(CLSM), which noninvasively produces tomograms of biological materials. Physiological saline and physiological saline with 2.4 M glycerol were used for suspension. Various cooling rates for directional solidification were used for distinctive morphology of the ice crystals. Addition of acridine orange as a fluorescent dye into the cell suspension enabled ice crystal, cells and unfrozen solution to be distinguished by different colors. The results indicate that the microscopic structure is three-dimensional for flat, cellular, and dendritic solid-liquid interfaces and that a CLSM is very effective in studying three-dimensional structure during the freezing of cell suspensions.

  4. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    PubMed Central

    Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343

  5. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut

    2008-03-01

    We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.

  6. Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization

    ERIC Educational Resources Information Center

    Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.

    2008-01-01

    We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…

  7. Creating 3D Physical Models to Probe Student Understanding of Macromolecular Structure

    ERIC Educational Resources Information Center

    Cooper, A. Kat; Oliver-Hoyo, M. T.

    2017-01-01

    The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical…

  8. Three-Dimensional Magnetic Resonance Imaging of Velopharyngeal Structures

    ERIC Educational Resources Information Center

    Bae, Youkyung; Kuehn, David P.; Sutton, Bradley P.; Conway, Charles A.; Perry, Jamie L.

    2011-01-01

    Purpose: To report the feasibility of using a 3-dimensional (3D) magnetic resonance imaging (MRI) protocol for examining velopharyngeal structures. Using collected 3D MRI data, the authors investigated the effect of sex on the midsagittal velopharyngeal structures and the levator veli palatini (levator) muscle configurations. Method: Ten Caucasian…

  9. Development of computational methods for heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Ryan, James S.

    1993-01-01

    The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.

  10. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  11. Analysis of high-rise constructions with the using of three-dimensional models of rods in the finite element program PRINS

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir

    2018-03-01

    The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.

  12. Low-order modeling of internal heat transfer in biomass particle pyrolysis

    DOE PAGES

    Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.

    2016-05-11

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  13. Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart

    2016-06-16

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomassmore » particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  14. Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Guoqing; Liu, Ping; Ren, Yurong; Huang, Xiaobing; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan

    2017-09-01

    The fabrication of an ideal electrode architecture consisting of robust three dimensional (3D) nanowire networks have gained special interest for energy storage applications owing to the integrated advantages of nanostructures and microstructures. In this work, 3D MoO2 nanotextiles assembled from highly interconnected elongated nanowires are successfully prepared by a facile stirring assisted hydrothermal method and followed by an annealing process. In addition, a methylbenzene/water biphasic reaction system is involved in the hydrothermal process. When used as an anode material in Li ion batteries (LIBs), this robust MoO2 nanotextiles exhibit a high reversible capacity (860.4 mAh g-1 at 300 mA g-1), excellent cycling performance (89% capacity retention after 160 cycles) and rate capability (577 mAh g-1 at 2000 mA g-1). Various synthetic factors to the fabrication of 3D nanotextiles structure are discussed here and this design of 3D network structures may be extended to the preparation of other functional nanomaterials.

  15. Sculpting Cells with Play Doh.

    ERIC Educational Resources Information Center

    Way, Virginia A.

    1982-01-01

    Suggests using Play Doh to mold models of the nucleus, mitochondria, and inner cellular structures. Students can conceptualize the cell's structures as three-dimensional even though they appear two-dimensional under a microscope. Includes instructions for preparing homemade dough. (Author/JN)

  16. Research in Seismology

    DTIC Science & Technology

    1978-12-31

    Koyanagi, Three-dimensional crust and mantle structure of Kilauea Volcano , Hawaii , J. Geophys. Res., 82, 5379-5394, 1977. Engdahl, E.R., J.G. Sindorf, and...Johnson, 1967), in Japan (Zandt, 1975; Hirahara, 1977), at NORSAR (Aki, 1977), in Yellowstone National Park (1yer, 1975; Zandt, 1978), in Hawaii ...1962. Ellsworth, W.L., Three-dimensional structure of the crust and mantle beneath the island of Hawaii , unpublished Ph.D. thesis, Massachusetts

  17. Confirmatory factor analysis of the Appraisal of Self-Care Agency Scale - Revised 1

    PubMed Central

    Stacciarini, Thaís Santos Guerra; Pace, Ana Emilia

    2017-01-01

    ABSTRACT Objective: to analyze the factor structure of the Appraisal of Self-Care Agency Scale-Revised (ASAS-R), adapted for Brazil. Method: methodological study conducted with 150 individuals with diabetes mellitus cared for by the Family Health Strategy, most of whom are elderly with low educational levels. The test of the hypothesis concerning the confirmatory factor composition of the ASAS-R was performed using latent variables structural equations. Results: the model’s goodness-of-fit indexes were satisfactory (χ2 = 259.19; χ2/g.l = 2.97, p < 0.001; GFI = 0.85; RMR = 0.07; RMSEA = 0.09); the factor loads were greater than 0.40; and most item-to-factor-correlations presented moderate to strong magnitude (0.34 to 0.58); total alpha value was 0.74, while the alpha of the three factors were 0.69, 0.38 and 0.69, respectively. Conclusion: the scale’s factor structure presented satisfactory validity and reliability results, with the exception of one factor. Application of this scale to samples of the general population is desirable in order to strengthen analyses of internal consistency and the dimensionality of the factor structure. This study is expected to contribute to further studies addressing the self-care agency construct and the development of the ASAS-R. PMID:28146182

  18. Synthesis, structure and photoluminescence properties of amine-templated open-framework bismuth sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marri, Subba R.; Behera, J.N., E-mail: jnbehera@niser.ac.in

    2014-02-15

    Two organically-templated bismuth sulfates of the compositions, [C{sub 6}N{sub 2}H{sub 14}] [Bi(SO{sub 4}){sub 2}(NO{sub 3})], (1) and [C{sub 4}N{sub 2}H{sub 12}]{sub 4}[Bi{sub 4}(SO{sub 4}){sub 10}(H{sub 2}O){sub 4}], (2), with open architecture have been synthesized and their structures determined by single crystal X-ray diffraction. 1 has a corrugated layered structure with 8-membered aperture wherein the SO{sub 4} tetrahedra and the BiO{sub 8} polyhedra join together to form (4, 4) net sheets of the metal centers while 2 has a three-dimensional structure possessing 8- and 12-membered channels. Both the compounds show good fluorescence properties exhibiting blue luminescence. Time-resolved fluorescence behavior of 1more » and 2 shows mean fluorescence life time of 0.9 and 1.0 ns, respectively. - Graphical abstract: Two open-framework bismuth sulfates with the layered and three-dimensional structures have been synthesized and characterized. Both the compounds show good fluorescence properties exhibiting blue luminescence. Display Omitted - Highlights: • Two organically-templated bismuth sulfates with open architecture have been synthesized and characterized. • One has a corrugated layered structure while the other one has a three-dimensional structure possessing channels. • They are novel in that open-framework three-dimensional main group metal sulfates are first to be reported. • They show good fluorescence properties exhibiting blue luminescence.« less

  19. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, D.; Ohno, N.; Tanaka, H.

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less

  20. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less

  1. Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances

    NASA Astrophysics Data System (ADS)

    Bedrosian, Paul A.; Love, Jeffrey J.

    2015-12-01

    Empirical impedance tensors obtained from EarthScope magnetotelluric data at sites distributed across the midwestern United States are used to examine the feasibility of mapping magnetic storm induction of geoelectric fields. With these tensors, in order to isolate the effects of Earth conductivity structure, we perform a synthetic analysis—calculating geoelectric field variations induced by a geomagnetic field that is geographically uniform but varying sinusoidally with a chosen set of oscillation frequencies that are characteristic of magnetic storm variations. For north-south oriented geomagnetic oscillations at a period of T0=100 s, induced geoelectric field vectors show substantial geographically distributed differences in amplitude (approximately a factor of 100), direction (up to 130∘), and phase (over a quarter wavelength). These differences are the result of three-dimensional Earth conductivity structure, and they highlight a shortcoming of one-dimensional conductivity models (and other synthetic models not derived from direct geophysical measurement) that are used in the evaluation of storm time geoelectric hazards for the electric power grid industry. A hypothetical extremely intense magnetic storm having 500 nT amplitude at T0=100 s would induce geoelectric fields with an average amplitude across the midwestern United States of about 2.71 V/km, but with a representative site-to-site range of 0.15 V/km to 16.77 V/km. Significant improvement in the evaluation of such hazards will require detailed knowledge of the Earth's interior three-dimensional conductivity structure.

  2. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids.

    PubMed

    Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir

    2017-06-01

    The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

  3. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    DOE PAGES

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less

  4. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

    PubMed

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

    2018-03-01

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

  5. Manipulation of photons at the surface of three-dimensional photonic crystals.

    PubMed

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  6. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    PubMed

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  7. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  8. Self-assembly of three-dimensional open structures using patchy colloidal particles.

    PubMed

    Rocklin, D Zeb; Mao, Xiaoming

    2014-10-14

    Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.

  9. Connectivity of glass structure. Oxygen number

    NASA Astrophysics Data System (ADS)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  10. Three-dimensional magnetophotonic crystals based on artificial opals

    NASA Astrophysics Data System (ADS)

    Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.

    2004-06-01

    We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.

  11. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    PubMed Central

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  12. Brief report: Assessing dispositional optimism in adolescence--factor structure and concurrent validity of the Life Orientation Test--Revised.

    PubMed

    Monzani, Dario; Steca, Patrizia; Greco, Andrea

    2014-02-01

    Dispositional optimism is an individual difference promoting psychosocial adjustment and well-being during adolescence. Dispositional optimism was originally defined as a one-dimensional construct; however, empirical evidence suggests two correlated factors in the Life Orientation Test - Revised (LOT-R). The main aim of the study was to evaluate the dimensionality of the LOT-R. This study is the first attempt to identify the best factor structure, comparing congeneric, two correlated-factor, and two orthogonal-factor models in a sample of adolescents. Concurrent validity was also assessed. The results demonstrated the superior fit of the two orthogonal-factor model thus reconciling the one-dimensional definition of dispositional optimism with the bi-dimensionality of the LOT-R. Moreover, the results of correlational analyses proved the concurrent validity of this self-report measure: optimism is moderately related to indices of psychosocial adjustment and well-being. Thus, the LOT-R is a useful, valid, and reliable self-report measure to properly assess optimism in adolescence. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  13. A large motion zero-gravity suspension system for experimental simulation of orbital construction and deployment. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Straube, Timothy Milton

    1993-01-01

    The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.

  14. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy

    DOE PAGES

    Liu, Yijin; Meirer, Florian; Krest, Courtney M.; ...

    2016-08-30

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metalmore » deposition, simulate the response of the network to a virtual ageing of the catalyst particle. In conclusion, the developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material’s pore space, which is an essential factor in the rational design of functional porous materials.« less

  15. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  16. An Essential Protein Repair Enzyme: Investigation of the Molecular Recognition Mechanism of Methionine Sulfoxide Reductase A

    DTIC Science & Technology

    2008-05-01

    4 ). The three-dimensional spatial orientation of the atoms for these resolved solution structures (Protein Data Bank accession codes: 2gt3...Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 Å resolution . Struct. Fold. Des. 8: 1167 – 1178. 2 . Brot...sources (8). There is a 67% sequence identity between the E.coli and human MsrA ( 2 ). N-terminus C-terminus Figure 2 . Three-dimensional structure

  17. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  18. The p Factor: One General Psychopathology Factor in the Structure of Psychiatric Disorders?

    PubMed Central

    Caspi, Avshalom; Houts, Renate M.; Belsky, Daniel W.; Goldman-Mellor, Sidra J.; Harrington, HonaLee; Israel, Salomon; Meier, Madeline H.; Ramrakha, Sandhya; Shalev, Idan; Poulton, Richie; Moffitt, Terrie E.

    2013-01-01

    Mental disorders traditionally have been viewed as distinct, episodic, and categorical conditions. This view has been challenged by evidence that many disorders are sequentially comorbid, recurrent/chronic, and exist on a continuum. Using the Dunedin Multidisciplinary Health and Development Study, we examined the structure of psychopathology, taking into account dimensionality, persistence, co-occurrence, and sequential comorbidity of mental disorders across 20 years, from adolescence to midlife. Psychiatric disorders were initially explained by three higher-order factors (Internalizing, Externalizing, and Thought Disorder) but explained even better with one General Psychopathology dimension. We have called this dimension the p factor because it conceptually parallels a familiar dimension in psychological science: the g factor of general intelligence. Higher p scores are associated with more life impairment, greater familiality, worse developmental histories, and more compromised early-life brain function. The p factor explains why it is challenging to find causes, consequences, biomarkers, and treatments with specificity to individual mental disorders. Transdiagnostic approaches may improve research. PMID:25360393

  19. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  20. Life Origination Hydrate Theory (LOH-Theory) and Mitosis and Replication Hydrate Theory (MRH-Theory): three-dimensional PC validation

    NASA Astrophysics Data System (ADS)

    Kadyshevich, E. A.; Dzyabchenko, A. V.; Ostrovskii, V. E.

    2014-04-01

    Size compatibility of the CH4-hydrate structure II and multi-component DNA fragments is confirmed by three-dimensional simulation; it is validation of the Life Origination Hydrate Theory (LOH-Theory).

  1. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  2. Three dimensional canonical singularity and five dimensional N = 1 SCFT

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Yau, Shing-Tung

    2017-06-01

    We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.

  3. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds

    PubMed Central

    Shin, Kyungsup; Jayasuriya, Ambalangodage C.; Kohn, David H.

    2009-01-01

    A biomimetic approach involving the self-assembly of mineral within the pores of three-dimensional porous polymer scaffolds is a promising strategy to integrate advantages of inorganic and organic phases into a single material for hard tissue engineering. Such a material enhances the ability of progenitor cells to differentiate down an osteoblast lineage in vitro and in vivo, compared with polymer scaffolds. The mechanisms regulating mineral formation in this one-step process, however, are poorly understood, especially the effects of ionic activity products (IP) of the mineralizing solution and incubation time. The aims of this study were to define the structure and composition of mineral formed within the pores of biodegradable polymer scaffolds as a function of IP and time. Three-dimensional poly(lactide-co-glycolide) scaffolds were fabricated by solvent casting/particulate leaching and incubated for 4–16 days in six variants of simulated body fluid whose IPs were varied by adjusting ionic concentrations. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrated the formation of carbonated apatite with sub-micrometer sized crystals that grew into spherical globules extending out of the scaffold pore surfaces. As IP increased, more mineral grew on the scaffold pore surfaces, but the apatite became less crystalline and the Ca/P molar ratio decreased from 1.63 ± 0.005 to 1.51 ± 0.002. Since morphology, composition, and structure of mineral are factors that affect cell function, this study demonstrates that the IP of the mineralizing solution is an important modulator of material properties, potentially leading to enhanced control of cell function. PMID:17584901

  4. Three-dimensional vortex wake structure of flapping wings in hovering flight.

    PubMed

    Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan

    2014-02-06

    Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.

  5. Multiscale modelling of palisade formation in gliobastoma multiforme.

    PubMed

    Caiazzo, Alfonso; Ramis-Conde, Ignacio

    2015-10-21

    Palisades are characteristic tissue aberrations that arise in glioblastomas. Observation of palisades is considered as a clinical indicator of the transition from a noninvasive to an invasive tumour. In this paper we propose a computational model to study the influence of the hypoxic switch in palisade formation. For this we produced three-dimensional realistic simulations, based on a multiscale hybrid model, coupling the evolution of tumour cells and the oxygen diffusion in tissue, that depict the shape of palisades during its formation. Our results can be summarized as follows: (1) the presented simulations can provide clinicians and biologists with a better understanding of three-dimensional structure of palisades as well as of glioblastomas growth dynamics; (2) we show that heterogeneity in cell response to hypoxia is a relevant factor in palisade and pseudopalisade formation; (3) we show how selective processes based on the hypoxia switch influence the tumour proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Factor structure and psychometric properties of a Romanian translation of the Body Appreciation Scale-2.

    PubMed

    Swami, Viren; Tudorel, Otilia; Goian, Cosmin; Barron, David; Vintila, Mona

    2017-12-01

    We examined the psychometric properties of a Romanian translation of the 10-item Body Appreciation Scale-2 (BAS-2). A total of 453 university students from Romania completed the BAS-2, along with measures of disordered eating, self-esteem, satisfaction with life, and subjective happiness. In addition, a separate sample of university students (N=109) completed only the BAS-2 at two time-points three weeks apart. Principal-axis factor analysis indicated that BAS-2 scores had a one-dimensional factor structure in both women and men. Confirmatory factor analysis indicated that this factor structure had adequate fit, but invariance across sex was not supported. Further analyses indicated that BAS-2 scores evidenced internal consistency, convergent validity, and test-retest reliability in both women and men. These results suggest that BAS-2 scores reduce to one dimension in Romanian adults, but the lack of sex invariance may indicate that the same latent construct is not being measured in women and men. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dual wing, swept forward swept rearward wing, and single wing design optimization for high performance business airplanes

    NASA Technical Reports Server (NTRS)

    Rhodes, M. D.; Selberg, B. P.

    1982-01-01

    An investigation was performed to compare closely coupled dual wing and swept forward swept rearward wing aircraft to corresponding single wing 'baseline' designs to judge the advantages offered by aircraft designed with multiple wing systems. The optimum multiple wing geometry used on the multiple wing designs was determined in an analytic study which investigated the two- and three-dimensional aerodynamic behavior of a wide range of multiple wing configurations in order to find the wing geometry that created the minimum cruise drag. This analysis used a multi-element inviscid vortex panel program coupled to a momentum integral boundary layer analysis program to account for the aerodynamic coupling between the wings and to provide the two-dimensional aerodynamic data, which was then used as input for a three-dimensional vortex lattice program, which calculated the three-dimensional aerodynamic data. The low drag of the multiple wing configurations is due to a combination of two dimensional drag reductions, tailoring the three dimensional drag for the swept forward swept rearward design, and the structural advantages of the two wings that because of the structural connections permitted higher aspect ratios.

  8. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  9. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  10. Directly reconstructing principal components of heterogeneous particles from cryo-EM images.

    PubMed

    Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali

    2015-08-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGFmore » centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.« less

  12. Quantification of source impact to PM using three-dimensional weighted factor model analysis on multi-site data

    NASA Astrophysics Data System (ADS)

    Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.

    2017-07-01

    Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.

  13. [The estimation method of compounds opiate activity based on universal three-dimensional model of the nonselective opiate pharmacophore].

    PubMed

    Kuz'mina, N E; Iashkir, V A; Merkulov, V A; Osipova, E S

    2012-01-01

    Created by means alternative strategy of structural similarity search universal three-dimensional model of the nonselective opiate pharmacophore and the estimation method of agonistic and antagonistic properties of opiate receptors ligands based on its were described. The examples of the present method use are given for opiate activity estimation of compounds essentially distinguished on the structure from opiates and traditional opioids.

  14. Some characteristics of the three-dimensional structure of Santa Ana winds

    Treesearch

    Michael A. Fosberg; Clyde A. O' Dell; Mark J. Schroeder

    1966-01-01

    The three-dimensional structure of the Santa Ana was investigated in two case studies. Incorporated into a descriptive model of the Santa Ana were: (a) a bispectral gravity wave flow with a lee trough, produced by conservation of potential vorticity having a wave length of the order of 300 km. and short waves 6 to 10 km. long; (b) intensity of the foehn related to the...

  15. Optimum Particle Size for Gold-Catalyzed CO Oxidation

    PubMed Central

    2018-01-01

    The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098

  16. Real-time Three-dimensional Echocardiography: From Diagnosis to Intervention.

    PubMed

    Orvalho, João S

    2017-09-01

    Echocardiography is one of the most important diagnostic tools in veterinary cardiology, and one of the greatest recent developments is real-time three-dimensional imaging. Real-time three-dimensional echocardiography is a new ultrasonography modality that provides comprehensive views of the cardiac valves and congenital heart defects. The main advantages of this technique, particularly real-time three-dimensional transesophageal echocardiography, are the ability to visualize the catheters, and balloons or other devices, and the ability to image the structure that is undergoing intervention with unprecedented quality. This technique may become one of the main choices for the guidance of interventional cardiology procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  18. Factor structure of the arthritis body experience scale (ABES) in a U.S. population of people with osteoarthritis (OA), rheumatoid arthritis (RA), fibromyalgia (FM) and other rheumatic conditions.

    PubMed

    Boyington, J E A; Devellis, R; Shreffler, J; Schoster, B; Callahan, L F

    2008-01-01

    To examine the psychometric properties of the Arthritis Body Experience Scale (ABES) in a US sample of people with osteoarthritis, rheumatoid arthritis, fibromyalgia and other rheumatic conditions. The ABES, with the scoring direction modified, was phone-administered to 937 individuals who self-identified as having one or more arthritis conditions based on a validated, US, national survey assessment tool. Descriptive statistics of demographic variables and factor analysis of scale items were conducted. Scale dimensionality was assessed using principal component analysis (PCA) with oblique rotation. Criteria for assessing factors were eigenvalues > 1, visual assessment of scree plot, and structure and pattern matrices. The predominantly female (74.2%) and Caucasian (79.9%) sample had a mean age of 61.0 ± 13.1 years, and a mean BMI of 30.2 ± 7.1. Major arthritis conditions reported were rheumatoid arthritis, osteoarthritis and fibromyalgia. A three-factor structure with cronbach alpha values of .84, .85 and .53 was elicited, and accounted for 72% of the variance. Compared to the two-factor structure evidenced by the original ABES scale in a sample of UK adults, the data from this sample evidenced a three-factor structure with higher variance. The third factor's cronbach alpha of .53 was low and could be improved by the addition of salient questions derived from further qualitative interviews with patients with arthritis and other rheumatic conditions and from current literature findings. The observed psychometrics indicate the scale usefully assesses body image in populations with arthritis and related conditions. However, further testing and refinement is needed to determine its utility in clinical and other settings.

  19. FIESTA ROC: A new finite element analysis program for solar cell simulation

    NASA Technical Reports Server (NTRS)

    Clark, Ralph O.

    1991-01-01

    The Finite Element Semiconductor Three-dimensional Analyzer by Ralph O. Clark (FIESTA ROC) is a computational tool for investigating in detail the performance of arbitrary solar cell structures. As its name indicates, it uses the finite element technique to solve the fundamental semiconductor equations in the cell. It may be used for predicting the performance (thereby dictating the design parameters) of a proposed cell or for investigating the limiting factors in an established design.

  20. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin

    PubMed Central

    Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian

    2018-01-01

    Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects. PMID:29416332

  1. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin.

    PubMed

    Song, Yue; Lin, Kaifeng; He, Shu; Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian

    2018-01-01

    As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.

  2. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors

    PubMed Central

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385

  3. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.

    PubMed

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.

  4. Dimensionality and measurement invariance in the Satisfaction with Life Scale in Norway.

    PubMed

    Clench-Aas, Jocelyne; Nes, Ragnhild Bang; Dalgard, Odd Steffen; Aarø, Leif Edvard

    2011-10-01

    Results from previous studies examining the dimensionality and factorial invariance of the Satisfaction with Life Scale (SWLS) are inconsistent and often based on small samples. This study examines the factorial structure and factorial invariance of the SWLS in a Norwegian sample. Confirmatory factor analysis (AMOS) was conducted to explore dimensionality and test for measurement invariance in factor structure, factor loadings, intercepts, and residual variance across gender and four age groups in a large (N = 4,984), nationally representative sample of Norwegian men and women (15-79 years). The data supported a modified unidimensional structure. Factor loadings could be constrained to equality between the sexes, indicating metric invariance between genders. Further testing indicated invariance also at the strong and strict levels, thus allowing analyses involving group means. The SWLS was shown to be sensitive to age, however, at the strong and strict levels of invariance testing. In conclusion, the results in this Norwegian study seem to confirm that a unidimensional structure is acceptable, but that a modified single-factor model with correlations between error terms of items 4 and 5 is preferred. Additionally, comparisons may be made between the genders. Caution must be exerted when comparing age groups.

  5. Three-dimensional structure and ligand interactions of the low molecular weight protein tyrosine phosphatase from Campylobacter jejuni.

    PubMed

    Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng

    2006-10-01

    A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.

  6. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  7. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  8. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components

    NASA Astrophysics Data System (ADS)

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng

    2017-12-01

    Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.

  9. Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2

    DOE PAGES

    Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...

    2016-09-20

    Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less

  10. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  11. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action.

    PubMed

    Ullah, Anwar; Masood, Rehana; Ali, Ijaz; Ullah, Kifayat; Ali, Hamid; Akbar, Haji; Betzel, Christian

    2018-07-15

    Snake venom thrombin-like enzymes (SVTLEs) constitute the major portion (10-24%) of snake venom and these are the second most abundant enzymes present in the crude venom. During envenomation, these enzymes had shown prominently the various pathological effects, such as disturbance in hemostatic system, fibrinogenolysis, fibrinolysis, platelet aggregation, thrombosis, neurologic disorders, activation of coagulation factors, coagulant, procoagulant etc. These enzymes also been used as a therapeutic agent for the treatment of various diseases such as congestive heart failure, ischemic stroke, thrombotic disorders etc. Although the crystal structures of five SVTLEs are available in the Protein Data Bank (PDB), there is no single article present in the literature that has described all of them. The current work describes the structural aspects, structure-based mechanism of action, processing and inhibition of these enzymes. The sequence analysis indicates that these enzymes show a high sequence identity (57-85%) with each other and low sequence identity with trypsin (36-43%), human alpha-thrombin (29-36%) and other snake venom serine proteinases (57-85%). Three-dimensional structural analysis indicates that the loops surrounding the active site are variable both in amino acids composition and length that may convey variable substrate specificity to these enzymes. The surface charge distributions also vary in these enzymes. Docking analysis with suramin shows that this inhibitor preferably binds to the C-terminal region of these enzymes and causes the destabilization of their three-dimensional structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Foot structure is significantly associated to subtalar joint kinetics and mechanical energetics.

    PubMed

    Maharaj, Jayishni N; Cresswell, Andrew G; Lichtwark, Glen A

    2017-10-01

    Foot structure has been implicated as a risk factor of numerous overuse injuries, however, the mechanism linking foot structure and the development of soft-tissue overuse injuries are not well understood. The aim of this study was to identify factors that could predict foot function during walking. A total of eleven variables (including measures of foot structure, anthropometry and spatiotemporal gait characteristics) were investigated for their predictive ability on identifying kinematic, kinetic and energetic components of the foot. Three-dimensional motion capture and force data were collected at preferred walking speed on an instrumented treadmill. Mechanical measures were subsequently assessed using a custom multi-segment foot model in Opensim. Factors with significant univariate associations were entered into multiple linear regression models to identify a group of factors independently associated with the mechanical measures. Although no model could be created for any of the kinematic measures analysed, approximately 46% and 37% of the variance in the kinetic and energetic measures were associated with three or two factors respectively. Arch-height ratio, foot length and step width were associated with peak subtalar joint (STJ) moment, while greater STJ negative work was correlated to a low arch-height ratio and greater foot mobility. The models presented in this study suggest that the soft-tissue structures of a flat-arched, mobile foot are at a greater risk of injury as they have greater requirements to absorb energy and generate larger forces. However, as these associations are only moderate, other measures may also have an influence. Copyright © 2017. Published by Elsevier B.V.

  13. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  14. Three-dimensional study of the vector potential of magnetic structures.

    PubMed

    Phatak, Charudatta; Petford-Long, Amanda K; De Graef, Marc

    2010-06-25

    The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented.

  15. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  16. Structure and stability of genetic variance-covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three-spined stickleback.

    PubMed

    Siren, J; Ovaskainen, O; Merilä, J

    2017-10-01

    The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.

  17. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  18. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence

    USGS Publications Warehouse

    Michael, A.J.

    1988-01-01

    A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author

  19. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  20. Modern cosmology and the origin of our three dimensionality.

    PubMed

    Woodbury, M A; Woodbury, M F

    1998-01-01

    We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.

  1. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  2. Evolution of the three-dimensional collagen structure in vascular walls during deformation: an in situ mechanical testing under multiphoton microscopy observation.

    PubMed

    Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves

    2015-08-01

    The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues.

  3. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, M.S.; Strip, D.R.

    1996-01-30

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.

  4. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications.

    PubMed

    Castles, F; Day, F V; Morris, S M; Ko, D-H; Gardiner, D J; Qasim, M M; Nosheen, S; Hands, P J W; Choi, S S; Friend, R H; Coles, H J

    2012-05-13

    A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

  5. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography.

    PubMed

    Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori

    2014-05-01

    Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.

  6. Polish adaptation of three self-report measures of job stressors: the Interpersonal Conflict at Work Scale, the Quantitative Workload Inventory and the Organizational Constraints Scale.

    PubMed

    Baka, Łukasz; Bazińska, Róża

    2016-01-01

    The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test-retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test-retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions.

  7. Polish adaptation of three self-report measures of job stressors: the Interpersonal Conflict at Work Scale, the Quantitative Workload Inventory and the Organizational Constraints Scale

    PubMed Central

    Baka, Łukasz; Bazińska, Róża

    2016-01-01

    Aim. The objective of the present study was to test the psychometric properties, reliability and validity of three job stressor measures, namely, the Interpersonal Conflict at Work Scale, the Organizational Constraints Scale and the Quantitative Workload Inventory. Method. The study was conducted on two samples (N = 382 and 3368) representing a wide range of occupations. The estimation of internal consistency with Cronbach's α and the test–retest method as well as both exploratory and confirmatory factor analyses were the main statistical methods. Results. The internal consistency of the scales proved satisfactory, ranging from 0.80 to 0.90 for Cronbach's α test and from 0.72 to 0.86 for the test–retest method. The one-dimensional structure of the three measurements was confirmed. The three scales have acceptable fit to the data. The one-factor structures and other psychometric properties of the Polish version of the scales seem to be similar to those found in the US version of the scales. It was also proved that the three job stressors are positively related to all the job strain measures. Conclusions. The Polish versions of the three analysed scales can be used to measure the job stressors in Polish conditions. PMID:26652317

  8. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.

    PubMed

    Shin, Sungchul; Hyun, Jinho

    2017-08-09

    A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.

  9. Three-dimensional compound comparison methods and their application in drug discovery.

    PubMed

    Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke

    2015-07-16

    Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.

  10. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  11. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang

    2016-03-01

    DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.

  12. Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass

    NASA Astrophysics Data System (ADS)

    Zupan, E.; Zupan, D.

    2018-01-01

    In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.

  13. Hydrothermal synthesis and structural characterization of a novel three-dimensional supramolecular framework constructed by zinc salt and pyridine-2,5-dicarboxylate

    NASA Astrophysics Data System (ADS)

    Wang, Xinlong; Qin, Chao; Wang, Enbo; Hu, Changwen; Xu, Lin

    2004-07-01

    A novel metal-organic coordination polymer, [Zn(PDB)(H 2O) 2] 4 n (H 2PDB=pyridine-2,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the triclinic system, space group P-1, a=7.0562(14) Å, b=7.38526(15) Å, c=18.4611(4) Å, α=90.01(3)°, β=96.98(3)°, γ=115.67(3)°, V=859.1(3) Å 3, Z=1 and R=0.0334. The structure of the compound exhibits a novel three-dimensional supramolecular network, mainly based on multipoint hydrogen bonds originated from within and outside of a large 24-membered ring. Interestingly, the three-dimensional network consists of one-dimensional parallelogrammic channels in which coordinated water molecules point into the channel wall.

  14. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  15. A combinatorial code for pattern formation in Drosophila oogenesis.

    PubMed

    Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y

    2008-11-01

    Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.

  16. Laser Direct Writing of Tree-Shaped Hierarchical Cones on a Superhydrophobic Film for High-Efficiency Water Collection.

    PubMed

    Wang, Meng; Liu, Qian; Zhang, Haoran; Wang, Chuang; Wang, Lei; Xiang, Bingxi; Fan, Yongtao; Guo, Chuan Fei; Ruan, Shuangchen

    2017-08-30

    Directional water collection has stimulated a great deal of interest because of its potential applications in the field of microfluidics, liquid transportation, fog harvesting, and so forth. There have been some bio or bioinspired structures for directional water collection, from one-dimensional spider silk to two-dimensional star-like patterns to three-dimensional Nepenthes alata. Here we present a simple way for the accurate design and highly controllable driving of tiny droplets: by laser direct writing of hierarchical patterns with modified wettability and desired geometry on a superhydrophobic film, the patterned film can precisely and directionally drive tiny water droplets and dramatically improve the efficiency of water collection with a factor of ∼36 compared with the original superhydrophobic film. Such a patterned film might be an ideal platform for water collection from humid air and for planar microfluidics without tunnels.

  17. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Naoyuki; Onari, Seiichiro; Matsubayashi, Kazuyuki

    We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1-xPtx)(2+3n)Ptn(n -1)/2As(n+1)(n+2)/2 for n=2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) with three-dimensional FeAs structures. The horizontal FeAs layers are bridged by inclined FeAs planes through edge-sharing FeAs5 square pyramids, resulting in triangular tunneling structures rather than the simple layered structures found in conventional iron arsenides. n=3 system shows a sign of superconductivity with a small volume fraction. Our first-principles calculations of these systems clearly indicate that the Fermi surfaces originate from strong Fe-3d characters andmore » the three-dimensional nature of the electric structures for both systems, thus offering the playgrounds to study the effects of dimensionality on high Tc superconductivity.« less

  19. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  20. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    PubMed

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  1. The three-dimensional structure of the cellobiohydrolase Cel7A from Aspergillus fumigatus at 1.5 Å resolution

    PubMed Central

    Moroz, Olga V.; Maranta, Michelle; Shaghasi, Tarana; Harris, Paul V.; Wilson, Keith S.; Davies, Gideon J.

    2015-01-01

    The enzymatic degradation of plant cell-wall cellulose is central to many industrial processes, including second-generation biofuel production. Key players in this deconstruction are the fungal cellobiohydrolases (CBHs), notably those from family GH7 of the carbohydrate-active enzymes (CAZY) database, which are generally known as CBHI enzymes. Here, three-dimensional structures are reported of the Aspergillus fumigatus CBHI Cel7A solved in uncomplexed and disaccharide-bound forms at resolutions of 1.8 and 1.5 Å, respectively. The product complex with a disaccharide in the +1 and +2 subsites adds to the growing three-dimensional insight into this family of industrially relevant biocatalysts. PMID:25615982

  2. Three-dimensional structure of Erwinia carotovora L-asparaginase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less

  3. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    PubMed

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  4. A rudimentary database for three-dimensional objects using structural representation

    NASA Technical Reports Server (NTRS)

    Sowers, James P.

    1987-01-01

    A database which enables users to store and share the description of three-dimensional objects in a research environment is presented. The main objective of the design is to make it a compact structure that holds sufficient information to reconstruct the object. The database design is based on an object representation scheme which is information preserving, reasonably efficient, and yet economical in terms of the storage requirement. The determination of the needed data for the reconstruction process is guided by the belief that it is faster to do simple computations to generate needed data/information for construction than to retrieve everything from memory. Some recent techniques of three-dimensional representation that influenced the design of the database are discussed. The schema for the database and the structural definition used to define an object are given. The user manual for the software developed to create and maintain the contents of the database is included.

  5. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  6. Coarse-grained mechanics of viral shells

    NASA Astrophysics Data System (ADS)

    Klug, William S.; Gibbons, Melissa M.

    2008-03-01

    We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.

  7. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.

    1991-01-01

    A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.

  8. Exploring the Wisdom Structure: Validation of the Spanish New Short Three-Dimensional Wisdom Scale (3D-WS) and Its Explanatory Power on Psychological Health-Related Variables.

    PubMed

    García-Campayo, Javier; Del Hoyo, Yolanda L; Barceló-Soler, Alberto; Navarro-Gil, Mayte; Borao, Luis; Giarin, Veronica; Tovar-Garcia, R Raziel; Montero-Marin, Jesus

    2018-01-01

    Introduction: Personal wisdom has demonstrated important implications for the health of individuals. The aim of the present study was to validate a Spanish version of the Three-Dimensional Wisdom Scale (3D-WS), exploring the structure of a possible general factor, and assessing its explanatory power on psychological health-related variables. Methods: A cross-sectional study design was used, with a total sample of 624 Spanish participants recruited on the Internet and randomly split into two halves. The following instruments were applied: 3D-WS, Purpose in Life (PIL), Multidimensional State Boredom Scale (MSBS), Positive and Negative Affect Scale (PANAS), and Difficulties in Emotion Regulation Scale (DERS). Factorial structures were analyzed through exploratory and confirmatory factor analysis (EFA and CFA), and the general factor was characterized by using bifactor models. The explanatory power of the 3D-WS was established by multiple regression. Results: The original long and short versions of the 3D-WS were not replicated in the first subsample using EFA, and there was a high rate of cross-loadings. Thus, a new short 3D-WS was proposed by ordering the original items according to factorial weights. This three-correlated-factor (reflective, cognitive, and affective) proposal was tested by means of CFA in the second subsample, with adequate psychometrics and invariance, and a good fit (χ 2 /df = 1.98; CFI = 0.946; RMSEA = 0.056; 90% CI = 0.040-0.072). A bifactor structure, in which the reflective trait of wisdom was integrated into a general factor (G-Reflective) improved the model fit (χ 2 /df = 1.85; CFI = 0.959; RMSEA = 0.052; 90% CI = 0.035-0.070). The explained common variance of G-Reflective was 0.53; therefore, the new short 3D-WS should not be considered essentially unidimensional. The new short 3D-WS showed positive relationships with the PIL and PANAS-positive, and negative associations with the MSBS, PANAS-negative and DERS, contributing to explain all the referred variables. These results were consistent across subsamples. Conclusion: The new short 3D-WS appears to be a reliable instrument for measuring wisdom in the Spanish general population. The reflective facet might influence the cognitive and affective wisdom components through the G-Reflective general factor. There seems to be a high explanatory power of the 3D-WS on psychological health-related variables. This study will facilitate the development of future research and psychological knowledge regarding wisdom.

  9. Psychometrican analysis and dimensional structure of the Brazilian version of melasma quality of life scale (MELASQoL-BP)*

    PubMed Central

    Maranzatto, Camila Fernandes Pollo; Miot, Hélio Amante; Miot, Luciane Donida Bartoli; Meneguin, Silmara

    2016-01-01

    Background Although asymptomatic, melasma inflicts significant impact on quality of life. MELASQoL is the main instrument used to assess quality of life associated with melasma, it has been validated in several languages, but its latent dimensional structure and psychometric properties haven´t been fully explored. Objectives To evaluate psychometric characteristics, information and dimensional structure of the Brazilian version of MELASQoL. Methods Survey with patients with facial melasma through socio-demographic questionnaire, DLQI-BRA, MASI and MELASQoL-BP, exploratory and confirmatory factor analysis, internal consistency of MELASQoL and latent dimensions (Cronbach's alpha). The informativeness of the model and items were investigated by the Rasch model (ordinal data). Results We evaluated 154 patients, 134 (87%) were female, mean age (± SD) of 39 (± 8) years, the onset of melasma at 27 (± 8) years, median (p25-p75) of MASI scores , DLQI and MELASQoL 8 (5-15) 2 (1-6) and 30 (17-44). The correlation (rho) of MELASQoL with DLQI and MASI were: 0.70 and 0.36. Exploratory factor analysis identified two latent dimensions: Q1-Q3 and Q4-Q10, which had significantly more adjusted factor structure than the one-dimensional model: Χ2 / gl = 2.03, CFI = 0.95, AGFI = 0.94, RMSEA = 0.08. Cronbach's coefficient for the one-dimensional model and the factors were: 0.95, 0.92 and 0.93. Rasch analysis demonstrated that the use of seven alternatives per item resulted in no increase in the model informativeness. Conclusions MELASQoL-BP showed good psychometric performance and a latent structure of two dimensions. We also identified an oversizing of item alternatives to characterize the aggregate information to each dimension. PMID:27579735

  10. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feeback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.

  11. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  12. Microfabrication and Test of a Three-Dimensional Polymer Hydro-Focusing Unit for Flow Cytometry Applications

    NASA Technical Reports Server (NTRS)

    Yang, Ren; Feedback, Daniel L.; Wang, Wanjun

    2004-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.

  13. Three-dimensional imaging of the craniofacial complex.

    PubMed

    Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.

    2000-02-01

    Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.

  14. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  15. Three-disk microswimmer in a supported fluid membrane

    NASA Astrophysics Data System (ADS)

    Ota, Yui; Hosaka, Yuto; Yasuda, Kento; Komura, Shigeyuki

    2018-05-01

    A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.

  16. A virtual display system for conveying three-dimensional acoustic information

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Wightman, Frederic L.; Foster, Scott H.

    1988-01-01

    The development of a three-dimensional auditory display system is discussed. Theories of human sound localization and techniques for synthesizing various features of auditory spatial perceptions are examined. Psychophysical data validating the system are presented. The human factors applications of the system are considered.

  17. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  18. Unique sail-like structure of cor triatriatum dexter in three-dimensional echocardiogram.

    PubMed

    Low, Ting Ting; Uy, Celia Catherine C; Wong, Raymond Ching Chiew

    2014-08-01

    Cor triatriatum dexter (CTD) is an extremely rare congenital condition arising from the persistence of the right valve of the sinus venosus. It divides the right atrium (RA) into 2 separate chambers. We report a case of a 50-year-old man who had an incidental finding of CTD on transesophageal echocardiogram. An incomplete membrane of the RA was seen, and three-dimensional echocardiogram delineated the structure clearly as a triangular sail-like structure with multiple orifices and a fenestration. © 2013, Wiley Periodicals, Inc.

  19. A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows

    NASA Technical Reports Server (NTRS)

    Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.

    1994-01-01

    A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.

  20. A study of methods to predict and measure the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.

    1986-01-01

    Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.

  1. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  2. Extending the ‘cross-disorder’ relevance of executive functions to dimensional neuropsychiatric traits in youth

    PubMed Central

    McGrath, Lauren M.; Braaten, Ellen B.; Doty, Nathan D.; Willoughby, Brian L.; Wilson, H. Kent; O’Donnell, Ellen H.; Colvin, Mary K.; Ditmars, Hillary L.; Blais, Jessica E.; Hill, Erin N.; Metzger, Aaron; Perlis, Roy H.; Willcutt, Erik G.; Smoller, Jordan W.; Waldman, Irwin D.; Faraone, Stephen V.; Seidman, Larry J.; Doyle, Alysa E.

    2016-01-01

    Background Evidence that different neuropsychiatric conditions share genetic liability has increased interest in phenotypes with ‘cross-disorder’ relevance, as they may contribute to revised models of psychopathology. Cognition is a promising construct for study; yet, evidence that the same cognitive functions are impaired across different forms of psychopathology comes primarily from separate studies of individual categorical diagnoses versus controls. Given growing support for dimensional models that cut across traditional diagnostic boundaries, we aimed to determine, within a single cohort, whether performance on measures of executive functions (EFs) predicted dimensions of different psychopathological conditions known to share genetic liability. Methods Data are from 393 participants, ages 8 to 17, consecutively enrolled in the Longitudinal Study of Genetic Influences on Cognition (LOGIC). This project is conducting deep phenotyping and genomic analyses in youth referred for neuropsychiatric evaluation. Using structural equation modeling, we examined whether EFs predicted variation in core dimensions of autism spectrum disorder, bipolar illness and schizophrenia, including social responsiveness, mania/emotion regulation, and positive symptoms of psychosis, respectively. Results We modeled three cognitive factors (working memory, shifting, and executive processing speed) that loaded on a second-order EF factor. The EF factor predicted variation in our three target traits but not in a negative control (somatization). Moreover, this EF factor was primarily associated with the overlapping (rather than unique) variance across the three outcome measures, suggesting it related to a general increase in psychopathology symptoms across those dimensions. Conclusions Findings extend support for the relevance of cognition to neuropsychiatric conditions that share underlying genetic risk. They suggest that higher-order cognition, including EFs, relate to the dimensional spectrum of each of these disorders and not just the clinical diagnoses. Moreover, results have implications for bottom-up models linking genes, cognition, and a general psychopathology liability. PMID:26411927

  3. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.

    PubMed

    Cao, Wenyi; Muñoz, Antonio; Palffy-Muhoray, Peter; Taheri, Bahman

    2002-10-01

    Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.

  4. MgB2 thick films on three-dimensional structures fabricated by HPCVD

    NASA Astrophysics Data System (ADS)

    Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao

    2018-06-01

    Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.

  5. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    PubMed

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  6. Validation of the Dutch Eating Behaviour Questionnaire (DEBQ) among Maltese women.

    PubMed

    Dutton, Elaine; Dovey, Terence M

    2016-12-01

    The main aim of this study was to assess the dimensional structure of the Maltese version of the Dutch Eating Behaviour Questionnaire (DEBQ) and evaluate the instrument's validity and reliability among Maltese women (N = 586). Exploratory factor analysis reflected the theoretical structure of three factors; emotional, restrained and external eating which was supported by a Confirmatory Factor analysis. Minor issues with specific items in the Emotional and External eating scale were identified and discussed. Criterion-related validity was ascertained through correlations with the EAT-26. The study also assessed the DEBQ's predictive value in differentiating between BMI groups and between dieters and weight maintainers. The results suggest that the Maltese DEBQ is a psychometrically valid and reliable instrument for assessing eating behaviours with women in the Maltese community. The study also highlights the critical role of Emotional and Restrained eating in dieting and overweight Maltese women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.

    Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less

  8. Psychometrics and latent structure of the IDS and QIDS with young adult students.

    PubMed

    González, David Andrés; Boals, Adriel; Jenkins, Sharon Rae; Schuler, Eric R; Taylor, Daniel

    2013-07-01

    Students and young adults have high rates of suicide and depression, thus are a population of interest. To date, there is no normative psychometric information on the IDS and QIDS in these populations. Furthermore, there is equivocal evidence on the factor structure and subscales of the IDS. Two samples of young adult students (ns=475 and 1681) were given multiple measures to test the psychometrics and dimensionality of the IDS and QIDS. The IDS, its subscales, and QIDS had acceptable internal consistencies (αs=.79-90) and favorable convergent and divergent validity correlations. A three-factor structure and two Rasch-derived subscales best fit the IDS. The samples were collected from one university, which may influence generalizability. The IDS and QIDS are desirable measures of depressive symptoms when studying young adult students. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bacterial Transcription as a Target for Antibacterial Drug Development

    PubMed Central

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  10. Structures of undecagold clusters: Ligand effect

    NASA Astrophysics Data System (ADS)

    Spivey, Kasi; Williams, Joseph I.; Wang, Lichang

    2006-12-01

    The most stable structure of undecagold, or Au 11, clusters was predicted from our DFT calculations to be planar [L. Xiao, L. Wang, Chem. Phys. Lett. 392 (2004) 452; L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124 (2005) 114309.]. The structures of ligand protected undecagold clusters were shown to be three-dimensional experimentally. In this work, we used DFT calculations to study the ligand effect on the structures of Au 11 clusters. Our results show that the most stable structure of Au 11 is in fact three-dimensional when SCH 3 ligands are attached. This indicates that the structures of small gold clusters are altered substantially in the presence of ligands.

  11. Casting inorganic structures with DNA molds

    PubMed Central

    Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng

    2014-01-01

    We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973

  12. Fabrication of large area woodpile structure in polymer

    NASA Astrophysics Data System (ADS)

    Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.

    2009-02-01

    A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.

  13. Neurochemical profile of dementia pugilistica.

    PubMed

    Kokjohn, Tyler A; Maarouf, Chera L; Daugs, Ian D; Hunter, Jesse M; Whiteside, Charisse M; Malek-Ahmadi, Michael; Rodriguez, Emma; Kalback, Walter; Jacobson, Sandra A; Sabbagh, Marwan N; Beach, Thomas G; Roher, Alex E

    2013-06-01

    Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.

  14. Neurochemical Profile of Dementia Pugilistica

    PubMed Central

    Kokjohn, Tyler A.; Maarouf, Chera L.; Daugs, Ian D.; Hunter, Jesse M.; Whiteside, Charisse M.; Malek-Ahmadi, Michael; Rodriguez, Emma; Kalback, Walter; Jacobson, Sandra A.; Sabbagh, Marwan N.; Beach, Thomas G.

    2013-01-01

    Abstract Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ–degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital. PMID:23268705

  15. The in vitro release of cytokines and growth factors from fibrin membranes produced through horizontal centrifugation.

    PubMed

    Lourenço, Emanuelle Stellet; Mourão, Carlos Fernando de Almeida Barros; Leite, Paulo Emílio Corrêa; Granjeiro, José Mauro; Calasans-Maia, Mônica Diuana; Alves, Gutemberg Gomes

    2018-05-01

    Platelet-rich fibrin membranes are biomaterials widely used for therapeutic purposes, and canonically produced through the processing of peripheral blood with fixed-angle rotor centrifuges. In this work, we evaluate the in vitro stability and release of cytokines and growth factors when these biomaterials are produced with a horizontal swing-out clinical centrifuge. Membranes produced from the blood of 14 donors were morphologically evaluated by scanning electron microscopy and fluorescence microscopy, and their stability was assessed by photographic recording after incubation in culture medium for up to 28 days. The release of 27 cytokines and growth factors was monitored for three weeks through a multiparametric immunoassay. The fibrin membranes presented complex three-dimensional structure with a high density of nucleated cells. A large release of growth factors [platelet derived growth factor, fibroblastic growth factor (bFGF), and vascular endothelial growth factor] was detected in the first 24 h, followed by time-dependent decay, maintaining significant concentrations after three weeks. Both anti-inflammatory and pro-inflammatory cytokines presented different release peaks, maintaining high rates of elution for up to 21 days. Chemokines of relevance in tissue repair [RANTES, granulocyte colony-stimulating factor (G-CSF)] were also produced in large quantities throughout the experimental period. The present results demonstrate that blood-derived fibrin membranes with high structural stability and cell content can be generated by horizontal centrifugation, being able of a prolonged production/release of growth factors and pro- and anti-inflammatory cytokines. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1373-1380, 2018. © 2018 Wiley Periodicals, Inc.

  16. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  17. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  18. On the use of video projectors for three-dimensional scanning

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo

    2017-08-01

    Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.

  19. Extending unbiased stereology of brain ultrastructure to three-dimensional volumes

    NASA Technical Reports Server (NTRS)

    Fiala, J. C.; Harris, K. M.; Koslow, S. H. (Principal Investigator)

    2001-01-01

    OBJECTIVE: Analysis of brain ultrastructure is needed to reveal how neurons communicate with one another via synapses and how disease processes alter this communication. In the past, such analyses have usually been based on single or paired sections obtained by electron microscopy. Reconstruction from multiple serial sections provides a much needed, richer representation of the three-dimensional organization of the brain. This paper introduces a new reconstruction system and new methods for analyzing in three dimensions the location and ultrastructure of neuronal components, such as synapses, which are distributed non-randomly throughout the brain. DESIGN AND MEASUREMENTS: Volumes are reconstructed by defining transformations that align the entire area of adjacent sections. Whole-field alignment requires rotation, translation, skew, scaling, and second-order nonlinear deformations. Such transformations are implemented by a linear combination of bivariate polynomials. Computer software for generating transformations based on user input is described. Stereological techniques for assessing structural distributions in reconstructed volumes are the unbiased bricking, disector, unbiased ratio, and per-length counting techniques. A new general method, the fractional counter, is also described. This unbiased technique relies on the counting of fractions of objects contained in a test volume. A volume of brain tissue from stratum radiatum of hippocampal area CA1 is reconstructed and analyzed for synaptic density to demonstrate and compare the techniques. RESULTS AND CONCLUSIONS: Reconstruction makes practicable volume-oriented analysis of ultrastructure using such techniques as the unbiased bricking and fractional counter methods. These analysis methods are less sensitive to the section-to-section variations in counts and section thickness, factors that contribute to the inaccuracy of other stereological methods. In addition, volume reconstruction facilitates visualization and modeling of structures and analysis of three-dimensional relationships such as synaptic connectivity.

  20. Effects of stratospheric lapse rate on thunderstorm cloud-top structure in a three-dimensional numerical simulation. I - Some basic results of comparative experiments

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1988-01-01

    The effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared, mature, isolated midlatitude thunderstorms are investigated by performing three different experiments with an anelastic, three-dimensional model: (1) with an assumed stratospheric lapse rate of 0 K/km (i.e., the isothermal case), (2) with 3 K/km, and (3) with -3 K/km (i.e., the case of inversion). Kinematic storm structure is very similar in all three cases, especially in the troposphere; a strong quasi-steady updraft evolves and splits into a dominant cyclonic overshooting right-mover and a weaker, anticyclonic left-mover that does not reach the tropopause.

  1. Vision in our three-dimensional world

    PubMed Central

    2016-01-01

    Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595

  2. Synthesis, crystal structure and characterization of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III)

    NASA Astrophysics Data System (ADS)

    Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.

    2012-11-01

    The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.

  3. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search formore » and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).« less

  4. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  5. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  6. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing.

    PubMed

    Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P

    2015-05-09

    The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles. This work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications.

  7. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  8. Electromagnetic density of modes for a finite-size three-dimensional structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J

    2004-05-01

    The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.

  9. CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.

  10. Three-Dimensional Mapping of Hippocampal Anatomy in Adolescents with Bipolar Disorder

    ERIC Educational Resources Information Center

    Bearden, Carrie E.; Soares, Jair C.; Klunder, Andrea D.; Nicoletti, Mark; Dierschki, Nicole; Hayashi, Kiralee M.; Narr, Katherine L.; Bhrambilla, Paolo; Sassi, Roberto B.; Axelson, David; Ryan, Neal; Birmaher, Boris; Thompson, Paul M.

    2008-01-01

    The article discusses the use of three-dimensional mapping methods in children and adolescents with bipolar disorder to find out if localized alterations in hippocampal structure are exhibited. It also explores the developmental differences where the patient with bipolar disorder showed increasing hippocampal size with increasing age.

  11. Sectioning Clay Models Makes Anatomy & Development Tangible

    ERIC Educational Resources Information Center

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  12. Three-Dimensional Extension of a Digital Library Service System

    ERIC Educational Resources Information Center

    Xiao, Long

    2010-01-01

    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  13. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  14. Two-Dimensional Nuclear Magnetic Resonance Structure Determination Module for Introductory Biochemistry: Synthesis and Structural Characterization of Lyso-Glycerophospholipids

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Rose, Rebecca L.; Bell, Sidney M.

    2013-01-01

    In this laboratory module, introductory biochemistry students are exposed to two-dimensional [superscript 1]H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using [superscript…

  15. Silver(I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies and investigation of the counteranion effects.

    PubMed

    Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus

    2016-06-01

    The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.

  16. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities.

    PubMed

    Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R

    2002-04-15

    A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.

  17. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  19. Validation of the Spanish version of the Drive for Muscularity Scale (DMS) among males: Confirmatory factor analysis.

    PubMed

    Sepulveda, Ana R; Parks, Melissa; de Pellegrin, Yolanda; Anastasiadou, Dimitra; Blanco, Miriam

    2016-04-01

    Drive for Muscularity (DM) has been shown to be a relevant construct for measuring and understanding male body image. For this reason, it is important to have reliable and valid instruments with which to measure DM, and to date no such instruments exist in Spain. This study analyzes the psychometric and structural properties of the Drive for Muscularity Scale (DMS) in a sample of Spanish adolescent males (N=212), with the aim of studying the structural validity of the scale by using a confirmatory factor analysis (CFA), as well as analyzing the internal consistency and construct (convergent and discriminant) and concurrent validity of the instrument. After testing three models, results indicated that the best structure was a two-dimensional model, with the factors of muscularity-oriented body image (MBI) and muscularity behavior (MB). The scale showed good internal consistency (α=.90) and adequate construct validity. Furthermore, significant associations were found between DM and increased difficulties in emotional regulation (rho=.37) and low self-esteem (rho=-.19). Findings suggest that the two-factor structure may be used when assessing drive for muscularity among adolescent males in Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  1. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    PubMed

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  2. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    NASA Astrophysics Data System (ADS)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  3. Detailed electromagnetic simulation for the structural color of butterfly wings.

    PubMed

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  4. A discrete search algorithm for finding the structure of protein backbones and side chains.

    PubMed

    Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo

    2013-01-01

    Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.

  5. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    PubMed

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds. © 2015 Wiley Periodicals, Inc.

  6. Derivation and characterization of gut-like structures from embryonic stem cells.

    PubMed

    Yamada, Takatsugu; Nakajima, Yoshiyuki

    2006-01-01

    Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gut-like structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.

  7. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing

    DOE PAGES

    Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...

    2016-11-22

    Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less

  8. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  9. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    NASA Astrophysics Data System (ADS)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  10. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  11. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    PubMed

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  12. Complex structures from patterned cell sheets

    PubMed Central

    Misra, M.; Audoly, B.; Shvartsman, S. Y.

    2017-01-01

    The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348251

  13. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less

  14. Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data

    NASA Astrophysics Data System (ADS)

    Garanzha, V. A.; Kudryavtseva, L. N.

    2012-03-01

    A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.

  15. Numerical analysis of the output waveguide design for 1.55 μm square microcavity lasers directly grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Ma, Xing; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Hu, Haiyang; Wang, Wei; Yin, Haiying; Huang, Yongqing; Ren, Xiaomin

    2018-07-01

    We report a structure design of 1.55 μm square microcavity lasers monolithically integrated on GaAs substrates. The mode characteristics of the microcavity lasers are numerically investigated by three-dimensional finite-difference time-domain method. The dependences of the high-quality factor modes on the side length of the microcavity, the width of the output waveguide and the etching depth are investigated in detail. The results demonstrate, for the microcavity structure with the side length of 12 μm, the output waveguide width of 1.0 μm and the etching depth of 3.55 μm, it is optimal to excite high-quality factor modes around wavelength of 1.55 μm. The mode wavelength and the mode quality factor are 1547.46 nm and 2416.28, respectively. The quality factor degrades rapidly with the waveguide width increasing, and increases with increasing etching depth.

  16. Factor structure and psychometric properties of the Body Appreciation Scale-2 among adolescents and young adults in Danish, Portuguese, and Swedish.

    PubMed

    Lemoine, J E; Konradsen, H; Lunde Jensen, A; Roland-Lévy, C; Ny, P; Khalaf, A; Torres, S

    2018-05-14

    In recent years, the study of body image shifted from focusing on the negative aspects to a more extensive view of body image. The present study seeks to validate a measure of positive body image, the Body Appreciation Scale-2 (BAS-2; Tylka & Wood-Barcalow, 2015a) in Denmark, Portugal, and Sweden. Participants (N = 1012) were adolescents and young adults aged from 12 to 19. Confirmatory factor analyses confirmed the one-dimensional factor structure of the scale. Multi-group confirmatory factor analyses indicated that the scale was invariant across sex and country. Further results showed that BAS-2 was positively correlated with self-esteem, psychological well-being, and intuitive eating. It was negatively correlated with BMI among boys and girls in Portugal but not in Denmark and Sweden. Additionally, boys had higher body appreciation than girls. Results indicated that the BAS-2 has good psychometric properties in the three languages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel two-dimensional sheets of magnesium and pillared calcium phosphonates. The preparation of these novel compounds has led to the establishment of synthetic protocols that allow for the direct preparation of compounds with defined structural features.

  18. Internal Structure of Mini-CEX Scores for Internal Medicine Residents: Factor Analysis and Generalizability

    ERIC Educational Resources Information Center

    Cook, David A.; Beckman, Thomas J.; Mandrekar, Jayawant N.; Pankratz, V. Shane

    2010-01-01

    The mini-CEX is widely used to rate directly observed resident-patient encounters. Although several studies have explored the reliability of mini-CEX scores, the dimensionality of mini-CEX scores is incompletely understood. Objective: Explore the dimensionality of mini-CEX scores through factor analysis and generalizability analysis. Design:…

  19. Magnetic structure and excitation spectrum of the hyperhoneycomb Kitaev magnet β -Li2IrO3

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Rousochatzakis, Ioannis; Perkins, Natalia B.

    2018-03-01

    We present a theoretical study of the static and dynamical properties of the three-dimensional, hyperhoneycomb Kitaev magnet β -Li2IrO3 . We argue that the observed incommensurate order can be understood in terms of a long-wavelength twisting of a nearby commensurate period-3 state, with the same key qualitatively features. The period-3 state shows very different structure when either the Kitaev interaction K or the off-diagonal exchange anisotropy Γ is dominant. A comparison of the associated static spin structure factors with reported scattering experiments in zero and finite fields gives strong evidence that β -Li2IrO3 lies in the regime of dominant Kitaev coupling, and that the Heisenberg exchange J is much weaker than both K and Γ . Our predictions for the magnon excitation spectra, the dynamical spin structure factors, and their polarization dependence provide additional distinctive fingerprints that can be checked experimentally.

  20. Ultra-high-Q three-dimensional photonic crystal nano-resonators.

    PubMed

    Tang, Lingling; Yoshie, Tomoyuki

    2007-12-10

    Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.

Top