NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
NASA Astrophysics Data System (ADS)
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
Body and Surface Wave Modeling of Observed Seismic Events. Part 2.
1987-05-12
is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
Lump Solitons in Surface Tension Dominated Flows
NASA Astrophysics Data System (ADS)
Milewski, Paul; Berger, Kurt
1999-11-01
The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun
In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Fully three-dimensional direct numerical simulation of a plunging breaker
NASA Astrophysics Data System (ADS)
Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane
2003-07-01
The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
A numerical study of the 3-periodic wave solutions to KdV-type equations
NASA Astrophysics Data System (ADS)
Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing
2018-02-01
In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.
Three-dimensional wave-induced current model equations and radiation stresses
NASA Astrophysics Data System (ADS)
Xia, Hua-yong
2017-08-01
After the approach by Mellor (2003, 2008), the present paper reports on a repeated effort to derive the equations for three-dimensional wave-induced current. Via the vertical momentum equation and a proper coordinate transformation, the phase-averaged wave dynamic pressure is well treated, and a continuous and depth-dependent radiation stress tensor, rather than the controversial delta Dirac function at the surface shown in Mellor (2008), is provided. Besides, a phase-averaged vertical momentum flux over a sloping bottom is introduced. All the inconsistencies in Mellor (2003, 2008), pointed out by Ardhuin et al. (2008) and Bennis and Ardhuin (2011), are overcome in the presently revised equations. In a test case with a sloping sea bed, as shown in Ardhuin et al. (2008), the wave-driving forces derived in the present equations are in good balance, and no spurious vertical circulation occurs outside the surf zone, indicating that Airy's wave theory and the approach of Mellor (2003, 2008) are applicable for the derivation of the wave-induced current model.
Numerical modeling of surface wave development under the action of wind
NASA Astrophysics Data System (ADS)
Chalikov, Dmitry
2018-06-01
The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslem, W. M.; Sabry, R.; Shukla, P. K.
2010-03-15
By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less
On the dimensionally correct kinetic theory of turbulence for parallel propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br
2015-03-15
Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
Solution of the Burnett equations for hypersonic flows near the continuum limit
NASA Technical Reports Server (NTRS)
Imlay, Scott T.
1992-01-01
The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Li, Lin-an; Wang, Teng; Wang, Yi
2018-05-01
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3
NASA Astrophysics Data System (ADS)
Correia, Simão; Figueira, Mário
2018-03-01
We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
Three-dimensional compact explicit-finite difference time domain scheme with density variation
NASA Astrophysics Data System (ADS)
Tsuchiya, Takao; Maruta, Naoki
2018-07-01
In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
Progress in multi-dimensional upwind differencing
NASA Technical Reports Server (NTRS)
Vanleer, Bram
1992-01-01
Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.
Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher Lockwood
1991-01-01
A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.
Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model
2014-09-30
of coral reef fish need to locate a reef , and sound emanating from reefs may act as a cue to guide them. Using acoustic data collected from Bahia...approximate the solution to the wave equation. RELATED PROJECTS Geoacoustic inversion in three-dimensional environments The goal of this project is...shear wave speed Under this project an laboratory measurements the compressional and shear wave speeds and attenuations in coarse and fine grained
Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation
NASA Astrophysics Data System (ADS)
Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong
2017-11-01
A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.
Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation
NASA Astrophysics Data System (ADS)
Li, Ye-Zhou; Liu, Jian-Guo
2018-06-01
Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.
Zubarev, Nikolay M; Zubareva, Olga V
2010-10-01
Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.
Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.
1986-02-01
field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev
Yan, Zhenya; Konotop, V V
2009-09-01
It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.
Classifying bilinear differential equations by linear superposition principle
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu
2016-09-01
In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.
NASA Astrophysics Data System (ADS)
Buffoni, Boris; Groves, Mark D.; Wahlén, Erik
2017-12-01
Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.
NASA Astrophysics Data System (ADS)
Buffoni, Boris; Groves, Mark D.; Wahlén, Erik
2018-06-01
Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.
Three-Dimensional Shallow Water Acoustics
2015-09-30
converts the Helmholtz wave equation of elliptic type to a one-way wave equation of parabolic type. The conversion allows efficient marching solution ...algorithms for 2 solving the boundary value problem posed by the Helmholtz equation . This can reduce significantly the requirement for computational...Fourier parabolic- equation sound propagation solution scheme," J. Acoust. Soc. Am, vol. 132, pp. EL61-EL67 (2012). [6] Y.-T. Lin, J.M. Collis and T.F
NASA Astrophysics Data System (ADS)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow
NASA Technical Reports Server (NTRS)
Spalart, P.; Yang, K. S.
1986-01-01
The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.
Hybrid soliton solutions in the (2+1)-dimensional nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Chen, Meidan; Li, Biao
2017-11-01
Rational solutions and hybrid solutions from N-solitons are obtained by using the bilinear method and a long wave limit method. Line rogue waves and lumps in the (2+1)-dimensional nonlinear Schrödinger (NLS) equation are derived from two-solitons. Then from three-solitons, hybrid solutions between kink soliton with breathers, periodic line waves and lumps are derived. Interestingly, after the collision, the breathers are kept invariant, but the amplitudes of the periodic line waves and lumps change greatly. For the four-solitons, the solutions describe as breathers with breathers, line rogue waves or lumps. After the collision, breathers and lumps are kept invariant, but the line rogue wave has a great change.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2018-04-01
Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.
A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Jehan, Nusrat; Mirza, Arshad M.
2010-03-15
Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KPmore » shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.« less
NASA Astrophysics Data System (ADS)
Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong
2017-12-01
The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.
Upstream-advancing waves generated by three-dimensional moving disturbances
NASA Astrophysics Data System (ADS)
Lee, Seung-Joon; Grimshaw, Roger H. J.
1990-02-01
The wave field resulting from a surface pressure or a bottom topography in a horizontally unbounded domain is studied. Upstream-advancing waves successively generated by various forcing disturbances moving with near-resonant speeds are found by numerically solving a forced Kadomtsev-Petviashvili (fKP) equation, which shows in its simplest form the interplay of a basic linear wave operator, longitudinal and transverse dispersion, nonlinearity, and forcing. Curved solitary waves are found as a slowly varying similarity solution of the Kadomtsev-Petviashvili (KP) equation, and are favorably compared with the upstream-advancing waves numerically obtained.
NASA Astrophysics Data System (ADS)
Newberger, P. A.; Allen, J. S.
2007-08-01
A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borhanian, J.; Shahmansouri, M.
2013-01-15
A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
NASA Astrophysics Data System (ADS)
Dong, Min-Jie; Tian, Shou-Fu; Yan, Xue-Wei; Zou, Li; Li, Jin
2017-10-01
We study a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation, which characterizes the formation of patterns in liquid drops. By using Bell’s polynomials, an effective way is employed to succinctly construct the bilinear form of the gKP equation. Based on the resulting bilinear equation, we derive its solitary waves, rogue waves and homoclinic breather waves, respectively. Our results can help enrich the dynamical behavior of the KP-type equations.
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.
2017-07-01
The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lue Xing; Sun Kun; Wang Pan
In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less
Traveling wave solutions and conservation laws for nonlinear evolution equation
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-02-01
In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.
Miles, J
1980-04-01
Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.
NASA Astrophysics Data System (ADS)
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
NASA Astrophysics Data System (ADS)
Yin, Ying; Tian, Bo; Wu, Xiao-Yu; Yin, Hui-Min; Zhang, Chen-Rong
2018-04-01
In this paper, we investigate a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation, which describes the fluid flow in the case of an offshore structure. By virtue of the Hirota method and symbolic computation, bilinear forms, the lump-wave and breather-wave solutions are derived. Propagation characteristics and interaction of lump waves and breather waves are graphically discussed. Amplitudes and locations of the lump waves, amplitudes and periods of the breather waves all vary with the wavelengths in the three spatial directions, ratio of the wave amplitude to the depth of water, or product of the depth of water and the relative wavelength along the main direction of propagation. Of the interactions between the lump waves and solitons, there exist two different cases: (i) the energy is transferred from the lump wave to the soliton; (ii) the energy is transferred from the soliton to the lump wave.
NASA Astrophysics Data System (ADS)
Braun, Stefan; Kluwick, Alfred
2004-09-01
Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
Some special solutions to the Hyperbolic NLS equation
NASA Astrophysics Data System (ADS)
Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco
2018-04-01
The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Controlled formation and reflection of a bright solitary matter-wave
Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.
2013-01-01
Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation. PMID:23673650
Liu, Wei; Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides.
Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides. PMID:29432495
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation
NASA Astrophysics Data System (ADS)
Agafontsev, Dmitry; Zakharov, Vladimir
2013-04-01
We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Petersson, N. A.; Rodgers, A.
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less
Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation
NASA Astrophysics Data System (ADS)
Feng, Wei; Zhao, Songlin
2018-01-01
In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.
Solution of two-body relativistic bound state equations with confining plus Coulomb interactions
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Kahana, David E.; Norbury, John W.
1992-01-01
Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang
2017-10-01
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin
2011-09-01
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Ibrahim, R. S.; El-Kalaawy, O. H.
2006-10-01
The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.
A computer program for fitting smooth surfaces to three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Craidon, C. B.; Smith, R. E., Jr.
1975-01-01
A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.
A convergent series expansion for hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Harabetian, E.
1985-01-01
The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping
2015-01-01
As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.
Three-variable solution in the (2+1)-dimensional null-surface formulation
NASA Astrophysics Data System (ADS)
Harriott, Tina A.; Williams, J. G.
2018-04-01
The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.
Whitham modulation theory for (2 + 1)-dimensional equations of Kadomtsev–Petviashvili type
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor
2018-05-01
Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.
Interaction phenomenon to dimensionally reduced p-gBKP equation
NASA Astrophysics Data System (ADS)
Zhang, Runfa; Bilige, Sudao; Bai, Yuexing; Lü, Jianqing; Gao, Xiaoqing
2018-02-01
Based on searching the combining of quadratic function and exponential (or hyperbolic cosine) function from the Hirota bilinear form of the dimensionally reduced p-gBKP equation, eight class of interaction solutions are derived via symbolic computation with Mathematica. The submergence phenomenon, presented to illustrate the dynamical features concerning these obtained solutions, is observed by three-dimensional plots and density plots with particular choices of the involved parameters between the exponential (or hyperbolic cosine) function and the quadratic function. It is proved that the interference between the two solitary waves is inelastic.
Three-dimensional modelling of thin liquid films over spinning disks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar
2016-11-01
In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.
NASA Astrophysics Data System (ADS)
Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong
2018-02-01
Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.
A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Ping, Fan
2015-05-01
By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
A hybrid approach for nonlinear computational aeroacoustics predictions
NASA Astrophysics Data System (ADS)
Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.
2017-01-01
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.
NASA Astrophysics Data System (ADS)
Chernov, N. N.; Zagray, N. P.; Laguta, M. V.; Varenikova, A. Yu
2018-05-01
The article describes the research of the method of localization and determining the size of heterogeneity in biological tissues. The equation for the acoustic harmonic wave, which propagates in the positive direction, is taken as the main one. A three-dimensional expression that describes the field of secondary sources at the observation point is obtained. The simulation of the change of the amplitude values of the vibrational velocity of the second harmonic of the acoustic wave at different coordinates of the inhomogeneity location in three-dimensional space is carried out. For the convenience of mathematical calculations, the area of heterogeneity is reduced to a point.
Discrete spacetime, quantum walks, and relativistic wave equations
NASA Astrophysics Data System (ADS)
Mlodinow, Leonard; Brun, Todd A.
2018-04-01
It has been observed that quantum walks on regular lattices can give rise to wave equations for relativistic particles in the continuum limit. In this paper, we define the three-dimensional discrete-time walk as a product of three coined one-dimensional walks. The factor corresponding to each one-dimensional walk involves two projection operators that act on an internal coin space; each projector is associated with either the "forward" or "backward" direction in that physical dimension. We show that the simple requirement that there is no preferred axis or direction along an axis—that is, that the walk be symmetric under parity transformations and steps along different axes of the cubic lattice be uncorrelated—leads, in the case of the simplest solution, to the requirement that the continuum limit of the walk is fully Lorentz-invariant. We show further that, in the case of a massive particle, this symmetry requirement necessitates the use of a four-dimensional internal space (as in the Dirac equation). The "coin flip" operation is generated by the parity transformation on the internal coin space, while the differences of the projection operators associated with each dimension must all anticommute. Finally, we discuss the leading correction to the continuum limit, and the possibility of distinguishing through experiment between the discrete random walk and the continuum-based Dirac equation as a description of fermion dynamics.
Siegert-state expansion for nonstationary systems. IV. Three-dimensional case
NASA Astrophysics Data System (ADS)
Tolstikhin, Oleg I.
2008-03-01
The Siegert-state expansion approach [O. I. Tolstikhin, Phys. Rev. A 73, 062705 (2006)] is extended to the three-dimensional case. Coupled equations defining the time evolution of coefficients in the expansion of the solution to the time-dependent Schrödinger equation in terms of partial-wave Siegert states are derived, and physical observables (probabilities of transitions to discrete states and the momentum distribution of ejected particles) are expressed in terms of these coefficients. The approach is implemented in terms of Siegert pseudostates and illustrated by calculations of the photodetachment of H- by strong high-frequency laser pulses. The present calculations demonstrate that the interference effect in the laser-atom interaction dynamics found recently in the one-dimensional case [K. Toyota , Phys. Rev. A 76, 043418 (2007)] reveals itself in the three-dimensional case as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.
A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less
NASA Astrophysics Data System (ADS)
Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.
2016-10-01
The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions
NASA Astrophysics Data System (ADS)
Yang, Bo; Chen, Yong
2018-05-01
A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.
Three-dimensional wave evolution on electrified falling films
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg
2016-11-01
We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).
NASA Astrophysics Data System (ADS)
El-Bedwehy, N. A.; El-Attafi, M. A.; El-Labany, S. K.
2016-09-01
The properties of solitary waves in an unmagnetized, collisionless dusty plasma consisting of nonthermal ions, cold and hot dust grains and Maxwellian electrons have been investigated. Under a suitable coordinate transformation, the three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation is obtained. The effect of the nonthermal parameter, the negative charge number of hot and cold dust on the solitary properties are investigated. Furthermore, the solitary profile in the radial, axial, and polar angle coordinates with the time is examined. The present investigation may be applicable in space plasma such as F-ring of Saturn.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Fully vectorial accelerating diffraction-free Helmholtz beams.
Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N
2012-11-16
We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan
2017-10-01
In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.
Thermal Non-Equilibrium Flows in Three Space Dimensions
NASA Astrophysics Data System (ADS)
Zeng, Yanni
2016-01-01
We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.
NASA Astrophysics Data System (ADS)
Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi
2018-07-01
In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
NASA Astrophysics Data System (ADS)
Strom, Brandon William
In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.
NASA Astrophysics Data System (ADS)
Joslin, R. D.
1991-04-01
The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.
NASA Astrophysics Data System (ADS)
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios
2017-11-01
We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. In this talk we explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. In this case and the case of an overlying film, we additionally study the influence of controlling to non-trivial transverse states on the streamwise and mixed mode dynamics. Finally, we solve the full optimal control problem by deriving the first order necessary conditions for existence of an optimal control, and solving these numerically using the forward-backward sweep method.
NASA Astrophysics Data System (ADS)
Adem, Abdullahi Rashid
2016-05-01
We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou
2016-11-01
In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.
Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M
2004-07-20
We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.
A mathematical model of the structure and evolution of small scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1990-01-01
A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
Lee wave breaking region: the map of instability development scenarios
NASA Astrophysics Data System (ADS)
Yakovenko, S. N.
2017-10-01
Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.
Improved computational treatment of transonic flow about swept wings
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Bailey, F. R.; Frick, J.
1976-01-01
Relaxation solutions to classical three-dimensional small-disturbance (CSD) theory for transonic flow about lifting swept wings are reported. For such wings, the CSD theory was found to be a poor approximation to the full potential equation in regions of the flow field that are essentially two-dimensional in a plane normal to the sweep direction. The effect of this deficiency on the capture of embedded shock waves in terms of (1) the conditions under which shock waves can exist and (2) the relations they must satisfy when they do exist is emphasized. A modified small-disturbance (MSD) equation, derived by retaining two previously neglected terms, was proposed and shown to be a consistent approximation to the full potential equation over a wider range of sweep angles. The effect of these extra terms is demonstrated by comparing CSD, MSD, and experimental wing surface pressures.
Linearized compressible-flow theory for sonic flight speeds
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard; Spreiter, John R
1950-01-01
The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)
A robust, finite element model for hydrostatic surface water flows
Walters, R.A.; Casulli, V.
1998-01-01
A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.
NASA Astrophysics Data System (ADS)
Ilhan, O. A.; Bulut, H.; Sulaiman, T. A.; Baskonus, H. M.
2018-02-01
In this study, the modified exp ( - Φ (η )) -expansion function method is used in constructing some solitary wave solutions to the Oskolkov-Benjamin-Bona-Mahony-Burgers, one-dimensional Oskolkov equations and the Dodd-Bullough-Mikhailov equation. We successfully construct some singular solitons and singular periodic waves solutions with the hyperbolic, trigonometric and exponential function structures to these three nonlinear models. Under the choice of some suitable values of the parameters involved, we plot the 2D and 3D graphics to some of the obtained solutions in this study. All the obtained solutions in this study verify their corresponding equation. We perform all the computations in this study with the help of the Wolfram Mathematica software. The obtained solutions in this study may be helpful in explaining some practical physical problems.
NASA Technical Reports Server (NTRS)
Knight, Doyle D.; Badekas, Dias
1991-01-01
The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.
Hafla, Erin; Johnson, Erick; Johnson, C. Nathan; ...
2018-06-01
Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafla, Erin; Johnson, Erick; Johnson, C. Nathan
Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam was simulated in the magnetic focusing field. For the first time, the effects of azimuthally asymmetric designs and critical azimuthally asymmetric characteristics of the focusing stack (such as shunts, C-magnets, or magnet misalignment) on electron beam behavior have been investigated. A cutaway portion of a simulated electron beam focused by a PPM stack is illustrated.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
Finite-amplitude strain waves in laser-excited plates.
Mirzade, F Kh
2008-07-09
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.
Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations
NASA Astrophysics Data System (ADS)
Guo, Xiu-Rong
2016-06-01
We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58
Traveling wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-10-01
In this paper, we investigate the traveling soliton and the periodic wave solutions of the nonlinear Schrödinger equation (NLSE) with generalized nonlinear functionality. We also explore the underlying close connection between the well-known KdV equation and the NLSE. It is remarked that both one-dimensional KdV and NLSE models share the same pseudoenergy spectrum. We also derive the traveling wave solutions for two cases of weakly nonlinear mathematical models, namely, the Helmholtz and the Duffing oscillators' potentials. It is found that these models only allow gray-type NLSE solitary propagations. It is also found that the pseudofrequency ratio for the Helmholtz potential between the nonlinear periodic carrier and the modulated sinusoidal waves is always in the range 0.5 ≤ Ω/ω ≤ 0.537285 regardless of the potential parameter values. The values of Ω/ω = {0.5, 0.537285} correspond to the cnoidal waves modulus of m = {0, 1} for soliton and sinusoidal limits and m = 0.5, respectively. Moreover, the current NLSE model is extended to fully NLSE (FNLSE) situation for Sagdeev oscillator pseudopotential which can be derived using a closed set of hydrodynamic fluid equations with a fully integrable Hamiltonian system. The generalized quasi-three-dimensional traveling wave solution is also derived. The current simple hydrodynamic plasma model may also be generalized to two dimensions and other complex situations including different charged species and cases with magnetic or gravitational field effects.
An introduction to three-dimensional climate modeling
NASA Technical Reports Server (NTRS)
Washington, W. M.; Parkinson, C. L.
1986-01-01
The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.
An exact solution of the van der Waals interaction between two ground-state hydrogen atoms
NASA Astrophysics Data System (ADS)
Koga, Toshikatsu; Matsumoto, Shinya
1985-06-01
A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.
NASA Astrophysics Data System (ADS)
Hossen, Md. Belal; Roshid, Harun-Or; Ali, M. Zulfikar
2018-05-01
Under inquisition in this paper is a (2 + 1)-dimensional Breaking Soliton equation, which can describe various nonlinear scenarios in fluid dynamics. Using the Bell polynomials, some proficient auxiliary functions are offered to apparently construct its bilinear form and corresponding soliton solutions which are different from the previous literatures. Moreover, a direct method is used to construct its rogue wave and solitary wave solutions using particular auxiliary function with the assist of bilinear formalism. Finally, the interactions between solitary waves and rogue waves are offered with a complete derivation. These results enhance the variety of the dynamics of higher dimensional nonlinear wave fields related to mathematical physics and engineering.
Effective equations for matter-wave gap solitons in higher-order transversal states.
Mateo, A Muñoz; Delgado, V
2013-10-01
We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.
Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.
Leszczynski, Henryk; Wrzosek, Monika
2017-02-01
We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.
Solving the Vlasov equation in two spatial dimensions with the Schrödinger method
NASA Astrophysics Data System (ADS)
Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos
2017-12-01
We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.
NASA Technical Reports Server (NTRS)
Tam, Sunny W. Y.; Chang, Tom
1995-01-01
The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
NASA Astrophysics Data System (ADS)
Jones, R. M.; Riley, J. P.; Georges, T. M.
1986-08-01
The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes
ERIC Educational Resources Information Center
Chandran, Pallath
2004-01-01
The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…
NASA Astrophysics Data System (ADS)
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna
2017-01-01
In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.
Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.
Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A
2016-08-01
Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons
NASA Astrophysics Data System (ADS)
Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.
2015-12-01
Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.
Whitham modulation theory for the two-dimensional Benjamin-Ono equation.
Ablowitz, Mark; Biondini, Gino; Wang, Qiao
2017-09-01
Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.
Multi-Periodic Waves in Shallow Water
1992-09-01
models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
Three-dimensional numerical simulation of gradual opening in a wave rotor passage
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.
1993-01-01
The evolution of the contact interface and the propagation of compression waves inside a single wave rotor passage gradually opening to and traversing an inlet port is studied numerically using an inviscid formulation of the governing equations. Insights into the response of the interface and kinematics of the flow field to various opening times are given. Since the opening time is inversely proportional to the rotational speed of the rotor, the effects of passage rotation such as centripetal and Coriolis accelerations are intrinsically coupled to the gradual opening process. Certain three-dimensional features associated with the gradual opening process as a result of centripetal and Coriolis accelerations are illustrated. For the range of opening times or rotational speeds considered, a portion of the interface behaves like a vortex sheet that can degenerate into a complex interfacial structure. The vortices produced along the interface can serve as a stirring mechanism to promote local mixing. Coriolis and centripetal accelerations can introduce three dimensional effects such as interfacial distortions in meridional planes and spanwise migration of fluid elements.
General high-order breathers and rogue waves in the (3 + 1) -dimensional KP-Boussinesq equation
NASA Astrophysics Data System (ADS)
Sun, Baonan; Wazwaz, Abdul-Majid
2018-11-01
In this work, we investigate the (3 + 1) -dimensional KP-Boussinesq equation, which can be used to describe the nonlinear dynamic behavior in scientific and engineering applications. We derive general high-order soliton solutions by using the Hirota's bilinear method combined with the perturbation expansion technique. We also obtain periodic solutions comprising of high-order breathers, periodic line waves, and mixed solutions consisting of breathers and periodic line waves upon selecting particular parameter constraints of the obtained soliton solutions. Furthermore, smooth rational solutions are generated by taking a long wave limit of the soliton solutions. These smooth rational solutions include high-order rogue waves, high-order lumps, and hybrid solutions consisting of lumps and line rogue waves. To better understand the dynamical behaviors of these solutions, we discuss some illustrative graphical analyses. It is expected that our results can enrich the dynamical behavior of the (3 + 1) -dimensional nonlinear evolution equations of other forms.
Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng
2014-01-01
We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.
Observation of Two-Dimensional Localized Jones-Roberts Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Meyer, Nadine; Proud, Harry; Perea-Ortiz, Marisa; O'Neale, Charlotte; Baumert, Mathis; Holynski, Michael; Kronjäger, Jochen; Barontini, Giovanni; Bongs, Kai
2017-10-01
Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
A dimensionally split Cartesian cut cell method for hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert
2018-07-01
We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
Direct computation of turbulence and noise
NASA Technical Reports Server (NTRS)
Berman, C.; Gordon, G.; Karniadakis, G.; Batcho, P.; Jackson, E.; Orszag, S.
1991-01-01
Jet exhaust turbulence noise is computed using a time dependent solution of the three dimensional Navier-Stokes equations to supply the source terms for an acoustic computation based on the Phillips convected wave equation. An extrapolation procedure is then used to determine the far field noise spectrum in terms of the near field sound. This will lay the groundwork for studies of more complex flows typical of noise suppression nozzles.
An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System
NASA Astrophysics Data System (ADS)
Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji
2012-11-01
The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Similarity solutions of some two-space-dimensional nonlinear wave evolution equations
NASA Technical Reports Server (NTRS)
Redekopp, L. G.
1980-01-01
Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.
NASA Astrophysics Data System (ADS)
Boubir, Badreddine
2018-06-01
In this paper, we investigate the dynamics of bright optical solitons in nonlinear metamaterials governed by a (2 + 1)-dimensional nonlinear Schrödinger equation. Three types of nonlinearities have been considered, Kerr law, power law and parabolic law. We based on the solitary wave ansatz method to find these optical soliton solutions. All necessary parametric conditions for their existence are driven.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
NASA Astrophysics Data System (ADS)
Ham, Woonchul; Song, Chulgyu
2017-05-01
In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.
2016-01-01
Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment. PMID:27274697
McFall, Brian C; Fritz, Hermann M
2016-04-01
Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.
NASA Technical Reports Server (NTRS)
Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.
1972-01-01
The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2015-07-15
A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less
A Numerical Investigation of the Burnett Equations Based on the Second Law
NASA Technical Reports Server (NTRS)
Comeaux, Keith A.; Chapman, Dean R.; MacCormack, Robert W.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The Burnett equations have been shown to potentially violate the second law of thermodynamics. The objective of this investigation is to correlate the numerical problems experienced by the Burnett equations to the negative production of entropy. The equations have had a long history of numerical instability to small wavelength disturbances. Recently, Zhong corrected the instability problem and made solutions attainable for one dimensional shock waves and hypersonic blunt bodies. Difficulties still exist when attempting to solve hypersonic flat plate boundary layers and blunt body wake flows, however. Numerical experiments will include one-dimensional shock waves, quasi-one dimensional nozzles, and expanding Prandlt-Meyer flows and specifically examine the entropy production for these cases.
Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000; Ali, S.
2013-07-15
The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are stronglymore » influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.« less
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
Exact solutions of a hierarchy of mixing speeds models
NASA Astrophysics Data System (ADS)
Cornille, H.; Platkowski, T.
1992-07-01
This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less
The big bang as a higher-dimensional shock wave
NASA Astrophysics Data System (ADS)
Wesson, P. S.; Liu, H.; Seahra, S. S.
2000-06-01
We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.
Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef
2013-01-01
Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.
An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave
NASA Astrophysics Data System (ADS)
Molotkov, I. A.; Atamaniuk, B.
2018-05-01
A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping
2016-10-01
Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-04-08
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-01-01
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.
1983-01-01
In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Mankbadi, Reda R.
2002-01-01
An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Modelling in vivo action potential propagation along a giant axon.
George, Stuart; Foster, Jamie M; Richardson, Giles
2015-01-01
A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Design of supercritical swept wings
NASA Technical Reports Server (NTRS)
Garabedian, P.; Mcfadden, G.
1982-01-01
Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.
NASA Astrophysics Data System (ADS)
Araneda, Bernardo
2018-04-01
We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
Simulating three dimensional wave run-up over breakwaters covered by antifer units
NASA Astrophysics Data System (ADS)
Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader
2014-06-01
The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Jackman, C. (Technical Monitor)
2000-01-01
Gravity waves in satellite data from CRISTA and MLS are studied in depth this quarter. Results this quarter are somewhat limited due to the PI'S heavy involvement throughout this reporting period in on-site forecasting of mountain wave-induced turbulence for the NASA's ER-2 research aircraft at Kiruna, Sweden during the SAGE Ill Ozone Loss and Validation Experiment (SOLVE). Results reported concentrate on further mesoscale modeling studies of mountain waves over the southern Andes, evident in CRISTA and MLS data. Two-dimensional mesoscale model simulations are extended through generalization of model equations to include both rotation and a first-order turbulence closure scheme. Results of three experiments are analyzed in depth and submitted for publication. We also commence simulations with a three-dimensional mesoscale model (MM5) and present preliminary results for the CRISTA 1 period near southern South America. Combination of ground-based temperature data at 87 km from two sites with global HRDl data was continued this quarter, showing stationary planetary wave structures. This work was also submitted for publication.
KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions
NASA Astrophysics Data System (ADS)
Chierchia, Luigi; You, Jiangong
In this paper, one-dimensional (1D) nonlinear wave equations
Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.
2017-12-01
Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
On the initial value problem for the wave equation in Friedmann-Robertson-Walker space-times.
Abbasi, Bilal; Craig, Walter
2014-09-08
The propagator W ( t 0 , t 1 )( g , h ) for the wave equation in a given space-time takes initial data ( g ( x ), h ( x )) on a Cauchy surface {( t , x ) : t = t 0 } and evaluates the solution ( u ( t 1 , x ),∂ t u ( t 1 , x )) at other times t 1 . The Friedmann-Robertson-Walker space-times are defined for t 0 , t 1 >0, whereas for t 0 →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature K =0 and K =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0< t 0 < t the limit, [Formula: see text] exists, it is independent of h ( x ), and for all reasonable initial data g ( x ), it gives rise to a well-defined solution for all t >0 emanating from the space-time singularity at t =0. Under reflection t →- t , the Friedmann-Robertson-Walker metric gives a space-time metric for t <0 with a singular future at t =0, and the same solution formulae hold. We thus have constructed solutions u ( t , x ) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity t =0 of space-time, taking on specified data u (0,⋅)= g (⋅) at the singular time.
Shock-jump conditions in a general medium: weak-solution approach
NASA Astrophysics Data System (ADS)
Forbes, L. K.; Krzysik, O. A.
2017-05-01
General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.
Vortices at the magnetic equator generated by hybrid Alfvén resonant waves
NASA Astrophysics Data System (ADS)
Hiraki, Yasutaka
2015-01-01
We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.
NASA Astrophysics Data System (ADS)
Xiao, Zi-Jian; Tian, Bo; Sun, Yan
2018-01-01
In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.
NASA Astrophysics Data System (ADS)
Kharibegashvili, S. S.; Jokhadze, O. M.
2014-04-01
A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions. Bibliography: 14 titles.
NASA Astrophysics Data System (ADS)
Xu, Si-Liu; He, Jun-Rong; Xue, Li; Belić, Milivoj R.
2018-02-01
We demonstrate three-dimensional (3D) vector solitary waves in the coupled (3 + 1)-D nonlinear Gross-Pitaevskii equations with variable nonlinearity coefficients. The analysis is carried out in spherical coordinates, providing novel localized solutions that depend on three modal numbers, l, m, and n. Using the similarity transformation (ST) method in 3D, vector solitary waves are built with the help of a combination of harmonic and trapping potentials, including multipole solutions and necklace rings. In general, the solutions found are stable for low values of the modal numbers; for values larger than 2, the solutions are found to be unstable. Variable nonlinearity allows the utilization of soliton management methods.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Nonlinear excited waves on the interventricular septum
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi
2012-11-01
Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Jia, Shu-Liang; Lan, Zhong-Zhou
2017-07-01
Under investigation in this paper is a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation for the interfacial wave in a two-layer fluid or the elastic quasi-plane wave in a liquid lattice. By virtue of the binary Bell polynomials, bilinear form of this equation is obtained. With the help of the bilinear form, N-soliton solutions are obtained via the Hirota method, and a bilinear Bäcklund transformation is derived to verify the integrability. Homoclinic breather waves are obtained according to the homoclinic test approach, which is not only the space-periodic breather but also the time-periodic breather via the graphic analysis. Via the Riemann theta function, quasi one-periodic waves are constructed, which can be viewed as a superposition of the overlapping solitary waves, placed one period apart. Finally, soliton-like, periodical triangle-type, rational-type and solitary bell-type travelling waves are obtained by means of the polynomial expansion method.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1978-01-01
The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.
NASA Astrophysics Data System (ADS)
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen
2018-05-01
The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Yin, Hui-Min
2018-07-01
Under investigation is a ?-dimensional B-type Kadomtsev-Petviashvili equation, which has applications in the propagation of non-linear waves in fluid dynamics. Through the Hirota method and the extended homoclinic test technique, we obtain the breather-type kink soliton solutions and breather rational soliton solutions. Rogue wave solutions are derived, which come from the derivation of breather rational solitons with respect to x. Amplitudes of the breather-type kink solitons and rogue waves decrease with a non-zero parameter in the equation, ?, increasing when ?. In addition, dark rogue waves are derived when ?. Furthermore, with the aid of the Hirota method and symbolic computation, two types of the lump solitons are obtained with the different choices of the parameters. We graphically study the lump solitons related to the parameter ?, and amplitude of the lump soliton is negatively correlated with ? when ?.
Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li
2017-04-17
We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.
On the prediction of far field computational aeroacoustics of advanced propellers
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Korkan, Kenneth D.
1990-01-01
A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Simulations and analysis of asteroid-generated tsunamis using the shallow water equations
NASA Astrophysics Data System (ADS)
Berger, M. J.; LeVeque, R. J.; Weiss, R.
2016-12-01
We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.
NASA Astrophysics Data System (ADS)
Marsooli, R.; Orton, P. M.; Georgas, N.; Blumberg, A. F.
2016-02-01
The Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) has been coupled with a more advanced surface wave model to simulate wave‒current interaction, and results have been validated in estuarine and nearshore waters. sECOM is a three‒dimensional, hydrostatic, free surface, primitive equation model. It solves the Navier‒Stokes equations and the conservation equations for temperature and salinity using a finite‒difference method on an Arakawa C‒grid with a terrain‒following (sigma) vertical coordinate and orthogonal curvilinear horizontal coordinate system. The model is coupled with the surface wave model developed by Mellor et al. (2008), which solves the spectral equation and takes into account depth and current refraction, and deep and shallow water. The wave model parameterizes the energy distribution in frequency space and the wave‒wave interaction process by using a specified spectrum shape. The coupled wave‒hydrodynamic model considers the wave‒current interaction through wave‒induced bottom stress, depth‒dependent radiation stress, and wave effects on wind‒induced surface stress. The model is validated using the data collected at a natural sandy beach at Duck, North Carolina, during the DUCK94 experiment. This test case reveals the capability of the model to simulate the wave‒current interaction in nearshore coastal systems. The model is further validated using the data collected in Jamaica Bay, a semi‒enclosed body of water located in New York City region. This test reveals the applicability of the model to estuarine systems. These validations of the model and comparisons to its prior wave model, the Great Lakes Environmental Research Laboratory (GLERL) wave model (Donelan 1977), are presented and discussed. ReferencesG.L. Mellor, M.A. Donelan, and L‒Y. Oey, 2008, A Surface Wave Model for Coupling with Numerical Ocean Circulation Models. J. Atmos. Oceanic Technol., 25, 1785‒1807.Donelan, M. A 1977. A simple numerical model for wave and wind stress application. Report, National Water Research Institute, Burlington, Ontario, Canada, 28 pp.
Coupled fluid-structure interaction. Part 1: Theory. Part 2: Application
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three dimensional variational principle is obtained for the motion of an acoustic field enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite element equations of motion based on this principle are derived and sample cases are given.
Analytic solutions for Long's equation and its generalization
NASA Astrophysics Data System (ADS)
Humi, Mayer
2017-12-01
Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.
2003-01-01
A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan
2017-08-01
Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.
NASA Astrophysics Data System (ADS)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000
2011-04-15
The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.
Signatures of extra dimensions in gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de
2017-06-01
Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.
Effect of parallel refraction on magnetospheric upper hybrid waves
NASA Technical Reports Server (NTRS)
Engel, J.; Kennel, C. F.
1984-01-01
Large amplitude (not less than 10 mV/m) electrostatic plasma waves near the upper hybrid (UH) frequency have been observed from 0 to 50 deg magnetic latitude (MLAT) during satellite plasma-pause crossings. A three-dimensional numerical ray-tracing calculation, based on an electron distribution measured during a GEOS 1 dayside intense upper-hybrid wave event, suggests how UH waves might achieve such large amplitudes away from the geomagnetic equator. Refractive effects largely control the wave amplification and, in particular, the unavoidable refraction due to parallel geomagnetic field gradients restricts growth to levels below those observed. However, a cold electron density gradient parallel to the field can lead to upper hybrid wave growth that can account for the observed emission levels.
Transport of inertial anisotropic particles under surface gravity waves
NASA Astrophysics Data System (ADS)
Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas
2016-11-01
The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.
Two-and three-dimensional unsteady lift problems in high-speed flight
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma
1952-01-01
The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.
Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping
2011-02-01
We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
NASA Astrophysics Data System (ADS)
Martín, Juan A.; Paredes, Pedro
2017-12-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Du, Zhong
2018-03-01
Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com
2016-02-08
The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less
A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals
NASA Astrophysics Data System (ADS)
Basko, Mikhail M.; Tsygvintsev, Ilia P.
2017-05-01
The hybrid model of laser energy deposition is a combination of the geometrical-optics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s- and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.
Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.
2017-01-01
Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
NASA Astrophysics Data System (ADS)
Xu, Shigang; Liu, Yang
2018-03-01
The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.
Transformed Fourier and Fick equations for the control of heat and mass diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guenneau, S.; Petiteau, D.; Zerrad, M.
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics; Rizvi, H.
2011-06-15
Two-dimensional propagation of nonlinear ion acoustic shock and solitary waves in an unmagnetized plasma consisting of nonthermal electrons, Boltzmannian positrons, and singly charged hot ions streaming with relativistic velocities are investigated. The system of fluid equations is reduced to Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili (KP) equations in the limit of small amplitude perturbation. The dependence of the ion acoustic shock and solitary waves on various plasma parameters are explored in detail. Interestingly, it is observed that increasing the nonthermal electron population increases the wave dispersion which enervates the strength of the ion acoustic shock wave; however, the same effect leads to anmore » enhancement of the soliton amplitude due to the absence of dissipation in the KP equation. The present investigation may be useful to understand the two-dimensional propagation characteristics of small but finite amplitude localized shock and solitary structures in planetary magnetospheres and auroral plasmas where nonthermal populations of electrons have been observed by several satellite missions.« less
NASA Astrophysics Data System (ADS)
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1982-01-01
A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.
NASA Astrophysics Data System (ADS)
Lan, Zhong-Zhou; Gao, Yi-Tian; Yang, Jin-Wei; Su, Chuan-Qi; Wang, Qi-Min
2016-09-01
Under investigation in this paper is a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic-elastic interactions imply that the interaction between the inelastic region and another one is elastic.
Benchmark problems in computational aeroacoustics
NASA Technical Reports Server (NTRS)
Porter-Locklear, Freda
1994-01-01
A recent directive at NASA Langley is aimed at numerically predicting principal noise sources. During my summer stay, I worked with high-order ENO code, developed by Dr. Harold Atkins, for solving the unsteady compressible Navier-Stokes equations, as it applies to computational aeroacoustics (CAA). A CAA workshop, composed of six categories of benchmark problems, has been organized to test various numerical properties of code. My task was to determine the robustness of Atkins' code for these test problems. In one category, we tested the nonlinear wave propagation of the code for the one-dimensional Euler equations, with initial pressure, density, and velocity conditions. Using freestream boundary conditions, our results were plausible. In another category, we solved the linearized two-dimensional Euler equations to test the effectiveness of radiation boundary conditions. Here we utilized MAPLE to compute eigenvalues and eigenvectors of the Jacobian given variable and flux vectors. We experienced a minor problem with inflow and outflow boundary conditions. Next, we solved the quasi one dimensional unsteady flow equations with an incoming acoustic wave of amplitude 10(exp -6). The small amplitude sound wave was incident on a convergent-divergent nozzle. After finding a steady-state solution and then marching forward, our solution indicated that after 30 periods the acoustic wave had dissipated (a period is time required for sound wave to traverse one end of nozzle to other end).
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
NASA Astrophysics Data System (ADS)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
Control of three-dimensional waves on thin liquid films
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios
2017-11-01
We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. We explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. We also may consider the influence of transverse modes on overlying film flows, these modes are damped out if uncontrolled. We also consider the more physical concept of point actuated controls which are modelled using Dirac delta functions. We first study the case of proportional control, where the actuation at a point depends on the local interface height alone. Here, we study the influence of control strength and number/location of actuators on the possible stabilization of the zero solution. We also consider the full feedback problem, which assumes that we can observe the full interface and allow communication between actuators. Using these controls we can obtain exponential stability where proportional controls fail, and stabilize non-trivial solutions.
Coherence lengths for three-dimensional superconductors in the BCS-Bose picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.M.; Casas, M.; Getino, J.M.
1995-12-01
Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Yan, Zhenya
2017-02-01
The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.
1994-01-01
An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.
Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines
NASA Astrophysics Data System (ADS)
Wang, Heng; Zheng, Shuhua
2017-06-01
By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
NASA Astrophysics Data System (ADS)
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
NASA Astrophysics Data System (ADS)
Sarıaydın, Selin; Yıldırım, Ahmet
2010-05-01
In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation utt -uxx-uyy-(u2)xx-uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation uxt -6ux 2 +6uuxx -uxxxx -uyy -uzz = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically.
Transverse instability of periodic and generalized solitary waves for a fifth-order KP model
NASA Astrophysics Data System (ADS)
Haragus, Mariana; Wahlén, Erik
2017-02-01
We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Kanna, T; Sakkaravarthi, K; Tamilselvan, K
2013-12-01
We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.
MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS
NASA Technical Reports Server (NTRS)
Kutler, P.
1994-01-01
This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.
Dirac and Klein-Gordon-Fock equations in Grumiller’s spacetime
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Sakalli, I.
We study the Dirac and the chargeless Klein-Gordon-Fock equations in the geometry of Grumiller’s spacetime that describes a model for gravity of a central object at large distances. The Dirac equation is separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular part of the both wave equations are analytically solved. For the radial equations, we managed to reduce them to one dimensional Schrödinger-type wave equations with their corresponding effective potentials. Fermions’s potentials are numerically analyzed by serving their some characteristic plots. We also compute the quasinormal frequencies of the chargeless and massive scalar waves. With the aid of those quasinormal frequencies, Bekenstein’s area conjecture is tested for the Grumiller black hole. Thus, the effects of the Rindler acceleration on the waves of fermions and scalars are thoroughly analyzed.
NASA Astrophysics Data System (ADS)
Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.
2017-12-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.
NASA Astrophysics Data System (ADS)
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui
2017-08-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.
Attractors of three-dimensional fast-rotating Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Trahe, Markus
The three-dimensional (3-D) rotating Navier-Stokes equations describe the dynamics of rotating, incompressible, viscous fluids. In this work, they are considered with smooth, time-independent forces and the original statements implied by the classical "Taylor-Proudman Theorem" of geophysics are rigorously proved. It is shown that fully developed turbulence of 3-D fast-rotating fluids is essentially characterized by turbulence of two-dimensional (2-D) fluids in terms of numbers of degrees of freedom. In this context, the 3-D nonlinear "resonant limit equations", which arise in a non-linear averaging process as the rotation frequency O → infinity, are studied and optimal (2-D-type) upper bounds for fractal box and Hausdorff dimensions of the global attractor as well as upper bounds for box dimensions of exponential attractors are determined. Then, the convergence of exponential attractors for the full 3-D rotating Navier-Stokes equations to exponential attractors for the resonant limit equations as O → infinity in the sense of full Hausdorff-metric distances is established. This provides upper and lower semi-continuity of exponential attractors with respect to the rotation frequency and implies that the number of degrees of freedom (attractor dimension) of 3-D fast-rotating fluids is close to that of 2-D fluids. Finally, the algebraic-geometric structure of the Poincare curves, which control the resonances and small divisor estimates for partial differential equations, is further investigated; the 3-D nonlinear limit resonant operators are characterized by three-wave interactions governed by these curves. A new canonical transformation between those curves is constructed; with far-reaching consequences on the density of the latter.
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Masood Khalique, Chaudry
2018-05-01
In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.
Modeling of shock wave propagation in large amplitude ultrasound.
Pinton, Gianmarco F; Trahey, Gregg E
2008-01-01
The Rankine-Hugoniot relation for shock wave propagation describes the shock speed of a nonlinear wave. This paper investigates time-domain numerical methods that solve the nonlinear parabolic wave equation, or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the conditions they require to satisfy the Rankine-Hugoniot relation. Two numerical methods commonly used in hyperbolic conservation laws are adapted to solve the KZK equation: Godunov's method and the monotonic upwind scheme for conservation laws (MUSCL). It is shown that they satisfy the Rankine-Hugoniot relation regardless of attenuation. These two methods are compared with the current implicit solution based method. When the attenuation is small, such as in water, the current method requires a degree of grid refinement that is computationally impractical. All three numerical methods are compared in simulations for lithotripters and high intensity focused ultrasound (HIFU) where the attenuation is small compared to the nonlinearity because much of the propagation occurs in water. The simulations are performed on grid sizes that are consistent with present-day computational resources but are not sufficiently refined for the current method to satisfy the Rankine-Hugoniot condition. It is shown that satisfying the Rankine-Hugoniot conditions has a significant impact on metrics relevant to lithotripsy (such as peak pressures) and HIFU (intensity). Because the Godunov and MUSCL schemes satisfy the Rankine-Hugoniot conditions on coarse grids, they are particularly advantageous for three-dimensional simulations.
Simple Numerical Modelling for Gasdynamic Design of Wave Rotors
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Nagashima, Toshio
The precise estimation of pressure waves generated in the passages is a crucial factor in wave rotor design. However, it is difficult to estimate the pressure wave analytically, e.g. by the method of characteristics, because the mechanism of pressure-wave generation and propagation in the passages is extremely complicated as compared to that in a shock tube. In this study, a simple numerical modelling scheme was developed to facilitate the design procedure. This scheme considers the three dominant factors in the loss mechanism —gradual passage opening, wall friction and leakage— for simulating the pressure waves precisely. The numerical scheme itself is based on the one-dimensional Euler equations with appropriate source terms to reduce the calculation time. The modelling of these factors was verified by comparing the results with those of a two-dimensional numerical simulation, which were previously validated by the experimental data in our previous study. Regarding wave rotor miniaturization, the leakage flow effect, which involves the interaction between adjacent cells, was investigated extensively. A port configuration principle was also examined and analyzed in detail to verify the applicability of the present numerical modelling scheme to the wave rotor design.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
Wave Transformation Over Reefs: Evaluation of One-Dimensional Numerical Models
2009-01-01
equations on an unstructured grid. Proceedings International Conference on Coastal Engineering ‘06 V1. San Diego, CA, 73-85. Baldock, T. E., P. Holmes , S...equations. Monthly Weather Review 91:99-164. Smith, J. M, A. R. Sherlock , and D. T. Resio. 2001. Steady state spectral wave model user’s manual
NASA Astrophysics Data System (ADS)
Chai, Han-Peng; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Guan, Yue-Yang
2017-08-01
Korteweg-de Vries (KdV)-type equations are seen to describe the shallow-water waves, lattice structures and ion-acoustic waves in plasmas. Hereby, we consider an extension of the KdV-type equations called the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium. Via the Hirota bilinear method and symbolic computation, we derive the bilinear forms, N-soliton solutions and Bäcklund transformation. Effects of the first- and higher-order dispersion terms are investigated. Soliton evolution and interaction are graphically presented and analyzed: Both the propagation velocity and direction of the soliton change when the dispersion terms are time-dependent; The interactions between/among the solitons are elastic, independent of the forms of the coefficients in the equations.
Three-dimensional separation for interaction of shock waves with turbulent boundary layers
NASA Technical Reports Server (NTRS)
Goldberg, T. J.
1973-01-01
For the interaction of shock waves with turbulent boundary layers, obtained experimental three-dimensional separation results and correlations with earlier two-dimensional and three-dimensional data are presented. It is shown that separation occurs much earlier for turbulent three-dimensional than for two-dimensional flow at hypersonic speeds.
Splash singularity for water waves.
Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-17
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.
Splash singularity for water waves
Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier
2012-01-01
We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372
A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces
NASA Technical Reports Server (NTRS)
Farassat, F.; Posey, Joe W.
2007-01-01
The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Toro, Eleuterio F.
2012-10-01
Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.
Analysis of sound propagation in ducts using the wave envelope concept
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1974-01-01
A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.
NASA Technical Reports Server (NTRS)
Miller, James G.
1990-01-01
An ultrasonic measurement system employed in the experimental interrogation of the anisotropic properties (through the measurement of the elastic stiffness constants) of the uniaxial graphite-epoxy composites is presented. The continuing effort for the development of improved visualization techniques for physical parameters is discussed. The background is set for the understanding and visualization of the relationship between the phase and energy/group velocity for propagation in high-performance anisotropic materials by investigating the general requirements imposed by the classical wave equation. The consequences are considered when the physical parameters of the anisotropic material are inserted into the classical wave equation by a linear elastic model. The relationship is described between the phase velocity and the energy/group velocity three dimensional surfaces through graphical techniques.
Computer Simulation of Microwave Devices
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1997-01-01
The accurate simulation of cold-test results including dispersion, on-axis beam interaction impedance, and attenuation of a helix traveling-wave tube (TWT) slow-wave circuit using the three-dimensional code MAFIA (Maxwell's Equations Solved by the Finite Integration Algorithm) was demonstrated for the first time. Obtaining these results is a critical step in the design of TWT's. A well-established procedure to acquire these parameters is to actually build and test a model or a scale model of the circuit. However, this procedure is time-consuming and expensive, and it limits freedom to examine new variations to the basic circuit. These limitations make the need for computational methods crucial since they can lower costs, reduce tube development time, and lessen limitations on novel designs. Computer simulation has been used to accurately obtain cold-test parameters for several slow-wave circuits. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. A new computer modeling technique developed at the NASA Lewis Research Center overcomes these difficulties. The MAFIA three-dimensional mesh for a C-band helix slow-wave circuit is shown.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
An analytical model of a curved beam with a T shaped cross section
NASA Astrophysics Data System (ADS)
Hull, Andrew J.; Perez, Daniel; Cox, Donald L.
2018-03-01
This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.
2015-10-30
Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta
2017-01-01
D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α
Manipulating matter rogue waves and breathers in Bose-Einstein condensates.
Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M
2014-12-01
We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.
NASA Astrophysics Data System (ADS)
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.
Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves
NASA Astrophysics Data System (ADS)
Tobita, Miwa; Omura, Yoshiharu
2018-03-01
We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.
Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
Kim, Tae-Yeon; Cassiani, Massimo; Albertson, John D; Dolbow, John E; Fried, Eliot; Gurtin, Morton E
2009-04-01
We study the effect of the length scales alpha and beta in the Navier-Stokes- alphabeta equations on the energy spectrum and the alignment between the vorticity and the eigenvectors of the stretching tensor in three-dimensional homogeneous and isotropic turbulent flows in a periodic cubic domain, including the limiting cases of the Navier-Stokes- alpha and Navier-Stokes equations. A significant increase in the accuracy of the energy spectrum at large wave numbers arises for beta
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
Jing, Yun; Tao, Molei; Clement, Greg T.
2011-01-01
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed. PMID:21302985
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less
NASA Astrophysics Data System (ADS)
Rumyantseva, O. D.; Shurup, A. S.
2017-01-01
The paper considers the derivation of the wave equation and Helmholtz equation for solving the tomographic problem of reconstruction combined scalar-vector inhomogeneities describing perturbations of the sound velocity and absorption, the vector field of flows, and perturbations of the density of the medium. Restrictive conditions under which the obtained equations are meaningful are analyzed. Results of numerical simulation of the two-dimensional functional-analytical Novikov-Agaltsov algorithm for reconstructing the flow velocity using the the obtained Helmholtz equation are presented.
Darboux transformation and explicit solutions for some (2+1)-dimensional equations
NASA Astrophysics Data System (ADS)
Wang, Yan; Shen, Lijuan; Du, Dianlou
2007-06-01
Three systems of (2+1)-dimensional soliton equations and their decompositions into the (1+1)-dimensional soliton equations are proposed. These equations include KPI, CKP, MKPI. With the help of Darboux transformation of (1+1)-dimensional equations, we get the explicit solutions of the (2+1)-dimensional equations.
On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nariyuki, Y.
A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less
Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li
2016-08-01
The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Fast Neural Solution Of A Nonlinear Wave Equation
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1996-01-01
Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
Johnson, R S
2018-01-28
This review makes a case for describing many of the flows observed in our oceans, simply based on the Euler equation, with (piecewise) constant density and with suitable boundary conditions. The analyses start from the Euler and mass conservation equations, expressed in a rotating, spherical coordinate system (but the f -plane and β -plane approximations are also mentioned); five examples are discussed. For three of them, a suitable non-dimensionalization is introduced, and a single small parameter is identified in each case. These three examples lead straightforwardly and directly to new results for: waves on the Pacific Equatorial Undercurrent (EUC) with a thermocline (in the f -plane); a nonlinear, three-dimensional model for EUC-type flows (in the β -plane); and a detailed model for large gyres. The other two examples are exact solutions of the complete system: a flow which corresponds to the underlying structure of the Pacific EUC; and a flow based on the necessary requirement to use a non-conservative body force, which produces the type of flow observed in the Antarctic Circumpolar Current. (All these examples have been discussed in detail in the references cited.) This review concludes with a few comments on how these solutions can be extended and expanded.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Exact Analytical Solutions for Elastodynamic Impact
2015-11-30
corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.
2008-01-01
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay.
NASA Astrophysics Data System (ADS)
Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander
2015-04-01
The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
NASA Astrophysics Data System (ADS)
Tolba, R. E.; El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.
2016-01-01
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com
2016-01-15
Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.
Global Solutions to Repulsive Hookean Elastodynamics
NASA Astrophysics Data System (ADS)
Hu, Xianpeng; Masmoudi, Nader
2017-01-01
The global existence of classical solutions to the three dimensional repulsive Hookean elastodynamics around an equilibrium is considered. By linearization and Hodge's decomposition, the compressible part of the velocity, the density, and the compressible part of the transpose of the deformation gradient satisfy Klein-Gordon equations with speed {√{2}}, while the incompressible parts of the velocity and of the transpose of the deformation gradient satisfy wave equations with speed one. The space-time resonance method combined with the vector field method is used in a novel way to obtain the decay of the solution and hence global existence.
NASA Astrophysics Data System (ADS)
Zanraea, D. D. L.; Needham, D. J.
The depth-averaged hydraulic equations augmented with a suitable bed-load sediment transport function form a closed system which governs the one-dimensional flow in an alluvial river or channel. In this paper, it is shown that this system is hyperbolic and yields three families of shock-wave solutions. These are determined to be temporally stable in restricted regions of the (H, F0)-plane, via the Lax shock inequalities. Further, it is demonstrated that this criterion is equivalent to the energy dissipation criterion developed by Needham and Hey (1991).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations
NASA Astrophysics Data System (ADS)
Cranmer, Steven R.
2010-02-01
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.
A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation
NASA Astrophysics Data System (ADS)
Peng, X.; Li, X.
2017-12-01
A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and tuning of the model is still going on, and preliminary results have demonstrated the possibility of high-resolution application of the model to global weather prediction and even seasonal climate projection.
NASA Astrophysics Data System (ADS)
Ahmed, Iftikhar
2017-09-01
In this work, we investigate dimensionally reduced generalised Kadomtsev-Petviashvili equation, which can describe many nonlinear phenomena in fluid dynamics. Based on the bilinear formalism, direct Maple symbolic computations are used with an ansätz function to construct three classes of interaction solutions between lump and line solitons. Furthermore, the dynamics of interaction phenomena is explained with 3D plots and 2D contour plots. For the first class of interaction solutions, lump appeared at t=0, and there was a normal interaction between lump and line solitons at t=1, 2, 5, and 10. For the second class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving downward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. By contrast, for the third class of interaction solutions, lump appeared from one side of line soliton at t=0, but it started moving upward at t=1, 2, and 5. Finally, at t=10, this lump was completely swallowed by other side. Furthermore, interaction solutions between lump solutions and kink wave are also investigated. These results might be helpful to understand the propagation processes for nonlinear waves in fluid mechanics.
On the existence of solutions to a one-dimensional degenerate nonlinear wave equation
NASA Astrophysics Data System (ADS)
Hu, Yanbo
2018-07-01
This paper is concerned with the degenerate initial-boundary value problem to the one-dimensional nonlinear wave equation utt =((1 + u) aux) x which arises in a number of various physical contexts. The global existence of smooth solutions to the degenerate problem was established under relaxed conditions on the initial-boundary data by the characteristic decomposition method. Moreover, we show that the solution is uniformly C 1 , α continuous up to the degenerate boundary and the degenerate curve is C 1 , α continuous for α ∈ (0 , min a/1+a, 1/1+a).
NASA Astrophysics Data System (ADS)
Hayati, Yazdan; Eskandari-Ghadi, Morteza
2018-02-01
An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.
New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating.
Liu, J; Chen, X; Xu, L X
1999-04-01
Comparative studies on the well-known Pennes' equation and the newly developed thermal wave model of bioheat transfer (TWMBT) were performed to investigate the wave like behaviors of bioheat transfer occurred in thermal injury of biological bodies. The one-dimensional TWMBT in a finite medium was solved using separation of variables and the analytical solution showed distinctive wave behaviors of bioheat transfer in skin subjected to instantaneous heating. The finite difference method was used to simulate and study practical problems involved in burn injuries in which skin was stratified as three layers with various thermal physical properties. Deviations between the TWMBT and the traditional Pennes' equation imply that, for high flux heating with extremely short duration (i.e., flash fire), the TWMBT which accounts for finite thermal wave propagation may provide realistic predictions on burn evaluation. A general heat flux criterion has been established to determine when the thermal wave propagation dominates the principal heat transfer process and the TWMBT can be used for tissue temperature prediction and burn evaluation. A preliminary interpretation on the mechanisms of the wave like behaviors of heat transfer in living tissues was conducted. The application of thermal wave theory can also be possibly extended to other medical problems which involve instantaneous heating or cooling.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
NASA Astrophysics Data System (ADS)
El-Bedwehy, N. A.
2016-07-01
The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com
2016-07-15
The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad
2008-03-01
A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.
1994-01-06
for all of this work is the fact that the Kadomtsev - Petviashvili equation , a1(atu + ui)xU + a.3u) + ay2u = 0, (KP) describes approximately the evolution...the contents of these two papers. (a) Numerically induced chaos The cubic-nonlinear Schrtdinger equation in one dimension, iatA +,2V + 21i,1 =0, (NLS...arises in several physical contexts, including the evolution of nearly monochromatic, one-dimensional waves in deep water. The equation is known to be
Nonlinear Schrödinger equations for Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Galati, Luigi; Zheng, Shijun
2013-10-01
The Gross-Pitaevskii equation, or more generally the nonlinear Schrödinger equation, models the Bose-Einstein condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of the NLS with L2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic quadratic potentials.
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.
Three-dimensional instability of standing waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2003-12-01
We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.
The picosecond structure of ultra-fast rogue waves
NASA Astrophysics Data System (ADS)
Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti
2018-02-01
We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Shang-Min; Gu, Pin-Gao; Dobbs-Dixon, Ian
Three-dimensional (3D) equatorial trapped waves excited by stellar isolation and the resulting equatorial super-rotating jet in a vertical stratified atmosphere of a tidally locked hot Jupiter are investigated. Taking the hot Jupiter HD 189733b as a fiducial example, we analytically solve linear equations subject to stationary stellar heating with a uniform zonal-mean flow included. We also extract wave information in the final equilibrium state of the atmosphere from our radiative hydrodynamical simulation for HD 189733b. Our analytic wave solutions are able to qualitatively explain the 3D simulation results. Apart from previous wave studies, investigating the vertical structure of waves allowsmore » us to explore new wave features such as the wavefronts tilts related to the Rossby-wave resonance as well as dispersive equatorial waves. We also attempt to apply our linear wave analysis to explain some numerical features associated with the equatorial jet development seen in the general circulation model by Showman and Polvani. During the spin-up phase of the equatorial jet, the acceleration of the jet can be in principle boosted by the Rossby-wave resonance. However, we also find that as the jet speed increases, the Rossby-wave structure shifts eastward, while the Kelvin-wave structure remains approximately stationary, leading to the decline of the acceleration rate. Our analytic model of jet evolution implies that there exists only one stable equilibrium state of the atmosphere, possibly implying that the final state of the atmosphere is independent of initial conditions in the linear regime. Limitations of our linear model and future improvements are also discussed.« less
Exotic superconductivity with enhanced energy scales in materials with three band crossings
NASA Astrophysics Data System (ADS)
Lin, Yu-Ping; Nandkishore, Rahul M.
2018-04-01
Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.
Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Rizvi, H.
2012-01-15
Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less
NASA Astrophysics Data System (ADS)
La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.
2013-04-01
In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoen; Chen, Yong
2017-11-01
In this paper, a combination of stripe soliton and lump soliton is discussed to a reduced (3+1)-dimensional Jimbo-Miwa equation, in which such solution gives rise to two different excitation phenomena: fusion and fission. Particularly, a new combination of positive quadratic functions and hyperbolic functions is considered, and then a novel nonlinear phenomenon is explored. Via this method, a pair of resonance kink stripe solitons and rogue wave is studied. Rogue wave is triggered by the interaction between lump soliton and a pair of resonance kink stripe solitons. It is exciting that rogue wave must be attached to the stripe solitons from its appearing to disappearing. The whole progress is completely symmetry, the rogue wave starts itself from one stripe soliton and lose itself in another stripe soliton. The dynamic properties of the interaction between one stripe soliton and lump soliton, rogue wave are discussed by choosing appropriate parameters.
NASA Astrophysics Data System (ADS)
Beck, Margaret; Wayne, C. Eugene
2009-01-01
The large-time behavior of solutions to the Burgers equation with small viscosity is described using invariant manifolds. In particular, a geometric explanation is provided for a phenomenon known as metastability, which in the present context means that solutions spend a very long time near the family of solutions known as diffusive N-waves before finally converging to a stable self-similar diffusion wave. More precisely, it is shown that in terms of similarity, or scaling, variables in an algebraically weighted L^2 space, the self-similar diffusion waves correspond to a one-dimensional global center manifold of stationary solutions. Through each of these fixed points there exists a one-dimensional, global, attractive, invariant manifold corresponding to the diffusive N-waves. Thus, metastability corresponds to a fast transient in which solutions approach this metastable manifold of diffusive N-waves, followed by a slow decay along this manifold, and, finally, convergence to the self-similar diffusion wave.
On mass transport in porosity waves
NASA Astrophysics Data System (ADS)
Jordan, Jacob S.; Hesse, Marc A.; Rudge, John F.
2018-03-01
Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in their center. This recirculating fluid is separated from the background flow field by a circular dividing streamline and transported with the phase velocity of the porosity wave. Unlike models for one-dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity waves does not produce chromatographic separations between relatively incompatible elements due to the circular flow pattern. This may allow melt that originated from the partial melting of fertile heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they rise buoyantly towards the surface.
Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation
NASA Astrophysics Data System (ADS)
Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei
2018-03-01
The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.
NASA Astrophysics Data System (ADS)
Weiss, R.; Zainali, A.
2014-12-01
Boulders can be found on many coastlines around the globe. They are generally thought to be moved either during coastal storms or tsunamis because they are too heavy to be moved by more common marine or coastal processes. To understand storm and tsunami risk at given coastline, the event histories of both events need to be separated to produce a robust event statistics for quantitative risk analyses. Because boulders are most likely only moved by coastal storms or tsunamis, they are very suitable to produce the data basis for such event statistics. Boulder transport problem has been approached by comparing the driving with resisting forces acting on a boulder. However, we argue that this approach is not sufficient because the comparison of resisting and driving forces only constitutes boulder motion, but not for boulder dislodgment. Boulder motion means that the boulder starts to move out of its pocket. However, this motion does not guarantee that the boulder will reach the critical dislodgment position. Boulder dislodgment is a necessary condition to identify whether or not a boulder has moved. For boulder dislodgement, an equation of motion is needed, and that equation is Newtons Second Law of Motion (NSL). We perform fully coupled three-dimensional numerical simulation of boulders moved by waves where the boulders move according to NSL. Our numerical simulations are the first of their kind applied to tsunami and storm boulder motion. They show how storm and tsunami waves interact with boulders in a more realistic physical setting, and highlight the importance of submergence. Based on our simulations we perform a dimensional analysis that identifies the Froude number as important parameter, which can be considered large only in the front of tsunami waves, but small in the rest of tsunami wave and also generally small in storm waves. From a general point of view, our results indicate that the boulder transport problem is more complex than recently considered, and more variables need to be considered in inversions of the wave characteristics from moved boulders. However, numerical simulations are an incredible powerful and flexible tool with which more robust and more correct techniques to invert wave characteristics from moved boulders can be developed. Our analyses of the Froude number and submergence are positive indicators.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
NASA Astrophysics Data System (ADS)
Kuroda, Takami; Kotake, Kei; Hayama, Kazuhiro; Takiwaki, Tomoya
2017-12-01
We present results from general-relativistic (GR) three-dimensional (3D) core-collapse simulations with approximate neutrino transport for three nonrotating progenitors (11.2, 15, and 40 M ⊙) using different nuclear equations of state (EOSs). We find that the combination of progenitor’s higher compactness at bounce and the use of softer EOS leads to stronger activity of the standing accretion shock instability (SASI). We confirm previous predications that the SASI produces characteristic time modulations both in neutrino and gravitational-wave (GW) signals. By performing a correlation analysis of the SASI-modulated neutrino and GW signals, we find that the correlation becomes highest when we take into account the time-delay effect due to the advection of material from the neutrino sphere to the proto-neutron star core surface. Our results suggest that the correlation of the neutrino and GW signals, if detected, would provide a new signature of the vigorous SASI activity in the supernova core, which can be hardly seen if neutrino-convection dominates over the SASI.
Type IIB Colliding Plane Waves
NASA Astrophysics Data System (ADS)
Gutperle, M.; Pioline, B.
2003-09-01
Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.
One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.
2018-04-01
The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej
2006-06-01
We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.
An Investigation of Wave Propagations in Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
2004-01-01
Analysis of the discontinuous Galerkin method has been carried out for one- and two-dimensional system of hyperbolic equations. Analytical, as well as numerical, properties of wave propagation in a DGM scheme are derived and verified with direct numerical simulations. In addition to a systematic examination of the dissipation and dispersion errors, behaviours of a DG scheme at an interface of two different grid topologies are also studied. Under the same framework, a quantitative discrete analysis of various artificial boundary conditions is also conducted. Progress has been made in numerical boundary condition treatment that is closely related to the application of DGM in aeroacoustics problems. Finally, Fourier analysis of DGM for the Convective diffusion equation has also be studied in connection with the application of DG schemes for the Navier-Stokes equations. This research has resulted in five(5) publications, plus one additional manuscript in preparation, four(4) conference presentations, and three(3) departmental seminars, as summarized in part II. Abstracts of papers are given in part 111 of this report.
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.
Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, Parvin; Mottaghizadeh, Marzieh
2012-06-15
By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashir, M. F., E-mail: frazbashir@yahoo.com; Behery, E. E., E-mail: eebehery@gmail.com; Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta
2015-06-15
Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactivemore » (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.« less
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Wu, S. Z.; Zhou, C. T.
2013-09-15
The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1994-01-01
An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 11-12 July 1981 CCOPE case study indicated two episodes of coherent waves. While geostrophic adjustment, shearing instability, and terrain were all implicated separately or in combination as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to define the genesis processes from observations alone. The first part of this paper, 3D Numerical Modeling Studies of Terrain-Induced Mass/Momentum Perturbations, employs a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed gravity wave episode. The meso-beta scale numerical model is used to study various simulations of the role of multiple geostrophic adjustment processes in focusing a region for gravity wave genesis. The second part of this paper, Linear Theory and Theoretical Modeling, investigates the response of non-resting rotating homogeneous and continuously stratified Boussinesq models of the terrestrial atmosphere to temporally impulsive and uniformly propagating three-dimensional localized zonal momentum sources representative of midlatitude jet streaks. The methods of linear perturbation theory applied to the potential vorticity (PV) and wave field equations are used to study the geostrophic adjustment dynamics. The total zonal and meridional wind perturbations are separated into geostrophic and ageostrophic components in order to define and follow the evolution of both the primary and secondary mesocirculations accompanying midlatitude jetogenesis forced by geostrophic adjustment processes. This problem is addressed to help fill the gap in understanding the dynamics and structure of mesoscale inertia-gravity waves forced by geostrophic adjustment processes in simple two-dimensional quiescent current systems and those produced by mesoscale numerical models simulating the orographic and diabatic perturbation of three-dimensional quasi-geostrophically balanced synoptic scale jet streaks associated with complex baroclinic severe storm producing environments.
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
NASA Astrophysics Data System (ADS)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
On the modeling of wave-enhanced turbulence nearshore
NASA Astrophysics Data System (ADS)
Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth
2016-07-01
A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.
Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain
NASA Astrophysics Data System (ADS)
Farzadian, O.; Niry, M. D.
2018-09-01
We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.
NASA Astrophysics Data System (ADS)
Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin
2002-02-01
Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.
NASA Astrophysics Data System (ADS)
Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.
2018-02-01
In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.
Exact analytic solution of position-dependent mass Schrödinger equation
NASA Astrophysics Data System (ADS)
Rajbongshi, Hangshadhar
2018-03-01
Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.
2D instabilities of surface gravity waves on a linear shear current
NASA Astrophysics Data System (ADS)
Francius, Marc; Kharif, Christian
2016-04-01
Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437
New Patterns of the Two-Dimensional Rogue Waves: (2+1)-Dimensional Maccari System
NASA Astrophysics Data System (ADS)
Wang, Gai-Hua; Wang, Li-Hong; Rao, Ji-Guang; He, Jing-Song
2017-06-01
The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable, which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a (2+1)-dimensional Maccari system. The extreme points (lines) of the first-order lumps (rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b 2 plays a significant role to control these patterns. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University, Gai-Hua Wang is also supported by the Scientific Research Foundation of Graduate School of Ningbo University
Progressive wave expansions and open boundary problems
NASA Technical Reports Server (NTRS)
Hagstrom, T.; Hariharan, S. I.
1995-01-01
In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.
Information transport in classical statistical systems
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-02-01
For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.
The simulation of shock- and impact-driven flows with Mie-Gruneisen equations of state
NASA Astrophysics Data System (ADS)
Ward, Geoffrey M.
An investigation of shock- and impact-driven flows with Mie-Gruneisen equation of state derived from a linear shock-particle speed Hugoniot relationship is presented. Cartesian mesh methods using structured adaptive refinement are applied to simulate several flows of interest in an Eulerian frame of reference. The flows central to the investigation include planar Richtmyer-Meshkov instability, the impact of a sphere with a plate, and an impact-driven Mach stem. First, for multicomponent shock-driven flows, a dimensionally unsplit, spatially high-order, hybrid, center-difference, limiter methodology is developed. Effective switching between center-difference and upwinding schemes is achieved by a set of robust tolerance and Lax-entropy-based criteria [49]. Oscillations that result from such a mixed stencil scheme are minimized by requiring that the upwinding method approaches the center-difference method in smooth regions. The solver is then applied to investigate planar Richtmyer-Meshkov instability in the context of an equation of state comparison. Comparisons of simulations with materials modeled by isotropic stress Mie-Gruneisen equations of state derived from a linear shock-particle speed Hugoniot relationship [36,52] to those of perfect gases are made with the intention of exposing the role of the equation of state. First, results for single- and triple-mode planar Richtmyer-Meshkov instability between mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Gruneisen equations of state are presented for the case of a reflected shock. The single-mode case is explored for incident shock Mach numbers of 1.5 and 2.5. Additionally, examined is single-mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. Vorticity distribution and corrugation centerline shortly after shock interaction is also examined. The formation of incipient weak shock waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected. Next, the ghost fluid method [83] is explored for application to impact-driven flows with Mie-Gruneisen equations of state in a vacuum. Free surfaces are defined utilizing a level-set approach. The level-set is reinitialized to the signed distance function periodically by solution to a Hamilton-Jacobi differential equation in artificial time. Flux reconstruction along each Cartesian direction of the domain is performed by subdividing in a way that allows for robust treatment of grid-scale sized voids. Ghost cells in voided regions near the material-vacuum interface are determined from surface-normal Riemann problem solution. The method is then applied to several impact problems of interest. First, a one-dimensional impact problem is examined in Mie-Gruneisen aluminum with simple point erosion used to model separation by spallation under high tension. A similar three-dimensional axisymmetric simulation of two rods impacting is then performed without a model for spallation. Further results for three-dimensional axisymmetric simulation of a sphere hitting a plate are then presented. Finally, a brief investigation of the assumptions utilized in modeling solids as isotropic fluids is undertaken. An Eulerian solver approach to handling elastic and elastic-plastic solids is utilized for comparison to the simple fluid model assumption. First, in one dimension an impact problem is examined for elastic, elastic-plastic, and fluid equations of state for aluminum. The results demonstrate that in one dimension the fluid models the plastic shock structure of the flow well. Further investigation is made using a three-dimensional axisymmetric simulation of an impact problem involving a copper cylinder surrounded by aluminum. An aluminum slab impact drives a faster shock in the outer aluminum region yielding a Mach reflection in the copper. The results demonstrate similar plastic shock structures. Several differences are also notable that include a lack of roll-up instability at the material interface and slip-line emanating from the Mach stem's triple point. (Abstract shortened by UMI.)
Strong anti-gravity Life in the shock wave
NASA Astrophysics Data System (ADS)
Fabbrichesi, Marco; Roland, Kaj
1992-12-01
Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.
Numerical Investigation of Three-dimensional Instability of Standing Waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2002-11-01
We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.
Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinton, Gianmarco
Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it is necessary to quantify ultrasound image quality and its sources of degradation.« less
NASA Astrophysics Data System (ADS)
Chen, Xiao; Dong, Gang; Jiang, Hua
2017-04-01
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Pratiwi, B. N.
2016-04-01
D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.
The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow
NASA Technical Reports Server (NTRS)
Hewitt, R. E.; Hall, P.
1996-01-01
We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame
NASA Technical Reports Server (NTRS)
Mahalov, A.
1994-01-01
The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).
Robertson, Scott; Leonhardt, Ulf
2014-11-01
Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.
NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Voltera's Solution of the Wave Equation as Applied to Three-Dimensional Supersonic Airfoil Problems
NASA Technical Reports Server (NTRS)
Heslet, Max A; Lomax, Harvard; Jones, Arthur L
1947-01-01
A surface integral is developed which yields solutions of the linearized partial differential equation for supersonic flow. These solutions satisfy boundary conditions arising in wing theory. Particular applications of this general method are made, using acceleration potentials, to flat surfaces and to uniformly loaded lifting surfaces. Rectangular and trapezoidal plan forms are considered along with triangular forms adaptable to swept-forward and swept-back wings. The case of the triangular plan form in sideslip is also included. Emphasis is placed on the systematic application of the method to the lifting surfaces considered and on the possibility of further application.
The solution of the dam-break problem in the Porous Shallow water Equations
NASA Astrophysics Data System (ADS)
Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico
2018-04-01
The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Shock-free configurations in two-and three-dimensional transonic flow
NASA Technical Reports Server (NTRS)
Seebass, A. R.
1981-01-01
Efforts to replace Sobieczky's complicated analog computations of solutions to the hodograph equations by a fast elliptic solver in order to generate shock-free airfoil designs more effectively are described. The indirect design of airfoil and wing shapes that are free from shock waves even though the local flow velocity exceeds the speed of sound is described. The problem of finding an airfoil in two dimensional, irrotational flow that has a prescribed pressure distribution is as addressed. Sobieczky's suggestion to use a fictitious gas for finding shock-free airfoils directly in the physical plane was the basis for a more efficient procedure for achieving the same end.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
NASA Astrophysics Data System (ADS)
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
Capsize of polarization in dilute photonic crystals.
Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio
2017-11-29
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Theory and Experiment Analysis of Two-Dimensional Acousto-Optic Interaction.
1995-01-03
The universal coupled wave equation of two dimensional acousto optic effect has been deduced and the solution of normal Raman-Hath acousto optic diffraction...was derived from it. The theory was compared with the experimental results of a two dimensional acousto optic device consisting of two one dimensional modulators. The experiment results agree with the theory. (AN)
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1993-01-01
A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.
Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric
2018-01-01
A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Bilinear identities for an extended B-type Kadomtsev-Petviashvili hierarchy
NASA Astrophysics Data System (ADS)
Lin, Runliang; Cao, Tiancheng; Liu, Xiaojun; Zeng, Yunbo
2016-03-01
We construct bilinear identities for wave functions of an extended B-type Kadomtsev-Petviashvili (BKP) hierarchy containing two types of (2+1)-dimensional Sawada-Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the τ -function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of (2+1)-dimensional Sawada-Kotera equations in explicit form.
Surface Wave Propagation on a Laterally Heterogeneous Earth
NASA Astrophysics Data System (ADS)
Tromp, Jeroen
1992-01-01
Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1986-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Calculation of external-internal flow fields for mixed-compression inlets
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
Weak solutions of the three-dimensional vorticity equation with vortex singularities
NASA Technical Reports Server (NTRS)
Winckelmans, G.; Leonard, A.
1988-01-01
The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
Intermittency in generalized NLS equation with focusing six-wave interactions
NASA Astrophysics Data System (ADS)
Agafontsev, D. S.; Zakharov, V. E.
2015-10-01
We study numerically the statistics of waves for generalized one-dimensional Nonlinear Schrödinger (NLS) equation that takes into account focusing six-wave interactions, dumping and pumping terms. We demonstrate the universal behavior of this system for the region of parameters when six-wave interactions term affects significantly only the largest waves. In particular, in the statistically steady state of this system the probability density function (PDF) of wave amplitudes turns out to be strongly non-Rayleigh one for large waves, with characteristic "fat tail" decaying with amplitude | Ψ | close to ∝ exp (- γ | Ψ |), where γ > 0 is constant. The corresponding non-Rayleigh addition to the PDF indicates strong intermittency, vanishes in the absence of six-wave interactions, and increases with six-wave coupling coefficient.
Hamiltonian structures for systems of hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Olver, Peter J.; Nutku, Yavuz
1988-07-01
The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.
A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics
NASA Astrophysics Data System (ADS)
Rawy, E. K.
2018-06-01
We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.
Lattice Boltzmann Equation On a 2D Rectangular Grid
NASA Technical Reports Server (NTRS)
Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.
2005-03-01
picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the
Modulation analysis of nonlinear beam refraction at an interface in liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assanto, Gaetano; Smyth, Noel F.; Xia Wenjun
2011-09-15
A theoretical investigation of solitary wave refraction in nematic liquid crystals is undertaken. A modulation theory based on a Lagrangian formulation of the governing optical solitary wave equations is developed. The resulting low-dimensional equations are found to give solutions in excellent agreement with full numerical solutions of the governing equations, as well as with previous experimental studies. The analysis deals with a number of types of refraction from a more to a less optically dense medium, the most famous being the Goos-Haenchen shift upon total internal reflection.
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
NASA Technical Reports Server (NTRS)
Rogers, S. E.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
On a modified form of navier-stokes equations for three-dimensional flows.
Venetis, J
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
The effect of dissipative inhomogeneous medium on the statistics of the wave intensity
NASA Technical Reports Server (NTRS)
Saatchi, Sasan S.
1993-01-01
One of the main theoretical points in the theory of wave propagation in random medium is the derivation of closed form equations to describe the statistics of the propagating waves. In particular, in one dimensional problems, the closed form representation of the multiple scattering effects is important since it contributes in understanding such problems like wave localization, backscattering enhancement, and intensity fluctuations. In this the propagation of plane waves in a layer of one-dimensional dissipative random medium is considered. The medium is modeled by a complex permittivity whose real part is a constant representing the absorption. The one dimensional problem is mathematically equivalent to the analysis of a transmission line with randomly perturbed distributed parameters and a single mode lossy waveguide and the results can be used to study the propagation of radio waves through atmosphere and the remote sensing of geophysical media. It is assumed the scattering medium consists of an ensemble of one-dimensional point scatterers randomly positioned in a layer of thickness L with diffuse boundaries. A Poisson impulse process with density lambda is used to model the position of scatterers in the medium. By employing the Markov properties of this process an exact closed form equation of Kolmogorov-Feller type was obtained for the probability density of the reflection coefficient. This equation was solved by combining two limiting cases: (1) when the density of scatterers is small; and (2) when the medium is weakly dissipative. A two variable perturbation method for small lambda was used to obtain solutions valid for thick layers. These solutions are then asymptotically evaluated for small dissipation. To show the effect of dissipation, the mean and fluctuations of the reflected power are obtained. The results were compared with a lossy homogeneous medium and with a lossless inhomogeneous medium and the regions where the effect of absorption is not essential were discussed.
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
Computation of three-dimensional shock wave and boundary-layer interactions
NASA Technical Reports Server (NTRS)
Hung, C. M.
1985-01-01
Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.
Freak oscillation in a dusty plasma.
Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei
2017-05-01
The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.
Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Rizvi, H.
2010-05-15
Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves inmore » relativistic electron-positron-ion plasmas.« less
Static and Monoharmonic Acoustic Impact on a Laminated Plate
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Gazizullin, R. K.
2017-07-01
A discrete layered damping model of a multilayer plate at small displacements and deformations, with account of the internal damping of layers according to the Thompson-Kelvin-Voight model, is presented. Based on the equations derived, an analytical solution to the static deformation problem for single-layer rectangular plate hinge-supported along its contour and subjected of a uniformly distributed pressure applied to one of its boundary planes is obtained. Its convergence to the three-dimensional solution is analyzed in relation to the dimension of mesh in the thickness direction of the plate. It is found that, for thin plates, the dimension of the problem formulated can be reduced on the basis of simplified hypotheses applied to each layer. An analytical solutions is also constructed for the forced vibrations of two- and three-layer rectangular plates hinged in the opening of an absolutely stiff dividing wall upon transmission of a monoharmonic sound wave through them. It was assumed that the dividing wall is situated between two absolutely stiff barriers; one of them, owing to the harmonic vibration with a given displacement amplitude of the plate, forms an incident sound wave, and the other is stationary and is coated by a energy-absorbing material with high damping properties. Behavior of the acoustic media in spaces between the deformable plate and the barriers is described by the classical wave equations based on the model of an ideal compressible fluid. To describe the process of dynamic deformation of the energy-absorbing coating of the fixed barrier, two-dimensional equations of motion are derived based on the model of a transversely soft layer, a linear approximation of displacement fields in the thickness direction of the coating, and the account of damping properties of its material by using the hysteresis model. The effect of physical and mechanical parameters of the mechanical system considered and of frequency of the incident sound wave on the parameter of its sound insulation, and the characteristics of stress-strain state of the plate is investigated
Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)
NASA Astrophysics Data System (ADS)
Altmann, Konrad; Pflaum, Christoph; Seider, David
2004-06-01
A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.
Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures.
Khusnutdinova, Karima R; Samsonov, Alexander M; Zakharov, Alexey S
2009-05-01
We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice with a soft middle (or bonding) layer are governed by a system of coupled Boussinesq-type equations. For this system we find conservation laws and show that pure solitary waves, which exist in a single equation and can exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized solitary waves.
Dynamical behavior for the three-dimensional generalized Hasegawa-Mima equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ruifeng; Guo Boling; Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088
2007-01-15
The long time behavior of solution of the three-dimensional generalized Hasegawa-Mima [Phys. Fluids 21, 87 (1978)] equations with dissipation term is considered. The global attractor problem of the three-dimensional generalized Hasegawa-Mima equations with periodic boundary condition was studied. Applying the method of uniform a priori estimates, the existence of global attractor of this problem was proven, and also the dimensions of the global attractor are estimated.
NASA Technical Reports Server (NTRS)
Chevalier, C. T.; Herrmann, K. A.; Kory, C. L.; Wilson, J. D.; Cross, A. W.; Williams, W. D. (Technical Monitor)
2001-01-01
Previously, it was shown that MAFIA (solutions of Maxwell's equations by the Finite Integration Algorithm), a three-dimensional simulation code, can be used to produce accurate cold-test characteristics including frequency-phase dispersion, interaction impedance, and attenuation for traveling-wave tube (TWT) slow-wave structures. In an effort to improve user-friendliness and simulation time, a model was developed to compute the cold-test parameters using the electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS). Cold-test parameters were calculated for several slow-wave circuits including a ferruled coupled-cavity, a folded waveguide, and a novel finned-ladder circuit using both MWS and MAFIA. Comparisons indicate that MWS provides more accurate cold-test data with significantly reduced simulation times. Both MAFIA and MWS are based on the finite integration (FI) method; however, MWS has several advantages over MAFIA. First, it has a Windows based interface for PC operation, making it very user-friendly, whereas MAFIA is UNIX based. MWS uses a new Perfect Boundary Approximation (PBA), which increases the accuracy of the simulations by avoiding stair step approximations associated with MAFIA's representation of structures. Finally, MWS includes a Visual Basic for Applications (VBA) compatible macro language that enables the simulation process to be automated and allows for the optimization of user-defined goal functions, such as interaction impedance.
Acoustic impact on the laminated plates placed between barriers
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.
2016-11-01
On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Large-wave simulation of spilling breaking and undertow current over constant slope beach
NASA Astrophysics Data System (ADS)
Dimas, Athanassios; Kolokythas, Gerasimos; Dimakopoulos, Aggelos
2011-11-01
The three-dimensional, free-surface flow, developing by the propagation of nonlinear breaking waves over a constant slope bed, is numerically simulated. The main objective is to investigate the effect of spilling breaking on the characteristics of the induced undertow current by performing large-wave simulations (LWS) based on the numerical solution of the Navier-Stokes equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. In the present study, the case of incoming waves with wavelength to inflow depth ratio λ/ d ~ 6.6 and wave steepness H/ λ ~0.025, over bed of slope tan β = 1/35, is investigated. The LWS predicts satisfactorily breaking parameters - height and depth - and wave dissipation in the surf zone, in comparison to experimental data. In the corresponding LES, breaking height and depth are smaller and wave dissipation in the surf zone is weaker. For the undertow current, it is found that it is induced by the breaking process at the free surface, while its strength is controlled by the bed shear stress. Finally, the amplitude of the bed shear stress increases substantially in the breaking zone, becoming up to six times larger than the respective amplitude at the outer region.
NASA Technical Reports Server (NTRS)
Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.
1992-01-01
The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
Strongly coupled stress waves in heterogeneous plates.
NASA Technical Reports Server (NTRS)
Wang, A. S. D.; Chou, P. C.; Rose, J. L.
1972-01-01
Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.
Prediction of drag at subsonic and transonic speeds using Euler methods
NASA Technical Reports Server (NTRS)
Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.
1992-01-01
A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi
2016-04-01
We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.
Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations
NASA Astrophysics Data System (ADS)
Carvalho, Cindy; Harley, Charis
2017-05-01
Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1982-01-01
A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.
NASA Astrophysics Data System (ADS)
Denlinger, R. P.
2006-12-01
On October 2, 2004, three component, broad-frequency band seismometers as far as 250 km away from Mount St. Helens volcano detected a prominent low-frequency resonance associated with the onset of eruptive volcanic activity. The energy is dominantly in the 0.5 to 10 Hz range. Since gas emissions were low, I investigate a gas-free tremor mechanism generated by sudden extension of a pressurized, cylindrical, visco- elastic magma conduit beneath the mountain as it forces its way through a brittle crust. The concept is that rapid faulting of the crust around and above the magma results in a sudden drop in resistance and, consequently, a concurrent extension of the magma in the magma column at a rate greater than magma can resupply the column. The result is a rapid pressure drop in the magma, causing the column to oscillate and radiate elastic energy into the surrounding crust. The full wavefield generated by this physical mechanism is analyzed using the finite volume method of Leveque (2002), with the approximation outlined in Langseth and Leveque (2000) for hyperbolic conservation laws. In this method, the three-dimensional equations of elasticity are written as a first order set of conservation equations, with a solution vector composed of 3 velocity components and 6 stress components. The eigenvectors of the jacobian matrices of these conservation equations are used in a fourth-order Taylors series expansion of the solution vector around a small increment in time. This method is robust, allows waves to cleanly propagate off of a finite computational grid, and includes surface and interface waves. The method also allows for extremely large contrasts in elastic moduli across internal boundaries in the grid, necessary to accommodate the large variations in rigidity between a hot, visco-elastic magma at depth and the Earth's crust. Analyzing the October 2, 2004 tremor observed at Johnson Ridge Observatory, 9 km north of the mountain, for pressure drop in a 10 km long conduit, I obtain 0.3 +/- .05 MPa, which is consistent with elastic analysis of crustal deformation around the mountain during this time period. Langseth, J.O., and R.J. LeVeque, 2000, A wave propagation method for 3D hyperbolic conservation laws, J. Comp. Phys., 165, 126-166. Leveque, R.J., 2002, Finite volume methods for hyperbolic problems, Cambridge U. Press, 558 p.
Mean dyadic Green's function for a two layer random medium
NASA Technical Reports Server (NTRS)
Zuniga, M. A.
1981-01-01
The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high stress concentration. Our images also confirm the presence of high-velocity mantle at 100 km depth beneath areas of suspected mantle delamination (southern Sierra Nevada; Grande Ronde uplift), low velocity mantle underlying active rift zones, and high velocity mantle associated with the subducting Juan de Fuca plate. Structure established during the Proterozoic appears to exert a lasting influence on subsequent volcanism and tectonism up to the Present.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Guo, Xiao; Wei, Peijun
2016-03-01
The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Hennig, Jörg
2018-03-01
We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.
On the metal-insulator-transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Godoy, Salvador; Suzuki, Akira
2012-02-01
Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity σ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop.
A method for the computational modeling of the physics of heart murmurs
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Bakhshaee, Hani; Garreau, Guillaume; Zhu, Chi; Andreou, Andreas; Thompson, William R.; Mittal, Rajat
2017-05-01
A computational method for direct simulation of the generation and propagation of blood flow induced sounds is proposed. This computational hemoacoustic method is based on the immersed boundary approach and employs high-order finite difference methods to resolve wave propagation and scattering accurately. The current method employs a two-step, one-way coupled approach for the sound generation and its propagation through the tissue. The blood flow is simulated by solving the incompressible Navier-Stokes equations using the sharp-interface immersed boundary method, and the equations corresponding to the generation and propagation of the three-dimensional elastic wave corresponding to the murmur are resolved with a high-order, immersed boundary based, finite-difference methods in the time-domain. The proposed method is applied to a model problem of aortic stenosis murmur and the simulation results are verified and validated by comparing with known solutions as well as experimental measurements. The murmur propagation in a realistic model of a human thorax is also simulated by using the computational method. The roles of hemodynamics and elastic wave propagation on the murmur are discussed based on the simulation results.
NASA Technical Reports Server (NTRS)
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator
NASA Technical Reports Server (NTRS)
Liu, Siuying Raymond
1993-01-01
The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Liu, Lei; Chai, Han-Peng; Yuan, Yu-Qiang
2017-12-01
In this paper, the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev-Petviashvili hierarchy reduction, we obtain the first-order, higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, and 11471050, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
NASA Astrophysics Data System (ADS)
Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.
2009-12-01
Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.
Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems
NASA Astrophysics Data System (ADS)
Badriev, I. B.; Paimuhin, V. N.
2018-01-01
The coupled problem of planar acoustic wave propagation through a composite plate covered with a second damping layer with a large logarithmic decrement of oscillations is formulated. The aerohydrodynamic interaction of a plate with external acoustic environment is described by three-dimensional wave equations and the mechanical behavior of a two-layer plate by the classical Kirchhoff-Love model. An exact analytic solution of the problem is found for the case of hinged support of the edges of a plate. On the basis of this, the parameters of the covering damping layer were found, under which it is possible to achieve a practically complete damping of the plate vibration under resonant modes of its acoustic loading.
Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons
NASA Astrophysics Data System (ADS)
Kaur, B.; Singh, M.; Saini, N. S.
2018-01-01
We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.
NASA Astrophysics Data System (ADS)
Wang, Hai-Xiao; Chen, Yige; Hang, Zhi Hong; Kee, Hae-Young; Jiang, Jian-Hua
2017-09-01
The Dirac equation for relativistic electron waves is the parent model for Weyl and Majorana fermions as well as topological insulators. Simulation of Dirac physics in three-dimensional photonic crystals, though fundamentally important for topological phenomena at optical frequencies, encounters the challenge of synthesis of both Kramers double degeneracy and parity inversion. Here we show how type-II Dirac points—exotic Dirac relativistic waves yet to be discovered—are robustly realized through the nonsymmorphic screw symmetry. The emergent type-II Dirac points carry nontrivial topology and are the mother states of type-II Weyl points. The proposed all-dielectric architecture enables robust cavity states at photonic-crystal—air interfaces and anomalous refraction, with very low energy dissipation.
A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C
2009-09-01
A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
A study of hypersonic small-disturbance theory
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1954-01-01
A systematic study is made of the approximate inviscid theory of thin bodies moving at such high supersonic speeds that nonlinearity is an essential feature of the equations of flow. The first-order small-disturbance equations are derived for three-dimensional motions involving shock waves, and estimates are obtained for the order of error involved in the approximation. The hypersonic similarity rule of Tsien and Hayes, and Hayes' unsteady analogy appear in the course of the development. It is shown that the hypersonic theory can be interpreted so that it applies also in the range of linearized supersonic flow theory. Several examples are solved according to the small-disturbance theory, and compared with the full solutions when available.
NASA Technical Reports Server (NTRS)
Gough, Douglas; Merryfield, William J.; Toomre, Juri
1998-01-01
A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F=1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F=1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
One-dimensional optical wave turbulence: Experiment and theory
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
2012-05-01
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F
2010-07-01
Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033
2016-09-15
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less
Rogue wave variational modelling through the interaction of two solitary waves
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno
2016-04-01
The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a variational approach, based on Luke's variational principle [Luke, 1967], and its dynamical equivalent from Miles [Miles, 1977], that describe incompressible and inviscid potential flows with free surface, through the variations of the Lagrangian. This Lagrangian, obtained from Bernouilli's equations, can be expressed in a Hamiltonian form, for which robust time integrators have been derived [Gagarina et al., 2015]. A Galerkin finite element method is then used to solve the system numerically, and we aim to compare our simulations to exact solutions of the KP-equation.
A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data
NASA Technical Reports Server (NTRS)
Barnes, J. R.
1993-01-01
Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.
A k-Space Method for Moderately Nonlinear Wave Propagation
Jing, Yun; Wang, Tianren; Clement, Greg T.
2013-01-01
A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114
Three-dimensional simulations of thin ferro-fluid films and drops in magnetic fields
NASA Astrophysics Data System (ADS)
Conroy, Devin; Wray, Alex; Matar, Omar
2016-11-01
We consider the interfacial dynamics of a thin, ferrofluidic film flowing down an inclined substrate, under the action of a magnetic field, bounded above by an inviscid gas. The fluid is assumed to be weakly-conducting. Its dynamics are governed by a coupled system of the steady Maxwell's, the Navier-Stokes, and continuity equations. The magnetisation of the film is a function of the magnetic field, and is prescribed by a Langevin function. We make use of a long-wave reduction in order to solve for the dynamics of the pressure, velocity, and magnetic fields inside the film. The potential in the gas phase is solved with the use of Fourier Transforms. Imposition of appropriate interfacial conditions allows for the construction of an evolution equation for the interfacial shape, via use of the kinematic condition, and the magnetic field. We consider the three-dimensional evolution of the film to spawise perturbations by solving the non-linear equations numerically. The constant flux configuration is considered, which corresponds to a thin film and drop flowing down an incline, and a parametric study is performed to understand the effect of a magnetic field on the stability and structure of the formed drops. EPSRC UK platform Grant MACIPh (EP/L020564/1) and programme Grant MEMPHIS (EP/K003976/1).
NASA Astrophysics Data System (ADS)
Mirshekari, Gholamreza
This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.
Pauler, Denise K; Kendrick, Brian K
2004-01-08
The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics
A generic efficient adaptive grid scheme for rocket propulsion modeling
NASA Technical Reports Server (NTRS)
Mo, J. D.; Chow, Alan S.
1993-01-01
The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.
Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
NASA Astrophysics Data System (ADS)
Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha
2017-06-01
Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Observation of Quasi-Two-Dimensional Nonlinear Interactions in a Drift-Wave Streamer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, T.; Nagashima, Y.; Itoh, S.-I.
2010-11-26
A streamer, which is a bunching of drift-wave fluctuations, and its mediator, which generates the streamer by coupling with other fluctuations, have been observed in a cylindrical magnetized plasma. Their radial structures were investigated in detail by using the biphase analysis. Their quasi-two-dimensional structures were revealed to be equivalent with a pair of fast and slow modes predicted by a nonlinear Schroedinger equation based on the Hasegawa-Mima model.
Development of a particle method of characteristics (PMOC) for one-dimensional shock waves
NASA Astrophysics Data System (ADS)
Hwang, Y.-H.
2018-03-01
In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Novick, Jaison Allen
We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.
Spatio-temporal dynamics of an active, polar, viscoelastic ring.
Marcq, Philippe
2014-04-01
Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.
NASA Astrophysics Data System (ADS)
Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji
2017-01-01
We introduce a so-called coprimeness-preserving non-integrable extension to the two-dimensional Toda lattice equation. We believe that this equation is the first example of such discrete equations defined over a three-dimensional lattice. We prove that all the iterates of the equation are irreducible Laurent polynomials of the initial data and that every pair of two iterates is co-prime, which indicate confined singularities of the equation. By reducing the equation to two- or one-dimensional lattices, we obtain coprimeness-preserving non-integrable extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.
1981-11-25
dimensional KdV ( Kadomtsev - Petviashvili ) equation [56). Furthermore it has been found that these newly found decaying mode solutions and usual soliton...Ablowitz and R. Haberman, Phys. Rev. Lett. 35, 1185, 1975. 26. S.V. !anakov, "On the Solutions of the Kadomtsev - Petviashvili equation ; Proc. of Symposium...accomplished relates to fluid mechanics, nonlinear optics, multidimensional solitons, Painlev e equations , long time asymptotic solu- tions, new
Refraction of dispersive shock waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.
2012-09-01
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.
True amplitude wave equation migration arising from true amplitude one-way wave equations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.
Kinetic theory of turbulence for parallel propagation revisited: Formal results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H., E-mail: yoonp@umd.edu
2015-08-15
In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis bymore » considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.« less
Riccati parameterized self-similar waves in two-dimensional graded-index waveguide
NASA Astrophysics Data System (ADS)
Kumar De, Kanchan; Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.
2015-04-01
An analytical method based on gauge-similarity transformation technique has been employed for mapping a (2+1)- dimensional variable coefficient coupled nonlinear Schrödinger equations (vc-CNLSE) with dispersion, nonlinearity and gain to standard NLSE. Under certain functional relations we construct a large family of self-similar waves in the form of bright similaritons, Akhmediev breathers and rogue waves. We report the effect of dispersion on the intensity of the solitary waves. Further, we illustrate the procedure to amplify the intensity of self-similar waves using isospectral Hamiltonian approach. This approach provides an efficient mechanism to generate analytically a wide class of tapering profiles and widths by exploiting the Riccati parameter. Equivalently, it enables one to control efficiently the self-similar wave structures and hence their evolution.
Boyd, O.S.
2006-01-01
We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-10-01
In this paper, the Lie symmetry analysis method is employed to investigate the Lie point symmetries and the one-parameter transformation groups of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. By using Ibragimov's method, the optimal system of one-dimensional subalgebras of this system is constructed. Truncated Painlevé analysis is used for deriving the Bäcklund transformation. The method of constructing lump-type solutions of integrable equations by means of Bäcklund transformation is first presented. Meanwhile, the lump-type solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system are obtained. The lump-type wave is one kind of rogue wave. The fusion-type N-solitary wave solutions are also constructed. In addition, this system is integrable in terms of the consistent Riccati expansion method.
Nonlinear Fourier algorithm applied to solving equations of gravitational gas dynamics
NASA Technical Reports Server (NTRS)
Kolosov, B. I.
1979-01-01
Two dimensional gas flow problems were reduced to an approximating system of common differential equations, which were solved by a standard procedure of the Runge-Kutta type. A theorem of the existence of stationary conical shock waves with the cone vertex in the gravitating center was proved.
NASA Astrophysics Data System (ADS)
Gan, Zaihui; Zhang, Jian
2005-07-01
This paper is concerned with the standing wave for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions. The existence of standing wave with the ground state is established by applying an intricate variational argument and the instability of the standing wave is shown by applying Pagne and Sattinger's potential well argument and Levine's concavity method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.; Bhattacharjee, A.; Skiff, F.
2006-05-15
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less
Pelat, Adrien; Felix, Simon; Pagneux, Vincent
2011-03-01
In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America
Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.
Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H
2015-03-01
A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.
Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Edgell, D. H.; Henchen, R. J.
2015-03-26
A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPDmore » EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.« less
Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.
Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil
2017-06-02
We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
A three dimensional Dirichlet-to-Neumann map for surface waves over topography
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Andrade, David
2016-11-01
We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1993-01-01
The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.
Pickup Ion Distributions from Three Dimensional Neutral Exospheres
NASA Technical Reports Server (NTRS)
Hartle, R. E.; Sarantos, M.; Sittler, E. C., Jr.
2011-01-01
Pickup ions formed from ionized neutral exospheres in flowing plasmas have phase space distributions that reflect their source's spatial distributions. Phase space distributions of the ions are derived from the Vlasov equation with a delta function source using three.dimensional neutral exospheres. The ExB drift produced by plasma motion picks up the ions while the effects of magnetic field draping, mass loading, wave particle scattering, and Coulomb collisions near a planetary body are ignored. Previously, one.dimensional exospheres were treated, resulting in closed form pickup ion distributions that explicitly depend on the ratio rg/H, where rg is the ion gyroradius and H is the neutral scale height at the exobase. In general, the pickup ion distributions, based on three.dimensional neutral exospheres, cannot be written in closed form, but can be computed numerically. They continue to reflect their source's spatial distributions in an implicit way. These ion distributions and their moments are applied to several bodies, including He(+) and Na(+) at the Moon, H(+2) and CH(+4) at Titan, and H+ at Venus. The best places to use these distributions are upstream of the Moon's surface, the ionopause of Titan, and the bow shock of Venus.
NASA Technical Reports Server (NTRS)
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
Travelling wave solutions of the homogeneous one-dimensional FREFLO model
NASA Astrophysics Data System (ADS)
Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.
2018-01-01
Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.
Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; Siddiq, M.; Karim, S.
2009-04-15
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less
The aerodynamics of propellers and rotors using an acoustic formulation in the time domain
NASA Technical Reports Server (NTRS)
Long, L. N.
1983-01-01
The aerodynamics of propellers and rotors is especially complicated because of the highly three-dimensional and compressible nature of the flow field. However, in linearized theory the problem is governed by the wave equation, and a numerically-efficient integral formulation can be derived. This reduces the problem from one in space to one over a surface. Many such formulations exist in the aeroacoustics literature, but these become singular integral equations if one naively tries to use them to predict surface pressures, i.e., for aerodynamics. The present paper illustrates how one must interpret these equations in order to obtain nonambiguous results. After the regularized form of the integral equation is derived, a method for solving it numerically is described. This preliminary computer code uses Legendre-Gaussian quadrature to solve the equation. Numerical results are compared to experimental results for ellipsoids, wings, and rotors, including effects due to lift. Compressibility and the farfield boundary conditions are satisfied automatically using this method.
A method of boundary equations for unsteady hyperbolic problems in 3D
NASA Astrophysics Data System (ADS)
Petropavlovsky, S.; Tsynkov, S.; Turkel, E.
2018-07-01
We consider interior and exterior initial boundary value problems for the three-dimensional wave (d'Alembert) equation. First, we reduce a given problem to an equivalent operator equation with respect to unknown sources defined only at the boundary of the original domain. In doing so, the Huygens' principle enables us to obtain the operator equation in a form that involves only finite and non-increasing pre-history of the solution in time. Next, we discretize the resulting boundary equation and solve it efficiently by the method of difference potentials (MDP). The overall numerical algorithm handles boundaries of general shape using regular structured grids with no deterioration of accuracy. For long simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm allows one to share the computational cost between multiple similar problems. On multi-processor (multi-core) platforms, it benefits from what can be considered an effective parallelization in time.
A comparison of two- and three-dimensional tracer transport within a stratospheric circulation model
NASA Technical Reports Server (NTRS)
Schneider, H.-R.; Geller, M. A.
1985-01-01
Use of the residual circulation for stratospheric tracer transport has been compared to a fully three-dimensional calculation. The wind fields used in this study were obtained from a global, semispectral, primitive equation model, extending from 10 to 100 km in altitude. Comparisons were done with a passive tracer and an ozone-like substance over a two-month period corresponding to a Northern Hemisphere winter. It was found that the use of the residual circulation can lead to errors in the tracer concentrations of about a factor of 2. The error is made up of two components. One is fluctuating with a period of approximately one month and reflects directly the wave transience that occurs on that time-scale. The second part is increasing steadily over the integration period and results from an overestimate of the vertical transport by the residual circulation. Furthermore, the equatorward and upward mixing that occurs with transport by the three-dimensional circulation at low latitudes is not well reproduced when the residual circulation is used.
Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence
NASA Astrophysics Data System (ADS)
Rathmann, Nicholas M.; Ditlevsen, Peter D.
2017-05-01
Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.
Numerical study of blast characteristics from detonation of homogeneous explosives
NASA Astrophysics Data System (ADS)
Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh
2010-04-01
A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
NASA Technical Reports Server (NTRS)
Joslin, R. D.; Streett, C. L.; Chang, C.-L.
1991-01-01
A study of instabilities in incompressible boundary-layer flow on a flat plate is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations. Here, the DNS results are used to critically evaluate the results obtained using parabolized stability equations (PSE) theory and to study mechanisms associated with breakdown from laminar to turbulent flow. Three test cases are considered: two-dimensional Tollmien-Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-down. The instability modes predicted by PSE theory are in good quantitative agreement with the DNS results, except a small discrepancy is evident in the mean-flow distortion component of the 2-D test problem. This discrepancy is attributed to far-field boundary- condition differences. Both DNS and PSE theory results show several modal discrepancies when compared with the experiments of subharmonic breakdown. Computations that allow for a small adverse pressure gradient in the basic flow and a variation of the disturbance frequency result in better agreement with the experiments.
NASA Astrophysics Data System (ADS)
Kawai, T.
Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896
Subsurface Void Characterization with 3-D Time Domain Full Waveform Tomography.
NASA Astrophysics Data System (ADS)
Nguyen, T. D.
2017-12-01
A new three dimensional full waveform inversion (3-D FWI) method is presented for subsurface site characterization at engineering scales (less than 30 m in depth). The method is based on a solution of 3-D elastic wave equations for forward modeling, and a cross-adjoint gradient approach for model updating. The staggered-grid finite-difference technique is used to solve the wave equations, together with implementation of the perfectly matched layer condition for boundary truncation. The gradient is calculated from the forward and backward wavefields. Reversed-in-time displacement residuals are induced as multiple sources at all receiver locations for the backward wavefield. The capability of the presented FWI method is tested on both synthetic and field experimental datasets. The test configuration uses 96 receivers and 117 shots at equal spacing (Fig 1). The inversion results from synthetic data show the ability of characterizing variable low- and high-velocity layers with embedded void (Figs 2-3). The synthetic study shows good potential for detection of voids and abnormalities in the field.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Wu, Xiao-Yu
2017-12-01
Investigated in this paper are the three-coupled fourth-order nonlinear Schrödinger equations, which describe the dynamics of alpha helical protein with the interspine coupling at the higher order. We show that the representation of the Lax pair with Expressions (42) -(45) in Ref. [25] is not correct, because the three-coupled fourth-order nonlinear Schrödinger equations can not be reproduced by the Lax pair with Expressions (42) -(45) in Ref. [25] through the compatibility condition. Therefore, we recalculate the Lax pair. Based on the recalculated Lax pair, we construct the generalized Darboux transformation, and derive the first- and second-order semirational solutions. Through such solutions, dark-bright-bright soliton, breather-breather-bright soliton, breather soliton and rogue waves are analyzed. It is found that the rogue waves in the three components are mutually proportional. Moreover, three types of the semirational rogue waves consisting of the rogue waves and solitons are presented: (1) consisting of the first-order rogue wave and one soliton; (2) consisting of the first-order rogue wave and two solitons; (3) consisting of the second-order rogue wave and two solitons.
NASA Technical Reports Server (NTRS)
Iyer, V.; Harris, J. E.
1987-01-01
The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves
NASA Astrophysics Data System (ADS)
Nemoto, Ryo; Iguchi, Tatsuo
2017-09-01
We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
Numerical modelling of nonlinear full-wave acoustic propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less
A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry
ERIC Educational Resources Information Center
Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.
2017-01-01
In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less