Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
Squeezed light from multi-level closed-cycling atomic systems
NASA Technical Reports Server (NTRS)
Xiao, Min; Zhu, Yi-Fu
1994-01-01
Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.
NASA Astrophysics Data System (ADS)
Quezada, L. F.; Nahmad-Achar, E.
2018-06-01
We use coherent states as trial states for a variational approach to study a system of a finite number of three-level atoms interacting in a dipolar approximation with a one-mode electromagnetic field. The atoms are treated as semidistinguishable using different cooperation numbers and representations of SU(3). We focus our analysis on the quantum phases of the system as well as the behavior of the most relevant observables near the phase transitions. The results are computed for all three possible configurations (Ξ , Λ , and V ) of the three-level atoms.
Bloch equation and atom-field entanglement scenario in three-level systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Surajit; Nath, Mihir Ranjan; Dey, Tushar Kanti
2011-09-23
We study the exact solution of the lambda, vee and cascade type of three-level system with distinct Hamiltonian for each configuration expressed in the SU(3) basis. The semiclassical models are solved by solving respective Bloch equation and the existence of distinct non-linear constants are discussed which are different for different configuration. Apart from proposing a qutrit wave function, the atom-field entanglement is studied for the quantized three-level systems using the Phoenix-Knight formalism and corresponding population inversion are compared.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2012-02-01
In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Squeezing via two-photon transitions
NASA Astrophysics Data System (ADS)
Savage, C. M.; Walls, D. F.
1986-05-01
The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.
NASA Astrophysics Data System (ADS)
Sun, Hui-Chen; Liu, Yu-xi; Ian, Hou; You, J. Q.; Il'ichev, E.; Nori, Franco
2014-06-01
We study the microwave absorption of a driven three-level quantum system, which is realized by a superconducting flux quantum circuit (SFQC), with a magnetic driving field applied to the two upper levels. The interaction between the three-level system and its environment is studied within the Born-Markov approximation, and we take into account the effects of the driving field on the damping rates of the three-level system. We study the linear response of the driven three-level SFQC to a weak probe field. The linear magnetic susceptibility of the SFQC can be changed by both the driving field and the bias magnetic flux. When the bias magnetic flux is at the optimal point, the transition from the ground state to the second-excited state is forbidden and the three-level SFQC has a ladder-type transition. Thus, the SFQC responds to the probe field like natural atoms with ladder-type transitions. However, when the bias magnetic flux deviates from the optimal point, the three-level SFQC has a cyclic transition, thus it responds to the probe field like a combination of natural atoms with ladder-type transitions and natural atoms with Λ-type transitions. In particular, we provide detailed discussions on the conditions for realizing electromagnetically induced transparency and Autler-Townes splitting in three-level SFQCs.
Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-10-01
We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.
Analytic solution and pulse area theorem for three-level atoms
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.
2015-12-01
We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei
2018-06-01
We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.
2013-07-01
In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Rangwala, S. A.
2016-02-01
The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.
Microwave-induced three-photon coherence of Rydberg atomic states
NASA Astrophysics Data System (ADS)
Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb
2016-12-01
We investigate the three-photon coherence (TPC) effects of the Rydberg state in a Doppler-broadened four-level ladder-type atomic system for the 5S1/2(F=3)-5P3/2(F‧=4)-50D5/2-51P3/2 transition of 85Rb atoms. Upon interaction of the Rydberg Rb atom of the ladder-type electromagnetically induced transparency (EIT) scheme with a resonant microwave (MW) field, we numerically analyze the spectral features of the Rydberg TPC from two viewpoints, Autler-Townes splitting (AT-splitting) of the Rydberg EIT and three-photon electromagnetically induced absorption (TPEIA). We determine the criterion to differentiate between AT-splitting of the Rydberg EIT and TPEIA in the Doppler-broadened ladder-type atomic system.
Rydberg interaction induced enhanced excitation in thermal atomic vapor.
Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K
2018-03-27
We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.
NASA Astrophysics Data System (ADS)
Sarkisyan, M. A.
1989-02-01
An analysis is made of the interaction of a three-level "cascade" atomic system with a resonant laser field. An investigation is made of the dynamics of the populations of the quasienergy states and of the atomic levels over times greater than the spontaneous transition times. In the steady-state regime the distribution of atoms over various quasienergy states is obtained under two-photon resonance conditions and for the case when all the resonances are strong. It is found that a suitable selection of the interaction parameters can establish an inversion between the quasienergy states and also due to atomic transitions. The total probability of spontaneous scattering is calculated. It is shown that, under two-photon resonance conditions, the scattering intensity increases sharply due to a self-induced resonance.
Cooperative single-photon subradiant states in a three-dimensional atomic array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.
In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.
Wang, Zhiping; Chen, Jinyu; Yu, Benli
2017-02-20
We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.
2014-04-01
In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.
NASA Astrophysics Data System (ADS)
He, Juan; Wu, Tao; Ye, Liu
2013-10-01
In this paper, we study the dynamics of quantum discord and entanglement of three identical two-level atoms simultaneously resonantly interacting with three spatially separate single-mode of high- Q cavities respectively. Taking advantage of the depiction quantum discord and entanglement of formation (EoF), we conclude that the discord and entanglement of atoms and cavities can be mediated by changing some parameters and the maximum values of discord and entanglement are independent on the couplings of cavities and atoms. In particular, there also exists quantum discord sudden death as well as entanglement sudden death and the time interval of the former is shorter than that of the later in the proposed quantum system. It is shown that the discord and entanglement of any two atoms among three atoms can be transferred to the corresponding cavities, and there exists discord and entanglement exchanging between the atoms and the corresponding cavities.
Experimental triple-slit interference in a strongly driven V-type artificial atom
NASA Astrophysics Data System (ADS)
Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.
2017-08-01
Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan
2017-06-01
The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.
Interactive Web-based Visualization of Atomic Position-time Series Data
NASA Astrophysics Data System (ADS)
Thapa, S.; Karki, B. B.
2017-12-01
Extracting and interpreting the information contained in large sets of time-varying three dimensional positional data for the constituent atoms of simulated material is a challenging task. We have recently implemented a web-based visualization system to analyze the position-time series data extracted from the local or remote hosts. It involves a pre-processing step for data reduction, which involves skipping uninteresting parts of the data uniformly (at full atomic configuration level) or non-uniformly (at atomic species level or individual atom level). Atomic configuration snapshot is rendered using the ball-stick representation and can be animated by rendering successive configurations. The entire atomic dynamics can be captured as the trajectories by rendering the atomic positions at all time steps together as points. The trajectories can be manipulated at both species and atomic levels so that we can focus on one or more trajectories of interest, and can be also superimposed with the instantaneous atomic structure. The implementation was done using WebGL and Three.js for graphical rendering, HTML5 and Javascript for GUI, and Elasticsearch and JSON for data storage and retrieval within the Grails Framework. We have applied our visualization system to the simulation datatsets for proton-bearing forsterite (Mg2SiO4) - an abundant mineral of Earths upper mantle. Visualization reveals that protons (hydrogen ions) incorporated as interstitials are much more mobile than protons substituting the host Mg and Si cation sites. The proton diffusion appears to be anisotropic with high mobility along the x-direction, showing limited discrete jumps in other two directions.
Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits
ERIC Educational Resources Information Center
Harden, Joshua; Joshi, Amitabh; Serna, Juan D.
2011-01-01
Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…
NASA Astrophysics Data System (ADS)
Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid
2017-08-01
The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.
Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state
NASA Astrophysics Data System (ADS)
Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit
2018-06-01
We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.
Berry connection in atom-molecule systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui Fucheng; Wu Biao; International Center for Quantum Materials, Peking University, 100871 Beijing
2011-08-15
In the mean-field theory of atom-molecule systems, where bosonic atoms combine to form molecules, there is no usual U(1) symmetry, presenting an apparent hurdle for defining the Berry phase and Berry curvature for these systems. We define a Berry connection for this system, with which the Berry phase and Berry curvature can be naturally computed. We use a three-level atom-molecule system to illustrate our results. In particular, we have computed the mean-field Berry curvature of this system analytically, and compared it to the Berry curvature computed with the second-quantized model of the same system. An excellent agreement is found, indicatingmore » the validity of our definition.« less
Cooperative single-photon subradiant states in a three-dimensional atomic array
NASA Astrophysics Data System (ADS)
Jen, H. H.
2016-11-01
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.
Observation of polariton resonances with five-level M-type atoms in an optical cavity
NASA Astrophysics Data System (ADS)
Liu, Yutong; Lin, Gongwei; Ying, Kang; Liang, Lin; Niu, Yueping; Gong, Shangqing
2017-11-01
We study the polariton resonances with the five-level M-type atoms inside an optical cavity through the observation of the cavity transmission spectrum. The ultranarrow peaks associated with the dark-state polaritons in the system can be achieved by adjusting three coupling fields. Simple theory analysis and numerical simulations are also presented.
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue
2016-12-01
To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.
Pulse design for multilevel systems by utilizing Lie transforms
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-03-01
We put forward a scheme to design pulses to manipulate multilevel systems with Lie transforms. A formula to reverse construct a control Hamiltonian is given and is applied in pulse design in the three- and four-level systems as examples. To demonstrate the validity of the scheme, we perform numerical simulations, which show the population transfers for cascaded three-level and N -type four-level Rydberg atoms can be completed successfully with high fidelities. Therefore, the scheme may benefit quantum information tasks based on multilevel systems.
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.
2013-05-01
In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.
Simultaneously exciting two atoms with photon-mediated Raman interactions
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-06-01
We propose an approach to simultaneously excite two atoms by using a cavity-assisted Raman process in combination with a cavity-photon-mediated interaction. The system consists of a two-level atom and a Λ -type or V -type three-level atom, which are coupled together with a cavity mode. Having derived the effective Hamiltonian, we find that under certain circumstances a single photon can simultaneously excite two atoms. In addition, multiple photons and even a classical field can also simultaneously excite two atoms. As an example, we show a scheme to realize our proposal in a circuit QED setup, which is artificial atoms coupled with a cavity. The dynamics and the quantum-statistical properties of the process are investigated with experimentally feasible parameters.
Method for generating maximally entangled states of multiple three-level atoms in cavity QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Guangsheng; Li Shushen; Feng Songlin
2004-03-01
We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.
Zeno effect in spontaneous decay induced by coupling to an unstable level
NASA Astrophysics Data System (ADS)
Luis, Alfredo
2001-09-01
A metastable atomic level can be rendered unstable in a controllable way by coupling it to a decaying state. In this work we carry out a full dynamical analysis of the Zeno effect in this kind of unstable systems, comparing it to the inhibition of purely coherent Rabi oscillations. Simple and experimentally feasible measuring strategies involving three atomic levels are considered. It is shown that this induced decay is actually an example of a partial Zeno effect so that the observed evolution results from the competition of two Zeno effects. We also show that a three-level scheme can display both coherent, incoherent, and anti-Zeno effects.
Quantum Synchronization of three-level atoms
NASA Astrophysics Data System (ADS)
He, Peiru; Rey, Ana Maria; Holland, Murray
2015-05-01
Recent studies show that quantum synchronization, the spontaneous alignment of the quantum phase between different oscillators, can be used to build superradiant lasers with ultranarrow linewidth. We theoretically investigate the effect of quantum synchronization on many coupled three-level atoms where there are richer phase diagrams than the standard two-level system. This three-level model allows two-color ultranarrow coherent light to be produced where more than one phase must be simultaneously synchronized. Of particular interest, we study the V-type geometry that is relevant to current 87 Sr experiments in JILA. As well as the synchronization phenomenon, we explore other quantum effects such as photon correlations and squeezing. This work is supported by the DARPA QuASAR program, the NSF, and NIST.
Optical gain in an optically driven three-level ? system in atomic Rb vapor
NASA Astrophysics Data System (ADS)
Ballmann, C. W.; Yakovlev, V. V.
2018-06-01
In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.
Microcavities coupled to multilevel atoms
NASA Astrophysics Data System (ADS)
Schmid, Sandra Isabelle; Evers, Jörg
2011-11-01
A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.
Superradiant phase transition in a model of three-level-Λ systems interacting with two bosonic modes
NASA Astrophysics Data System (ADS)
Hayn, Mathias; Emary, Clive; Brandes, Tobias
2012-12-01
We consider an ensemble of three-level particles in Lambda configuration interacting with two bosonic modes. The Hamiltonian has the form of a generalized Dicke model. We show that in the thermodynamic limit this model supports a superradiant quantum phase transition. Remarkably, this can be both a first- and a second-order phase transition. A connection of the phase diagram to the symmetries of the Hamiltonian is also given. In addition, we show that this model can describe atoms interacting with an electromagnetic field in which the microscopic Hamiltonian includes a diamagnetic contribution. Even though the parameters of the atomic system respect the Thomas-Reiche-Kuhn sum rule, the system still shows a superradiant phase transition.
Comment on "Protecting bipartite entanglement by quantum interferences"
NASA Astrophysics Data System (ADS)
Nair, Anjali N.; Arun, R.
2018-03-01
In an interesting article [Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341], Das and Agarwal have discussed the preservation of bipartite entanglement in three-level atoms employing the coherences induced by spontaneous emission. The authors considered various initially entangled qubits prepared from two V -type three-level atoms and showed that more than 50 % of the initial (bipartite) entanglement can be preserved in steady state due to vacuum-induced coherence. In this Comment, we point out that their analytical formulas for the entanglement measure contain errors affecting all the numerical results of that article. We substantiate our claim by giving correct analytical results for the time evolution of the two-atom system.
Cavity electromagnetically induced transparency via spontaneously generated coherence
NASA Astrophysics Data System (ADS)
Tariq, Muhammad; Ziauddin, Bano, Tahira; Ahmad, Iftikhar; Lee, Ray-Kuang
2017-09-01
A four-level N-type atomic ensemble enclosed in a cavity is revisited to investigate the influence of spontaneous generated coherence (SGC) on transmission features of weak probe light field. A weak probe field is propagating through the cavity where each atom inside the cavity follows four-level N-type atom-field configuration of rubidium (?) atom. We use input-output theory and study the interaction of atomic ensemble and three cavity fields which are coupled to the same cavity mode. A SGC affects the transmission properties of weak probe light field due to which a transparency window (cavity EIT) appears. At resonance condition the transparency window increases with increasing the SGC in the system. We also studied the influence of the SGC on group delay and investigated magnitude enhancement of group delay for the maximum SGC in the system.
Effect of dispersion forces on squeezing with Rydberg atoms
NASA Technical Reports Server (NTRS)
Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.
1994-01-01
We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.
NASA Astrophysics Data System (ADS)
Krowne, Clifford M.
2008-05-01
A three-level atomic system, configured as either a gaseous medium or a solid state material, with a driving field establishing a Rabi frequency of control, is tested by a probe field. The medium has bianisotropic microscopic polarizability and magnetizability, from which the permittivity and permeability tensors are derived. Non-isotropy and polarization dependence for left-handedness (negative index of refraction) is demonstrated through examination of tensor components in the detuning frequency spectrum. These results have important implications for use in optical or electronic devices.
Quantum iSWAP gate in optical cavities with a cyclic three-level system
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Qiao, Hao-xue; Lu, Hua
2018-04-01
In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.
NASA Astrophysics Data System (ADS)
Osman, Kariman I.; Joshi, Amitabh
2017-01-01
The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chih-Hsien; Hsieh, Wen-Feng; Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 1 Dahsueh Rd., Tainan 701, Taiwan
2011-07-15
Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoidingmore » the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.« less
NASA Astrophysics Data System (ADS)
Welakuh, Davis D. M.; Dikandé, Alain M.
2017-11-01
The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Atomic-scale origin of dynamic viscoelastic response and creep in disordered solids
NASA Astrophysics Data System (ADS)
Milkus, Rico; Zaccone, Alessio
2017-02-01
Viscoelasticity has been described since the time of Maxwell as an interpolation of purely viscous and purely elastic response, but its microscopic atomic-level mechanism in solids has remained elusive. We studied three model disordered solids: a random lattice, the bond-depleted fcc lattice, and the fcc lattice with vacancies. Within the harmonic approximation for central-force lattices, we applied sum rules for viscoelastic response derived on the basis of nonaffine atomic motions. The latter motions are a direct result of local structural disorder, and in particular, of the lack of inversion symmetry in disordered lattices. By defining a suitable quantitative and general atomic-level measure of nonaffinity and inversion symmetry, we show that the viscoelastic responses of all three systems collapse onto a master curve upon normalizing by the overall strength of inversion-symmetry breaking in each system. Close to the isostatic point for central-force lattices, power-law creep G (t ) ˜t-1 /2 emerges as a consequence of the interplay between soft vibrational modes and nonaffine dynamics, and various analytical scalings, supported by numerical calculations, are predicted by the theory.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
Periodically modulated dark states
NASA Astrophysics Data System (ADS)
Han, Yingying; Zhang, Jun; Zhang, Wenxian
2018-04-01
Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.
On the calculation of atomic term populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1992-01-01
The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.
The multiphoton resonant excitation of three-level atoms by the two laser fields of different frequencies is investigated. The time evolution of the system and analytical solutions expressing Rabi oscillations of the probability amplitudes at the two-color multiphoton resonant excitation are found using a nonperturbative resonant approach. The specific examples for experimental implementation of two-color multiphoton resonant excitation of hydrogen atoms are considered.
Electromagnetically Induced Transparency In Rydberg Atomic Medium
NASA Astrophysics Data System (ADS)
Deng, Li; Cong, Lu; Chen, Ai-Xi
2018-03-01
Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.
Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium
NASA Astrophysics Data System (ADS)
Bharti, Vineet; Wasan, Ajay
We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.
Laser spectroscopic study of the Rydberg state structure of atomic lithium
NASA Astrophysics Data System (ADS)
Ballard, M. Kent
1998-07-01
Pulsed laser induced fluorescence spectroscopy was performed on both isotopic species of atomic lithium. Nonresonant multiphoton excitation spectra were recorded. The laser induced fluorescence of the lithium vapor was measured following excitation with a tunable, pulsed, nanosecond laser. Both two- and three-photon allowed transitions were observed resulting in four different transition series originating from the 22S and 22P levels, the latter likely originating from photodissociation products of the lithium dimer, Li2. Forty-seven identifiable transitions were assigned for 6Li. Evidence for a parity forbidden multiphoton transition is also present. For 7Li, fifty-three identifiable transitions were assigned including an additional series of parity forbidden multiphoton transitions. Laser polarization and power dependencies were measured and found to be consistent with the multiphoton transition probabilities. Due to the intense laser fields needed to produce the nonresonant multiphoton excitations, the lithium vapor was subjected to the laser induced ac Stark effect. The Autler-Townes doublets observed for the nF gets 2P transition series were found to exhibit normal asymmetry. The observed asymmetrical Autler-Townes profiles are explained in terms of the two-level and the three-level atomic systems which are based on different excitation schemes. A new computerized data acquisition system was developed as well as associated computer programs needed to analyze spectra.
A three-level atomicity model for decentralized workflow management systems
NASA Astrophysics Data System (ADS)
Ben-Shaul, Israel Z.; Heineman, George T.
1996-12-01
A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.
Concurrence of three Jaynes-Cummings systems
NASA Astrophysics Data System (ADS)
Qiang, Wen-Chao; Sun, Guo-Hua; Dong, Qian; Camacho-Nieto, Oscar; Dong, Shi-Hai
2018-04-01
We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes-Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter θ , the concurrence of the global system may maintain unchanged in some time intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barantsev, K A; Litvinov, A N
2014-10-31
A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
Coherent population trapping resonances at lower atomic levels of Doppler broadened optical lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şahin, E; Hamid, R; Çelik, M
2014-11-30
We have detected and analysed narrow high-contrast coherent population trapping (CPT) resonances, which are induced in absorption of a weak monochromatic probe light beam by counterpropagating two-frequency pump radiation in a cell with rarefied caesium vapour. The experimental investigations have been performed by the example of nonclosed three level Λ-systems formed by spectral components of the D{sub 2} line of caesium atoms. The applied method allows one to analyse features of the CPT phenomenon directly at a given low long-lived level of the selected Λ-system even in sufficiently complicated spectra of atomic gases with large Doppler broadening. We have establishedmore » that CPT resonances in transmission of the probe beam exhibit not only a higher contrast but also a much lesser width in comparison with well- known CPT resonances in transmission of the corresponding two-frequency pump radiation. The results obtained can be used in selective photophysics, photochemistry and ultra-high resolution atomic (molecular) spectroscopy. (laser applications and other topics in quantum electronics)« less
Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang
2017-05-15
In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.
NASA Astrophysics Data System (ADS)
Faghihi, Mohammad Javad; Tavassoly, Mohammad Kazem
2013-11-01
In this paper, we follow our presented model in J. Opt. Soc. Am. B {\\bf 30}, 1109--1117 (2013), in which the interaction between a $\\Lambda$-type three-level atom and a quantized two-mode radiation field in a cavity in the presence of nonlinearities is studied. After giving a brief review on the procedure of obtaining the state vector of the atom-field system, some further interesting and important physical features (which are of particular interest in the quantum optics field of research) of the whole system state, i.e., the number-phase entropic uncertainty relation (based on the two-mode Pegg-Barnett formalism) and some of the nonclassicality signs consist of sub-Poissonian statistics, Cauchy-Schwartz inequality and two kinds of squeezing phenomenon are investigated. During our presentation, the effects of intensity-dependent coupling, deformed Kerr medium and the detuning parameters on the depth and domain of each of the mentioned nonclassical criteria of the considered quantum system are studied, in detail. It is shown that each of the mentioned nonclassicality aspects can be obtained by appropriately choosing the related parameters.
Resonance fluorescence microscopy via three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar
2018-02-01
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.
Unusual structures of MgF5- superhalogen anion
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2007-05-01
The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.
Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid
2011-09-15
The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.
3D atom microscopy in the presence of Doppler shift
NASA Astrophysics Data System (ADS)
Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid
2018-03-01
The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.
Farsalinos, Konstantinos E; Yannovits, Nikoletta; Sarri, Theoni; Voudris, Vassilis; Poulas, Konstantinos
2016-06-01
To propose a protocol and evaluate the consistency in nicotine delivery to the aerosol of different types of electronic cigarette (EC) atomizers, as required by regulatory authorities. Three cartomizer and four tank-type atomizer products were tested (three samples per product). The aerosol from three 20-puff sessions from each sample was collected using a smoke machine. Three cartridges from a nicotine inhaler and three tobacco cigarettes were also tested. Analytical laboratory in Greece. Aerosol nicotine levels were measured. Relative standard deviation (RSD, i.e. coefficient of variation) was calculated separately for each cartomizer and replacement atomizer head sample (intrasample RSD) and between different samples (intersample RSD). The percentage difference from the mean, which is used to assess the quality of medicinal nebulizers, was also calculated. The aerosol nicotine levels were 1.01-10.61 mg/20 puffs for ECs, 0.12-0.18 mg/20 puffs for the nicotine inhaler and 1.76-2.20 mg/cigarette for the tobacco cigarettes. The intrasample RSDs were 3.7-12.5% for ECs and 14.3% for the nicotine inhaler and 11.1% for the tobacco cigarettes. The intersample RSDs were higher in cartomizers (range: 6.9-37.8%) compared with tank systems (range: 6.4-9.3%). All tank-type atomizers and one cartomizer were within 75-125% of the mean, as dictated for medicinal nebulizers. Electronic cigarettes that use tank-type atomizers appear to deliver nicotine in more consistent quantities (within the acceptable limits for medicinal nebulizers and similar to the nicotine inhaler) than electronic cigarettes that use cartomizers. The protocol for testing nicotine delivery consistency described in this paper could be used effectively for regulatory purposes. © 2016 Society for the Study of Addiction.
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Recirculation of Laser Power in an Atomic Fountain
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.
2007-01-01
A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.
Dark and bright-state polaritons in triple- Λ EIT system
NASA Astrophysics Data System (ADS)
Selvan, Karthick
2018-04-01
Properties of polaritons in triple-Λ EIT system are investigated using Sawada-Brout-Chong method. The role of dark and bright-state polaritons in the dynamics of the system is studied in detail by including the decay of excited atomic levels. Time evolution of entanglement of single and three-photon EIT modes within the system is investigated to explain this study.
Study of multi-level atomic systems with the application of magnetic field
NASA Astrophysics Data System (ADS)
Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.
2018-04-01
The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.
Lamb shift of electronic states in neutral muonic helium, an electron-muon-nucleus system
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.; Amusia, Miron
2015-03-01
Neutral muonic helium is an exotic atomic system consisting of an electron, a muon, and a nucleus. Being a three-body system, it possesses a clear hierarchy. This allows us to consider it as a hydrogenlike atom with a compound nucleus, which is, in turn, another hydrogenlike system. There are a number of corrections to the Bohr energy levels, all of which can be treated as contributions of generic hydrogenlike theory. While the form of those contributions is the same for all hydrogenlike atoms, their relative numerical importance differs from atom to atom. Here, the leading contribution to the (electronic) Lamb shift in neutral muonic helium is found in a closed analytic form together with the most important corrections. We believe that the Lamb shift in neutral muonic hydrogen is measurable, at least through a measurement of the (electronic) 1 s -2 s transition. We present a theoretical prediction for the 1 s -2 s transitions with an uncertainty of 3 ppm (9 GHz ), as well as for the 2 s -2 p Lamb shift with an uncertainty of 1.3 GHz .
Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi
2015-08-03
A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rydberg blockade in three-atom systems
NASA Astrophysics Data System (ADS)
Barredo, Daniel; Ravets, Sylvain; Labuhn, Henning; Beguin, Lucas; Vernier, Aline; Chicireanu, Radu; Nogrette, Florence; Lahaye, Thierry; Browaeys, Antoine
2014-05-01
The control of individual neutral atoms in arrays of optical tweezers is a promising avenue for quantum science and technology. Here we demonstrate unprecedented control over a system of three Rydberg atoms arranged in linear and triangular configurations. The interaction between Rydberg atoms results in the observation of an almost perfect van der Waals blockade. When the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction energy, we directly observe the anisotropy of the interaction between nD-states. Using the independently measured two-body interaction energy shifts we fully reproduce the dynamics of the three-atom system with a model based on a master equation without any adjustable parameter. Combined with our ability to trap single atoms in arbitrary patterns of 2D arrays of up to 100 traps separated by a few microns, these results are very promising for a scalable implementation of quantum simulation of frustrated quantum magnetism with Rydberg atoms.
Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-Xi; Nori, Franco
2010-06-01
Electromagnetically induced transparency and absorption (EIT and EIA) are usually demonstrated using three-level atomic systems. In contrast to the usual case, we theoretically study the EIT and EIA in an equivalent three-level system: a superconducting two-level system (qubit) dressed by a single-mode cavity field. In this equivalent system, we find that both the EIT and the EIA can be tuned by controlling the level-spacing of the superconducting qubit and hence controlling the dressed system. This tunability is due to the dressed relaxation and dephasing rates which vary parametrically with the level-spacing of the original qubit and thus affect the transition properties of the dressed qubit and the susceptibility. These dressed relaxation and dephasing rates characterize the reaction of the dressed qubit to an incident probe field. Using recent experimental data on superconducting qubits (charge, phase, and flux qubits) to demonstrate our approach, we show the possibility of experimentally realizing this proposal.
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Analysis of Raman lasing without inversion
NASA Astrophysics Data System (ADS)
Sheldon, Paul Martin
1999-12-01
Properties of lasing without inversion were studied analytically and numerically using Maple computer assisted algebra software. Gain for probe electromagnetic field without population inversion in detuned three level atomic schemes has been found. Matter density matrix dynamics and coherence is explored using Pauli matrices in 2-level systems and Gell-Mann matrices in 3-level systems. It is shown that extreme inversion produces no coherence and hence no lasing. Unitary transformation from the strict field-matter Hamiltonian to an effective two-photon Raman Hamiltonian for multilevel systems has been derived. Feynman diagrams inherent in the derivation show interesting physics. An additional picture change was achieved and showed cw gain possible. Properties of a Raman-like laser based on injection of 3- level coherently driven Λ-type atoms whose Hamiltonian contains the Raman Hamiltonian and microwave coupling the two bottom states have been studied in the limits of small and big photon numbers in the drive field. Another picture change removed the microwave coupler to all orders and simplified analysis. New possibilities of inversionless generation were found.
General properties of quantum optical systems in a strong field limit
NASA Technical Reports Server (NTRS)
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
NASA Astrophysics Data System (ADS)
Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui
2018-06-01
We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.
NASA Astrophysics Data System (ADS)
Valizadeh, Sh.; Tavassoly, M. K.; Yazdanpanah, N.
2018-02-01
In this paper the interaction between two two-level atoms with a single-mode quantized field is studied. To achieve exact information about the physical properties of the system, one should take into account various sources of dissipation such as photon leakage of cavity, spontaneous emission rate of atoms, internal thermal radiation of cavity and dipole-dipole interaction between the two atoms. In order to achieve the desired goals, we obtain the time evolution of the associated density operator by solving the time-dependent Lindblad equation corresponding to the system. Then, we evaluate the temporal behavior of total population inversion and quantum entanglement between the evolved subsystems, numerically. We clearly show that how the damping parameters affect on the dynamics of considered properties. By analyzing the numerical results, we observe that increasing each of the damping sources leads to faster decay of total population inversion. Also, it is observed that, after starting the interaction, the entanglement between one atom with other parts of the system as well as the entanglement between "atom-atom" subsystem and the "field", tend to some constant values very soon. Moreover, the stable values of entanglement are reduced via increasing the damping factor Γ A (ΓA^{(1)} = ΓA^{(2)} = ΓA ) where ΓA is the spontaneous emission rate of each atom. In addition, we find that by increasing the thermal photons, the entropies (entanglements) tend sooner to some increased stable values. Accordingly, we study the atom-atom entanglement by evaluating the concurrence under the influence of dissipation sources, too. At last, the effects of dissipation sources on the genuine tripartite entanglement between the three subsystems include of two two-level atoms and a quantized field are numerically studied. Due to the important role of stationary entanglement in quantum information processing, our results may provide useful hints for practical protocols which require some appropriate mechanisms to prevent or at least minimize the influence of decoherence phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
NASA Astrophysics Data System (ADS)
Ma, Yun-Ming; Wang, Tie-Jun
2017-10-01
Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.
A universal quantum frequency converter via four-wave-mixing processes
NASA Astrophysics Data System (ADS)
Cheng, Mingfei; Fang, Jinghuai
2016-06-01
We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.
NASA Astrophysics Data System (ADS)
Motzoi, F.; Mølmer, K.
2018-05-01
We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.
Patterns of Hierarchical Structure in the Medical Lexicon
Michael, Patricia A.; Cole, William G.; Stewart, James; Blois, Marsden S.
1987-01-01
Concepts in basic and clinical medical science cover a wide range of levels of description, from the subatomic level to the level of the patient as a whole. Medical language may have usage regularities consistent with this hierarchical nature of medical knowledge. Preliminary studies of word occurrence in abstracts drawn from three medical journals representing three broadly defined levels of description (chemical system, physiologic system, and patient as a whole) demonstrated a nonuniform word usage, with many words unique to one or another journal. In this present study, word occurrence was examined in an expanded pool of medical text consisting of sixteen textbooks representing ten different levels of description: atom/ion, micromolecule, macromolecule, organelle, cell, tissue, organ, physiologic system, major body part (or multiple physiologic systems) and patient as a whole. Word usage was found to be nonuniform, with many words unique to specific levels. The presence of such usage regularities may provide a basis for facilitating the automatic classification and retrieval of medical text.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
Laser techniques for spectroscopy of core-excited atomic levels
NASA Technical Reports Server (NTRS)
Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.
1982-01-01
We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.
NASA Astrophysics Data System (ADS)
Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.
2013-10-01
The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems
NASA Astrophysics Data System (ADS)
Zhu, Yuan-Yan; Zhang, Jian-Min
2018-05-01
We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.
Quantum Control of Open Systems and Dense Atomic Ensembles
NASA Astrophysics Data System (ADS)
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.
Spectra of helium clusters with up to six atoms using soft-core potentials
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2011-11-01
In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.
NASA Astrophysics Data System (ADS)
Sehati, N.; Tavassoly, M. K.
2017-08-01
Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.
Nanotechnology: Fundamental Principles and Applications
NASA Astrophysics Data System (ADS)
Ranjit, Koodali T.; Klabunde, Kenneth J.
Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.
Recent theoretical advances on superradiant phase transitions
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano
2013-03-01
The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.
Proposed software system for atomic-structure calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, C.F.
1981-07-01
Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.
Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun
2013-09-09
Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.
Kato, K; Wang, Yujun; Kobayashi, J; Julienne, P S; Inouye, S
2017-04-21
Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the ^{41}K-^{87}Rb system relative to the position of the previously observed atom-dimer resonance in the ^{40}K-^{87}Rb system. This shift is well explained by our calculations with a three-body model including van der Waals interactions, and, more importantly, multichannel spinor physics. With only minor differences in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the ^{40}K-^{87}Rb and ^{41}K-^{87}Rb systems, respectively. Our study demonstrates the role of multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.
Mesoscopic structure formation in condensed matter due to vacuum fluctuations
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.
2015-10-01
An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.
Control of single-photon routing in a T-shaped waveguide by another atom
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen
2018-04-01
Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.
NASA Astrophysics Data System (ADS)
Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubilko, A. I., E-mail: trubilko.andrey@gmail.com
Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
Atto-Joule, high-speed, low-loss plasmonic modulator based on adiabatic coupled waveguides
NASA Astrophysics Data System (ADS)
Dalir, Hamed; Mokhtari-Koushyar, Farzad; Zand, Iman; Heidari, Elham; Xu, Xiaochuan; Pan, Zeyu; Sun, Shuai; Amin, Rubab; Sorger, Volker J.; Chen, Ray T.
2018-05-01
In atomic multi-level systems, adiabatic elimination (AE) is a method used to minimize complicity of the system by eliminating irrelevant and strongly coupled levels by detuning them from one another. Such a three-level system, for instance, can be mapped onto physically in the form of a three-waveguide system. Actively detuning the coupling strength between the respective waveguide modes allows modulating light to propagate through the device, as proposed here. The outer waveguides act as an effective two-photonic-mode system similar to ground and excited states of a three-level atomic system, while the center waveguide is partially plasmonic. In AE regime, the amplitude of the middle waveguide oscillates much faster when compared to the outer waveguides leading to a vanishing field build up. As a result, the plasmonic intermediate waveguide becomes a "dark state," hence nearly zero decibel insertion loss is expected with modulation depth (extinction ratio) exceeding 25 dB. Here, the modulation mechanism relies on switching this waveguide system from a critical coupling regime to AE condition via electrostatically tuning the free-carrier concentration and hence the optical index of a thin indium thin oxide (ITO) layer resides in the plasmonic center waveguide. This alters the effective coupling length and the phase mismatching condition thus modulating in each of its outer waveguides. Our results also promise a power consumption as low as 49.74aJ/bit. Besides, we expected a modulation speed of 160 GHz reaching to millimeter wave range applications. Such anticipated performance is a direct result of both the unity-strong tunability of the plasmonic optical mode in conjunction with utilizing ultra-sensitive modal coupling between the critically coupled and the AE regimes. When taken together, this new class of modulators paves the way for next generation both for energy and speed conscience optical short-reach communication such as those found in interconnects.
Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa
2018-07-01
We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
Gulam Razul, M S; Hendry, J G; Kusalik, P G
2005-11-22
In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
Multipolar electrostatics based on the Kriging machine learning method: an application to serine.
Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A
2014-04-01
A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.
A triple point in 3-level systems
NASA Astrophysics Data System (ADS)
Nahmad-Achar, E.; Cordero, S.; López-Peña, R.; Castaños, O.
2014-11-01
The energy spectrum of a 3-level atomic system in the Ξ-configuration is studied. This configuration presents a triple point independently of the number of atoms, which remains in the thermodynamic limit. This means that in a vicinity of this point any quantum fluctuation will drastically change the composition of the ground state of the system. We study the expectation values of the atomic population of each level, the number of photons, and the probability distribution of photons at the triple point.
Teleporting entanglements of cavity-field states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Geisa; Baseia, B.; Almeida, N.G. de
2004-08-01
We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.
Coherent Population Trapping in a Superconducting Phase Qubit
NASA Astrophysics Data System (ADS)
Kelly, William R.; Dutton, Zachary; Ohki, Thomas A.; Schlafer, John; Mookerji, Bhaskar; Kline, Jeffery S.; Pappas, David P.
2010-03-01
The phenomenon of Coherent Population Trapping (CPT) of an atom (or solid state ``artificial atom''), and the associated effect of Electromagnetically Induced Transparency (EIT), are clear demonstrations of quantum interference due to coherence in multi-level quantum systems. We report observation of CPT in a superconducting phase qubit by simultaneously driving two coherent transitions in a λ-type configuration, utilizing the three lowest lying levels of a local minimum of the phase qubit. We observe ˜60% suppression of excited state population under conditions of two-photon resonance, where EIT and CPT are expected to occur. We present data and matching theoretical simulations showing the development of CPT in time. We also used the observed time dependence of the excited state population to characterize quantum dephasing times of the system, as predicted in [1]. [1] K.V. Murali, Z. Dutton, W.D. Oliver, D.S. Crankshaw, and T.P.Orlando, Phys. Rev. Lett. 93, 087003 (2004).
Emergent Weyl excitations in systems of polar particles.
Syzranov, Sergey V; Wall, Michael L; Zhu, Bihui; Gurarie, Victor; Rey, Ana Maria
2016-12-12
Weyl fermions are massless chiral particles first predicted in 1929 and once thought to describe neutrinos. Although never observed as elementary particles, quasiparticles with Weyl dispersion have recently been experimentally discovered in solid-state systems causing a furore in the research community. Systems with Weyl excitations can display a plethora of fascinating phenomena and offer great potential for improved quantum technologies. Here, we show that Weyl excitations generically exist in three-dimensional systems of dipolar particles with weakly broken time-reversal symmetry (by for example a magnetic field). They emerge as a result of dipolar-interaction-induced transfer of angular momentum between the J=0 and J=1 internal particle levels. We also discuss momentum-resolved Ramsey spectroscopy methods for observing Weyl quasiparticles in cold alkaline-earth-atom systems. Our results provide a pathway for a feasible experimental realization of Weyl quasiparticles and related phenomena in clean and controllable atomic systems.
Maxwell, Peter I.
2017-01-01
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high‐energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra‐atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (Oi –1, Ci, Ni, Ni +1) and some sidechain hydrogen atoms (Hγ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the Oi –1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28841241
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
Multiple transparency windows and Fano interferences induced by dipole-dipole couplings
NASA Astrophysics Data System (ADS)
Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.
2018-04-01
We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.
Research on System Coherence Evolution of Different Environmental Models
NASA Astrophysics Data System (ADS)
Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao
2018-04-01
In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer
NASA Astrophysics Data System (ADS)
Wang, Haiyang; Zhao, Xu; Gao, Yonghui; Wang, Tianxing; Wei, Shuyi
2018-04-01
We aimed at ten configurations of vacancy defects and used the first-principles methods based on density functional theory to research electronic and magnetic properties of ZrS2 monolayer. Results show that the system of two-zirconium vacancy (V2zr) and one Zr atom + one S atom vacancy (V1Zr+1S) can induce to total spin magnetic moment of 0.245μB and 0.196μB, respectively. In addition, three and six S atoms vacancy can induce corresponding system to manifest spin magnetic moment of 0.728μB and 3.311μB, respectively. In S atom vacancy defects, vacancy defects can transform the system from semiconductor to metal, several of the Zr atoms and adjacent S atoms display antiferromagnetism coupling in three apart S atom vacancy defects. Vacancy defects can make the intrisic monolayer ZrS2 transform semiconductor into metal. These results are important for the achievement of spin devices based on ZrS2 semiconductor.
NASA Astrophysics Data System (ADS)
Savin, Daniel Wolf; Ciccarino, Christopher
2017-06-01
Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.
NASA Astrophysics Data System (ADS)
Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.
2018-05-01
An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielinski, Ashley R.; Boban, Mathew; He, Yang
2017-01-24
A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety ofmore » liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.« less
Türkpençe, Deniz; Müstecaplıoğlu, Özgür E
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
Proposal for generating synthetic magnetic fields in hexagonal optical lattices
NASA Astrophysics Data System (ADS)
Tian, Binbin; Endres, Manuel; Pekker, David
2015-05-01
We propose a new approach to generating synthetic magnetic fields in ultra cold atom systems that does not rely on either Raman transitions nor periodic drive. Instead, we consider a hexagonal optical lattice produced by the intersection of three laser beams at 120 degree angles, where the intensity of one or more of the beams is spatially non-uniform. The resulting optical lattice remains hexagonal, but has spatially varying hopping matrix elements. For atoms near the Dirac points, these spatial variations appear as a gauge field, similar to the fictitious gauge field that is induced for for electrons in strained graphene. We suggest that a robust way to generate a gauge field that corresponds to a uniform flux is to aligning three gaussian beams to intersect in an equilateral triangle. Using realistic experimental parameters, we show how the proposed setup can be used to observe cyclotron motion of an atom cloud - the conventional Hall effect and distinct Landau levels - the integer quantum Hall effect.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Atoms and Molecules Interacting with Light
NASA Astrophysics Data System (ADS)
van der Straten, Peter; Metcalf, Harold
2016-02-01
Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.
Maxwell, Peter I; Popelier, Paul L A
2017-11-05
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casini, R.; Manso Sainz, R.
We present the frequency redistribution function for a polarized three-term atom of the Λ-type in the collisionless regime, and we specialize it to the case where both the initial and final terms of the three-state transition are metastable (i.e., with infinitely sharp levels). This redistribution function represents a generalization of the well-known R {sub II} function to the case where the lower terms of the transition can be polarized and carry atomic coherence, and it can be applied to the investigation of polarized line formation in tenuous plasmas, where collisional rates may be low enough that anisotropy-induced atomic polarization survivesmore » even in the case of metastable levels.« less
De Haas-van Alphen effect of a two-dimensional ultracold atomic gas
NASA Astrophysics Data System (ADS)
Farias, B.; Furtado, C.
2016-01-01
In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.
Dynamic generation of light states with discrete symmetries
NASA Astrophysics Data System (ADS)
Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.
2018-01-01
A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012
2016-07-14
The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng
2018-01-01
We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.
Vacuum-induced Autler-Townes splitting in a superconducting artificial atom
NASA Astrophysics Data System (ADS)
Peng, Z. H.; Ding, J. H.; Zhou, Y.; Ying, L. L.; Wang, Z.; Zhou, L.; Kuang, L. M.; Liu, Yu-xi; Astafiev, O. V.; Tsai, J. S.
2018-06-01
We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in the reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency microwave fields at the single-photon level in a resonator.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Plenoptic Imaging of a Three Dimensional Cold Atom Cloud
NASA Astrophysics Data System (ADS)
Lott, Gordon
2017-04-01
A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.
Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states
NASA Astrophysics Data System (ADS)
Xu, Qing; Mølmer, Klaus
2015-09-01
We explore the fluorescence signals from a pair of atoms driven towards Rydberg states on a three-level ladder transition. The dipole-dipole interactions between Rydberg excited atoms significantly distort the dark state and electromagnetically induced transparency behavior observed with independent atoms and, thus, their steady-state light emission. We calculate and analyze the temporal correlations between intensities and amplitudes of the signals emitted by the atoms and explain their origin in the atomic Rydberg state interactions.
NASA Astrophysics Data System (ADS)
Greco, Giorgia; Witkowska, Agnieszka; Principi, Emiliano; Minicucci, Marco; di Cicco, Andrea
2011-04-01
This work reports a detailed investigation of the local structure and chemical disorder of a Pt3±δCo thin film and Pt3±δCo nanoparticles. We have used a combination of techniques including x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and high-resolution transmission electron microscopy (TEM). High-quality XAS spectra at the Co K edge and Pt L3 edge have been analyzed using double-edge multiple-scattering data analysis. Structural extended x-ray absorption fine structure (EXAFS) refinements have been performed accounting for the reduction of the coordination numbers and degeneracy of three-atom configurations, resulting from the measured size distribution and stoichiometry. The important effect of chemical ordering on pair and three-atom configurations has been studied using computer simulations based on a simple model accounting for substitutional disorder, defined by an order parameter s. It has been found that individual EXAFS signals related to the minority species (Co) are extremely sensitive to substitutional disorder so their intensities, especially those of the collinear three-atom configurations, can be used as a measure of the ordering level. The thin film has been found to be chemically disordered (s⩽0.4), in agreement with previous estimates. The Pt3±δCo nanoalloy has been found to be partially ordered (s=0.6±0.1) while the local structure around Co atoms is characterized by a higher level of structural disorder as compared to the bulk-like thin film. The robust approach for nanomaterial characterization used in this work combining different techniques can, in principle, be applied for structural refinements of any binary nanocrystalline functional system.
Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )
NASA Astrophysics Data System (ADS)
Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.
2018-04-01
We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.
Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer
NASA Technical Reports Server (NTRS)
Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)
1994-01-01
We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Study of coherence effects in a four-level Ξ‑Λ type system
NASA Astrophysics Data System (ADS)
Yadav, Kavita; Wasan, Ajay
2018-05-01
We theoretically study the two- and three-photon coherence in a Ξ‑Λ type four-level system for stationary as well moving atoms at the room temperature using density matrix formalism. We discuss the role of dressed states to elucidate the electromagnetically induced transparency and electromagnetically induced absorption phenomena. The presence of the third field induces absorption at the line centre. A negative dispersion slope owing to the enhanced absorption results in super-luminal light propagation and the group index variation with the coupling field is switched from sub- to super-luminal. Group index with probe detuning shows super-luminal light propagation behaviour at the dressed state positions. The three optical fields trigger four-wave mixing as a result of the third order nonlinearity. The transient evolution is also discussed for optimum strengths of the coupling and drive fields to realize the optical switching in the system.
Coupling of a nanomechanical oscillator and an atomic three-level medium
NASA Astrophysics Data System (ADS)
Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.
2016-02-01
We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.
Surface atomic structure of alloyed Mn 5Ge 3(0 0 0 1) by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Kim, Howon; Jung, Goo-Eun; Yoon, Jong Keon; Chung, Kyung Hoon; Kahng, Se-Jong
Surface atomic structure of Mn 5Ge 3(0 0 0 1) is studied by scanning tunneling microscopy. Hexagonal honeycomb ordering is observed at high energy levels, ∣ E - EF∣ ˜ 1.2 eV, on the flat regions of three-dimensional Mn 5Ge 3 islands. At low energy levels, ∣ E - EF∣ ˜ 0.5 eV, however, atomic images exhibit dot-array and ring-array structures, which show complete and partial contrast inversion, compared to the honeycomb ordering. Experimental observations are discussed on the basis of possible atomic models.
Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach
NASA Astrophysics Data System (ADS)
Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.
2015-10-01
In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.
Interference, focusing and excitation of ultracold atoms
NASA Astrophysics Data System (ADS)
Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.
2011-05-01
One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.
Bichromatic laser cooling in a three-level system
NASA Astrophysics Data System (ADS)
Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.
1993-11-01
We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
NASA Astrophysics Data System (ADS)
Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong
2017-04-01
To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.
NASA Technical Reports Server (NTRS)
Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.
1994-01-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms
NASA Astrophysics Data System (ADS)
Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid
2018-06-01
We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.
Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.
Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2017-09-28
It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.
Coupled channel effects on resonance states of positronic alkali atom
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2018-01-01
S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.
2014-01-01
glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected to...of non-bridging (connected to only a single network forming cation) oxygen atoms per network polyhedron and takes on a zero value in the case of...network polyhedron and takes on a value of 4.0 in the case of fused silica. In addition to the three parameters mentioned above, the “seemingly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya
2017-09-08
Here, we study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K– 87Rb mixture and make a prediction for 6Li– 87Rb. We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can evenmore » obliterate the recombination minima associated with the Efimov effect.« less
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development
NASA Astrophysics Data System (ADS)
Warren, Zachary Aron
Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang
2016-06-01
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).
Energy spectra of small bosonic clusters having a large two-body scattering length
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2012-10-01
In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 particles interacting through a soft interparticle potential. In order to make contact with a real system, we use an attractive Gaussian potential that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with one of the most widely used 4He-4He interactions, the LM2M2 potential of Aziz and Slaman. The intensity of the potential is varied in order to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and three-body potential, we have calculated the spectrum of the four-, five-, and six-particle systems. In all the regions explored, we have found that these systems present two states, one deep and one shallow close to the A-1 threshold. Some universal relations between the energy levels are extracted; in particular, we have estimated the universal ratios between thresholds of the three-, four-, and five-particle continua using the two-body Gaussian potential. They agree with recent measurements and theoretical predictions.
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
Dark state with counter-rotating dissipative channels.
Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q
2017-07-24
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobao; Tian, Zehua; Wang, Jieci
In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transverselymore » polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.« less
Exotic topological density waves in cold atomic Rydberg-dressed fermions
Li, Xiaopeng; Sarma, S Das
2015-01-01
Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134
Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures
NASA Astrophysics Data System (ADS)
Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan
2016-10-01
We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Jing; Zhou Jianying
2003-04-01
The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple (V)-type three-level atom model. Even the transition frequency between the ground state and the third level is far away from the spectrum of the pulse; this additional transition can make the TLA inaccuracy. For a sufficiently large transition frequency or a weak coupling between the ground state and the third level, the TLA is a reasonable approximation and can be used safely. When decreasing the pulse width or increasing the pulse area, the TLA will give rise tomore » non-negligible errors compared with the precise results.« less
Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms
NASA Astrophysics Data System (ADS)
Cheng, Jing; Zhou, Jianying
2003-04-01
The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple
Direct evidence of three-body interactions in a cold {sup 85}Rb Rydberg gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Jianing
2010-11-15
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A.more » S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.« less
High performance computing in biology: multimillion atom simulations of nanoscale systems
Sanbonmatsu, K. Y.; Tung, C.-S.
2007-01-01
Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nanoscale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail. PMID:17187988
Teleportation with insurance of an entangled atomic state via cavity decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam
2005-03-01
We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.
Atomic scale chemical tomography of human bone
NASA Astrophysics Data System (ADS)
Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn
2017-01-01
Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.
Soliton Trains Induced by Adaptive Shaping with Periodic Traps in Four-Level Ultracold Atom Systems
NASA Astrophysics Data System (ADS)
Djouom Tchenkoue, M. L.; Welakuh Mbangheku, D.; Dikandé, Alain M.
2017-06-01
It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three fields coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency, and another field that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency. In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered, with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers. The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings (detuning above or below resonance). Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.
Control relaxation via dephasing: A quantum-state-diffusion study
NASA Astrophysics Data System (ADS)
Jing, Jun; Yu, Ting; Lam, Chi-Hang; You, J. Q.; Wu, Lian-Ao
2018-01-01
Dynamical decoupling as a quantum control strategy aims at suppressing quantum decoherence adopting the popular philosophy that the disorder in the unitary evolution of the open quantum system caused by environmental noises should be neutralized by a sequence of ordered or well-designed external operations acting on the system. This work studies the solution of quantum-state-diffusion equations by mixing two channels of environmental noises, i.e., relaxation (dissipation) and dephasing. It is interesting to find in two-level and three-level atomic systems that a non-Markovian relaxation or dissipation process can be suppressed by a Markovian dephasing noise. The discovery results in an anomalous control strategy by coordinating relaxation and dephasing processes. Our approach opens an avenue of noise control strategy with no artificial manipulation over the open quantum systems.
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)
2017-01-27
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
NASA Astrophysics Data System (ADS)
Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.
2018-04-01
In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Brian P.
2015-03-11
The scientific objective of this proposal was to obtain a fundamental atomic- to macro-scale understanding of the sorptivity, structure and dynamics of simple and complex hydrocarbon (HC) fluids at mineral surfaces or within nanoporous matrices over temperatures, pressures and compositions encountered in near-surface and shallow crustal environments. The research supported by this award was complementary to that conducted by the group of Prof. David cole at Ohio State University. The scope of the present award was to utilize molecular-level modeling to provide critically important insights into the interfacial properties of mineral-volatile systems, assist in the interpretation of experimental data andmore » predict fluid behavior beyond the limits of current experimental capability. During the past three years the effort has focused primarily on the behavior of C-H volatiles including methane (CH 4) and propane (C 3H 8), mixed-volatile systems including hydrocarbon - CO 2 with and without H 2O present. The long-range goal is to quantitatively link structure, dynamics and reactivity in complex mineral-/C-H-O systems from the atomic to the molecular to the macroscopic levels. The results are relevant to areas of growing importance such as gas shale, HC-bearing hydrothermal systems, and CO 2 storage.« less
Geometry dependent suppression of collective quantum jumps in Rydberg atoms
NASA Astrophysics Data System (ADS)
Lees, Eitan; Clemens, James
2015-05-01
We consider N driven, damped Rydberg atoms in different spatial arrangements. Treating the atoms as two-level systems we model the coupling to the environment via the Lehmberg-Agarwal master equation which interpolates between fully independent and fully collective spontaneous emission depending on the specific locations of the atoms. We also include a collective dipole-dipole energy shift in the excited Rydberg state which leads to collective quantum jumps in the atomic excitation when the system is driven off resonance. We show that the quantum jumps are suppressed as the system makes a transition from independent to collective emission as the spacing of a linear array of atoms is decreased below the emission wavelength.
ERIC Educational Resources Information Center
Irby, Stefan M.; Phu, Andy L.; Borda, Emily J.; Haskell, Todd R.; Steed, Nicole; Meyer, Zachary
2016-01-01
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this "level-coordination…
Atomic Spectra Bibliography Databases at NIST
NASA Astrophysics Data System (ADS)
Kramida, Alexander
2010-03-01
NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.
Jorgensen, William L; Tirado-Rives, Julian
2005-05-10
An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.
Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
NASA Astrophysics Data System (ADS)
Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid
2015-06-01
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.
Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun
2017-11-16
Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.
Noise squeezing of fields that bichromatically excite atoms in a cavity.
Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun
2016-11-14
It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.
Atomistic three-dimensional coherent x-ray imaging of nonbiological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Phay J.; Knight, Chris; Tegze, Miklos
We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less
Atomistic three-dimensional coherent x-ray imaging of nonbiological systems
Ho, Phay J.; Knight, Chris; Tegze, Miklos; ...
2016-12-12
We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significantmore » background, we find that recovery of the original structure is in principle possible with 3 angstrom resolution for particles of 11 nm diameter.« less
Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics
NASA Astrophysics Data System (ADS)
Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang
2018-05-01
Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.
Designing Radiation Resistance in Materials for Fusion Energy
NASA Astrophysics Data System (ADS)
Zinkle, S. J.; Snead, L. L.
2014-07-01
Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.
Transition metal doped (X = V, Cr) CdS monolayer: A DFT study
NASA Astrophysics Data System (ADS)
Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal
2018-05-01
In this work based on density functional theory approach with generalized gradient approximation we have investigated the effect doping and co-doping of transition metal atoms in CdS monolayer sheet. On the basis cohesive energy, we have determined the stability of all the transition metal doped systems. CdS monolayer is of nonmagnetic character but the insertion of transition metal atoms introduces the spontaneous spin polarization which results in a significant value of magnetic moment. The band structure analysis reveals that three different types of conducting nature such as spin-select-half-semiconductor, half metallic and metallic nature with total spin polarization has also been observed. The versatile conducting nature of the transition metal doped CdS monolayer predicts the possibility of using these systems in spintronics mainly as a spin filter and also to form metal-semiconductor interface etc. at nanoscale level.
Modification of optical properties by adiabatic shifting of resonances in a four-level atom
NASA Astrophysics Data System (ADS)
Dutta, Bibhas Kumar; Panchadhyayee, Pradipta
2018-04-01
We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.
NASA Astrophysics Data System (ADS)
Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid
2018-02-01
In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.
Three-dimensional laser cooling at the Doppler limit
NASA Astrophysics Data System (ADS)
Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.
2014-12-01
Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.
Direct evidence of three-body interactions in a cold Rb85 Rydberg gas
NASA Astrophysics Data System (ADS)
Han, Jianing
2010-11-01
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.
NASA Astrophysics Data System (ADS)
Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.
2016-12-01
We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.
Non-Hermitian optics in atomic systems
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
A new method for calculating time-dependent atomic level populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.
1981-01-01
A method is described for reducing the number of levels to be dealt with in calculating time-dependent populations of atoms or ions in plasmas. The procedure effectively extends the collisional-radiative model to consecutive stages of ionization, treating ground and metastable levels explicitly and excited levels implicitly. Direct comparisons of full and simulated systems are carried out for five-level models.
Teleportation of atomic and photonic states in low-Q cavity QED
NASA Astrophysics Data System (ADS)
Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man
2012-11-01
We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.
Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State
NASA Astrophysics Data System (ADS)
Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua
2018-04-01
We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
NASA Astrophysics Data System (ADS)
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Energy level diagrams for black hole orbits
NASA Astrophysics Data System (ADS)
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggel, J.J.; Hasselblatt, M.; Horn, K.
1997-04-01
The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted inmore » terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.« less
Relative Energy Shift of a Two-Level Atom in a Cylindrical Spacetime
NASA Astrophysics Data System (ADS)
Zhang, Jia-Lin
2012-11-01
We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an atom.
Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.
Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W
2017-01-15
The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Interference effects in a cavity for optical amplification
NASA Astrophysics Data System (ADS)
Cardimona, D. A.; Alsing, P. M.
2009-08-01
In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less
2016-09-06
displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent...associated with the atoms as well as in displacements of atoms from their ideal lattice sites. II. SYNTHESIS OF THE J141Sc COMPOSITION Berardan et al...Plotted in Figure 6 are the average atom displacements for the three large systems as a function of element type. For J14 (open bars), the dis
STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor)
1983-01-01
The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.
Electronic structure of atoms: atomic spectroscopy information system
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
H2/O2 three-body rates at high temperatures
NASA Technical Reports Server (NTRS)
Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry
1990-01-01
The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.
Implementation of a quantum metamaterial using superconducting qubits.
Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V
2014-10-14
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Quantum synchronization of many coupled atoms for an ultranarrow linewidth laser
NASA Astrophysics Data System (ADS)
He, Peiru; Xu, Minghui; Tieri, David; Zhu, Bihui; Rey, Ana Maria; Hazzard, Kaden; Holland, Murray
2014-05-01
We theoretically investigate the effect of quantum synchronization on many coupled two-level atoms acting as high quality oscillators. We show that quantum synchronization - the spontaneous alignment of the phase (of the two-level superposition) between different atoms - provides a potential approach to produce robust atomic coherences and coherent light with ultranarrow linewidth and extreme phase stability. The atoms may be coupled either through their direct dipole-dipole interactions or, as in a superradiant laser, through an optical cavity. We develop a variety of analytic and computational approaches for this problem, including exact open quantum system methods for small systems, semiclassical theories, and approaches that make use of the permutation symmetry of identically coupled ensembles. We investigate the first and second order coherence properties of both the optical and atomic degrees of freedom. We study synchronization in both the steady-state, as well as during the dynamically applied pulse sequences of Rabi and Ramsey interferometry. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
NASA Astrophysics Data System (ADS)
Grimme, Stefan
2013-06-01
Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500-1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA ("s" for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2-0.6. The mean absolute deviations from reference data are only 0.2-0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10-11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.
Coherent control of the single-photon multichannel scattering in the dissipation case
NASA Astrophysics Data System (ADS)
Shi, Yun-Xia; Wang, Hang-Yu; Ma, Jin-Lou; Li, Qing; Tan, Lei
2018-03-01
Based on the quasi-boson approach, a model of a Λ-type three-level atom coupled to a X-shaped coupled cavity arrays (CCAs) is used to study the transport properties of a single-photon in the dissipative case, and a classical field is introduced to motivate the one transition of the Λ-type three-level atom (ΛTLA). The analytical expressions of transmission and transfer rate are obtained. Our results show that the cavity dissipation will obviously weaken the single-photon transfer rate where the incident energy of the single photon is resonant with the excited energy of the atom. Whether the cavity dissipation exists or not, the single photon can be almost confined in the incident channel at large detuning, and we can regulate the intensity of the classical field to control the total transmission of the single-photon.
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Schotland, John C.
2018-05-01
We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.
Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom
1997-01-01
trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum
Spatial-mode storage in a gradient-echo memory
NASA Astrophysics Data System (ADS)
Higginbottom, D. B.; Sparkes, B. M.; Rancic, M.; Pinel, O.; Hosseini, M.; Lam, P. K.; Buchler, B. C.
2012-08-01
Three-level atomic gradient echo memory (Λ-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing [Hosseini , Nature (London)NATUAS0028-083610.1038/nature08325 461, 241 (2009)]. In this paper we investigate the spatial multimode properties of a Λ-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapor and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.
Rydberg atoms in hollow-core photonic crystal fibres.
Epple, G; Kleinbach, K S; Euser, T G; Joly, N Y; Pfau, T; Russell, P St J; Löw, R
2014-06-19
The exceptionally large polarizability of highly excited Rydberg atoms-six orders of magnitude higher than ground-state atoms--makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems.
Resonance fluorescence in the resolvent-operator formalism
NASA Astrophysics Data System (ADS)
Debierre, V.; Harman, Z.
2017-10-01
The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.
Two-mode mazer injected with V-type three-level atoms
NASA Astrophysics Data System (ADS)
Liang, Wen-Qing; Zhang, Zhi-Ming; Xie, Sheng-Wu
2003-12-01
The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the one-atom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.
Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G
2018-05-30
Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.
Three axis vector atomic magnetometer utilizing polarimetric technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com
2016-09-15
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison
2008-12-18
Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.
Roles of water in protein structure and function studied by molecular liquid theory.
Imai, Takashi
2009-01-01
The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.
Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.
Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu
2012-01-10
An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetically induced grating with Rydberg atoms
NASA Astrophysics Data System (ADS)
Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid
2016-09-01
We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.
2013-05-15
The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less
Helium trapping in aluminium near the critical dose on blister formation
NASA Astrophysics Data System (ADS)
Fukahori, T.; Kanda, Y.; Mori, K.; Tobimatsu, H.
1985-08-01
Blistering and flaking caused by energetic He ions emitted from the plasma in fusion reactors possibly contribute to first-wall erosion. In order to study their characteristics, the numbers of He atoms trapped in He-ion-irradiated Al samples have been measured by a He atom measurement system and every sample has been observed by a scanning electron microscope. The samples have been prepared from a polycrystalline plate and irradiated with 20 keV He ions at room temperature. The saw-tooth like variation of the trapped He atoms with the dose has three edges corresponding to the blistering, flaking and double flaking, respectively. The critical doses for the three events are found to be 4 × 10 21, 7 × 10 21, 12 × 10 21 He atoms m -2, respectively. The average number of He atoms included in an event is 5.4 × 10 10 He atoms in the case of the blistering and 2.1 × 10 11 He atoms in the case of flaking.
Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M
2017-10-26
We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Sarsa, Antonio; Le Sech, Claude
2011-09-13
Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.
Berengut, J C; Dzuba, V A; Flambaum, V V
2010-09-17
We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.
Nursing Classification Systems
Henry, Suzanne Bakken; Mead, Charles N.
1997-01-01
Abstract Our premise is that from the perspective of maximum flexibility of data usage by computer-based record (CPR) systems, existing nursing classification systems are necessary, but not sufficient, for representing important aspects of “what nurses do.” In particular, we have focused our attention on those classification systems that represent nurses' clinical activities through the abstraction of activities into categories of nursing interventions. In this theoretical paper, we argue that taxonomic, combinatorial vocabularies capable of coding atomic-level nursing activities are required to effectively capture in a reproducible and reversible manner the clinical decisions and actions of nurses, and that, without such vocabularies and associated grammars, potentially important clinical process data is lost during the encoding process. Existing nursing intervention classification systems do not fulfill these criteria. As background to our argument, we first present an overview of the content, methods, and evaluation criteria used in previous studies whose focus has been to evaluate the effectiveness of existing coding and classification systems. Next, using the Ingenerf typology of taxonomic vocabularies, we categorize the formal type and structure of three existing nursing intervention classification systems—Nursing Interventions Classification, Omaha System, and Home Health Care Classification. Third, we use records from home care patients to show examples of lossy data transformation, the loss of potentially significant atomic data, resulting from encoding using each of the three systems. Last, we provide an example of the application of a formal representation methodology (conceptual graphs) which we believe could be used as a model to build the required combinatorial, taxonomic vocabulary for representing nursing interventions. PMID:9147341
Impact of genetic variation on three dimensional structure and function of proteins
Bhattacharya, Roshni; Rose, Peter W.; Burley, Stephen K.
2017-01-01
The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation. PMID:28296894
Future in biomolecular computation
NASA Astrophysics Data System (ADS)
Wimmer, E.
1988-01-01
Large-scale computations for biomolecules are dominated by three levels of theory: rigorous quantum mechanical calculations for molecules with up to about 30 atoms, semi-empirical quantum mechanical calculations for systems with up to several hundred atoms, and force-field molecular dynamics studies of biomacromolecules with 10,000 atoms and more including surrounding solvent molecules. It can be anticipated that increased computational power will allow the treatment of larger systems of ever growing complexity. Due to the scaling of the computational requirements with increasing number of atoms, the force-field approaches will benefit the most from increased computational power. On the other hand, progress in methodologies such as density functional theory will enable us to treat larger systems on a fully quantum mechanical level and a combination of molecular dynamics and quantum mechanics can be envisioned. One of the greatest challenges in biomolecular computation is the protein folding problem. It is unclear at this point, if an approach with current methodologies will lead to a satisfactory answer or if unconventional, new approaches will be necessary. In any event, due to the complexity of biomolecular systems, a hierarchy of approaches will have to be established and used in order to capture the wide ranges of length-scales and time-scales involved in biological processes. In terms of hardware development, speed and power of computers will increase while the price/performance ratio will become more and more favorable. Parallelism can be anticipated to become an integral architectural feature in a range of computers. It is unclear at this point, how fast massively parallel systems will become easy enough to use so that new methodological developments can be pursued on such computers. Current trends show that distributed processing such as the combination of convenient graphics workstations and powerful general-purpose supercomputers will lead to a new style of computing in which the calculations are monitored and manipulated as they proceed. The combination of a numeric approach with artificial-intelligence approaches can be expected to open up entirely new possibilities. Ultimately, the most exciding aspect of the future in biomolecular computing will be the unexpected discoveries.
Mechanism for pumping lasers with squeezed light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haake, F.; Walls, D.F.; Collett, M.J.
1989-03-15
In this paper we demonstrate how the squeezed-pump-laser model of Marte and Walls (Phys. Rev. A 37, 1235 (1988)) may be realized in practice. We consider a three-level atomic medium interacting with two cavity modes pumped with squeezed light. We show that this pumping mechanism both achieves atomic inversion and squeezes the fluctuations on the lasing transition.
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu
2015-04-07
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-04-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...
2018-03-09
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities
NASA Astrophysics Data System (ADS)
Song, L. N.; Wang, Z. H.; Li, Yong
2018-05-01
We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro
Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registeredmore » either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.« less
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
Atomic-level simulation of ferroelectricity in perovskite solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.
2000-06-26
Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.
Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.
Shen, Lin; Hu, Hao
2014-06-10
We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.
NASA Astrophysics Data System (ADS)
Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.
2017-12-01
In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.
An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)
NASA Astrophysics Data System (ADS)
Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva
2011-07-01
We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti
2018-05-01
Energy levels, radiative rates and lifetimes are reported for F-like Sc~XIII and Ne-like Sc~XII and Y~XXX for which the general-purpose relativistic atomic structure package ({\\sc grasp}) has been adopted. For all three ions limited data exist in the literature but comparisons have been made wherever possible to assess the accuracy of the calculations. In the present work the lowest 102, 125 and 139 levels have been considered for the respective ions. Additionally, calculations have also been performed with the flexible atomic code ({\\sc fac}) to (particularly) confirm the accuracy of energy levels.
Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System
NASA Astrophysics Data System (ADS)
Porto, J. V.
2017-04-01
The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.
Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms
Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...
2017-04-06
Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
Velocity selection for ultracold atoms using mazer action in a bimodal cavity
NASA Astrophysics Data System (ADS)
Irshad, Afshan; Qamar, Sajid; Qamar, Shahid
2010-01-01
In this paper, we discuss the velocity selection of ultracold three-level atoms in Λ configuration using a mazer. Our model is the same as discussed by Arun et al. [R. Arun, G.S. Agarwal, M.O. Scully, H. Walther, Phys. Rev. A 62 (2000) 023809] for mazer action in a bimodal cavity. We show that the initial Maxwellian velocity distribution of ultracold atoms can be narrowed due to the presence of resonances in the transmission through dressed-state potential. When the atoms are initially prepared in one of the two lower atomic states then significantly better velocity selectivity is obtained due to the presence of dark states.
From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2003-12-01
The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.
NASA Technical Reports Server (NTRS)
Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.
2013-01-01
We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic
Development of a collinear laser spectrometer facility at VECC: First test result
NASA Astrophysics Data System (ADS)
Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok
2018-04-01
We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.
Molecular dynamics study of vacancy-like defects in a model glass : static behaviour
NASA Astrophysics Data System (ADS)
Delaye, J. M.; Limoge, Y.
1993-10-01
The possibility of defining vacancy-like defects in a Lennard-Jones glass is searched for in a systematic manner. Considering different relaxation levels of the same system, as well as different external pressures, we use a Molecular Dynamics simulation method, to study at constant volume or external pressure, the relaxation of a “piece” of glass, after the sudden removal of an atom. Three typical kinds of behaviour can be observed: the persistence of the empty volume left by the missing atom, its migration by clearly identifiable atomic jumps and the dissipation “on the spot”. A careful analysis of the probabilities of these three kinds of behaviour shows that a meaningful definition of vacancy-like defects can be given in a Lennard-Jones glass. Dans cet article, nous nous penchons de façon systématique sur la possibilité de définir des défauts de type lacunaire dans un verre de Lennard-Jones, à différents niveaux de relaxation et de pression, par une méthode de simulation numérique en dynamique moléculaire à volume ou à pression constants. Le défaut est créé en supprimant un atome et en suivant la réponse du système. Nous observons trois comportements typiques : la persistance sur place du “trou” laissé par l'atome supprimé, sa migration par des sauts atomiques clairement identifiés et enfin sa dissipation sur place. Une analyse détaillée de ces trois comportements montre qu'il est possible dans un verre de Lennard-Jones de définir des défauts de type lacunaire.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.
2011-01-01
A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156
Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Gauthier, Daniel
2013-05-01
The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Roland; Lindner, Benjamin; Petridis, Loukas
2009-01-01
A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors,more » other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million atom biological systems scale well up to 30k cores, producing 30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.« less
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C
2009-10-13
A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.
Optical memory based on quantized atomic center-of-mass motion.
Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R
2017-11-01
We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2009-04-01
This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.
Engineering quantum hyperentangled states in atomic systems
NASA Astrophysics Data System (ADS)
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
ERIC Educational Resources Information Center
Sarikaya, Mustafa
2007-01-01
Science educators have generally agreed that understanding the atom concept is the basis of science education. However, the numerous research studies have shown that many students at all educational levels have difficulties understanding this concept. This study was developed under three headings. The first was to identify misconceptions that…
NASA Astrophysics Data System (ADS)
Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.
2017-10-01
In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.
ERIC Educational Resources Information Center
Barrow, Gordon M.
1970-01-01
Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2015-10-01
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less
Integrable models of quantum optics
NASA Astrophysics Data System (ADS)
Yudson, Vladimir; Makarov, Aleksander
2017-10-01
We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D) chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral) waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.
Mach-Zehnder atom interferometer inside an optical fiber
NASA Astrophysics Data System (ADS)
Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu
2017-04-01
Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.
Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems
NASA Astrophysics Data System (ADS)
Xu, Nan
2018-02-01
We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.
Interacting Dark Resonances with Plasmonic Meta-Molecules
2014-09-17
different K-subsystems, as seen in Fig. 1(b). Within the transparency window, of the K-configuration atomic electromagnetic induced transparency ( EIT ...exhibits EIT -type phenomena as seen by a reduction in absorbance at x 264 THz. The basic physical mechanism behind this EIT -type phenomena can be...radiative plasmonic atom.5 However, in the presence of a second dark plasmonic atom, the EIT -type transparency at FIG. 1. (a) Atomic four-level system
Coarse-grained mechanics of viral shells
NASA Astrophysics Data System (ADS)
Klug, William S.; Gibbons, Melissa M.
2008-03-01
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.
Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms
NASA Astrophysics Data System (ADS)
Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2018-02-01
We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
Dynamics of interacting Dicke model in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro
2014-09-01
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
Coherent Radiation in Atomic Systems
NASA Astrophysics Data System (ADS)
Sutherland, Robert Tyler
Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.
NASA Astrophysics Data System (ADS)
Lu, Mei; Chen, Qing-Qin
2018-05-01
We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.
Spin dynamics and Kondo physics in optical tweezers
NASA Astrophysics Data System (ADS)
Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.
2016-05-01
We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, T.
1986-01-01
During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.
NASA Astrophysics Data System (ADS)
Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.
2018-06-01
In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Relativistic atomic structure calculations and electron impact excitations of Fe23+
NASA Astrophysics Data System (ADS)
El-Maaref, A. A.
2016-02-01
Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.
Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system
NASA Astrophysics Data System (ADS)
He, Qiongyi; Ficek, Zbigniew
2014-02-01
We study multipartite entanglement, the generation of Einstein-Podolsky-Rosen (EPR) states, and quantum steering in a three-mode optomechanical system composed of an atomic ensemble located inside a single-mode cavity with a movable mirror. The cavity mode is driven by a short laser pulse, has a nonlinear parametric-type interaction with the mirror and a linear beam-splitter-type interaction with the atomic ensemble. There is no direct interaction of the mirror with the atomic ensemble. A threshold effect for the dynamics of the system is found, above which the system works as an amplifier and below which as an attenuator of the output fields. The threshold is determined by the ratio of the coupling strengths of the cavity mode to the mirror and to the atomic ensemble. It is shown that above the threshold, the system effectively behaves as a two-mode system in which a perfect bipartite EPR state can be generated, while it is impossible below the threshold. Furthermore, a fully inseparable tripartite entanglement and even further a genuine tripartite entanglement can be produced above and below the threshold. In addition, we consider quantum steering and examine the monogamy relations that quantify the amount of bipartite steering that can be shared between different modes. It is found that the mirror is more capable for steering of entanglement than the cavity mode. The two-way steering is found between the mirror and the atomic ensemble despite the fact that they are not directly coupled to each other, while it is impossible between the output of cavity mode and the ensemble which are directly coupled to each other.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang
2018-02-01
People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography
2011-01-01
Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it; Jackson, Bret; Hughes, Keith H.
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theorymore » for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.« less
NASA Astrophysics Data System (ADS)
Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong
2016-05-01
Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.
QED theory of multiphoton transitions in atoms and ions
NASA Astrophysics Data System (ADS)
Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter
2018-03-01
This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.
Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhang, Hui; Chen, Yan; Tan, Lei
2017-03-01
We have investigated tunneling characteristics of Bose-Einstein condensates (BECs) in a triple-well potential coupled to a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from the oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A
2015-02-05
As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.
Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M
2008-01-01
Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.
Hyperfine structure investigations for the odd-parity configuration system in atomic holmium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Furmann, B.
2018-02-01
In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.
Products and yields from O3 photodissociation at 1576 A
NASA Technical Reports Server (NTRS)
Taherian, M. R.; Slanger, T. G.
1985-01-01
An analysis has been made of the primary atomic and molecular products arising from O3 photodissociation at 1576 A. The yield of oxygen atoms is 1.90 + or - 0.30, of which 71 percent are O(3P) and 29 percent are O(1D). Since a primary yield greater than unity can only be a consequence of three-fragment dissociation, these results suggest that fragmentation into three O(3P) atoms, and production of O(1D) plus a singlet oxygen molecule, have comparable yields. Observation of prompt emission in the 7300-8100 A spectral region indicates that the singlet O2 is O2(b 1Sigma + g). Vibrational levels in the range v = 0-6 have been detected, the distribution corresponding to a vibrational temperature of 1000 K.
Thermal Casimir-Polder forces on a V-type three-level atom
NASA Astrophysics Data System (ADS)
Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping
2017-09-01
We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
Evidence of Antiblockade in an Ultracold Rydberg Gas
NASA Astrophysics Data System (ADS)
Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias
2010-01-01
We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.
NASA Astrophysics Data System (ADS)
Stassi, Roberto; Nori, Franco
2018-03-01
Quantum systems are affected by interactions with their environments, causing decoherence through two processes: pure dephasing and energy relaxation. For quantum information processing it is important to increase the coherence time of Josephson qubits and other artificial two-level atoms. We show theoretically that if the coupling between these qubits and a cavity field is longitudinal and in the ultrastrong-coupling regime, the system is strongly protected against relaxation. Vice versa, if the coupling is transverse and in the ultrastrong-coupling regime, the system is protected against pure dephasing. Taking advantage of the relaxation suppression, we show that it is possible to enhance their coherence time and use these qubits as quantum memories. Indeed, to preserve the coherence from pure dephasing, we prove that it is possible to apply dynamical decoupling. We also use an auxiliary atomic level to store and retrieve quantum information.
Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.
Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue
2012-10-08
We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.
Visualization of the Invisible: The Qubit as Key to Quantum Physics
NASA Astrophysics Data System (ADS)
Dür, Wolfgang; Heusler, Stefan
2014-11-01
Quantum mechanics is one of the pillars of modern physics, however rather difficult to teach at the introductory level due to the conceptual difficulties and the required advanced mathematics. Nevertheless, attempts to identify relevant features of quantum mechanics and to put forward concepts of how to teach it have been proposed.1-8 Here we present an approach to quantum physics based on the simplest quantum mechanical system—the quantum bit (qubit).1 Like its classical counterpart—the bit—a qubit corresponds to a two-level system, i.e., some system with a physical property that can admit two possible values. While typically a physical system has more than just one property or the property can admit more than just two values, in many situations most degrees of freedom can be considered to be fixed or frozen. Hence a variety of systems can be effectively described as a qubit. For instance, one may consider the spin of an electron or atom, with spin up and spin down as two possible values, and where other properties of the particle such as its mass or its position are fixed. Further examples include the polarization degree of freedom of a photon (horizontal and vertical polarization), two electronic degrees of freedom (i.e., two energy levels) of an atom, or the position of an atom in a double well potential (atom in left or right well). In all cases, only two states are relevant to describe the system.
Ion implantation for deterministic single atom devices
NASA Astrophysics Data System (ADS)
Pacheco, J. L.; Singh, M.; Perry, D. L.; Wendt, J. R.; Ten Eyck, G.; Manginell, R. P.; Pluym, T.; Luhman, D. R.; Lilly, M. P.; Carroll, M. S.; Bielejec, E.
2017-12-01
We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
Ion implantation for deterministic single atom devices
Pacheco, J. L.; Singh, M.; Perry, D. L.; ...
2017-12-04
Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
Entanglement and nonlocality versus spontaneous emission in two-atom systems
NASA Astrophysics Data System (ADS)
Jakóbczyk, L.; Jamróz, A.
2003-11-01
We study evolution of entanglement of two two-level atoms in the presence of dissipation caused by spontaneous emission. We find explicit formulas for the amount of entanglement as a function of time, in the case of destruction of the initial entanglement and possible creation of a transient entanglement between atoms. We also discuss how spontaneous emission influences nonlocality of states expressed by violation of Bell-CHSH inequality. It is shown that evolving system very quickly becomes local, even if entanglement is still present or produced.
A Fermi-degenerate three-dimentional optical lattice clock
NASA Astrophysics Data System (ADS)
Goban, Akihisa; Campbell, Sara; Hutson, Ross; Marti, G. Edward; Sonderhouse, Lindsay; Robinson, John; Zhang, Wei; Ye, Jun
2017-04-01
The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, tighter limits on fundamental constant variation, and improved tests of relativity. Recent progress in optical lattice clock to the accuracy of 2E-18 has benefited from the understanding of atomic interactions. Also the precision of clock spectroscopy has been applied to explore many-body interactions including SU(N) symmetry. In our previous 1D optical lattice, atomic interactions cause suppression and broadening of the atomic resonance, limiting the clock stability. To overcome this limitation, we demonstrate a scalable solution that takes advantage of the high density of a degenerate Fermi gas in a three-dimensional optical lattice to protect against on-site interaction shifts. Using an ultrastable laser, we achieve an unprecedented level of atom-light coherence, reaching a spectroscopic quality factor 5.2E15. We investigate clock systematics unique to this design; on-site interactions are resolved so that their contribution to clock shifts is orders of magnitude suppressed compared to the 1D optical lattice experiments. Also, we measure the combined scalar and tensor magic wavelengths for state-independent trapping along all three lattice axes. We acknowledge support from NIST, DARPA and the NSF JILA Physics Frontier Center.
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...
2017-03-28
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Potential energy surfaces of the low-lying electronic states of the Li + LiCs system
NASA Astrophysics Data System (ADS)
Jasik, P.; Kilich, T.; Kozicki, J.; Sienkiewicz, J. E.
2018-03-01
Ab initio quantum chemistry calculations are performed for the mixed alkali triatomic system. Global minima of the ground and first excited doublet states of the trimer are found and Born-Oppenheimer potential energy surfaces of the Li atom interacting with the LiCs molecule were calculated for these states. The lithium atom is placed at various distances and bond angles from the lithium-caesium dimer. Three-body nonadditive forces of the Li2Cs molecule in the global minimum are investigated. Dimer-atom interactions are found to be strongly attractive and may be important in the experiments, particularly involving cold alkali polar dimers.
Measurement of complete and continuous Wigner functions for discrete atomic systems
NASA Astrophysics Data System (ADS)
Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai
2018-01-01
We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.
Local atomic order of a metallic glass made visible by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Luo, Yuansu; Samwer, Konrad
2018-06-01
Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.
NASA Astrophysics Data System (ADS)
Luo, M.; Yin, H. H.; Chu, J. H.
2018-04-01
The magnetic properties of the h-BN monolayer with nonmetal atoms are studied by ab initio methods. Different dopants (C, Cl, F, and O) and doping sites are considered. Magnetic behavior is observed in the two-dimensional (2D) BN system with C, Cl, and O atoms. On the other hand, the O adsorbed system shows a more stable formed structure among above three magnetic materials, we study the ferromagnetic (FM) interaction in 2D-BN system with two O adatoms. Interestingly, as the O-O distance increases, the interaction between two O adatoms prefers to a long-range FM coupling. This phenomenon could be well described by a simple Heisenberg model.
Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M
2017-12-01
We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Evolution in time of an N-atom system. II. Calculation of the eigenstates
NASA Astrophysics Data System (ADS)
Rudolph, Terry; Yavin, Itay; Freedhoff, Helen
2004-01-01
We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of a number of different arrays of N identical two-level atoms (TLA’s) or qubits, including polygons, “diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the atoms. We include the interactions between all pairs of atoms, and our results are valid for arbitrary separations relative to the radiation wavelength.
NASA Astrophysics Data System (ADS)
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.
ENDOR/ESR of Mn atoms and MnH molecules in solid argon
NASA Astrophysics Data System (ADS)
van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.
1986-09-01
Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie
2016-01-28
Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅more » RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.« less
Molecule-assisted ferromagnetic atomic chain formation
NASA Astrophysics Data System (ADS)
Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.
2015-06-01
One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.
Quantum Tunneling Model of a P-N Junction in Silvaco
2008-09-01
electrical characteristics of materials on a large scale. According to Niels Bohr, atoms are comprised of three subatomic particles: a negative...nucleus at a specific energy level known as an orbit or shell. The three subatomic particles are held together by the electrostatic force between the
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-12-26
A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.
Theoretical predictions of a bucky-diamond SiC cluster.
Yu, Ming; Jayanthi, C S; Wu, S Y
2012-06-15
A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com
In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less
NASA Astrophysics Data System (ADS)
Gauthey, F. I.; Keitel, C. H.; Knight, P. L.; Maquet, A.
1995-07-01
We investigate the coherent and incoherent contributions of the scattering spectrum of strongly driven two-level atoms as a function of the initial preparation of the atomic system. The initial ``phasing'' of the coherent superposition of the excited and ground states is shown to influence strongly the generation of both harmonics and hyper-Raman lines. In particular, we point out conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman lines. Our numerical findings are supported by approximate analytical evaluation in the dressed state picture.
Nonlinearities in reservoir engineering: Enhancing quantum correlations
NASA Astrophysics Data System (ADS)
Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi
2017-12-01
There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.
NASA Astrophysics Data System (ADS)
Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan
2014-01-01
This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime.
Spontaneous emission near the edge of a photonic band gap
NASA Astrophysics Data System (ADS)
John, Sajeev; Quang, Tran
1994-08-01
The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.
Triple coupling and parameter resonance in quantum optomechanics with a single atom
NASA Astrophysics Data System (ADS)
Chang, Yue; Ian, H.; Sun, C. P.
2009-11-01
We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.
Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation
NASA Technical Reports Server (NTRS)
Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.
1993-01-01
Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.
Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.
2015-01-01
Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891
NASA Astrophysics Data System (ADS)
Ghasemian, E.; Tavassoly, M. K.
2017-09-01
In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.
NASA Astrophysics Data System (ADS)
Freedhoff, Helen
2004-01-01
We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.
NASA Astrophysics Data System (ADS)
Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.
2018-04-01
In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Gottwald, T.; Mattolat, C.
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Liu, Y.; Gottwald, T.; Mattolat, C.; ...
2015-05-08
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
C and RB Fountains:. Recent Results
NASA Astrophysics Data System (ADS)
Bize, S.; Sortais, Y.; Abgrall, M.; Zhang, S.; Calonico, D.; Mandache, C.; Lemonde, P.; Laurent, P.; Santarelli, G.; Salomon, C.; Clairon, A.; Luiten, A.; Tobar, M.
2002-04-01
We discuss the present performance and limits of our Cs and Rb fountains. The BNM/LPTF operates three cold atom clocks: two Cs fountains and a dual Cs-Rb fountain. By using an ultra-stable cryogenic sapphire oscillator to interrogate the atoms the frequency stability reaches 3.6 × 10-14τ-1/2. The accuracy of our fountains is now near 10-15. We discuss here the problems to be solved to reach a 10-16 accuracy. For instance this implies a continuous monitoring of the collisional frequency shift at the percent level in Cs. In contrast, 87Rb cold atom clocks exhibit a collisional shift ~ 100 times smaller than Cs which should lead to a better ultimate accuracy. Comparing the hyperfine energies of atoms with different atomic numbers Z, one can search for a possible violation of the Einstein Equivalence Principle. When interpreted as a test of the stability of the fine structure constant (α = e2/4πγ0ħc), measurements of the ratio νRb/νCs spread over a two year interval show no change of α at the 7 × 10-15/year level.
NASA Astrophysics Data System (ADS)
Liang, Yong-Chao; Liu, Rang-Su; Xie, Quan; Tian, Ze-An; Mo, Yun-Fei; Zhang, Hai-Tao; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Peng, Ping
2017-02-01
To investigate the structural evolution and hereditary mechanism of icosahedral nano-clusters formed during rapid solidification, a molecular dynamics (MD) simulation study has been performed for a system consisting of 107 atoms of liquid Mg70Zn30 alloy. Adopting Honeycutt-Anderson (HA) bond-type index method and cluster type index method (CTIM-3) to analyse the microstructures in the system it is found that for all the nano-clusters including 2~8 icosahedral clusters in the system, there are 62 kinds of geometrical structures, and those can be classified, by the configurations of the central atoms of basic clusters they contained, into four types: chain-like, triangle-tailed, quadrilateral-tailed and pyramidal-tailed. The evolution of icosahedral nano-clusters can be conducted by perfect heredity and replacement heredity, and the perfect heredity emerges when temperature is slightly less than Tm then increase rapidly and far exceeds the replacement heredity at Tg; while for the replacement heredity, there are three major modes: replaced by triangle (3-atoms), quadrangle (4-atoms) and pentagonal pyramid (6-atoms), rather than by single atom step by step during rapid solidification processes.
NASA Astrophysics Data System (ADS)
Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing
2017-10-01
The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.
Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.
2017-06-01
The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.
Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B
2017-03-01
This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the AERB and IAEA to protect patients, workers and the public of this region.
Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.
Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang
2018-06-15
Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-limited growth of Si on B atomic-layer formed Ge(1 0 0) by ultraclean low-pressure CVD system
NASA Astrophysics Data System (ADS)
Yokogawa, Takashi; Ishibashi, Kiyohisa; Sakuraba, Masao; Murota, Junichi; Inokuchi, Yasuhiro; Kunii, Yasuo; Kurokawa, Harushige
2008-07-01
Utilizing BCl 3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH 4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH 4 reaction. It is also found that Si atom amount deposited by SiH 4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.
Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes
NASA Astrophysics Data System (ADS)
Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan
2018-03-01
We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.
NASA Technical Reports Server (NTRS)
Federman, Steven R.
1992-01-01
The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.
Crystal structure of fac-aquatricarbonyl[(S)-valin-ato-κ(2) N,O]-rhenium(I).
Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V
2016-04-01
In the mol-ecule of the title compound, [Re(C5H10NO2)(CO)3(H2O)], the Re(I) atom adopts a distorted octa-hedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxyl-ate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a fac-configuration around the Re(I) ion. In the crystal, an intricate hydrogen-bonding system under participation of two O-H, two N-H and one C-H donor groups and the carboxyl-ate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supra-molecular network.
Atomistic study of two-level systems in amorphous silica
NASA Astrophysics Data System (ADS)
Damart, T.; Rodney, D.
2018-01-01
Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.
Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C
2007-07-26
Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.
Levashov, V A
2017-11-14
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2017-11-01
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
NASA Astrophysics Data System (ADS)
Karagodova, Tamara Y.
1999-03-01
The theory of resonant fluorescence of multilevel system in two monochromatic intense laser fields has been applied for investigating the temporal decay of magnetic sublevels of an atom. As for two-level system the triplet of resonant fluorescence is observed, for real atom being the multilevel system the multiplet of resonant fluorescence can be observed. The excitation spectra, defining the intensities of lines in the multiplet of resonant fluorescence, and shifts of components of spectra are shown. Typical temporal dependence of fluorescence intensity for magnetic sublevels of an atom having different relaxation constants is shown. The computer simulation of resonant fluorescence for simple systems can help to understand the regularities in temporal decay curves of atherosclerotic plaque, malignant tumor compared to normal surrounding tissue.
Nonlinear and quantum optics near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study any n-level atomic system experimentally in the presence of ensembles of quantum emitters. In the last chapter, we suggested a variant of a pulse-shaping technique applicable in stimulated Raman spectroscopy (SRS) for detection of atoms and molecules in multiscattering media. We used discrete-dipole approximation to obtain the fields created by the nanoparticles.
Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms
NASA Astrophysics Data System (ADS)
Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee
2018-03-01
Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.
NASA Astrophysics Data System (ADS)
Orzel, Chad
2017-06-01
One of the most active areas in atomic, molecular and optical physics is the use of ultracold atomic gases in optical lattices to simulate the behaviour of electrons in condensed matter systems. The larger mass, longer length scale, and tuneable interactions in these systems allow the dynamics of atoms moving in these systems to be followed in real time, and resonant light scattering by the atoms allows this motion to be probed on a microscopic scale using site-resolved imaging. This book reviews the physics of Hubbard-type models for both bosons and fermions in an optical lattice, which give rise to a rich variety of insulating and conducting phases depending on the lattice properties and interparticle interactions. It also discusses the effect of disorder on the transport of atoms in these models, and the recently discovered phenomenon of many-body localization. It presents several examples of experiments using both density and momentum imaging and quantum gas microscopy to study the motion of atoms in optical lattices. These illustrate the power and flexibility of ultracold-lattice analogues for exploring exotic states of matter at an unprecedented level of precision.
A hybrid system of a membrane oscillator coupled to ultracold atoms
NASA Astrophysics Data System (ADS)
Kampschulte, Tobias
2015-05-01
The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.
Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity
NASA Astrophysics Data System (ADS)
Yuan, H.; Wei, L. F.
2013-10-01
It is known that the violation of Svetlichny's inequality (SI), rather than the usual Mermin's inequality (MI), is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger (GHZ) and W states] and biseparable three-qubit entangled states (e.g., |χ>12|ξ>3). Our numerical experiments show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state |χ>12|ξ>3, while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI can be regarded as a robust criterion for the existence of genuine tripartite entanglement.
Steady state quantum discord for circularly accelerated atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
Experiments with bosonic atoms for quantum gas assembly
NASA Astrophysics Data System (ADS)
Brown, Mark; Lin, Yiheng; Lester, Brian; Kaufman, Adam; Ball, Randall; Brossard, Ludovic; Isaev, Leonid; Thiele, Tobias; Lewis-Swan, Robert; Schymik, Kai-Niklas; Rey, Ana Maria; Regal, Cindy
2017-04-01
Quantum gas assembly is a promising platform for preparing and observing neutral atom systems on the single-atom level. We have developed a toolbox that includes ground-state laser cooling, high-fidelity loading techniques, addressable spin control, and dynamic spatial control and coupling of atoms. Already, this platform has enabled us to pursue a number of experiments studying entanglement and interference of pairs of bosonic atoms. We discuss our recent work in probabilistically entangling neutral atoms via interference, measurement, and post-selection as well as our future pursuits of interesting spin-motion dynamics of larger arrays of atoms. This work was supported by the David and Lucile Packard Foundation, National Science Foundation Physics Frontier Centers, and the National Defense Science and Engineering Graduate Fellowships program.
Noel, Yves; D'arco, Philippe; Demichelis, Raffaella; Zicovich-Wilson, Claudio M; Dovesi, Roberto
2010-03-01
Nanotubes can be characterized by a very high point symmetry, comparable or even larger than the one of the most symmetric crystalline systems (cubic, 48 point symmetry operators). For example, N = 2n rototranslation symmetry operators connect the atoms of the (n,0) nanotubes. This symmetry is fully exploited in the CRYSTAL code. As a result, ab initio quantum mechanical large basis set calculations of carbon nanotubes containing more than 150 atoms in the unit cell become very cheap, because the irreducible part of the unit cell reduces to two atoms only. The nanotube symmetry is exploited at three levels in the present implementation. First, for the automatic generation of the nanotube structure (and then of the input file for the SCF calculation) starting from a two-dimensional structure (in the specific case, graphene). Second, the nanotube symmetry is used for the calculation of the mono- and bi-electronic integrals that enter into the Fock (Kohn-Sham) matrix definition. Only the irreducible wedge of the Fock matrix is computed, with a saving factor close to N. Finally, the symmetry is exploited for the diagonalization, where each irreducible representation is separately treated. When M atomic orbitals per carbon atom are used, the diagonalization computing time is close to Nt, where t is the time required for the diagonalization of each 2M x 2M matrix. The efficiency and accuracy of the computational scheme is documented. (c) 2009 Wiley Periodicals, Inc.
The effect of electromagnetically induced transparency in a potassium nanocell
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.
2017-07-01
The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav
2013-10-28
We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.
Precise Measurements of the Masses of Cs, Rb and Na A New Route to the Fine Structure Constant
NASA Astrophysics Data System (ADS)
Rainville, Simon; Bradley, Michael P.; Porto, James V.; Thompson, James K.; Pritchard, David E.
2001-01-01
We report new values for the atomic masses of the alkali 133Cs, 87Rb, 85Rb, and 23Na with uncertainties ≤ 0.2 ppb. These results, obtained using Penning trap single ion mass spectrometry, are typically two orders of magnitude more accurate than previously measured values. Combined with values of h/m atom from atom interferometry measurements and accurate wavelength measurements for different atoms, these values will lead to new ppb-level determinations of the molar Planck constant N A h and the fine structure constant α. This route to α is based on simple physics. It can potentially achieve the several ppb level of accuracy needed to test the QED determination of α extracted from measurements of the electron g factor. We also demonstrate an electronic cooling technique that cools our detector and ion below the 4 K ambient temperature. This technique improves by about a factor of three our ability to measure the ion's axial motion.
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of the atom: for an sp(3) carbon atom, we consider the two core 1s electrons and treat that carbon as an atom with three electrons. This results in an LSCF+3 model. Similarly, a nitrogen atom with a lone pair of electrons available for conjugation is treated as an atom with five electrons (LSCF+5). This approach is particularly well suited to splitting peptide bonds and other bonds that include carbon or nitrogen atoms. To embed the induced polarization within the calculation, researchers must use a polarizable force field. However, because the parameters of the usual force fields include an average of the induction effects, researchers typically can obtain satisfactory results without explicitly introducing the polarization. When considering electronic transitions, researchers must take into account the changes in the electronic polarization. One approach is to simulate the electronic cloud of the surroundings by a continuum whose dielectric constant is equal to the square of the refractive index. This Electronic Response of the Surroundings (ERS) methodology allows researchers to model the changes in induced polarization easily. We illustrate this approach by modeling the electronic absorption of tryptophan in human serum albumin (HSA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagodova, T.Ya.
2005-06-15
Specific features of the coherent population trapping effect are considered in the generalized {lambda} system whose lower levels are the magnetic sublevels of the fine structure levels of the thallium atom. Numerical experiments were performed aimed at examination of the coherent population trapping for the case of nontrivial, but feasible, initial populations of the upper metastable fine structure level. Such populations may be obtained, for example, due to the photodissociation of TlBr molecules. The possibility of reducing the number of resonances of the coherent population trapping in a multilevel system, which may be useful for high-resolution spectroscopy, is demonstrated. Itmore » is shown that the magnitude and shape of the resonances can be controlled by varying the orientation of the polarization vectors of the light field components with respect to each other and to a magnetic field. In addition, studying the shape of the coherent population trapping resonances for the atoms obtained by photodissociation of molecules may provide information about these molecules.« less
Selective absorption processes as the origin of puzzling spectral line polarization from the Sun.
Trujillo Bueno, J; Landi Degl'Innocenti, E; Collados, M; Merenda, L; Manso Sainz, R
2002-01-24
Magnetic fields play a key role in most astrophysical systems, from the Sun to active galactic nuclei. They can be studied through their effects on atomic energy levels, which produce polarized spectral lines. In particular, anisotropic radiation 'pumping' processes (which send electrons to higher atomic levels) induce population imbalances that are modified by weak magnetic fields. Here we report peculiarly polarized light in the He I 10,830-A multiplet observed in a coronal filament located at the centre of the solar disk. We show that the polarized light arises from selective absorption from the ground level of the triplet system of helium, and that it implies the presence of magnetic fields of the order of a few gauss that are highly inclined with respect to the solar radius vector. This disproves the common belief that population imbalances in long-lived atomic levels are insignificant in the presence of inclined fields of the order of a few gauss, and opens up a new diagnostic window for the investigation of solar magnetic fields.
Subwavelength atom localization via coherent manipulation of the Raman gain process
NASA Astrophysics Data System (ADS)
Qamar, Sajid; Mehmood, Asad; Qamar, Shahid
2009-03-01
We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.
Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; ...
2016-03-07
The development of alternative energy systems for clean production, storage and conversion of energy is strongly dependent on our ability to understand, at atomic-molecular-levels, functional links between activity and stability of electrochemical interfaces. Whereas structure-activity relationships are rapidly evolving, the corresponding structure-stability relationships are still missing. Primarily, this is because there is no adequate experimental approach capable of monitoring in situ stability of well-defined single crystals. Here, by blending the power of Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) connected to a stationary probe to measure in situ and real time dissolution rates of surface atoms (at above 0.4 pg cm-2s-1 levels)more » and a rotating disk electrode method for monitoring simultaneously the kinetic rates of electrochemical reactions in a single unite, it was possible to establish almost “atom-by-atom” the structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. Furthermore, we found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent (adsorption of hydroxyl, oxygen atoms and halides species), and non-covalent interactions (interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution) and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). Consequently, these findings are opening new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends, that ultimately, will assist to develop real energy conversion and storage systems.« less
[Current approach to zoning atomic shipbuilding plants].
Blekher, A Ia
2005-01-01
The paper discusses the currently introduced radiation-and-hygienic system for zoning atomic shipbuilding plants, in accordance with which three radiation-and-hygienic zones (a strict regime zone, a controlled approach zone, and a free regime zone) are established at the plant site and two zones (a sanitary-and-protective zone and a follow-up zone) are also established outside the plant site.
Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:
NASA Astrophysics Data System (ADS)
Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.
In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.
A short response time atomic source for trapped ion experiments
NASA Astrophysics Data System (ADS)
Ballance, T. G.; Goodwin, J. F.; Nichol, B.; Stephenson, L. J.; Ballance, C. J.; Lucas, D. M.
2018-05-01
Ion traps are often loaded from atomic beams produced by resistively heated ovens. We demonstrate an atomic oven which has been designed for fast control of the atomic flux density and reproducible construction. We study the limiting time constants of the system and, in tests with 40Ca, show that we can reach the desired level of flux in 12 s, with no overshoot. Our results indicate that it may be possible to achieve an even faster response by applying an appropriate one-off heat treatment to the oven before it is used.
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
Bas Mor, H; Altinsoy, N; Söyler, I
2018-05-08
The aim of this study was to evaluate the radiation doses to patient during chest (posterior anterior/and lateral) examinations. The study was performed in three public hospitals of İstanbul province with a total of 300 adult patients. Entrance surface dose (ESD) measurements were conducted on computed radiography, digital radiography and screen film system. ESD was estimated by using International Atomic Energy Agency (IAEA) model and Davies model which are the common indirect models. Results were compared with diagnostic reference levels from the European Commission, IAEA and National Radiological Protection Board. Although the results are compatible with the international diagnostic reference levels, they present variations between the hospitals. Dose variations for the same type of X-ray examination support the idea that further optimization is possible.
Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite
NASA Astrophysics Data System (ADS)
Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi
The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.
Hayashi, Shigehiko
2017-01-01
The mitochondrial ADP/ATP carrier (AAC) is a membrane transporter that exchanges a cytosolic ADP for a matrix ATP. Atomic structures in an outward-facing (OF) form which binds an ADP from the intermembrane space have been solved by X-ray crystallography, and revealed their unique pseudo three-fold symmetry fold which is qualitatively different from pseudo two-fold symmetry of most transporters of which atomic structures have been solved. However, any atomic-level information on an inward-facing (IF) form, which binds an ATP from the matrix side and is fixed by binding of an inhibitor, bongkrekic acid (BA), is not available, and thus its alternating access mechanism for the transport process is unknown. Here, we report an atomic structure of the IF form predicted by atomic-level molecular dynamics (MD) simulations of the alternating access transition with a recently developed accelerating technique. We successfully obtained a significantly stable IF structure characterized by newly formed well-packed and -organized inter-domain interactions through the accelerated simulations of unprecedentedly large conformational changes of the alternating access without a prior knowledge of the target protein structure. The simulation also shed light on an atomistic mechanism of the strict transport selectivity of adenosine nucleotides over guanosine and inosine ones. Furthermore, the IF structure was shown to bind ATP and BA, and thus revealed their binding mechanisms. The present study proposes a qualitatively novel view of the alternating access of transporters having the unique three-fold symmetry in atomic details and opens the way for rational drug design targeting the transporter in the dynamic functional cycle. PMID:28727843
Mejía, Sol M; Espinal, Juan F; Mills, Matthew J L; Mondragón, Fanor
2016-08-01
Bioethanol is one of the world's most extensively produced biofuels. However, it is difficult to purify due to the formation of the ethanol-water azeotrope. Knowledge of the azeotrope structure at the molecular level can help to improve existing purification methods. In order to achieve a better understanding of this azeotrope structure, the characterization of (ethanol)5-water heterohexamers was carried out by analyzing the results of electronic structure calculations performed at the B3LYP/6-31+G(d) level. Hexamerization energies were found to range between -36.8 and -25.8 kcal/mol. Topological analysis of the electron density confirmed the existence of primary (OH…O) hydrogen bonds (HBs), secondary (CH…O) HBs, and H…H interactions in these clusters. Comparison with three different solvated alcohol systems featuring the same types of atom-atom interactions permitted the following order of stability to be determined: (methanol)5-water > (methanol)6 > (ethanol)5-water > (ethanol)6. These findings, together with accompanying geometric and spectroscopic analyses, show that similar cooperative effects exist among the primary HBs for structures with the same arrangement of primary HBs, regardless of the nature of the molecules involved. This result provides an indication that the molecular ratio can be considered to determine the unusual behavior of the ethanol-water system. The investigation also highlights the presence of several types of weak interaction in addition to primary HBs. Graphical Abstract Water-ethanol clusters exhibit a variety of interaction types between their atoms, such as primary OH...O (blue), secondary CH...O (green) and H...H (yellow) interactions as revealed by Quantum Chemical Topology.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Measured Correlated Motion of theThree Body Coulomb Interacting System H^+ + H^+ + H^-
NASA Astrophysics Data System (ADS)
Wiese, L. M.
1998-05-01
The problem of three bodies interacting through a 1/r potential is a fundamental problem of physics. While its longstanding fame stems from its application to celestial mechanics, in atomic physics its importance arises from application to Coulomb-interacting systems, in which all three bodies carry some net charge. Because the three bodies interact through long range Coulomb forces over their entire path, their motion can be highly correlated. The effect of the interaction among the three bodies and any resulting correlated motion is reflected in how the available energy is ultimately shared among the three particles. By experimentally determining the energy sharing in a three body system, we can gain insight into the interactions governing the system. For the three body Coulomb interacting system of H^+ + H^+ + H^-, we have measured the partitioning of available center of mass (c.m.) energy among the particles when the system is in a near collinear configuration. By colliding 4 keV H_3^+ with a He target gas cell, we produce the H^+ + H^+ + H^- system a few eV above the dissociative limit. All three fragments are laboratory energy and angle resolved. By detecting all three in triple coincidence, we determine unambiguously the final state dynamics for each triply coincident event. Transforming our results to the c.m. frame, we determine the partitioning of available energy among the three particles. We have modified the Dalitz plot of high energy physics to elucidate correlations in the motion of any three body atomic system. Correlated motion in the H^+ + H^+ + H^- system is indicated by a nonuniform distribution on the Dalitz plot. For the near collinear breakup of H_3^+, we have observed the H^- to reside anywhere between the two H^+, from the Coulomb saddle point to the near vicinity of a proton. This work is supported by NSF Grant Number 9419505.
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
DGDFT: A massively parallel method for large scale density functional theory calculations.
Hu, Wei; Lin, Lin; Yang, Chao
2015-09-28
We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10(-4) Hartree/atom in terms of the error of energy and 6.2 × 10(-4) Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.
The phase diagrams of a spin 1/2 core and a spin 1 shell nanoparticle with a disordered interface
NASA Astrophysics Data System (ADS)
Zaim, N.; Zaim, A.; Kerouad, M.
2016-12-01
The critical and compensation behaviors, of a spherical ferrimagnetic nanoparticle, consisting of a ferromagnetic core of spin-1/2 A atoms, a ferromagnetic shell of spin-1 B atoms and a disordered interface in between that is characterized by a random arrangement of A and B atoms of ApB1-p type and a negative A - B coupling, are studied. The ground state phase diagrams of the system have been determined in the (JAB, D/jA) and (JB, D/jA) planes. Monte Carlo simulation based on Metropolis algorithm has been used to study the effects of the concentration parameter p, the crystal field, the coupling between B - B atoms jB and the antiferromagnetic interface coupling jAB on the phase diagrams and the magnetic properties of the system. It has been found that one, two or even three compensation point(s) can appear for appropriate values of the system parameters.
History and Perspectives of Nuclear Medicine in Myanmar
Mar, Win
2018-01-01
Nuclear Medicine was established in Myanmar in 1963 by Dr Soe Myint and International Atomic Energy expert Dr R. Hochel at Yangon General Hospital. Nuclear medicine diagnostic and therapeutic services started with Probe Scintillation Detector Systems and rectilinear scanner. In the early stage, many Nuclear Medicine specialists from the International Atomic Energy Agency (IAEA) spent some time in Myanmar and made significant contributions to the development of Nuclear Medicine in our country. The department participated in various IAEA technical cooperation projects and regional cooperation projects. By the late 1990s, new centers were established in Mandalay, Naypyidaw, and North Okkalapa Teaching Hospital of University of Medicine 11, Yangon. The training program related to Nuclear Medicine includes a postgraduate master’s degree (three years) at the University of Medicine. Currently, all centers are equipped with SPECT, SPECT-CT, PET-CT, and cyclotron in Yangon General Hospital. Up until now, the International Atomic Energy Agency has been playing a crucial role in the growth and development of Nuclear Medicine in Myanmar. Our vision is to provide a wide spectrum of nuclear medicine services at a level compatible with the international standards to become a Center of Excellence. PMID:29333470
Energy Levels and Oscillator Strengths for Ne-like Iron Ions
NASA Astrophysics Data System (ADS)
Zhong, J. Y.; Zhang, J.; Zhao, G.; Lu, X..
2004-02-01
Energy levels and oscillator strengths among the 27 fine-structure levels belonging to the (1s22s2)2p6, 2p53s, 2p53p and 2p53d configurations of neon-like iron ion have been calculated by using three atomic structure codes, RCN/RCG, AUTOSTRUCTURE (AS) and GRASP. The relativistic corrections of the wave functions are taken into account in RCN/RCG calculations. The results well agree with experimental and theoretical data wherever available. Finally the accuracy of three codes was analyzed.
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
NASA Astrophysics Data System (ADS)
Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu
2017-12-01
Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.
NASA Astrophysics Data System (ADS)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.
Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P
2017-10-27
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms
NASA Astrophysics Data System (ADS)
Tretyakov, D. B.; Beterov, I. I.; Yakshina, E. A.; Entin, V. M.; Ryabtsev, I. I.; Cheinet, P.; Pillet, P.
2017-10-01
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015), 10.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N ≫1 . In this Letter, we report on the first experimental observation of the three-body Förster resonances 3 ×n P3 /2(|M |)→n S1 /2+(n +1 )S1 /2+n P3 /2(|M*|) in a few Rb Rydberg atoms with n =36 , 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N =3 - 5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
One Photon Can Simultaneously Excite Two or More Atoms.
Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore
2016-07-22
We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
Optical coupling of cold atoms to a levitated nanosphere
NASA Astrophysics Data System (ADS)
Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew
2017-04-01
Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.
NASA Astrophysics Data System (ADS)
Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco
2017-07-01
Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.
Concerted hydrogen atom exchange between three HF molecules
NASA Technical Reports Server (NTRS)
Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.
1992-01-01
We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
Steady bipartite coherence induced by non-equilibrium environment
NASA Astrophysics Data System (ADS)
Huangfu, Yong; Jing, Jun
2018-01-01
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.
Surface passivation for tight-binding calculations of covalent solids.
Bernstein, N
2007-07-04
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
Surface passivation for tight-binding calculations of covalent solids
NASA Astrophysics Data System (ADS)
Bernstein, N.
2007-07-01
Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.
First-principles study of Au-decorated carbon nanotubes
NASA Astrophysics Data System (ADS)
Ju, Weiwei; Li, Tongwei; Zhou, Qingxiao; Li, Haisheng; Li, Xiaohong
2018-07-01
The electronic structures and spin-orbit (SO) coupling of carbon nanotubes with adsorbed Au atoms are investigated based on density functional theory. Three kinds of zigzag single-walled CNT (8,0), (10,0) and (12,0) are selected. The Au atoms prefer to adsorb on the top of C atoms. The adsorption of Au atoms can introduce impurity states in the band gap, modifying the electronic properties of systems. Furthermore, the influence of SO coupling on these impurity states is also explored. Considerable SO splitting (∼130 meV) can be obtained. We find that the SO splitting decreases with the increase of the concentration of Au atoms, which can be ascribed to the interaction between Au atoms, suppressing the SO splitting. Our work provides imperative understanding on the electronic properties and SO coupling effect in Au-decorated CNTs.
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
NASA Astrophysics Data System (ADS)
Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária
2012-07-01
While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
Phase-insensitive storage of coherences by reversible mapping onto long-lived populations
NASA Astrophysics Data System (ADS)
Mieth, Simon; Genov, Genko T.; Yatsenko, Leonid P.; Vitanov, Nikolay V.; Halfmann, Thomas
2016-01-01
We theoretically develop and experimentally demonstrate a coherence population mapping (CPM) protocol to store atomic coherences in long-lived populations, enabling storage times far beyond the typically very short decoherence times of quantum systems. The amplitude and phase of an atomic coherence is written onto the populations of a three-state system by specifically designed sequences of radiation pulses from two coupling fields. As an important feature, the CPM sequences enable a retrieval efficiency, which is insensitive to the phase of the initial coherence. The information is preserved in every individual atom of the medium, enabling applications in purely homogeneously or inhomogeneously broadened ensembles even when stochastic phase jumps are the main source of decoherence. We experimentally confirm the theoretical predictions by applying CPM for storage of atomic coherences in a doped solid, reaching storage times in the regime of 1 min.
Scheme for quantum state manipulation in coupled cavities
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.
Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Tennesse; Varga, Kálmán
2016-05-14
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
Structural and electronic properties of isovalent boron atoms in GaAs
NASA Astrophysics Data System (ADS)
Krammel, C. M.; Nattermann, L.; Sterzer, E.; Volz, K.; Koenraad, P. M.
2018-04-01
Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1-xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the <110 > directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.
Highly sensitive atomic based MW interferometry.
Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya
2018-06-06
We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.
Atomic level characterization in corrosion studies
NASA Astrophysics Data System (ADS)
Marcus, Philippe; Maurice, Vincent
2017-06-01
Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.
Classical theory of atomic collisions - The first hundred years
NASA Astrophysics Data System (ADS)
Grujić, Petar V.
2012-05-01
Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and epistemological background of the classical calculations and explain why these turned out so successful, despite the essentially quantum nature of the atomic and subatomic systems.
Generation of entanglement and its decay in a noisy environment
NASA Astrophysics Data System (ADS)
Huang, Jiehui
Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon GHZ entangled state will be generated with certainty. Environment-induced disentanglement is another important topic in quantum optics. Based on the Peres-Horodecki criterion for separability of bipartite states, we develop the principal minor method for the verification of two-qubit entanglement. Among the fifteen principal minors (seven effective ones) of a given two-qubit state's partial transpose, if the minimum one is negative, the two-qubit state is entangled, otherwise it is separable. By applying this method to a two-qubit system under amplitude and phase dampings, we have derived the necessary and sufficient conditions for the entanglement sudden death of an initially entangled two-qubit state. Keywords: entanglement generation, atomic ensemble, two-qubit, multiphoton entanglement, cavity QED, entanglement sudden death (ESD), amplitude damping, phase damping, principal minor.
Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.
Pankavich, Stephen D; Ortoleva, Peter J
2012-07-26
We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.
Revealing the planar chemistry of two-dimensional heterostructures at the atomic level.
Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S; Dolocan, Andrei
2015-06-23
Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.
Method and apparatus for noble gas atom detection with isotopic selectivity
Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.
1984-01-01
Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.
Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field
NASA Astrophysics Data System (ADS)
Akhtarshenas, S. J.; Khezrian, M.
2010-04-01
In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.
Two-photon absorption by spectrally shaped entangled photons
NASA Astrophysics Data System (ADS)
Oka, Hisaki
2018-03-01
We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.
Control of Goos-Hänchen shift via input probe field intensity
NASA Astrophysics Data System (ADS)
Ziauddin; Lee, Ray-Kuang; Qamar, Sajid
2016-11-01
We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.
Measuring heterogenous stress fields in a 3D colloidal glass
NASA Astrophysics Data System (ADS)
Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai
Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.
NASA Astrophysics Data System (ADS)
Feng, Tuanhui; Yang, Fei; Li, Yunhui; Sun, Yong; Lu, Hai; Jiang, Haitao; Zhang, Yewen; Chen, Hong
2013-06-01
In this letter, light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like (EIT-like) properties is investigated. Both numerical and experimental results show that the Q-factor of tunneling mode can be well enhanced when an atomic-like three-level system with EIT-like properties is introduced at the interface of a pair structure constructed by epsilon-negative and mu-negative metamaterials. Further study reveals that the Q-factor can be tuned conveniently by altering the EIT-like meta-interface. Moreover, these advantages are not at costs of increase of volume and drastic reduction of transmittance.
NASA Astrophysics Data System (ADS)
Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming
2018-03-01
Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.
Catching a quantum jump in mid-flight
NASA Astrophysics Data System (ADS)
Minev, Z. K.; Mundhada, S. O.; Zalys-Geller, E.; Shankar, S.; Rheinhold, P.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
Quantum jumps provide a fundamental manifestation of the interplay between coherent dynamics and strong continuous measurements. Interestingly, the modern theoretical vantage point of quantum trajectories (Carmichael, 1993) suggests that the jump is not instantaneous, but rather smooth, coherent, and under the right conditions may present a deterministic character. We revisit the original observation of quantum jumps in a V-type, three-level atom (Berquist, 1986; Sauter, 1986), in order to ``deterministically'' catch the jump in mid-flight. We have designed and operated a V-type superconducting artificial atom with the 3 needed levels: G (for Ground), B (for Bright), and D (for Dark). The atom is coupled to a continuously monitored microwave mode that can distinguish B from the manifold formed by G and D, but without distinguishing G from D. We will present preliminary results showing how this experiment can be realized. Work supported by: ARO, ONR, AFOSR and YINQE. Discussions with H. Carmichael are gratefully acknowledged.
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph
2016-08-07
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less
Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form.
Seuring, Carolin; Gath, Julia; Verasdonck, Joeri; Cadalbert, Riccardo; Rivier, Jean; Böckmann, Anja; Meier, Beat H; Riek, Roland
2016-10-01
Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
NASA Astrophysics Data System (ADS)
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Lande gJ factors for even-parity electronic levels in the holmium atom
NASA Astrophysics Data System (ADS)
Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.
2018-05-01
In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.
Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes
NASA Astrophysics Data System (ADS)
Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad
2015-08-01
In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.
NASA Astrophysics Data System (ADS)
Smith, Arthur R.
2012-02-01
Future technological advances at the frontier of `elec'tronics will increasingly rely on the use of the spin property of the electron at ever smaller length scales. As a result, it is critical to make substantial efforts towards understanding and ultimately controlling spin and magnetism at the nanoscale. In SPIRE, the goal is to achieve these important scientific advancements through a unique combination of experimental and theoretical techniques, as well as complementary expertise and coherent efforts across three continents. The key experimental tool of choice is spin-polarized scanning tunneling microscopy -- the premier method for accessing the spin structure of surfaces and nanostructures with resolution down to the atomic scale. At the same time, atom and molecule deposition and manipulation schemes are added in order to both atomically engineer, and precisely investigate, novel nanoscale spin structures. These efforts are being applied to an array of physical systems, including single magnetic atomic layers, self-assembled 2-D molecular arrays, single adatoms and molecules, and alloyed spintronic materials. Efforts are aimed at exploring complex spin structures and phenomena occurring in these systems. At the same time, the problems are approached, and in some cases guided, by the use of leading theoretical tools, including analytical approaches such as renormalization group theory, and computational approaches such as first principles density functional theory. The scientific goals of the project are achieved by a collaborative effort with the international partners, engaging students at all levels who, through their research experiences both at home and abroad, gain international research outlooks as well as understandings of cultural differences, by working on intriguing problems of mutual interest. A novel scientific journalism internship program based at Ohio University furthers the project's broader impacts.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization
Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela
Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250
Reliable and Affordable Control Systems Active Combustor Pattern Factor Control
NASA Technical Reports Server (NTRS)
McCarty, Bob; Tomondi, Chris; McGinley, Ray
2004-01-01
Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.
BOOK REVIEW: Quantum Squeezing
NASA Astrophysics Data System (ADS)
Zubairy, Suhail
2005-05-01
Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the Langevin formalism for squeezing in lasing systems. In the last article of this part, Wiseman deals with squeezing systems when the system's environment can be deliberately engineered so that the feedback is important. The third part of the book includes four articles dealing with the applications of quantum squeezing. In the first article, Yuen presents a discussion of communications and measurement using squeezed states and discusses the advantages of using nonclassical light over classical light in communications and measurement. In the second article, Swain deals with the interaction of squeezed light with the atomic systems and presents a review of novel phenomena in spectroscopy. This chapter on two-level atomic system is followed by Ficek's article on squeezed-light based spectroscopy in three-level atomic systems. In the last article, Reid again addresses the advantages of squeezed light in communications, but her emphasis is different from that of Yuen's article. Here she discusses EPR correlations for squeezed light and presents squeezed-light based methods for quantum cryptography. All the authors are leading figures in the field of squeezed states who have made pioneering contributions to various aspects of the field over the years. This is reflected in the authoritative style with which all the articles are written. These articles are rich in content, easy to read and cover a broad base. The emphasis is however on the theoretical aspects with occasional references to experimental work. This book is an excellent collection of articles on quantum squeezing that are highly useful both for beginners who would like to learn about squeezing and its applications, as well as for experts who would like to learn about the frontiers.
Cavity electromagnetically induced transparency with Rydberg atoms
NASA Astrophysics Data System (ADS)
Bakar Ali, Abu; Ziauddin
2018-02-01
Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.
Adiabatic quantum computation with neutral atoms via the Rydberg blockade
NASA Astrophysics Data System (ADS)
Goyal, Krittika; Deutsch, Ivan
2011-05-01
We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories
Calculations of the energy levels and oscillator strengths of the Ne-like Fe Ion (Fe XVII)
NASA Astrophysics Data System (ADS)
Zhong, Jia-yong; Zhang, Jie; Zhao, Gang; Lu, Xin
Energy levels and oscillator strengths among the 27 fine-structure levels belonging to the (ls 22s 2)2p 6, 2p 53s, 2p 53p and 2p 53d configurations of the neon-like iron ion have been calculated using three atomic structure codes RCN/RCG, AUTOSTRUCTURE (AS) and GRASP. Relativistic corrections of the wave functions are taken into account in the RCN/RCG calculation. The results agree well with the available experimental and theoretical data. The accuracy of the three codes is analysed.
A simplified In Situ cosmogenic 14C extraction system
Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay
2010-01-01
We describe the design, construction, and testing of a new, simplified in situ radiocarbon extraction system at the University of Arizona. Blank levels for the new system are low ((234 ?? 11) ?? 103 atoms (1 ??; n = 7)) and stable. The precision of a given measurement depends on the concentration of 14C, but is typically <5% for concentrations of 100 ?? 103 atoms g-1 or more. The new system is relatively small and easy to construct, costs significantly less than the original in situ 14C extraction system at Arizona, and lends itself to future automation. ?? 2010 by the Arizona Board of Regents on behalf of the University of Arizona.
Wohlin, Åsa
2015-03-21
The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Novel Visualization Approaches in Environmental Mineralogy
NASA Astrophysics Data System (ADS)
Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.
2006-05-01
Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.
Development and reduction of hypertension and oxidative stress among detergent industry workers.
Boojar, Massod M A; Goodarzi, Faranak; Boojar, Manochehr M A
2004-12-01
Hypertension status and oxidative stress parameters were assessed in 291 workers (hypertensive workers were divided into three grades, non-equivalently) at two detergent production plants, one of which included enzymes in the detergent (n=138) and another which did not (n=153), and 45 control workers in another industry three times (at the time of employment, 7 yrs later at the time of installation of a filter system, and about 3 yrs later). Malondialdehyde (MDA) was measured by high-performance liquid chromatography, antioxidant enzymes and lipid status by ultraviolet-visible spectrophotometry, trace elements by atomic absorption spectroscopy, and blood pressure using an oscilometric device. Prior to filter system installation, enzyme-exposed workers had significantly higher MDA, antioxidant enzyme activities, and prevalence of hypertension, compared with controls. The filter system reduced airborne detergent and enzyme dusts, resulting in a decreased prevalence of hypertension and a significant improvement in workers' oxidative stress indicators. Alterations in antioxidant status may result from the cumulative effect of high levels of detergent and enzyme in airborne dust in the workplace.
NASA Astrophysics Data System (ADS)
Gajos, A.; Kamińska, D.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Słomski, A.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2016-05-01
This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Fabrication of Quench Condensed Thin Films Using an Integrated MEMS Fab on a Chip
NASA Astrophysics Data System (ADS)
Lally, Richard; Reeves, Jeremy; Stark, Thomas; Barrett, Lawrence; Bishop, David
Atomic calligraphy is a microelectromechanical systems (MEMS)-based dynamic stencil nanolithography technique. Integrating MEMS devices into a bonded stacked array of three die provides a unique platform for conducting quench condensed thin film mesoscopic experiments. The atomic calligraphy Fab on a Chip process incorporates metal film sources, electrostatic comb driven stencil plate, mass sensor, temperature sensor, and target surface into one multi-die assembly. Three separate die are created using the PolyMUMPs process and are flip-chip bonded together. A die containing joule heated sources must be prepared with metal for evaporation prior to assembly. A backside etch of the middle/central die exposes the moveable stencil plate allowing the flux to pass through the stencil from the source die to the target die. The chip assembly is mounted in a cryogenic system at ultra-high vacuum for depositing extremely thin films down to single layers of atoms across targeted electrodes. Experiments such as the effect of thin film alloys or added impurities on their superconductivity can be measured in situ with this process.
Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas
NASA Technical Reports Server (NTRS)
Braun, C. G.; Kunc, J. A.
1989-01-01
A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, Marion; Bobev, Svilen
This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K 8Cd 3.77(7)Ge 42.23, Rb 8Cd 3.65(7)Ge 42.35, and Cs 7.80(1)Cd 3.65(6)Ge 42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d 10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. Furthermore, this and several other details of the crystal chemistrymore » are elaborated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco, J. L.; Singh, M.; Perry, D. L.
Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
Classification of ligand molecules in PDB with graph match-based structural superposition.
Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi
2016-12-01
The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.
Core excitation effects on oscillator strengths for transitions in four electron atomic systems
NASA Astrophysics Data System (ADS)
Chang, T. N.; Luo, Yuxiang
2007-06-01
By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).
Signatures of two-photon pulses from a quantum two-level system
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Wierzbowski, Jakob; Simmet, Tobias; Dory, Constantin; Finley, Jonathan J.; Vučković, Jelena; Müller, Kai
2017-07-01
A two-level atom can generate a strong many-body interaction with light under pulsed excitation. The best known effect is single-photon generation, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent studies suggested that scattering of intense laser fields off a two-level atom may generate oscillations in two-photon emission that come out of phase with the Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe the signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the possibility of producing new multi-photon states.
NASA Astrophysics Data System (ADS)
McBride, James R.
This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.
NASA Astrophysics Data System (ADS)
Eied, A. A.
2018-05-01
In this paper, the linear entropy and collapse-revival phenomenon through the relation (< {\\hat{a}}+{\\hat{a}} > -{\\bar{n}}) in a system of N-configuration four-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling functional are investigated. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent states and the atom initially in its most upper excited state. The dynamical behavior of the linear entropy and the time evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are analyzed. In particular, the effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy and the evolution of (< {\\hat{a}}+ {\\hat{a}} > -{\\bar{n}}) are examined.
Long-lived trimers in a quasi-two-dimensional Fermi system
NASA Astrophysics Data System (ADS)
Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper
2018-04-01
We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.
Entanglement dynamics in random media
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.
2017-12-01
We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.
NASA Astrophysics Data System (ADS)
Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.
2018-05-01
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
Precise calibration of few-cycle laser pulses with atomic hydrogen
NASA Astrophysics Data System (ADS)
Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.
2017-12-01
Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.S.
1977-11-01
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less
On the Lamb shift in neutral muonic helium
NASA Astrophysics Data System (ADS)
Amusia, Miron; Karshenboim, Savely; Ivanov, Vladimir
2015-05-01
The neutral muonic helium is an exotic atomic system consisting of an electron, muon and a nucleus. We consider it as a hydrogen-like atom with a compound nucleus that is also hydrogen-like system. There are a number of corrections to the Bohr energy levels, which all can be treated as contributions of generic hydrogen-like theory. While the form of those contributions is the same for all hydrogen-like atoms, their relative numerical importance differs from an atom to an atom. Here, the leading contribution to the electronic Lamb shift in the neutral muonic helium is found in a close analytic form together with the most important corrections. We believe that the Lamb shift in the neutral muonic hydrogen is measurable, at least through a measurement of the electronic 1 s - 2 s transition. We present a theoretical prediction for the 1 s - 2 s transitions with the uncertainty of 2 ppm (4 GHz), as well as for the 2 s - 2 p Lamb shift with the uncertainty of 0.6 GHz.
Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin
2015-07-23
The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and steric effects are minor but indispensable. Results obtained in this work should shed new light for better understanding of the factors governing the reactivity for this class of reactions and assisting ongoing efforts for the design of new and more efficient catalysts for such kind of transformations.
Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization
Barba, Anna Angela; d'Amore, Matteo
2013-01-01
Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested. PMID:24501580
Spectral correlations in Anderson insulating wires
NASA Astrophysics Data System (ADS)
Marinho, M.; Micklitz, T.
2018-01-01
We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.
Non-equilibrium thermodynamics of harmonically trapped bosons
NASA Astrophysics Data System (ADS)
Ángel García-March, Miguel; Fogarty, Thomás; Campbell, Steve; Busch, Thomas; Paternostro, Mauro
2016-10-01
We apply the framework of non-equilibrium quantum thermodynamics to the physics of quenched small-sized bosonic quantum gases in a one-dimensional harmonic trap. We show that dynamical orthogonality can occur in these few-body systems with strong interactions after a quench and we find its occurrence analytically for an infinitely repulsive pair of atoms. We further show this phenomena is related to the fundamental excitations that dictate the dynamics from the spectral function. We establish a clear qualitative link between the amount of (irreversible) work performed on the system and the establishment of entanglement. We extend our analysis to multipartite systems by examining the case of three trapped atoms. We show the initial (pre-quench) interactions play a vital role in determining the dynamical features, while the qualitative features of the two particle case appear to remain valid. Finally, we propose the use of the atomic density profile as a readily accessible indicator of the non-equilibrium properties of the systems in question.
Thermal Imaging of Flame in Air-assisted Atomizer for Burner System
NASA Astrophysics Data System (ADS)
Amirnordin, S. H.; Khalid, Amir; Zailan, M. F.; Fawzi, Mas; Salleh, Hamidon; Zaman, Izzuddin
2017-08-01
Infrared thermography was used as a part of non-intrusion technique on the flame temperature analysis. This paper demonstrates the technique to generate the thermal images of flame from the air-assisted atomizer. The multi-circular jet plate acts as a turbulence generator to improve the fuel and air mixing in the atomizer. Three types of multi-circular jet plate geometry were analysed at different equivalence ratio. Thermal infrared imaging using FLIR thermal camera were used to obtain the flame temperature. Multi-circular jet 1 shows the highest flame temperature obtained compared to other plates. It can be concluded that the geometry of the plate influences the combustion, hence affects the flame temperature profile from the air-assisted atomizer.
Abedin, Rubaiyet; Heidarian, Sharareh; Flake, John C; Hung, Francisco R
2017-10-24
We used computational tools to evaluate three working fluid mixtures for single-effect absorption refrigeration systems, where the generator (desorber) is powered by waste or solar heat. The mixtures studied here resulted from combining a widely used hydrofluorocarbon (HFC) refrigerant, R134a, with three common deep eutectic solvents (DESs) formed by mixing choline chloride (hydrogen bond acceptor, HBA) with urea, glycerol, or ethylene glycol as the hydrogen bond donor (HBD) species. The COSMOtherm/TmoleX software package was used in combination with refrigerant data from NIST/REFPROP, to perform a thermodynamic evaluation of absorption refrigeration cycles using the proposed working fluid mixtures. Afterward, classical MD simulations of the three mixtures were performed to gain insight on these systems at the molecular level. Larger cycle efficiencies are obtained when R134a is combined with choline chloride and ethylene glycol, followed by the system where glycerol is the HBD, and finally that where the HBD is urea. MD simulations indicate that the local density profiles of all species exhibit very sharp variations in systems containing glycerol or urea; furthermore, the Henry's law constants of R134a in these two systems are larger than those observed for the HFC in choline chloride and ethylene glycol, indicating that R134a is more soluble in the latter DES. Interaction energies indicate that the R134a-R134a interactions are weaker in the system where ethylene glycol is the HBD, as compared to in the other DES. Radial distribution functions confirm that in all systems, the DES species do not form strong directional interactions (e.g., hydrogen bonds) with the R134a molecules. Relatively strong interactions are observed between the Cl anions and the hydrogen atoms in R134a; however, the atom-atom interactions between R134a and the cation and HBD species are weaker and do not play a significant role in the solvation of the refrigerant. In all systems, R134a has the largest diffusion coefficients, followed by the HBD, the anion and the cation; the diffusion coefficients are the largest in the systems containing ethylene glycol, followed by those having glycerol and urea. This work is our first step toward our long-term goal of designing and demonstrating optimal working fluid mixtures for use in absorption refrigeration systems. Our results suggest that COSMO-RS can be used to perform a rapid screening of a large number of working fluid mixtures, and select a few candidates for further exploration using molecular simulations and experiments. These latter approaches can be used to refine the accuracy of the COSMO-RS predictions, and to optimize the selection of optimal working fluid mixtures for demonstration in absorption refrigeration systems powered by solar or waste heat sources.
Spatial Imaging of Strongly Interacting Rydberg Atoms
NASA Astrophysics Data System (ADS)
Thaicharoen, Nithiwadee
The strong interactions between Rydberg excitations can result in spatial correlations between the excitations. The ability to control the interaction strength and the correlations between Rydberg atoms is applicable in future technological implementations of quantum computation. In this thesis, I investigates how both the character of the Rydberg-Rydberg interactions and the details of the excitation process affect the nature of the spatial correlations and the evolution of those correlations in time. I first describes the experimental apparatus and methods used to perform high-magnification Rydberg-atom imaging, as well as three experiments in which these methods play an important role. The obtained Rydberg-atom positions reveal the correlations in the many-body Rydberg-atom system and their time dependence with sub-micron spatial resolution. In the first experiment, atoms are excited to a Rydberg state that experiences a repulsive van der Waals interaction. The Rydberg excitations are prepared with a well-defined initial separation, and the effect of van der Waals forces is observed by tracking the interatomic distance between the Rydberg atoms. The atom trajectories and thereby the interaction coefficient C6 are extracted from the pair correlation functions of the Rydberg atom positions. In the second experiment, the Rydberg atoms are prepared in a highly dipolar state by using adiabatic state transformation. The atom-pair kinetics that follow from the strong dipole-dipole interactions are observed. The pair correlation results provide the first direct visualization of the electric-dipole interaction and clearly exhibit its anisotropic nature. In both the first and the second experiment, results of semi-classical simulations of the atom-pair trajectories agree well with the experimental data. In the analysis, I use energy conservation and measurements of the initial positions and the terminal velocities of the atom pairs to extract the C6 and C 3 interaction coefficients. The final experiment demonstrates the ability to enhance or suppress the degree of spatial correlation in a system of Rydberg excitations, using a rotary-echo excitation process in concert with particular excitation laser detunings. The work in this thesis demonstrates an ability to control long-range interactions between Rydberg atoms, which paves the way towards preparing and studying increasingly complex many-body systems.
Non-local electron transport through normal and topological ladder-like atomic systems
NASA Astrophysics Data System (ADS)
Kurzyna, Marcin; Kwapiński, Tomasz
2018-05-01
We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.
Observation of the Rabi oscillation of light driven by an atomic spin wave.
Chen, L Q; Zhang, Guo-Wan; Bian, Cheng-Ling; Yuan, Chun-Hua; Ou, Z Y; Zhang, Weiping
2010-09-24
Coherent conversion between a Raman pump field and its Stokes field is observed in a Raman process with a strong atomic spin wave initially prepared by another Raman process operated in the stimulated emission regime. The oscillatory behavior resembles the Rabi oscillation in atomic population in a two-level atomic system driven by a strong light field. The Rabi-like oscillation frequency is found to be related to the strength of the prebuilt atomic spin wave. High conversion efficiency of 40% from the Raman pump field to the Stokes field is recorded and it is independent of the input Raman pump field. This process can act as a photon frequency multiplexer and may find wide applications in quantum information science.
Theoretical and Experimental Studies in Reactive Scattering.
1986-08-11
dynamics 3. Three-dimensional reaction dynamics 4. Anisotropic potentials for He + C02, OCS, CS2 .. 5. Production of a high intensity-high energy beam of...involving beams of He atoms, H atoms and metastable H molecules aimed at the determination of potential energy surfaces involving these systems. 2... energy of 0.3 ’, Kcal/mole below the top of the barrier, the reaction probability from ground S"t vibrational state reagent to ground vibrational
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2017-11-01
Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.
Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.
Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei
2016-06-06
For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T
2013-10-01
Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.
Fine- and hyperfine structure investigations of even configuration system of atomic terbium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.
2017-03-01
In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).
Electronic structure of binuclear acetylacetonates of boron difluoride
NASA Astrophysics Data System (ADS)
Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.
2018-05-01
The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
NASA Astrophysics Data System (ADS)
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong
2017-10-01
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong
2017-10-12
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
NASA Technical Reports Server (NTRS)
Cockrum, R. H.
1982-01-01
One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.
NASA Astrophysics Data System (ADS)
Delfino, I.; Bonanni, B.; Andolfi, L.; Baldacchini, C.; Bizzarri, A. R.; Cannistraro, S.
2007-06-01
Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology.
Adsorbate-induced reconstruction in the phase 1 × 2-3H/Rh(110)
NASA Astrophysics Data System (ADS)
Michl, M.; Nichtl-Pecher, W.; Oed, W.; Landskron, H.; Heinz, K.; Müller, K.
1989-10-01
The 1 × 2-3H superstructure of hydrogen on Rh(110) at coverage θ = {3}/{2} is analysed by low energy electron diffraction at 90 K. The spectra of eight beams are recorded with a computer-controlled TV measurement technique which yields low noise data even for weak superstructure spots by multiple averaging. Comparison to full dynamical calculations shows that a kinematic treatment of the hydrogen layer diffraction coupled to the full dynamical diffraction of the substrate is a very good approximation. Spectra computed in this way are compared with experimental data by R-factor evaluation. The three non-equivalent hydrogen atoms are found to adsorb in quasi-three-fold coordinated adsorption sites with slightly different local configurations and with H-Rh bond lengths between 1.87 and 1.93 Å to the first-layer rhodium atoms. Interaction between the adatoms seems to weaken the bonding to the adjacent atom in the second layer, so that H-Rh bond lengths larger than 2.17 Å result. A slight reconstruction of the substrate is necessary to bring superstructure spot intensities near the experimentally observed level. Rhodium atoms bonded to two hydrogen atoms are moved out of the surface by 0.03 ± 0.02 Å relative to Rh atoms bonded to only a single H atom. The relaxation of the first Rh layer spacing is determined to be {d 12}/{d 0} = -3.8 ± 1% and {d 22}/{d 0} = 0 ± 1% . The best fit Pendry R-factor is 0.33.
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-01
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s -wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Three-dimensional imaging of dislocation propagation during crystal growth and dissolution
Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.
2015-01-01
Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S. H.; Scott, H. A.
2016-08-05
The Cretin iCOE project has a goal of enabling the efficient generation of Non-LTE opacities for use in radiation-hydrodynamic simulation codes using the Nvidia boards on LLNL’s upcoming Sierra system. Achieving the desired level of accuracy for some simulations require the use of a vary large number of atomic configurations (a configuration includes the atomic level for all electrons and how they are coupled together). The NLTE rate matrix needs to be solved separately in each zone. Calculating NLTE opacities can consume more time than all other physics packages used in a simulation.
Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giampaolo, S.M.; Illuminati, F.; Mazzarella, G.
2004-12-01
We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems.
Matrix Synthesis of Graphene on a Diamond Surface and Its Simulation
NASA Astrophysics Data System (ADS)
Alekseev, N. I.
2018-07-01
A quantum-chemical simulation is performed for the transformation of the upper sublayer of carbon atoms in the lattice of single-crystal diamond into a flat graphene lattice under the influence of the atoms of a molten copper film on the diamond surface. It is established that the stable system configuration corresponds to the thermally activated motion of carbon atoms in the lower sublayer of the interface diamond layer to the position of graphene, i.e., at the same level as the atoms of the upper sublayer. The energy gain in comparison to the noninteracting subsystems of the copper and diamond atoms is approximately 0.7 eV per atom of the lower sublayer. The maximum size of the resulting graphene film is estimated and a possible mechanism for its rupture is considered.
NASA Technical Reports Server (NTRS)
Lee, C.
1975-01-01
Adopting the so-called genealogical construction, the eigenstates of collective operators can be expressed corresponding to a specified mode for an N-atom system in terms of those for an (N-1)-atom system. Matrix element of a collective operator of an arbitrary mode is presented which can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME was obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups was then introduced. This gave a simple and systematic way of calculating the RME. Results show explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes and clears up the chief difficulty encounted in the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field.
1994-02-01
In potassium iodide electrolyte, the usual "three-missing-row" (1 x 3) structure is seen to be generated by single gold atomic-row segments shifting...observed, involving the intermediate local formation of "one-missing-row" (I x 3) domains by removal of one-third of the top layer gold rows onto nearby...structure is achieved by aggregation of the displaced monoatomic row segments. The mechanistic value of following atomic-level reconstruction processes by
Limit on the temporal variation of the fine-structure constant using atomic dysprosium.
Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R
2007-01-26
Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.
NASA Astrophysics Data System (ADS)
Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo
2002-08-01
Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.
Light element opacities of astrophysical interest from ATOMIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.
We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less