Sample records for three-loop vertex corrections

  1. Migdal's theorem and electron-phonon vertex corrections in Dirac materials

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.; Das Sarma, S.

    2014-04-01

    Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.

  2. Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model

    NASA Astrophysics Data System (ADS)

    Chu, Kit-fai; Huang, Peng-hui; Liu, Hui

    2018-05-01

    The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.

  3. T -odd correlations in polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) and in the quasi-three-body decay t (↑)→ Xb+ℓ++νℓ

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Groote, S.; Körner, J. G.

    2018-05-01

    We identify the T -odd structure functions that appear in the description of polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) (two structure functions) and the quasi-three-body decay t (↑)→X b+ℓ++νℓ (one structure function). A convenient measure of the magnitude of the T -odd structure functions is the contribution of the imaginary part Im gR of the right-chiral tensor coupling gR to the T -odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and determine their contributions to the T -odd helicity structure functions that appear in the description of polarized top quark decays.

  4. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  5. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  6. Connecting dark matter annihilation to the vertex functions of Standard Model fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu

    We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less

  7. Coined quantum walks on weighted graphs

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-11-01

    We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy’s quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover’s algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when l < 3 + 2\\sqrt{2} ≈ 5.828 .

  8. Radiative Corrections to e^ + e^ - -> bar tt in Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junpei; Shimizu, Yoshimitsu

    The 0(α) radiative corrections to e^ + e^ - -> bar tt are calculated in the standard SU(2)×U(1) theory keeping the top quark mass. The contribution of the hard photon emission is included with suitable experimental cuts. We found that the 1-loop vertex diagrams for the top quark give rise to a fairly large correction in the order of 5% to the differential cross-section. Effects of the Higgs boson exchange are also discussed.

  9. Loop vertex expansion for higher-order interactions

    NASA Astrophysics Data System (ADS)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  10. Resolution to the B→πK puzzle

    NASA Astrophysics Data System (ADS)

    Li, Hsiang-Nan; Mishima, Satoshi; Sanda, A. I.

    2005-12-01

    We calculate the important next-to-leading-order contributions to the B→πK, ππ decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD approach. It is found that the latter two reduce the leading-order penguin amplitudes by about 10% and modify only the B→πK branching ratios. The main effect of the vertex corrections is to increase the small color-suppressed tree amplitude by a factor of 3, which then resolves the large difference between the direct CP asymmetries of the B0→π∓K± and B±→π0K± modes. The puzzle from the large B0→π0π0 branching ratio still remains.

  11. Renormalization of generalized scalar Duffin-Kemmer-Petiau electrodynamics

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Cardoso, T. R.; Nogueira, A. A.; Pimentel, B. M.

    2018-05-01

    We establish the multiplicative renormalization procedure of generalized scalar Duffin-Kemmer-Petiau electrodynamics (GSDKP4 ) in the mass shell. We show an explicit calculation of the first radiative corrections (one-loop) associated with the photon propagator, meson propagator, vertex function, and photon-photon four-point function utilizing the dimensional regularization method, where the gauge symmetry is manifest. As we will see, one of the consequences of the study is that, from the complete photon propagator renormalization condition, imposing that it behaves as a massless field, an energy range where GSDKP4 is well defined is m2≪k2

  12. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  13. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  14. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  15. Multiloop functional renormalization group for general models

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.

  16. The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects

    NASA Astrophysics Data System (ADS)

    Young, Donovan

    2007-06-01

    Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.

  17. Application of the Feynman-tree theorem together with BCFW recursion relations

    NASA Astrophysics Data System (ADS)

    Maniatis, M.

    2018-03-01

    Recently, it has been shown that on-shell scattering amplitudes can be constructed by the Feynman-tree theorem combined with the BCFW recursion relations. Since the BCFW relations are restricted to tree diagrams, the preceding application of the Feynman-tree theorem is essential. In this way, amplitudes can be constructed by on-shell and gauge-invariant tree amplitudes. Here, we want to apply this method to the electron-photon vertex correction. We present all the single, double, and triple phase-space tensor integrals explicitly and show that the sum of amplitudes coincides with the result of the conventional calculation of a virtual loop correction.

  18. Renormalization of QCD in the interpolating momentum subtraction scheme at three loops

    NASA Astrophysics Data System (ADS)

    Gracey, J. A.; Simms, R. M.

    2018-04-01

    We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.

  19. Nonperturbative study of the four gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, D.; Ibañez, D.; Papavassiliou, J.

    2014-09-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.

  20. On non-primitively divergent vertices of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.

    2017-11-01

    Two correlation functions of Yang-Mills beyond the primitively divergent ones, the two-ghost-two-gluon and the four-ghost vertices, are calculated and their influence on lower vertices is examined. Their full (transverse) tensor structure is taken into account. As input, a solution of the full two-point equations - including two-loop terms - is used that respects the resummed perturbative ultraviolet behavior. A clear hierarchy is found with regard to the color structure that reduces the number of relevant dressing functions. The impact of the two-ghost-two-gluon vertex on the three-gluon vertex is negligible, which is explained by the fact that all non-small dressing functions drop out due to their color factors. Only in the ghost-gluon vertex a small net effect below 2% is seen. The four-ghost vertex is found to be extremely small in general. Since these two four-point functions do not enter into the propagator equations, these findings establish their small overall effect on lower correlation functions.

  1. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  2. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    DOE PAGES

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex Γ E). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW +more » DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.« less

  3. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    PubMed

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  4. Poisson equation for the three-loop ladder diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-11-01

    The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the D12ℛ4 amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.

  5. Constructive tensorial group field theory II: the {U(1)-T^4_4} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  6. Eigenvalues of the Laplacian of a graph

    NASA Technical Reports Server (NTRS)

    Anderson, W. N., Jr.; Morley, T. D.

    1971-01-01

    Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.

  7. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    NASA Astrophysics Data System (ADS)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  8. Graphical Representations and Cluster Algorithms for Ice Rule Vertex Models.

    NASA Astrophysics Data System (ADS)

    Shtengel, Kirill; Chayes, L.

    2002-03-01

    We introduce a new class of polymer models which is closely related to loop models, recently a topic of intensive studies. These particular models arise as graphical representations for ice-rule vertex models. The associated cluster algorithms provide a unification and generalisation of most of the existing algorithms. For many lattices, percolation in the polymer models evidently indicates first order phase transitions in the vertex models. Critical phases can be understood as being susceptible to colour symmetry breaking in the polymer models. The analysis includes, but is certainly not limited to the square lattice six-vertex model. In particular, analytic criteria can be found for low temperature phases in other even coordinated 2D lattices such as the triangular lattice, or higher dimensional lattices such as the hyper-cubic lattices of arbitrary dimensionality. Finally, our approach can be generalised to the vertex models that do not obey the ice rule, such as the eight-vertex model.

  9. Effective lepton flavor violating H ℓiℓj vertex from right-handed neutrinos within the mass insertion approximation

    NASA Astrophysics Data System (ADS)

    Arganda, E.; Herrero, M. J.; Marcano, X.; Morales, R.; Szynkman, A.

    2017-05-01

    In this work we present a new computation of the lepton flavor violating Higgs boson decays that are generated radiatively to one-loop from heavy right-handed neutrinos. We work within the context of the inverse seesaw model with three νR and three extra singlets X , but the results could be generalized to other low scale seesaw models. The novelty of our computation is that it uses a completely different method by means of the mass insertion approximation which works with the electroweak interaction states instead of the usual 9 physical neutrino mass eigenstates of the inverse seesaw model. This method also allows us to write the analytical results explicitly in terms of the most relevant model parameters, that are the neutrino Yukawa coupling matrix Yν and the right-handed mass matrix MR, which is very convenient for a phenomenological analysis. This Yν matrix, being generically nondiagonal in flavor space, is the only one responsible for the induced charged lepton flavor violating processes of our interest. We perform the calculation of the decay amplitude up to order O (Yν2+Yν4). We also study numerically the goodness of the mass insertion approximation results. In the last part we present the computation of the relevant one-loop effective vertex H ℓiℓj for the lepton flavor violating Higgs decay which is derived from a large MR mass expansion of the form factors. We believe that our simple formula found for this effective vertex can be of interest for other researchers who wish to estimate the H →ℓiℓ¯j rates in a fast way in terms of their own preferred input values for the relevant model parameters Yν and MR.

  10. Poisson equation for the Mercedes diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-03-01

    The Mercedes diagram has four trivalent vertices which are connected by six links such that they form the edges of a tetrahedron. This three-loop Feynman diagram contributes to the {D}12{{ R }}4 amplitude at genus one in type II string theory, where the vertices are the points of insertion of the graviton vertex operators, and the links are the scalar propagators on the toroidal worldsheet. We obtain a modular invariant Poisson equation satisfied by the Mercedes diagram, where the source terms involve one- and two-loop Feynman diagrams. We calculate its contribution to the {D}12{{ R }}4 amplitude.

  11. Renormalizing a viscous fluid model for large scale structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk

    2016-02-01

    Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less

  12. Probing Higgs self-coupling of a classically scale invariant model in e+e- → Zhh: Evaluation at physical point

    NASA Astrophysics Data System (ADS)

    Fujitani, Y.; Sumino, Y.

    2018-04-01

    A classically scale invariant extension of the standard model predicts large anomalous Higgs self-interactions. We compute missing contributions in previous studies for probing the Higgs triple coupling of a minimal model using the process e+e- → Zhh. Employing a proper order counting, we compute the total and differential cross sections at the leading order, which incorporate the one-loop corrections between zero external momenta and their physical values. Discovery/exclusion potential of a future e+e- collider for this model is estimated. We also find a unique feature in the momentum dependence of the Higgs triple vertex for this class of models.

  13. Conservation laws, vertex corrections, and screening in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.

    2017-07-01

    We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.

  14. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  15. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  16. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  17. Nonperturbative finite-temperature Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2018-03-01

    We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temperature. The results are obtained from the functional renormalisation group within a self-consistent approximation scheme. In particular, we compute the magnetic and electric components of the gluon propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our Debye mass is compared to hard thermal loop perturbation theory.

  18. Three-Point Functions in c≤1 Liouville Theory and Conformal Loop Ensembles.

    PubMed

    Ikhlef, Yacine; Jacobsen, Jesper Lykke; Saleur, Hubert

    2016-04-01

    The possibility of extending the Liouville conformal field theory from values of the central charge c≥25 to c≤1 has been debated for many years in condensed matter physics as well as in string theory. It was only recently proven that such an extension-involving a real spectrum of critical exponents as well as an analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov formula for three-point couplings-does give rise to a consistent theory. We show in this Letter that this theory can be interpreted in terms of microscopic loop models. We introduce in particular a family of geometrical operators, and, using an efficient algorithm to compute three-point functions from the lattice, we show that their operator algebra corresponds exactly to that of vertex operators V_{α[over ^]} in c≤1 Liouville theory. We interpret geometrically the limit α[over ^]→0 of V_{α[over ^]} and explain why it is not the identity operator (despite having conformal weight Δ=0).

  19. Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.

  20. Adaptive optics for peripheral vision

    NASA Astrophysics Data System (ADS)

    Rosén, R.; Lundström, L.; Unsbo, P.

    2012-07-01

    Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.

  1. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  2. Gauge coupling beta functions in the standard model to three loops.

    PubMed

    Mihaila, Luminita N; Salomon, Jens; Steinhauser, Matthias

    2012-04-13

    In this Letter, we compute the three-loop corrections to the beta functions of the three gauge couplings in the standard model of particle physics using the minimal subtraction scheme and taking into account Yukawa and Higgs self-couplings.

  3. Spinfoam cosmology with the proper vertex amplitude

    NASA Astrophysics Data System (ADS)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  4. Constructive tensorial group field theory I: The {U(1)} -{T^4_3} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    The loop vertex expansion (LVE) is a constructive technique using canonical combinatorial tools. It works well for quantum field theories without renormalization, which is the case of the field theory studied in this paper. Tensorial group field theories (TGFTs) are a new class of field theories proposed to quantize gravity. This paper is devoted to a very simple TGFT for rank three tensors with U(1) group and quartic interactions, hence nicknamed -. It has no ultraviolet divergence, and we show, with the LVE, that it is Borel summable in its coupling constant.

  5. Spectral function of a hole in the t - J model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Manousakis, E.

    1991-08-01

    We give numerical solutions, on finite but large-size square lattices, of the equation for the single-hole Green's function obtained by the self-consistent approach of Schmitt-Rink {ital et} {ital al}. and Kane {ital et} {ital al}. The spectral function of the hole in a quantum antiferromagnet shows that most features describing the hole motion are in close agreement with the results of the exact diagonalization on the 4{sup 2} lattice in the region of {ital J}/{ital t}{le}0.2. Our results obtained on sufficiently large-size lattices suggest that certain important features of the spectral function survive in the thermodynamic limit while others changemore » due to finite-size effects. We find that the leading nonzero vertex correction is given by a two-loop diagram, which has a small contribution.« less

  6. Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Crampé, N.; Frappat, L.; Ragoucy, E.

    2013-10-01

    We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.

  7. Next-to-leading order QCD corrections to the decay of Higgs to vector meson and Z boson

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Wang, An-Min

    2018-02-01

    The exclusive decay of the Higgs boson to a vector meson (J/ψ or Υ(1S)) and Z boson is studied in this work. The decay amplitudes are separated into two parts in a gauge invariant manner. The first part comes from the direct coupling of the Higgs boson to the charm (bottom) quark and the other from the HZZ* or the loop-induced HZ γ* vertexes in the standard model. While the branching ratios from the direct channel are much smaller than those of the indirect channel, their interference terms give nontrivial contributions. We further calculate the QCD radiative corrections to both channels, which reduce the total branching ratios by around 20% for both (J/ψ or Υ(1S)) production. Our results provide a possible chance to check the SM predictions of the {{Hc}}\\bar{{{c}}}({{Hb}}\\bar{{{b}}}) coupling and to seek for hints of new physics at the High Luminosity LHC or future hadron colliders. Supported by National Natural Science Foundation of China (11375168)

  8. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  9. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  10. Three site Higgsless model at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya

    2007-04-01

    In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less

  11. Penguin-like diagrams from the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Chia Swee

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, wemore » present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.« less

  12. The neutral Higgs self-couplings in the (h)MSSM

    NASA Astrophysics Data System (ADS)

    Chalons, G.; Djouadi, A.; Quevillon, J.

    2018-05-01

    We consider the Minimal Supersymmetric extension of the Standard Model in the regime where the supersymmetric breaking scale is extremely large. In this MSSM, not only the Higgs masses will be affected by large radiative corrections, the dominant part of which is provided by the third generation quark/squark sector, but also the various self-couplings among the Higgs states. In this note, assuming that squarks are extremely heavy, we evaluate the next-to-leading order radiative corrections to the two neutral CP-even Higgs self-couplings λHhh and λhhh and to the partial decay width Γ (H → hh) that are most relevant at the LHC. The calculation is performed using an effective field theory approach that resums the large logarithmic squark contributions and allows to keep under control the perturbative expansion. Since the direct loop vertex corrections are generally missing in this effective approach, we have properly renormalised the effective theory to take them into account. Finally, we perform a comparison of the results in this effective MSSM with those obtained in a much simpler way in the so-called hMSSM approach in which the mass value for the lightest Higgs boson Mh = 125 GeV is used as an input. We show that the hMSSM provides a reasonably good approximation of the corrected self-couplings and H → hh decay rate and, hence, it can be used also in these cases.

  13. On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.

    2013-11-01

    We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.

  14. CP violation at one loop in the polarization-independent chargino production in e+e- collisions

    NASA Astrophysics Data System (ADS)

    Rolbiecki, K.; Kalinowski, J.

    2007-12-01

    Recently Osland and Vereshagin noticed, based on sample calculations of some box diagrams, that in unpolarized e+e- collisions CP-odd effects in the nondiagonal chargino-pair production process are generated at one loop. Here we perform a full one-loop analysis of these effects and point out that in some cases the neglected vertex and self-energy contributions may play a dominant role. We also show that CP asymmetries in chargino production are sensitive not only to the phase of μ parameter in the chargino sector but also to the phase of stop trilinear coupling At.

  15. Role of vertex corrections in the matrix formulation of the random phase approximation for the multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.

    2016-12-21

    In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.

  16. Pinch technique and the Batalin-Vilkovisky formalism

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2002-07-01

    In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.

  17. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  18. Quantum corrections to the generalized Proca theory via a matter field

    NASA Astrophysics Data System (ADS)

    Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab

    2017-09-01

    We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.

  19. Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC.

    PubMed

    Feng, Jonathan L; Kant, Philipp; Profumo, Stefano; Sanford, David

    2013-09-27

    In supersymmetric models with minimal particle content and without left-right squark mixing, the conventional wisdom is that the 125.6 GeV Higgs boson mass implies top squark masses of O(10)  TeV, far beyond the reach of colliders. This conclusion is subject to significant theoretical uncertainties, however, and we provide evidence that it may be far too pessimistic. We evaluate the Higgs boson mass, including the dominant three-loop terms at O(αtαs2), in currently viable models. For multi-TeV top squarks, the three-loop corrections can increase the Higgs boson mass by as much as 3 GeV and lower the required top-squark masses to 3-4 TeV, greatly improving prospects for supersymmetry discovery at the upcoming run of the LHC and its high-luminosity upgrade.

  20. Three-dimensional assessment of facial asymmetry: A systematic review.

    PubMed

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  1. Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    2013-04-01

    The recently discovered 125 GeV boson appears very similar to a Standard Model (SM) Higgs, but with data favoring an enhanced h → γγ rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the ht\\bar {t} coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and reinforces the W-loop contribution to hFF, while also producing the opposite-sign hGG amplitude to that generated by integrating out the top. Due to a correlation in sign of the new physics amplitudes, when the SM hFF coupling is enhanced the hGG coupling is decreased. Thus, in order to not suppress the rate of h → WW and h → ZZ, which appear to be approximately SM-like, one would need the loop to ‘overshoot’, not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the SM one is ruled out by a combination of vacuum decay bounds and Large Electron-Positron Collider (LEP) constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.

  2. On the Primitive Ideal spaces of the C(*) -algebras of graphs

    NASA Astrophysics Data System (ADS)

    Bates, Teresa

    2005-11-01

    We characterise the topological spaces which arise as the primitive ideal spaces of the Cuntz-Krieger algebras of graphs satisfying condition (K): directed graphs in which every vertex lying on a loop lies on at least two loops. We deduce that the spaces which arise as Prim;C(*(E)) are precisely the spaces which arise as the primitive ideal spaces of AF-algebras. Finally, we construct a graph wt{E} from E such that C(*(wt{E})) is an AF-algebra and Prim;C(*(E)) and Prim;C(*(wt{E})) are homeomorphic.

  3. Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules

    NASA Astrophysics Data System (ADS)

    Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael

    2012-06-01

    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.

  4. Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.

    2018-03-01

    We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.

  5. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  6. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  7. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  8. ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan

    2018-03-01

    I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.

  9. Flux-periodicity crossover from h/2e to h/e in aluminium nano-loops

    NASA Astrophysics Data System (ADS)

    Espy, C.; Sharon, O. J.; Braun, J.; Garreis, R.; Strigl, F.; Shaulov, A.; Leiderer, P.; Scheer, E.; Yeshurun, Y.

    2018-03-01

    We study the magnetoresistance of aluminium ‘double-networks’ formed by connecting the vertexes of nano-loops with relatively long wires, creating two interlaced subnetworks of small and large loops (SL and LL, respectively). Far below the critical temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL and the SL subnetworks. When approaching T c, both exhibit the usual Little-Parks oscillations, with periodicity of the superconducting flux quantum Φ 0 =h/2e. For one sample, with a relatively large coherence length, ξ, at temperatures very close to T c, the Φ 0 periodicity of the SL disappears, and the waveform of the first period is consistent with that predicted recently for loops with a size a < ξ, indicating a crossover to 2Φ 0 periodicity.

  10. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  11. Higher-order Fermi-liquid corrections for an Anderson impurity away from half filling : Equilibrium properties

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-01-01

    We study the low-energy behavior of the vertex function of a single Anderson impurity away from half filling for finite magnetic fields, using the Ward identities with careful consideration of the antisymmetry and analytic properties. The asymptotic form of the vertex function Γσσ';σ'σ(i ω ,i ω';i ω',i ω ) is determined up to terms of linear order with respect to the two frequencies ω and ω', as well as the ω2 contribution for antiparallel spins σ'≠σ at ω'=0 . From these results, we also obtain a series of the Fermi-liquid relations beyond those of Yamada-Yosida [Prog. Theor. Phys. 54, 316 (1975), 10.1143/PTP.54.316]. The ω2 real part of the self-energy Σσ(i ω ) is shown to be expressed in terms of the double derivative ∂2Σσ(0 ) /∂ ɛdσ 2 with respect to the impurity energy level ɛdσ, and agrees with the formula obtained recently by Filippone, Moca, von Delft, and Mora (FMvDM) in the Nozières phenomenological Fermi-liquid theory [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. We also calculate the T2 correction of the self-energy and find that the real part can be expressed in terms of the three-body correlation function ∂ χ↑↓/∂ ɛd,-σ , where χ↑↓ is the static susceptibility between antiparallel spins. We also provide an alternative derivation of the asymptotic form of the vertex function. Specifically, we calculate the skeleton diagrams for the vertex function Γσσ ;σ σ(i ω ,0 ;0 ,i ω ) for parallel spins up to order U4 in the Coulomb repulsion U . It directly clarifies the fact that the analytic components of order ω vanish as a result of the cancellation of four related Feynman diagrams, which are related to each other through the antisymmetry operation.

  12. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  13. Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery.

    PubMed

    Damyanovich, A Z; Rieker, M; Zhang, B; Bissonnette, J-P; Jaffray, D A

    2018-03-27

    The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm) 3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible 'lines' in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently 'dense' to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm) 2 -2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm) 2 -2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%-90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be  ⩽0.05 mm for both axial and coronal acquisitions, and over  >95% of the differences were observed to be  ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI systems.

  14. Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Damyanovich, A. Z.; Rieker, M.; Zhang, B.; Bissonnette, J.-P.; Jaffray, D. A.

    2018-04-01

    The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm)3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible ‘lines’ in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently ‘dense’ to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm)2-2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm)2-2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%–90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be  ⩽0.05 mm for both axial and coronal acquisitions, and over  >95% of the differences were observed to be  ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI systems.

  15. Massless spectra and gauge couplings at one-loop on non-factorisable toroidal orientifolds

    NASA Astrophysics Data System (ADS)

    Berasaluce-González, Mikel; Honecker, Gabriele; Seifert, Alexander

    2018-01-01

    So-called 'non-factorisable' toroidal orbifolds can be rewritten in a factorised form as a product of three two-tori by imposing an additional shift symmetry. This finding of Blaszczyk et al. [1] provides a new avenue to Conformal Field Theory methods, by which the vector-like massless matter spectrum - and thereby the type of gauge group enhancement on orientifold invariant fractional D6-branes - and the one-loop corrections to the gauge couplings in Type IIA orientifold theories can be computed in addition to the well-established chiral matter spectrum derived from topological intersection numbers among three-cycles. We demonstrate this framework for the Z4 × ΩR orientifolds on the A3 ×A1 ×B2-type torus. As observed before for factorisable backgrounds, also here the one-loop correction can drive the gauge groups to stronger coupling as demonstrated by means of a four-generation Pati-Salam example.

  16. [Power in the periphery of several aspheric eyeglasses for aphakic patients].

    PubMed

    Simonet, P

    1984-01-01

    A special device adapted to a Nikon projection vertexometer permits the power to be measured in the periphery of recent aspheric aphakic lenses. The peripheral power is measured with respect to the vertex sphere. A blended lenticular aspheric lens and three types of zonal aspheric full field lenses are studied, with various base curves on three samples. Four meridians of each lens are evaluated with ocular rotations varying by 5 degrees step up to 35 degrees at least. The results show a variable oblique astigmatism and a high under-correction of the mean oblique power for the Welsh 4 drop. The other zonal aspheric lenses give only a slight improvement of the peripheral powers compared with some conventional aspheric lenses. The Omega lens shows a reasonable correction of off-axis power errors up to 30 degrees. Beyond, the powers variation follows the general characteristics of blended lenticular aspheric lenses.

  17. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  18. Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Kastrinakis, George

    2018-05-01

    We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.

  19. Faster search by lackadaisical quantum walk

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2018-03-01

    In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of O(1/log N) in O(√{N log N}) steps, which with amplitude amplification yields an overall runtime of O(√{N} log N). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in O(√{N log N}) steps, thus yielding an O(√{log N}) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.

  20. a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Jessee, J. P.; Fiveland, W. A.

    1996-08-01

    The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.

  1. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin

    We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.

  2. String-inspired supergravity model at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.; Papadopoulos, A.; Pierce, D.M.

    1992-03-15

    We study a prototype supergravity model from superstrings, with three generations of matter fields in the untwisted sector, nonperturbatively induced supersymmetry breaking and including threshold corrections in conformity with modular invariance. The scale degeneracy of the vacuum is lifted at the one-loop level, allowing a determination of the fundamental parameters of the effective low-energy theory.

  3. Lattice corrections to the quark quasidistribution at one loop

    DOE PAGES

    Carlson, Carl E.; Freid, Michael

    2017-05-12

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  4. Lattice corrections to the quark quasidistribution at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Carl E.; Freid, Michael

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  5. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.

    PubMed

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G; Rao, Venigalla B

    2014-03-06

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. © 2013.

  6. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-03-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.

  7. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    NASA Astrophysics Data System (ADS)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  8. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  9. Quark scalar, axial and tensor charges in the Schwinger-Dyson formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Nodoka

    2016-01-22

    The quark scalar, axial and tensor charges of nucleon are calculated in the Schwinger-Dyson formalism. We first calculate these charges in the rainbow-ladder truncation using the IR cut quark-gluon vertex, and show that the result is in agreement with the known data. We then perform the same calculation with the phenomenological IR singular quark-gluon vertex. In this case, the Schwinger-Dyson equation does not converge. We show that this result suggests the requirement of additional corrections to the rainbow-ladder truncation, due to the interaction between quark and gluons in the deep IR region.

  10. The 't Hooft vertex for staggered fermions and flavor-singlet mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo

    2011-01-01

    We derive the ’t Hooft vertex for staggered fermions and examine its symmetries for nonzero lattice spacing. We also derive a set of structural properties for the eigenvectors of the staggered Dirac operator, which should emerge in the continuum limit, if staggered fermions yield four species. This property also is needed for flavor-taste-singlet correlators to behave correctly. We then test numerically whether the needed structure arises: it does. This structure and symmetry of (unrooted) staggered fermions also imply that Creutz’s (latest) objections to the rooted determinant are without foundation.

  11. Conditions where random phase approximation becomes exact in the high-density limit

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain

    2018-04-01

    It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.

  12. Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3 : A hybrid functional and self-consistent GW+vertex-corrections study

    NASA Astrophysics Data System (ADS)

    Franchini, C.; Sanna, A.; Marsman, M.; Kresse, G.

    2010-02-01

    BaBiO3 is characterized by a charge disproportionation with half of the Bi atoms possessing a valence 3+ and half a valence 5+ . Because of self-interaction errors, local- and semilocal-density functionals fail to describe the charge disproportionation quantitatively, yielding a too small structural distortion and no band gap. Using hybrid functionals, we obtain a satisfactory description of the structural, electronic, optical, and vibrational properties of BaBiO3 . The results obtained using GW (Green’s function G and screened Coulomb potential W) based schemes on top of hybrid functionals, including fully self-consistent GW calculations with vertex corrections in the dielectric screening, qualitatively confirm the Heyd-Scuseria-Ernzerhof picture but a systematic overestimation of the band gap by about 0.4 eV is observed.

  13. Causality constraints on corrections to the graviton three-point coupling

    DOE PAGES

    Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...

    2016-02-03

    In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less

  14. Revised and improved value of the QED tenth-order electron anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko

    2018-02-01

    In order to improve the theoretical prediction of the electron anomalous magnetic moment ae we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called X 024 , was given a wrong value in the previous calculation due to an incorrect assignment of integration variables. The correction of this error causes a shift of -1.26 to the Set V contribution, and hence to the tenth-order universal (i.e., mass-independent) term A1(10 ). The previous evaluation of all other 388 integrals is free from errors and consistent with the new evaluation. Combining the new and the old (excluding X 024 ) calculations statistically, we obtain 7.606 (192 )(α /π )5 as the best estimate of the Set V contribution. Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term becomes A1(10 )=6.675 (192 ) . Adding hadronic and electroweak contributions leads to the theoretical prediction ae(theory)=1 159 652 182.032 (720 )×10-12 . From this and the best measurement of ae, we obtain the inverse fine-structure constant α-1(ae)=137.035 999 1491 (331 ) . The theoretical prediction of the muon anomalous magnetic moment is also affected by the update of QED contribution and the new value of α , but the shift is much smaller than the theoretical uncertainty.

  15. Symmetry preserving truncations of the gap and Bethe-Salpeter equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis

    2016-05-01

    Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one-and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Gamma(alpha)(mu), as fundamental. We use a novel representation of Gamma(alpha)(mu), in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetriesmore » within the kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K, which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Gamma(alpha)(mu) in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.« less

  16. Dynamics for a 2-vertex quantum gravity model

    NASA Astrophysics Data System (ADS)

    Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.

    2010-12-01

    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.

  17. Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, M. R.; Wilson, D. J.

    2011-11-01

    The gluon and ghost propagators in Landau gauge QCD are investigated using the Schwinger-Dyson equation approach. Working in Euclidean spacetime, we solve for these propagators using a selection of vertex inputs, initially for the ghost equation alone and then for both propagators simultaneously. The results are shown to be highly sensitive to the choices of vertices. We favor the infrared finite ghost solution from studying the ghost equation alone where we argue for a specific unique solution. In order to solve this simultaneously with the gluon using a dressed-one-loop truncation, we find that a nontrivial full ghost-gluon vertex is requiredmore » in the vanishing gluon momentum limit. The self-consistent solutions we obtain correspond to having a masslike term in the gluon propagator dressing, in agreement with similar studies supporting the long-held proposal of Cornwall.« less

  18. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waluga, Christian, E-mail: waluga@ma.tum.de; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-15

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilizedmore » linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.« less

  19. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    PubMed

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  20. Evaluation of Effects and Effectiveness of Various α and β Angulations for Three Different Loop Made of Stainless Steel Arch Wires - A FEM Study.

    PubMed

    Kamisetty, Supradeep Kumar; N, Raghuveer; N, Rajavikram; N, Chakrapani; Dwaragesh; Praven

    2014-07-01

    Evaluations on retraction loop designs have been limited to describe the force systems applied to the buccal surfaces of the tooth that can be in different planes resulting undesirable effects, needing corrective action in future. By initially understanding these effects, modifications to the loop design can essentially counteract the undesired affects. To deter-mine Moments & M/F ratios produced by different gabling in the three retraction loops (Tear drop loop, T-loop, Open vertical loop) and movement of the anterior teeth and posterior teeth) of the maxillary arch in an extraction model, on activation of three retraction loops by1 mm. A PC with Quad core processor, 8GB RAM, 1TB storage space and Graphic Accelerator was used. Computer Software: ANSYS Version11, PRO/ENGINEER was used in the study. The first step is modeling, done by using Pro/Engineer software and for creating a model the CT scan data is required. The maxilla with teeth of a patient is scanned at various sections at regular intervals of 0.5 mm. These scanned images are then imported into Pro/E software to various offset planes. Once imported, the software can do an automatic meshing and establishes contact automatically. When angulations increases intrusive or extrusive movements and movements in horizontal direction of crown tip and root tip increases. All values of T-loop are more than Teardrop loop and less than Open vertical loop. FEM study concludes that Teardrop loop with 10-20(α-β) combination is preferred for Group A anchorage.

  1. Second-order electron self-energy loop-after-loop correction for low- Z hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Goidenko, Igor; Labzowsky, Leonti; Plunien, Günter; Soff, Gerhard

    2005-07-01

    The second-order electron self-energy loop-after-loop correction is investigated for hydrogen-like ions in the region of low nuclear charge numbers Z. Both irreducible and reducible parts of this correction are evaluated for the 1s1/2-state within the Fried-Yennie gauge. We confirm the result obtained first by Mallampalli and Sapirstein. The reducible part of this correction is evaluated numerically for the first time and it is consistent with the corresponding analytical αZ-expansion.

  2. Structure-Function Analysis of the DNA Translocating Portal of the Bacteriophage T4 Packaging Machine

    PubMed Central

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G.; Rao, Venigalla B.

    2013-01-01

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special five-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1 and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the E. coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and fit the dodecamer into the cryoEM density of the phage portal vertex. The core structure, like that from other phages, is cone-shaped with the wider end containing the “wing” and “crown” domains inside the phage head. A long “stem” encloses a central channel, and a narrow “stalk” protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and portal. The “tunnel” loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. PMID:24126213

  3. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    PubMed

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  4. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-05-01

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  5. Hypotrochoids in conformal restriction systems and Virasoro descendants

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin

    2013-09-01

    A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLEκ (at least for 8/3 < κ ≤ 4). In the context of conformal restriction systems, we study certain algebra elements associated with hypotrochoid simple curves (a family of curves including the ellipse). These have the CLE interpretation of being ‘renormalized random variables’ that are nonzero only if there is at least one loop of hypotrochoid shape. Each curve has a center w, a scale ɛ and a rotation angle θ, and we analyze the renormalized random variable as a function of u = ɛeiθ and w. We find that it has an expansion in positive powers of u and \\bar {u}, and that the coefficients of pure u (\\bar {u}) powers are holomorphic in w (\\bar {w}). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE8/3 and other restriction measures), where the case of the ellipse, at the order u2, led to the stress-energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda, J. I.; Tututi, E. S.; Flores-Tlalpa, A.

    Higgs mediated flavor violating electromagnetic interactions, induced at the one-loop level by a nondiagonal Hf{sub i}f{sub j} vertex, with f{sub i} and f{sub j} charged leptons or quarks, are studied within the context of a completely general effective Yukawa sector that comprises SU{sub L}(2)xU{sub Y}(1)-invariant operators of up to dimension-six. Exact formulae for the one-loop {gamma}f{sub i}f{sub j} and {gamma}{gamma}f{sub i}f{sub j} couplings are presented and their related processes used to study the phenomena of Higgs mediated lepton flavor violation. The experimental limit on the {mu}{yields}e{gamma} decay is used to derive a bound on the branching ratio of the {mu}{yields}e{gamma}{gamma}more » transition, which is 6 orders of magnitude stronger than the current experimental limit. Previous results on the {tau}{yields}{mu}{gamma} and {tau}{yields}{mu}{gamma}{gamma} decays are reproduced. The possibility of detecting signals of lepton flavor violation at {gamma}{gamma} colliders is explored through the {gamma}{gamma}{yields}l{sub i}l{sub j} reaction, putting special emphasis on the {tau}{mu} final state. Using the bound imposed on the H{tau}{mu} vertex by the current experimental data on the muon anomalous magnetic moment, it is found that about half a hundred events may be produced in the International Linear Collider.« less

  7. A three-dimensional FEM-DEM technique for predicting the evolution of fracture in geomaterials and concrete

    NASA Astrophysics Data System (ADS)

    Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio

    2018-07-01

    This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.

  8. An efficicient data structure for three-dimensional vertex based finite volume method

    NASA Astrophysics Data System (ADS)

    Akkurt, Semih; Sahin, Mehmet

    2017-11-01

    A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

  9. Dynamical Vertex Approximation for the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  10. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of conditionally averaged nonequilibrium Green's function for multicomponent disorders.

  11. Electroweak radiative corrections to the top quark decay

    NASA Astrophysics Data System (ADS)

    Kuruma, Toshiyuki

    1993-12-01

    The top quark, once produced, should be an important window to the electroweak symmetry breaking sector. We compute electroweak radiative corrections to the decay process t→b+W + in order to extract information on the Higgs sector and to fix the background in searches for a possible new physics contribution. The large Yukawa coupling of the top quark induces a new form factor through vertex corrections and causes discrepancy from the tree-level longitudinal W-boson production fraction, but the effect is of order 1% or less for m H<1 TeV.

  12. Higgs boson mass in the standard model at two-loop order and beyond

    DOE PAGES

    Martin, Stephen P.; Robertson, David G.

    2014-10-01

    We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the standard model effective potential in Landau gauge at 2-loop order with leading 3-loop corrections.

  13. Third generation sfermion decays into Z and W gauge bosons: Full one-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arhrib, Abdesslam; LPHEA, Departement de Physique, Faculte des Sciences-Semlalia, B.P. 2390 Marrakech; Benbrik, Rachid

    2005-05-01

    The complete one-loop radiative corrections to third-generation scalar fermions into gauge bosons Z and W{sup {+-}} is considered. We focus on f-tilde{sub 2}{yields}Zf-tilde{sub 1} and f-tilde{sub i}{yields}W{sup {+-}}f-tilde{sub j}{sup '}, f,f{sup '}=t,b. We include SUSY-QCD, QED, and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one-loop correction can reach 10% in some supergravity scenario, while in model independent analysis like general the minimal supersymmetric standard model, the one-loop correction can reach 20% formore » large tan{beta} and large trilinear soft breaking terms A{sub b}.« less

  14. Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.

    PubMed

    Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P

    2014-02-01

    In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.

  15. The QCD form factor of heavy quarks at NNLO

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.

    2009-07-01

    We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.

  16. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  17. Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.

    PubMed

    Eberl, Helmut; Ginina, Elena; Hidaka, Keisho

    2017-01-01

    We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.

  18. On the total irregularity strength of caterpillar with each internal vertex has degree three

    NASA Astrophysics Data System (ADS)

    Indriati, Diari; Rosyida, Isnaini; Widodo

    2018-04-01

    Let G be a simple, connected and undirected graph with vertex set V and edge set E. A total k-labeling f:V \\cup E\\to \\{1,2,\\ldots,k\\} is defined as totally irregular total k-labeling if the weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as wt(x)=f(x)+{\\sum }xy\\in Ef(xy), while the weight of edge xy is wt(xy)=f(x)+f(xy)+f(y). A minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling and determination of their total irregularity strengths for caterpillar graphs with each internal vertex between two stars has degree three. The results are ts({S}n,3,n)=\\lceil \\frac{2n}{2}\\rceil, ts({S}n,3,3,n)=\\lceil \\frac{2n+1}{2}\\rceil and ts({S}n,3,3,3,n)=\\lceil \\frac{2n+2}{2}\\rceil for n > 4:

  19. Three parameters optimizing closed-loop control in sequential segmental neuromuscular stimulation.

    PubMed

    Zonnevijlle, E D; Somia, N N; Perez Abadia, G; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H

    1999-05-01

    In conventional dynamic myoplasties, the force generation is poorly controlled. This causes unnecessary fatigue of the transposed/transplanted electrically stimulated muscles and causes damage to the involved tissues. We introduced sequential segmental neuromuscular stimulation (SSNS) to reduce muscle fatigue by allowing part of the muscle to rest periodically while the other parts work. Despite this improvement, we hypothesize that fatigue could be further reduced in some applications of dynamic myoplasty if the muscles were made to contract according to need. The first necessary step is to gain appropriate control over the contractile activity of the dynamic myoplasty. Therefore, closed-loop control was tested on a sequentially stimulated neosphincter to strive for the best possible control over the amount of generated pressure. A selection of parameters was validated for optimizing control. We concluded that the frequency of corrections, the threshold for corrections, and the transition time are meaningful parameters in the controlling algorithm of the closed-loop control in a sequentially stimulated myoplasty.

  20. Loop corrections to primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  1. Quantum Loop Expansion to High Orders, Extended Borel Summation, and Comparison with Exact Results

    NASA Astrophysics Data System (ADS)

    Noreen, Amna; Olaussen, Kåre

    2013-07-01

    We compare predictions of the quantum loop expansion to (essentially) infinite orders with (essentially) exact results in a simple quantum mechanical model. We find that there are exponentially small corrections to the loop expansion, which cannot be explained by any obvious “instanton”-type corrections. It is not the mathematical occurrence of exponential corrections but their seeming lack of any physical origin which we find surprising and puzzling.

  2. The SLD VXD3 detector and its initial performance

    NASA Astrophysics Data System (ADS)

    Abe, K.; Arodzero, A.; Baltay, C.; Brau, J.; Breidenbach, M.; Burrows, P. N.; Chou, A.; Crawford, G.; Damerell, C.; Dervan, P.; Dong, D.; Emmet, W.; English, R.; Etzion, E.; Foss, M.; Frey, R.; Haller, G.; Hasuko, K.; Hertzbach, S.; Hoeflich, J.; Huber, J.; Huffer, M.; Jackson, D.; Jaros, J.; Kelsy, J.; Kendall, H.; Lee, I.; Lia, V.; Lintern, L.; Liu, M.; Manly, S.; Masuda, H.; Moore, T.; Nagamine, T.; Ohishi, N.; Osborne, L.; Ross, D.; Russell, J.; Serbo, V.; Sinev, N.; Sinnott, J.; Skarpaas, K. Viii; Smy, M.; Snyder, J.; Strauss, M.; Dong, S.; Suekane, F.; Taylor, F.; Trandafir, A.; Usher, T.; Verdier, R.; Watts, S.; Weiss, E.; Yashima, J.; Yuta, H.; Zapalac, G.

    1997-02-01

    The SLD collaboration completed construction of a new CCD vertex detector (VXD3) in January 1996 and started data taking in April 1996 with the new system. VXD3 is an upgrade of the original CCD vertex detector, VXD2, which had successfully operated in SLD for three years. VXD3 consists of 96 large area CCDs, each having 3.2 million 20 μm × 20 μm pixels. By reducing the detector material and lengthening the lever arm, VXD3 is expected to improve secondary vertex resolution by about a factor of two compared with VXD2. The new three-layered structure enables stand-alone tracking without any ambiguity and its extended size along the beam direction improves the polar-angle coverage to |cos θ| < 0.85. An overview of this detector system and its initial performance are described.

  3. A simple second-order digital phase-locked loop.

    NASA Technical Reports Server (NTRS)

    Tegnelia, C. R.

    1972-01-01

    A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.

  4. Tritium β decay in chiral effective field theory

    DOE PAGES

    Baroni, A.; Girlanda, L.; Kievsky, A.; ...

    2016-08-18

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritiummore » $$\\beta$$-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory ($$\\chi$$ EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schroedinger equation with two- and three-nucleon potentials corresponding to either $$\\chi$$ EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. Furthermore, we also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.« less

  5. Low-energy effective action in two-dimensional SQED: a two-loop analysis

    NASA Astrophysics Data System (ADS)

    Samsonov, I. B.

    2017-07-01

    We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahuatzin, G.; Bautista, I.; Hernandez-Lopez, J. A.

    A constant antisymmetric 2-tensor can arise in general relativity with spontaneous symmetry breaking or in field theories formulated in a noncommutative space-time. In this work, the one-loop contribution of a nonstandard WW{gamma} vertex on the flavor violating quark transition q{sub i}{yields}q{sub j}{gamma} is studied in the context of the electroweak Yang-Mills sector extended with a Lorentz-violating constant 2-tensor. An exact analytical expression for the on-shell case is presented. It is found that the loop amplitude is gauge independent, electromagnetic gauge invariant, and free of ultraviolet divergences. The dipolar contribution to the b{yields}s{gamma} transition together with the experimental data on themore » B{yields}X{sub s{gamma}} decay is used to derive the constraint {Lambda}{sub LV}>1.96 TeV on the Lorentz-violating scale.« less

  7. Quantum loop corrections of a charged de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  8. Loop quantum corrected Einstein Yang-Mills black holes

    NASA Astrophysics Data System (ADS)

    Protter, Mason; DeBenedictis, Andrew

    2018-05-01

    In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.

  9. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient progressivement proportionnelle a T 2 a fort dopage. Quelques resultats avec sauts aux voisins plus eloignes sont aussi presentes. Mots-cles: Hubbard, point critique quantique, conductivite, corrections de vertex

  10. The Adler D-function for N = 1 SQCD regularized by higher covariant derivatives in the three-loop approximation

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Kazantsev, A. E.; Stepanyantz, K. V.

    2018-01-01

    We calculate the Adler D-function for N = 1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the D-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N = 1 SQCD is found in this scheme to the order O (αs2). The problem of scheme-dependence of the D-function and the NSVZ-like equation is briefly discussed.

  11. Determination of A FB b at the Z pole using inclusive charge reconstruction and lifetime tagging

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration

    2005-03-01

    A novel high precision method measures the b-quark forward-backward asymmetry at the Z pole on a sample of 3,560,890 hadronic events collected with the DELPHI detector in 1992 to 2000. An enhanced impact parameter tag provides a high purity b sample. For event hemispheres with a reconstructed secondary vertex the charge of the corresponding quark or anti-quark is determined using a neural network which combines in an optimal way the full available charge information from the vertex charge, the jet charge and from identified leptons and hadrons. The probability of correctly identifying b-quarks and anti-quarks is measured on the data themselves comparing the rates of double hemisphere tagged like-sign and unlike-sign events. The b-quark forward-backward asymmetry is determined from the differential asymmetry, taking small corrections due to hemisphere correlations and background contributions into account. The results for different centre-of-mass energies are: A_{FB}^{{b}} (89.449 GeV) = 0.0637 ± 0.0143(stat.) ± 0.0017(syst.)

  12. Quadratic electroweak corrections for polarized Moller scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

    2012-01-01

    The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.

  13. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  14. Quantum implications of a scale invariant regularization

    NASA Astrophysics Data System (ADS)

    Ghilencea, D. M.

    2018-04-01

    We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).

  15. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE PAGES

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    2018-02-01

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  16. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  17. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  18. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  19. Laser in situ keratomileusis for high hyperopia with corneal vertex centration and asymmetric offset.

    PubMed

    de Ortueta, Diego; Arba-Mosquera, Sam

    2017-03-10

    To investigate refractive outcomes and induction of corneal higher order aberrations (HOA) in eyes that underwent laser-assisted in situ keratomileusis (LASIK) for high hyperopia correction using an aberration neutral profile with corneal vertex centration and asymmetric offset. A total of 24 consecutive patients (38 eyes) who underwent LASIK by one surgeon using AMARIS 750S excimer laser and a Carriazo-Pendular microkeratome for flap creation were retrospectively analyzed. Eyes targeted for plano and with correction in the maximum hyperopic meridian strictly higher than +4D were included in the retrospective analysis. Patients were reviewed at 1, 3, and 6 months postoperatively. Postoperative monocular corrected distance visual acuity (CDVA) and uncorrected distance visual acuity (UDVA), manifest refraction, and corneal wavefront aberrations were compared with respective preoperative metrics. Mean preoperative spherical equivalent and refractive astigmatism was +4.07 ± 0.90 D and 1.37 ± 1.26 D, respectively, reducing to +0.28 ± 0.58D (p<0.0001) and 0.49 ± 0.47 D (p = 0.0001) at the last postoperative visit. Six months postoperatively, 78% of eyes achieved a UDVA of 20/25 or better. No eye lost more than 2 Snellen lines of CDVA at any follow-up. There was a statistically significant induction of vertical trefoil (+0.104 ± 0.299 µm, p<0.05), vertical coma (-0.181 ± 0.463 µm, p<0.01), horizontal coma (+0.198 ± 0.663 µm, p<0.05), spherical aberration (-0.324 ± 0.281 µm, p<0.0001), secondary vertical trefoil (+0.018 ± 0.044 µm, p<0.01), and secondary horizontal coma (+0.026 ± 0.083 µm, p<0.05). Laser-assisted in situ keratomileusis for high hyperopia using corneal vertex centration with asymmetric offset results in significant improvement in refraction and visual acuity although affected by significant induction of some higher order aberrations.

  20. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  1. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices.

    PubMed

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W

    2016-10-01

    Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.

  2. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.

    2016-10-01

    Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.

  3. R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Fonseca, T.; Frappat, L.; Ragoucy, E.

    2015-01-01

    We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.

  4. False vacuum decay in quantum mechanics and four dimensional scalar field theory

    NASA Astrophysics Data System (ADS)

    Bezuglov, Maxim

    2018-04-01

    When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.

  5. mr: A C++ library for the matching and running of the Standard Model parameters

    NASA Astrophysics Data System (ADS)

    Kniehl, Bernd A.; Pikelner, Andrey F.; Veretin, Oleg L.

    2016-09-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the MS bar renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library. Catalogue identifier: AFAI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 517613 No. of bytes in distributed program, including test data, etc.: 2358729 Distribution format: tar.gz Programming language: C++. Computer: IBM PC. Operating system: Linux, Mac OS X. RAM: 1 GB Classification: 11.1. External routines: TSIL [1], OdeInt [2], boost [3] Nature of problem: The running parameters of the Standard Model renormalized in the MS bar scheme at some high renormalization scale, which is chosen by the user, are evaluated in perturbation theory as precisely as possible in two steps. First, the initial conditions at the electroweak energy scale are evaluated from the Fermi constant GF and the pole masses of the W, Z, and Higgs bosons and the bottom and top quarks including the full two-loop threshold corrections. Second, the evolution to the high energy scale is performed by numerically solving the renormalization group evolution equations through three loops. Pure QCD corrections to the matching and running are included through four loops. Solution method: Numerical integration of analytic expressions Additional comments: Available for download from URL: http://apik.github.io/mr/. The MathLink interface is tested to work with Mathematica 7-9 and, with an additional flag, also with Mathematica 10 under Linux and with Mathematica 10 under Mac OS X. Running time: less than 1 second References: [1] S. P. Martin and D. G. Robertson, Comput. Phys. Commun. 174 (2006) 133-151 [hep-ph/0501132]. [2] K. Ahnert and M. Mulansky, AIP Conf. Proc. 1389 (2011) 1586-1589 [arxiv:1110.3397 [cs.MS

  6. Some new results for the one-loop mass correction to the compactified λϕ4 theory

    NASA Astrophysics Data System (ADS)

    Fucci, Guglielmo; Kirsten, Klaus

    2018-03-01

    In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.

  7. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  8. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  9. Action Verbs and the Primary Motor Cortex: A Comparative TMS Study of Silent Reading, Frequency Judgments, and Motor Imagery

    ERIC Educational Resources Information Center

    Tomasino, Barbara; Fink, Gereon R.; Sparing, Roland; Dafotakis, Manuel; Weiss, Peter H.

    2008-01-01

    Single pulse transcranial magnetic stimulation (TMS) was applied to the hand area of the left primary motor cortex or, as a control, to the vertex (STIMULATION: TMS[subscript M1] vs. TMS[subscript vertex]) while right-handed volunteers silently read verbs related to hand actions. We examined three different tasks and time points for stimulation…

  10. Chiral anomalies and effective vector meson Lagrangian beyond the tree level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C.A.

    1987-12-01

    The decays ..pi../sup O/ ..-->.. ..gamma gamma.., rho ..-->.. ..pi gamma.., ..omega.. ..-->.. ..pi gamma.., ..omega.. ..-->.. 3..pi.. and ..gamma.. ..-->.. 3..pi.. are studied in the framework of the chiral invariant effective Vector Meson Lagrangian beyond the tree level. The standard Lagrangian is enlarged by including an infinite number of radial excitations which are summed according to the dual model. As a result tree level diagrams are modified by a universal form factor at each vertex containing off-mass-shell mesons, but still respecting chiral anomaly low energy theorems. These vertex corrections bring the tree level predictions into better agreement with experiment.more » The presence of the ..omega.. ..-->.. 3..pi.. contact term is confirmed but its strength is considerably smaller than at tree level.« less

  11. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations

    PubMed Central

    Chen, Alan A.; García, Angel E.

    2013-01-01

    We report the de novo folding of three hyperstable RNA tetraloops to 1–3 Å rmsd from their experimentally determined structures using molecular dynamics simulations initialized in the unfolded state. RNA tetraloops with loop sequences UUCG, GCAA, or CUUG are hyperstable because of the formation of noncanonical loop-stabilizing interactions, and they are all faithfully reproduced to angstrom-level accuracy in replica exchange molecular dynamics simulations, including explicit solvent and ion molecules. This accuracy is accomplished using unique RNA parameters, in which biases that favor rigid, highly stacked conformations are corrected to accurately capture the inherent flexibility of ssRNA loops, accurate base stacking energetics, and purine syn-anti interconversions. In a departure from traditional quantum chemistrycentric approaches to force field optimization, our parameters are calibrated directly from thermodynamic and kinetic measurements of intra- and internucleotide structural transitions. The ability to recapitulate the signature noncanonical interactions of the three most abundant hyperstable stem loop motifs represents a significant milestone to the accurate prediction of RNA tertiary structure using unbiased all-atom molecular dynamics simulations. PMID:24043821

  12. Vertex centralities in input-output networks reveal the structure of modern economies

    NASA Astrophysics Data System (ADS)

    Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.

    2011-04-01

    Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.

  13. Testing the pyramid wavefront sensor on the sky

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Ghedina, Adriano; Baruffolo, Andrea; Marchetti, Enrico; Farinato, Jacopo; Niero, Tiziano; Crimi, G.; Ghigo, Mauro

    2000-07-01

    The pyramid wavefront sensor is a novel concept device whose features are attractive for adaptive optics for several reasons. We show here the first loop closure of an AO system using this kind of sensor at the focal plane of a 4m-class telescope. One of the critical optical elements of our wavefront sensor is the pyramid that splits the light from the star used for the wavefront correction. This component is essentially a four faces prism having actually a full vertex angle of 7 degrees with specifications on its edges and roof of 4 - 5 microns or better. The best turned edges obtained on the prototypes already built have shown values of the order of 6 microns, with roofs of the same order, not far from the required tolerances. In this article we describe the techniques and the system used for the construction of this optical component and the improvements to the polishing procedure that we plan to adopt in order to increase the quality of its edges and optical surfaces. Pixel processing is suitable to fit with existing Shack-Hartmann systems, making this device an attractive add-on option for existing SH-based AO systems. The plans for future developments in order to firmly establish the performances of the pyramid wavefront sensor are briefed out.

  14. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  15. Loop corrections in double field theory: non-trivial dilaton potentials

    NASA Astrophysics Data System (ADS)

    Lv, Songlin; Wu, Houwen; Yang, Haitang

    2014-10-01

    It is believed that the invariance of the generalised diffeomorphisms prevents any non-trivial dilaton potential from double field theory. It is therefore difficult to include loop corrections in the formalism. We show that by redefining a non-local dilaton field, under strong constraint which is necessary to preserve the gauge invariance of double field theory, the theory does permit non-constant dilaton potentials and loop corrections. If the fields have dependence on only one single coordinate, the non-local dilaton is identical to the ordinary one with an additive constant.

  16. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).

  17. Exploring excitonic signal in optical conductivity of ZnO through first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Khoirunnisa, Humaira; Aziz Majidi, Muhammad

    2018-04-01

    The emergence of exitonic signal in the optical response of a wide band-gap semiconductor has been a common knowledge in physics. There have been numerous experimental studies exploring the important role of excitons on influencing both the transport and optical properties of the materials. Despite the existence of much information on excitonic effects, there has not been much literature that explores detailed theoretical explanation on how the exitonic signal appears and how it evolves with temperature. Here, we propose a theoretical study on the optical conductivity of ZnO, a well-known wide band-gap semiconductor that we choose as a case study. ZnO has been known to exhibit excitonic states in its optical spectra in the energy range of ∼3.13-3.41 eV, with a high exciton binding energy of ∼60 meV. An experimental study on ZnO in 2014 revealed such a signal in its optical conductivity spectrum. We present a theoretical investigation on the appearance of excitonic signal in optical conductivity of ZnO. We model the wurtzite ZnO within an 8-band k.p approximation. We calculate the optical conductivity by incorporating the first-order vertex correction derived from the Feynman diagrams. Our calculation up to the first-order correction spectrum qualitatively confirms the existence of excitons in wurtzite ZnO.

  18. Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections.

    PubMed

    Noth, David; Spira, Michael

    2008-10-31

    We present two-loop supersymmetry (SUSY) QCD corrections to the effective bottom Yukawa couplings within the minimal supersymmetric extension of the standard model (MSSM). The effective Yukawa couplings include the resummation of the nondecoupling corrections Deltam_{b} for large values of tanbeta. We have derived the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-quark-induced SUSY-electroweak contributions to Deltam_{b}. The scale dependence of the resummed Yukawa couplings is reduced from O(10%) to the percent level. These results reduce the theoretical uncertainties of the MSSM Higgs branching ratios to the accuracy which can be achieved at a future linear e;{+}e;{-} collider.

  19. Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucaud, Ph.; De Soto, F.; Rodriguez-Quintero, J.

    This article reports on the detailed study of the three-gluon vertex in four-dimensional $SU(3)$ Yang-Mills theory employing lattice simulations with large physical volumes and high statistics. A meticulous scrutiny of the so-called symmetric and asymmetric kinematical configurations is performed and it is shown that the associated form-factor changes sign at a given range of momenta. Here, the lattice results are compared to the model independent predictions of Schwinger-Dyson equations and a very good agreement among the two is found.

  20. Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes

    DOE PAGES

    Boucaud, Ph.; De Soto, F.; Rodriguez-Quintero, J.; ...

    2017-06-14

    This article reports on the detailed study of the three-gluon vertex in four-dimensional $SU(3)$ Yang-Mills theory employing lattice simulations with large physical volumes and high statistics. A meticulous scrutiny of the so-called symmetric and asymmetric kinematical configurations is performed and it is shown that the associated form-factor changes sign at a given range of momenta. Here, the lattice results are compared to the model independent predictions of Schwinger-Dyson equations and a very good agreement among the two is found.

  1. The QCD corrections of the process h → ηbZ

    NASA Astrophysics Data System (ADS)

    Zhu, Rong-Fei; Feng, Tai-Fu; Zhang, Hai-Bin

    2018-05-01

    We investigate the 125 GeV Higgs boson decay to a pseudoscalar quarkonium ηb and Z boson. We calculate the quantum chromodynamics (QCD) one-loop corrections to the branching ratio of the process, Br(h → ηbZ), both in the Standard Model (SM) and in the two Higgs double models (THDM). Adding the QCD one-loop corrections, the branching ratio of h → ηbZ in the SM is Br(h → ηbZ) = (4.739‑0.244+0.276) × 10‑5. The relative correction of that QCD one-loop level relative to the tree level of Br(h → ηbZ) is around 76% in the SM. Similarly, the relative correction in the THDM also can be around 75%. The key parameter, tan β, can affect the relative correction in the THDM.

  2. Research and analysis on new test lenses for calibration of focimeters used for measuring contact lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Wang, Liru; Ma, Zhenya

    2006-11-01

    A focimeter is one of the basic ophthalmic instruments used in every optometric practice, and verification of the accuracy and calibration of the instrument are of the utmost importance. For many years the International Standardization for Organization requires that calibrations for all kinds of focimeters shall be accomplished by using test lenses described in ISO 9342:1996. These test lenses must be of high quality and of nominal back vertex power that is known with high accuracy. With the development of science and technology, ISO 9342 was revised in 2005. A new part ISO 9342-2 had been drafted for test lenses used to calibrate focimeters with contact lens measurement, and the original ISO 9342 was turned into the current ISO 9342-1, which could only be used to calibrate fociemters with spectacle lens measurement. As one of the standard drafters, the background for the newly published ISO 9342-2 is introduced in this study, and comparison between test lenses of ISO 9342-1 and ISO 9342-2 is made. Further, the influence of tolerance and uncertainty in design and production of standard test lenses of ISO 9342-2 is analyzed. The paraxial approximation is used to relate the lens parameters with back vertex power and to calculate the uncertainty budget. Moreover, one set of test lenses conforming to ISO 9342-2 is manufactured and experiments are done with it. Results show that test lenses described in ISO 9342-2 can correct the measurement errors of focimeters used for measuring contact lenses well, especially for spherical aberration, and the correction is more effective for spherical contact lenses with high back vertex power.

  3. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    NASA Astrophysics Data System (ADS)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  4. Automatically Generated Algorithms for the Vertex Coloring Problem

    PubMed Central

    Contreras Bolton, Carlos; Gatica, Gustavo; Parada, Víctor

    2013-01-01

    The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark. PMID:23516506

  5. Coupled dynamics in gluon mass generation and the impact of the three-gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2018-03-01

    We present a detailed study of the subtle interplay transpiring at the level of two integral equations that are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behavior of the gluon propagator and of the integral equation that controls the formation of massless bound-state excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation. The self-consistency of the entire approach imposes the requirement of using a single value for the gauge coupling entering in the two key equations; its fulfilment depends crucially on the details of the three-gluon vertex, which contributes to both of them, but with different weight. In particular, the characteristic suppression of this vertex at intermediate and low energies enables the convergence of the iteration procedure to a single gauge coupling, whose value is reasonably close to that extracted from related lattice simulations.

  6. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    ERIC Educational Resources Information Center

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  7. Subleading Regge limit from a soft anomalous dimension

    NASA Astrophysics Data System (ADS)

    Brüser, Robin; Caron-Huot, Simon; Henn, Johannes M.

    2018-04-01

    Wilson lines capture important features of scattering amplitudes, for example soft effects relevant for infrared divergences, and the Regge limit. Beyond the leading power approximation, corrections to the eikonal picture have to be taken into account. In this paper, we study such corrections in a model of massive scattering amplitudes in N=4 super Yang-Mills, in the planar limit, where the mass is generated through a Higgs mechanism. Using known three-loop analytic expressions for the scattering amplitude, we find that the first power suppressed term has a very simple form, equal to a single power law. We propose that its exponent is governed by the anomalous dimension of a Wilson loop with a scalar inserted at the cusp, and we provide perturbative evidence for this proposal. We also analyze other limits of the amplitude and conjecture an exact formula for a total cross-section at high energies.

  8. Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics

    NASA Astrophysics Data System (ADS)

    Kaufmann, Josef; Gunacker, Patrik; Held, Karsten

    2017-07-01

    We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.

  9. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, Ira Z.; Stewart, Iain W.

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less

  11. An effective field theory for forward scattering and factorization violation

    DOE PAGES

    Rothstein, Ira Z.; Stewart, Iain W.

    2016-08-03

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less

  12. Diagrammatic expansion for positive density-response spectra: Application to the electron gas

    NASA Astrophysics Data System (ADS)

    Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.

    2015-03-01

    In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and densities.

  13. Relationship of the actual thick intraocular lens optic to the thin lens equivalent.

    PubMed

    Holladay, J T; Maverick, K J

    1998-09-01

    To theoretically derive and empirically validate the relationship between the actual thick intraocular lens and the thin lens equivalent. Included in the study were 12 consecutive adult patients ranging in age from 54 to 84 years (mean +/- SD, 73.5 +/- 9.4 years) with best-corrected visual acuity better than 20/40 in each eye. Each patient had bilateral intraocular lens implants of the same style, placed in the same location (bag or sulcus) by the same surgeon. Preoperatively, axial length, keratometry, refraction, and vertex distance were measured. Postoperatively, keratometry, refraction, vertex distance, and the distance from the vertex of the cornea to the anterior vertex of the intraocular lens (AV(PC1)) were measured. Alternatively, the distance (AV(PC1)) was then back-calculated from the vergence formula used for intraocular lens power calculations. The average (+/-SD) of the absolute difference in the two methods was 0.23 +/- 0.18 mm, which would translate to approximately 0.46 diopters. There was no statistical difference between the measured and calculated values; the Pearson product-moment correlation coefficient from linear regression was 0.85 (r2 = .72, F = 56). The average intereye difference was -0.030 mm (SD, 0.141 mm; SEM, 0.043 mm) using the measurement method and +0.124 mm (SD, 0.412 mm; SEM, 0.124 mm) using the calculation method. The relationship between the actual thick intraocular lens and the thin lens equivalent has been determined theoretically and demonstrated empirically. This validation provides the manufacturer and surgeon additional confidence and utility for lens constants used in intraocular lens power calculations.

  14. Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima Santos, A.

    2017-09-01

    We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.

  15. High-energy evolution to three loops

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Herranen, Matti

    2018-02-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  16. Three dimensional unstructured multigrid for the Euler equations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1991-01-01

    The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.

  17. Effective wavefront aberration measurement of spectacle lenses in as-worn status

    NASA Astrophysics Data System (ADS)

    Jia, Zhigang; Xu, Kai; Fang, Fengzhou

    2018-04-01

    An effective wavefront aberration analysis method for measuring spectacle lenses in as-worn status was proposed and verified using an experimental apparatus based on an eye rotation model. Two strategies were employed to improve the accuracy of measurement of the effective wavefront aberrations on the corneal sphere. The influences of three as-worn parameters, the vertex distance, pantoscopic angle, and face form angle, together with the eye rotation and corresponding incident beams, were objectively and quantitatively obtained. The experimental measurements of spherical single vision and freeform progressive addition lenses demonstrate the accuracy and validity of the proposed method and experimental apparatus, which provide a potential means of achieving supernormal vision correction with customization and personalization in optimizing the as-worn status-based design of spectacle lenses and evaluating their manufacturing and imaging qualities.

  18. Universality hypothesis breakdown at one-loop order

    NASA Astrophysics Data System (ADS)

    Carvalho, P. R. S.

    2018-05-01

    We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.

  19. Cheshire charge in (3+1)-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2017-07-01

    We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.

  20. Deliver a set of tools for resolving bad inductive loops and correcting bad data.

    DOT National Transportation Integrated Search

    2012-04-01

    This project prototyped and demonstrated procedures to find and mitigate loop detector errors, and to derive more valuable data from loops. Specifically, methods were developed to find and isolate out loop data which is "bad" or invalid, so that miti...

  1. Deliver a set of tools for resolving bad inductive loops and correcting bad data

    DOT National Transportation Integrated Search

    2012-04-10

    This project prototyped and demonstrated procedures to find and mitigate loop detector errors, and to derive more valuable data from loops. Specifically, methods were developed to find and isolate out loop data which is "bad" or invalid, so that miti...

  2. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  3. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, C.; Almeida, L.

    2010-04-26

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  4. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters.

    PubMed

    Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier

    2017-10-20

    We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

  5. One-loop Pfaffians and large-field inflation in string theory

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian; Wieck, Clemens

    2017-06-01

    We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.

  6. Loop corrections to primordial fluctuations from inflationary phase transitions

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Peng; Yokoyama, Jun'ichi

    2018-05-01

    We investigate loop corrections to the primordial fluctuations in the single-field inflationary paradigm from spectator fields that experience a smooth transition of their vacuum expectation values. We show that when the phase transition involves a classical evolution effectively driven by a negative mass term from the potential, important corrections to the curvature perturbation can be generated by field perturbations that are frozen outside the horizon by the time of the phase transition, yet the correction to tensor perturbation is naturally suppressed by the spatial derivative couplings between spectator fields and graviton. At one-loop level, the dominant channel for the production of primordial fluctuations comes from a pair-scattering of free spectator fields that decay into the curvature perturbations, and this decay process is only sensitive to field masses comparable to the Hubble scale of inflation.

  7. Heavy quark form factors at two loops

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.

    2018-05-01

    We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.

  8. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    PubMed

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Integrability of the odd eight-vertex model with symmetric weights

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2018-06-01

    In this paper we investigate the integrability properties of a two-state vertex model on the square lattice whose microstates at a vertex always have an odd number of incoming or outcoming arrows. This model was named the odd eight-vertex model by Wu and Kunz (2004 J. Stat. Phys. 116 67) to distinguish it from the well-known eight-vertex model possessing an even number of arrow orientations at each vertex. When the energy weights are invariant under arrow inversion we show that the integrable manifold of the odd eight-vertex model coincides with that of the even eight-vertex model. The form of the -matrix for the odd eight-vertex model is however not the same as that of the respective Lax operator. Altogether we find that these eight-vertex models give rise to a generic sheaf of -matrices satisfying the Yang–Baxter equations resembling intertwiner relations associated to equidimensional representations.

  10. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  11. Conservation of ζ with radiative corrections from heavy field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Takahiro; Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502; Urakawa, Yuko

    2016-06-08

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time.more » Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.« less

  12. Observational constraints on loop quantum cosmology.

    PubMed

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  13. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  14. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport*

    PubMed Central

    Mallette, Evan

    2017-01-01

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988

  15. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport.

    PubMed

    Mallette, Evan; Kimber, Matthew S

    2017-01-27

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    NASA Astrophysics Data System (ADS)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  17. Towards next-to-next-to-leading-log accuracy for the width difference in the {B}_s-{\\overline{B}}_s system: fermionic contributions to order ( m c /m b )0 and ( m c /m b )1

    NASA Astrophysics Data System (ADS)

    Asatrian, H. M.; Hovhannisyan, A.; Nierste, U.; Yeghiazaryan, A.

    2017-10-01

    We calculate a class of three-loop Feynman diagrams which contribute to the next-to-next-to-leading logarithmic approximation for the width difference ΔΓ s in the {B}_s-{\\overline{B}}_s system. The considered diagrams contain a closed fermion loop in a gluon propagator and constitute the order α s 2 N f , where N f is the number of light quarks. Our results entail a considerable correction in that order, if ΔΓ s is expressed in terms of the pole mass of the bottom quark. If the \\overline{MS} scheme is used instead, the correction is much smaller. As a result, we find a decrease of the scheme dependence. Our result also indicates that the usually quoted value of the NLO renormalization scale dependence underestimates the perturbative error.

  18. A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.

    PubMed

    Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W

    2002-01-01

    In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.

  19. Superhorizon electromagnetic field background from Higgs loops in inflation

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2018-03-01

    If Higgs is a spectator scalar, i.e. if it is not directly coupled to the inflaton, superhorizon Higgs modes must have been exited during inflation. Since Higgs is unstable its decay into photons is expected to seed superhorizon photon modes. We use in-in perturbation theory to show that this naive physical expectation is indeed fulfilled via loop effects. Specifically, we calculate the first order Higgs loop correction to the magnetic field power spectrum evaluated at some late time after inflation. It turns out that this loop correction becomes much larger than the tree-level power spectrum at the superhorizon scales. This suggests a mechanism to generate cosmologically interesting superhorizon vector modes by scalar-vector interactions.

  20. Effect of Preoperative Molding Helmet in Patients With Sagittal Synostosis.

    PubMed

    Hashmi, Asra; Marupudi, Neena I; Sood, Sandeep; Rozzelle, Arlene

    2017-06-01

    In our practice, the authors found that molding helmet used for plagiocephaly preoperatively, in patients with sagittal synostosis, decreased bathrocephaly, forehead bossing, and improved posterior vertex, as well as Cephalic Index (CI). This prompted us to investigate the impact of preoperative molding helmet in patients with sagittal synostosis. A prospective study was performed on patients undergoing surgical correction of sagittal synostosis, over a 5-year period. Patients were categorized into 2 groups. "No Helmet group" only had surgical correction, and "Helmet group" had preoperative molding helmet, prior to surgical correction. Cephalic Index for the 2 groups was compared using t-test. There were 40 patients in the No Helmet group and 18 patients in the Helmet group. For No Helmet group, mean CI at presentation, immediately preoperative, and postoperatively was 0.70 (±0.045), 0.70 (±0.020), and 0.80 (±0.030), respectively, and for Helmet group, it was 0.69 (±0.023), 0.73 (±0.036), and 0.83 (±0.036), respectively. There was no statistically significant difference between CI of the 2 groups at presentation (P = 0.45). Comparison of postoperative CI did show a statistically significant difference between the groups (P = 0.01). For Helmet group, on comparison of CI at presentation and preoperative CI (after helmet therapy), a statistically significant improvement in CI was observed (P = 0.0004). Our results suggest that preoperative molding helmet can decrease bathrocephaly, forehead bossing, and improve posterior vertex as well as CI, prior to surgery and thus can be used as a valuable adjunct in patients with sagittal synostosis.

  1. Quantum properties of supersymmetric theories regularized by higher covariant derivatives

    NASA Astrophysics Data System (ADS)

    Stepanyantz, Konstantin

    2018-02-01

    We investigate quantum corrections in \\mathscr{N} = 1 non-Abelian supersymmetric gauge theories, regularized by higher covariant derivatives. In particular, by the help of the Slavnov-Taylor identities we prove that the vertices with two ghost legs and one leg of the quantum gauge superfield are finite in all orders. This non-renormalization theorem is confirmed by an explicit one-loop calculation. By the help of this theorem we rewrite the exact NSVZ β-function in the form of the relation between the β-function and the anomalous dimensions of the matter superfields, of the quantum gauge superfield, and of the Faddeev-Popov ghosts. Such a relation has simple qualitative interpretation and allows suggesting a prescription producing the NSVZ scheme in all loops for the theories regularized by higher derivatives. This prescription is verified by the explicit three-loop calculation for the terms quartic in the Yukawa couplings.

  2. Adsorption of finite semiflexible polymers and their loop and tail distributions

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias A.; Kierfeld, Jan

    2017-07-01

    We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].

  3. A cell-vertex multigrid method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Radespiel, R.

    1989-01-01

    A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Bernhard; Janka, Hans-Thomas; Dimmelmeier, Harald, E-mail: bjmuellr@mpa-garching.mpg.d, E-mail: thj@mpa-garching.mpg.d, E-mail: harrydee@mpa-garching.mpg.d

    We present a new general relativistic code for hydrodynamical supernova simulations with neutrino transport in spherical and azimuthal symmetry (one dimension and two dimensions, respectively). The code is a combination of the COCONUT hydro module, which is a Riemann-solver-based, high-resolution shock-capturing method, and the three-flavor, fully energy-dependent VERTEX scheme for the transport of massless neutrinos. VERTEX integrates the coupled neutrino energy and momentum equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the 'ray-by-ray plus' approximation in two dimensions, assuming the neutrino distribution to be axially symmetric around the radial direction at every pointmore » in space, and thus the neutrino flux to be radial. Our spacetime treatment employs the Arnowitt-Deser-Misner 3+1 formalism with the conformal flatness condition for the spatial three metric. This approach is exact for the one-dimensional case and has previously been shown to yield very accurate results for spherical and rotational stellar core collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with grid-based Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number in the neutrino transport with better accuracy and higher numerical stability in the high-energy tail of the spectrum. To verify our code, we conduct a series of tests in spherical symmetry, including a detailed comparison with published results of the collapse, shock formation, shock breakout, and accretion phases. Long-time simulations of proto-neutron star cooling until several seconds after core bounce both demonstrate the robustness of the new COCONUT-VERTEX code and show the approximate treatment of relativistic effects by means of an effective relativistic gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in spherical symmetry.« less

  5. Artificial intelligence in mitral valve analysis.

    PubMed

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention.

  6. Design and performance of the SLD vertex detector: a 307 Mpixel tracking system

    NASA Astrophysics Data System (ADS)

    Abe, K.; Arodzero, A.; Baltay, C.; Brau, J. E.; Breidenbach, M.; Burrows, P. N.; Chou, A. S.; Crawford, G.; Damerell, C. J. S.; Dervan, P. J.; Dong, D. N.; Emmet, W.; English, R. L.; Etzion, E.; Foss, M.; Frey, R.; Haller, G.; Hasuko, K.; Hertzbach, S. S.; Hoeflich, J.; Huffer, M. E.; Jackson, D. J.; Jaros, J. A.; Kelsey, J.; Lee, I.; Lia, V.; Lintern, A. L.; Liu, M. X.; Manly, S. L.; Masuda, H.; McKemey, A. K.; Moore, T. B.; Nichols, A.; Nagamine, T.; Oishi, N.; Osborne, L. S.; Russell, J. J.; Ross, D.; Serbo, V. V.; Sinev, N. B.; Sinnott, J.; Skarpaas, K. Viii; Smy, M. B.; Snyder, J. A.; Strauss, M. G.; Dong, S.; Suekane, F.; Taylor, F. E.; Trandafir, A. I.; Usher, T.; Verdier, R.; Watts, S. J.; Weiss, E. R.; Yashima, J.; Yuta, H.; Zapalac, G.

    1997-02-01

    This paper describes the design, construction, and initial operation of SLD's upgraded vertex detector which comprises 96 two-dimensional charge-coupled devices (CCDs) with a total of 307 Mpixel. Each pixel functions as an independent particle detecting element, providing space point measurements of charged particle tracks with a typical precision of 4 μm in each co-ordinate. The CCDs are arranged in three concentric cylinders just outside the beam-pipe which surrounds the e +e - collision point of the SLAC Linear Collider (SLC). The detector is a powerful tool for distinguishing displaced vertex tracks, produced by decay in flight of heavy flavour hadrons or tau leptons, from tracks produced at the primary event vertex. The requirements for this detector include a very low mass structure (to minimize multiple scattering) both for mechanical support and to provide signal paths for the CCDs; operation at low temperature with a high degree of mechanical stability; and high speed CCD readout, signal processing, and data sparsification. The lessons learned in achieving these goals should be useful for the construction of large arrays of CCDs or active pixel devices in the future in a number of areas of science and technology.

  7. Magnetic-proximity-induced magnetoresistance on topological insulators

    NASA Astrophysics Data System (ADS)

    Chiba, Takahiro; Takahashi, Saburo; Bauer, Gerrit E. W.

    2017-03-01

    We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on the surface of three-dimensional topological insulators (TIs) that are capped by a ferromagnetic insulator (FI). We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found to generate an electric conductivity that depends on the magnetization orientation, but its form is very different from both the anisotropic and the spin Hall MR. The in-plane MR vanishes identically for nonmagnetic disorder, while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help us understand recent transport measurements on TI |FI systems.

  8. Multifractal cross-correlation effects in two-variable time series of complex network vertex observables

    NASA Astrophysics Data System (ADS)

    OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław

    2016-10-01

    We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.

  9. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  10. Two-loop renormalization of gaugino masses in general supersymmetric gauge models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.

    1994-01-03

    We calculate the two-loop renormalization group equations for the running gaugino masses in general supersymmetry (SUSY) gauge models, improving our previous result. We also study its consequences on the unification of the gaugino masses in the SUSY SU(5) model. The two-loop correction to the one-loop relation [ital m][sub [ital i

  11. 3D-Stereoscopic Analysis of Solar Active Region Loops: I: SoHo/EIT Observations at Temperatures of 1.0-1.5 MK

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik

    1998-01-01

    The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.

  12. Planning the mode of delivery for twin pregnancies: A web-based questionnaire.

    PubMed

    Goossens, S M T A; Roumen, F J M E; Derks, J B; Kessels, F G; Dirksen, C D; Nijhuis, J G

    2016-01-01

    Using orthogonal design, we created a questionnaire containing 16 cases of twin pregnancies. For each case, respondents indicated whether they would plan a vaginal delivery (VD) or a caesarean section (CS). We assessed the association between each variable (maternal age, parity, mode of conception, gestational age, chorionicity, body mass index, foetal growth, foetal presentation and wish for additional children) and the planned mode of delivery. A VD was planned mostly for vertex presentation of twin A (vertex-vertex vs. non-vertex-vertex, odds ratio [OR]: 0.002, 95% confidence interval [CI]: 0.001-0.003, p < 0.001). For vertex- non-vertex (vs. vertex-vertex) presentation, chances on planning a VD decreased threefold (OR: 0.29, 95% CI: 0.018-0.46, p < 0.001), although the majority of respondents would still plan a VD. In multiparous (vs. nulliparous) women, VD was chosen more often (OR: 3.24, 95% CI: 2.50-4.18, p < 0.001).Vertex presentation of twin A and multiparity were the main reasons for planning a VD.

  13. Adjustable sutures: experimental assessment of final muscle position.

    PubMed

    Climenhaga, H W; Pearce, W G

    1984-08-01

    The likelihood of forward "creep" of muscles recessed with the use of adjustable loops of suture in the correction of strabismus was investigated. Twelve orthotropic dogs underwent both regular and loop recessions of the lateral and medial rectus muscles; the data for two of the dogs were excluded because of loss of muscles. Three months later it was found that in the majority of cases the recessed muscles had minimally advanced from the position of surgical placement. Although the type of recession made little difference to the results, the mean forward creep was much greater for the medial rectus muscles (1.55 +/- 0.68 mm [p less than 0.01] and 2.00 +/- 2.44 mm [p = 0.09] for those undergoing regular and loop recessions respectively) than for the lateral rectus muscles (0.35 +/- 0.58 mm and 0.60 +/- 0.62 mm respectively). During the operations the amount of contraction of the medial rectus muscle had been noted to vary. It is likely that in some instances the tension on the suture loops was insufficient to hold them taut, and the muscles therefore adhered to the sclera at variable sites. Hence, adequate intrinsic muscle tone may be important for predictable clinical results of loop recession.

  14. Higgs production via gluon fusion in k{sub T} factorisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hautmann, F.; Jung, H.; Pandis, V.

    2011-07-15

    Theoretical studies of Higgs production via gluon fusion are frequently carried out in the limit where the top quark mass is much larger than the Higgs mass, an approximation which reduces the top quark loop to an effective vertex. We present a numerical analysis of the error thus introduced by performing a Monte Carlo calculation for gg{yields}h in k{sub T}-factorisation, using the parton shower generator CASCADE. By examining both inclusive and exclusive quantities, we find that retaining the top-mass dependence results in only a small enhancement of the cross-section. We then proceed to compare CASCADE to the collinear Monte Carlosmore » PYTHIA, MC-NLO and POWHEG.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda, J. I.; Ramirez-Zavaleta, F.; Tututi, E. S.

    The Higgs-mediated flavor violating bottom-strange quarks transitions induced at the one-loop level by a nondiagonal Hbs coupling are studied within the context of an effective Yukawa sector that comprises SU{sub L}(2)xU{sub Y}(1)-invariant operators of up to dimension six. The most recent experimental result on B{yields}X{sub s{gamma}} with hard photons is employed to constrain the Hbs vertex, which is used to estimate the branching ratio for the B{sub s{yields}{gamma}{gamma}} decay. It is found that the B{sub s{yields}{gamma}{gamma}} decay can reach a branching ratio of the order of 4x10{sup -8}, which is 2 orders of magnitude smaller than the current experimental limit.

  16. Loop corrections for Kaluza-Klein AdS amplitudes

    NASA Astrophysics Data System (ADS)

    Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.

    2018-05-01

    Recently we conjectured the four-point amplitude of graviton multiplets in AdS5 × S5 at one loop by exploiting the operator product expansion of N = 4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.

  17. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  18. Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid.

    PubMed

    Zhang, Xinzheng; Xiang, Ye; Dunigan, David D; Klose, Thomas; Chipman, Paul R; Van Etten, James L; Rossmann, Michael G

    2011-09-06

    A cryoelectron microscopy 8.5 Å resolution map of the 1,900 Å diameter, icosahedral, internally enveloped Paramecium bursaria chlorella virus was used to interpret structures of the virus at initial stages of cell infection. A fivefold averaged map demonstrated that two minor capsid proteins involved in stabilizing the capsid are missing in the vicinity of the unique vertex. Reconstruction of the virus in the presence of host chlorella cell walls established that the spike at the unique vertex initiates binding to the cell wall, which results in the enveloped nucleocapsid moving closer to the cell. This process is concurrent with the release of the internal viral membrane that was linked to the capsid by many copies of a viral membrane protein in the mature infectous virus. Simultaneously, part of the trisymmetrons around the unique vertex disassemble, probably in part because two minor capsid proteins are absent, causing Paramecium bursaria chlorella virus and the cellular contents to merge, possibly as a result of enzyme(s) within the spike assembly. This may be one of only a few recordings of successive stages of a virus while infecting a eukaryotic host in pseudoatomic detail in three dimensions.

  19. Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid

    PubMed Central

    Zhang, Xinzheng; Xiang, Ye; Dunigan, David D.; Klose, Thomas; Chipman, Paul R.; Van Etten, James L.; Rossmann, Michael G.

    2011-01-01

    A cryoelectron microscopy 8.5 Å resolution map of the 1,900 Å diameter, icosahedral, internally enveloped Paramecium bursaria chlorella virus was used to interpret structures of the virus at initial stages of cell infection. A fivefold averaged map demonstrated that two minor capsid proteins involved in stabilizing the capsid are missing in the vicinity of the unique vertex. Reconstruction of the virus in the presence of host chlorella cell walls established that the spike at the unique vertex initiates binding to the cell wall, which results in the enveloped nucleocapsid moving closer to the cell. This process is concurrent with the release of the internal viral membrane that was linked to the capsid by many copies of a viral membrane protein in the mature infectous virus. Simultaneously, part of the trisymmetrons around the unique vertex disassemble, probably in part because two minor capsid proteins are absent, causing Paramecium bursaria chlorella virus and the cellular contents to merge, possibly as a result of enzyme(s) within the spike assembly. This may be one of only a few recordings of successive stages of a virus while infecting a eukaryotic host in pseudoatomic detail in three dimensions. PMID:21873222

  20. Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter

    NASA Astrophysics Data System (ADS)

    McKay, James; Scott, Pat

    2018-03-01

    The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.

  1. Power corrections to the HTL effective Lagrangian of QED

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Manuel, Cristina; Soto, Joan

    2018-05-01

    We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.

  2. A robust fractional-order PID controller design based on active queue management for TCP network

    NASA Astrophysics Data System (ADS)

    Hamidian, Hamideh; Beheshti, Mohammad T. H.

    2018-01-01

    In this paper, a robust fractional-order controller is designed to control the congestion in transmission control protocol (TCP) networks with time-varying parameters. Fractional controllers can increase the stability and robustness. Regardless of advantages of fractional controllers, they are still not common in congestion control in TCP networks. The network parameters are time-varying, so the robust stability is important in congestion controller design. Therefore, we focused on the robust controller design. The fractional PID controller is developed based on active queue management (AQM). D-partition technique is used. The most important property of designed controller is the robustness to the time-varying parameters of the TCP network. The vertex quasi-polynomials of the closed-loop characteristic equation are obtained, and the stability boundaries are calculated for each vertex quasi-polynomial. The intersection of all stability regions is insensitive to network parameter variations, and results in robust stability of TCP/AQM system. NS-2 simulations show that the proposed algorithm provides a stable queue length. Moreover, simulations show smaller oscillations of the queue length and less packet drop probability for FPID compared to PI and PID controllers. We can conclude from NS-2 simulations that the average packet loss probability variations are negligible when the network parameters change.

  3. Two-loop virtual top-quark effect on Higgs-boson decay to bottom quarks.

    PubMed

    Butenschön, Mathias; Fugel, Frank; Kniehl, Bernd A

    2007-02-16

    In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(GF2mt4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(GFmt2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alphasGFmt2).

  4. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the Lamb shift in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-12-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.

  5. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses,more » and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.« less

  6. MO-FG-CAMPUS-IeP1-04: Kerma Area Product Calculation for Non-Uniform X-Ray Fields Using a Skin Dose Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Rudin, S

    Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  7. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae.

    PubMed

    Lühr, B; Scheller, J; Meyer, P; Kramer, W

    1998-02-01

    We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.

  8. Complex structures from patterned cell sheets

    PubMed Central

    Misra, M.; Audoly, B.; Shvartsman, S. Y.

    2017-01-01

    The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348251

  9. C -parameter distribution at N 3 LL ' including power corrections

    DOE PAGES

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; ...

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α 3 s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ω n. To eliminate an O(Λ QCD) renormalon ambiguity in themore » soft function, we switch from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω 1. We show how to simultaneously account for running effects in Ω 1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(m Z) and Ω 1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=m Z.« less

  10. On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration

    NASA Astrophysics Data System (ADS)

    Barsukov, P. O.; Fainberg, E. B.

    2018-03-01

    The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.

  11. On the local vertex antimagic total coloring of some families tree

    NASA Astrophysics Data System (ADS)

    Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho

    2018-04-01

    Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\

  12. Packing loops into annular cavities.

    PubMed

    Sobral, T A; Gomes, M A F

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  13. Packing loops into annular cavities

    NASA Astrophysics Data System (ADS)

    Sobral, T. A.; Gomes, M. A. F.

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  14. Evidence of ghost suppression in gluon mass scale dynamics

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2018-03-01

    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.

  15. Algorithm for Search and Recovery of the Vertex of Decay in the Hypernuclear Experiment NIS-GIBS at Dubna Nuclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korotkova, Anna M.; Lukstins, Juris

    2010-01-05

    Search of the decay vertex is an important part of the hypernuclear experiment, carried out of the Dubna nuclotron accelerator. The decay vertex is reconstructed from data from two sets of proportional chambers. The distribution of the vertex of decay of the hypernucleus allows to measure the lifetime of the hypernuclei. Algorithm for searches and automatically calculates the decay vertex has been written.

  16. HIV-1 Clinical Isolates Resistant to CCR5 Antagonists Exhibit Delayed Entry Kinetics That Are Corrected in the Presence of Drug

    PubMed Central

    Putcharoen, Opass; Lee, Sun Hee; Henrich, Timothy J.; Hu, Zixin; Vanichanan, Jakapat; Coakley, Eoin; Greaves, Wayne; Gulick, Roy M.; Kuritzkes, Daniel R.

    2012-01-01

    HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance. PMID:22090117

  17. Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations - The Predictive Role of the Reward System in Perspective of Cortico-subcortical Loops.

    PubMed

    Gorzelańczyk, Edward J; Podlipniak, Piotr; Walecki, Piotr; Karpiński, Maciej; Tarnowska, Emilia

    2017-01-01

    According to contemporary opinion emotional reactions to syntactic violations are due to surprise as a result of the general mechanism of prediction. The classic view is that, the processing of musical syntax can be explained by activity of the cerebral cortex. However, some recent studies have indicated that subcortical brain structures, including those related to the processing of emotions, are also important during the processing of syntax. In order to check whether emotional reactions play a role in the processing of pitch syntax or are only the result of the general mechanism of prediction, the comparison of skin conductance levels reacting to three types of melodies were recorded. In this study, 28 subjects listened to three types of short melodies prepared in Musical Instrument Digital Interface Standard files (MIDI) - tonally correct, tonally violated (with one out-of-key - i.e., of high information content), and tonally correct but with one note played in a different timbre. The BioSemi ActiveTwo with two passive Nihon Kohden electrodes was used. Skin conductance levels were positively correlated with the presented stimuli (timbral changes and tonal violations). Although changes in skin conductance levels were also observed in response to the change in timbre, the reactions to tonal violations were significantly stronger. Therefore, despite the fact that timbral change is at least as equally unexpected as an out-of-key note, the processing of pitch syntax mainly generates increased activation of the sympathetic part of the autonomic nervous system. These results suggest that the cortico-subcortical loops (especially the anterior cingulate - limbic loop) may play an important role in the processing of musical syntax.

  18. On-sky Closed-loop Correction of Atmospheric Dispersion for High-contrast Coronagraphy and Astrometry

    NASA Astrophysics Data System (ADS)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.

    2018-02-01

    Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to <1 mas across H-band. This work will aid in the direct detection of habitable exoplanets with upcoming extremely large telescopes (ELTs) and also provide a diagnostic tool to test the performance of instruments which require sub-milliarcsecond correction.

  19. Artificial Intelligence in Mitral Valve Analysis

    PubMed Central

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Background: Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention. PMID:28393769

  20. Nernst effect from fluctuating pairs in the pseudogap phase of the cuprates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, A.; Norman, M. R.; Varlamov, A. A.

    2011-01-31

    The observation of a large Nernst signal in cuprates above the superconducting transition temperature has attracted much attention. A potential explanation is that it originates from superconducting fluctuations. Although the Nernst signal is indeed consistent with Gaussian fluctuations for overdoped cuprates, Gaussian theory fails to describe the temperature dependence seen for underdoped cuprates. Here, we consider the vertex correction to Gaussian theory resulting from the pseudogap. This yields a Nernst signal in good agreement with the data.

  1. On Making a Distinguished Vertex Minimum Degree by Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes

    For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.

  2. Unimodular gravity and the lepton anomalous magnetic moment at one-loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín, Carmelo P., E-mail: carmelop@fis.ucm.es

    We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.

  3. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  4. Origami building blocks: Generic and special four-vertices

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  5. Origami building blocks: Generic and special four-vertices.

    PubMed

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  6. Vertex centrality as a measure of information flow in Italian Corporate Board Networks

    NASA Astrophysics Data System (ADS)

    Grassi, Rosanna

    2010-06-01

    The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.

  7. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament to the wide-angle attention of Claus Kiefer to the recent evolution of the field. It is also because of this attention that the neglect of a thriving research direction on which a large number of research groups are currently engaged jumps to the eye. The book provides a nice introduction to loop quantum gravity. The main kinematical results of the loop approach are carefully explained. At the point of discussing dynamics, however, it focuses only on the canonical formulation, mentioning the covariant loop theory only en passant. Given Kiefer's open-mindness, I imagine that the shortfall is due to the novelty of the major results of the covariant theory (or spinfoam formalism). The theorem proving the finiteness of the transition amplitudes to all orders, due to Han, Fairbairn and Meusburger, for instance, dates only from 2010. But the various theorems on the asymptotic of the vertex amplitude, by Barrett-Pereira-Dowdall-Fairbairn-Hellmann, Friedel-Conrady and others, which have sparked interest in the spinfoam approach by indicating that the theory may have the correct classical limit, are from 2009. The fact that they are not even mentioned in Kiefer's book is strident for me. The covariant loop amplitudes may not be the final solution to the problem of quantum gravity, but the existence of a family of Lorentz covariant amplitudes with indications of the correct classical limit, which are finite at each order of the expansion, is a result that cannot be ignored in a broad book that aims at being comprehensive in quantum gravity. There are other pages of the book where I was not very happy. For instance, the discussion of the so-called 'problem of time'. But surely a broad book in a recalcitrant field like quantum gravity will never make everybody entirely happy: at least as long as the problem is not solved. Which, we all hope, might not be too far into the future. Few fundamental problems have resisted the investigation of theoretical physics for so long, and today advances are fast. So, here is my recommendation: study this book, complement it with what is missing, and help us in finally solving the extraordinarily beautiful problem of understanding quantum spacetime.

  8. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  9. One-loop corrections to light cone wave functions: The dipole picture DIS cross section

    NASA Astrophysics Data System (ADS)

    Hänninen, H.; Lappi, T.; Paatelainen, R.

    2018-06-01

    We develop methods to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional dimensional regularization, confirming the regularization scheme independence of this cross section.

  10. Selective attention and the auditory vertex potential. 2: Effects of signal intensity and masking noise

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.

  11. The performance of diphoton primary vertex reconstruction methods in H → γγ+Met channel of ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Tomiwa, K. G.

    2017-09-01

    The search for new physics in the H → γγ+met relies on how well the missing transverse energy is reconstructed. The Met algorithm used by the ATLAS experiment in turns uses input variables like photon and jets which depend on the reconstruction of the primary vertex. This document presents the performance of di-photon vertex reconstruction algorithms (hardest vertex method and Neural Network method). Comparing the performance of these algorithms for the nominal Standard Model sample and the Beyond Standard Model sample, we see the overall performance of the Neural Network method of primary vertex selection performed better than the Hardest vertex method.

  12. Electroweak corrections to hadronic production of W bosons at large transverse momenta

    NASA Astrophysics Data System (ADS)

    Kühn, Johann H.; Kulesza, A.; Pozzorini, S.; Schulze, M.

    2008-07-01

    To match the precision of present and future measurements of W-boson production at hadron colliders electroweak radiative corrections must be included in the theory predictions. In this paper we consider their effect on the transverse momentum ( p) distribution of W bosons, with emphasis on large p. We evaluate the full electroweak O(α) corrections to the processes pp→W+jet and pp¯→W+jet including virtual and real photonic contributions. We present the explicit expressions in analytical form for the virtual corrections and provide results for the real corrections, discussing in detail the treatment of soft and collinear singularities. We also provide compact approximate expressions which are valid in the high-energy region, where the electroweak corrections are strongly enhanced by logarithms of sˆ/MW2. These expressions describe the complete asymptotic behaviour at one loop as well as the leading and next-to-leading logarithms at two loops. Numerical results are presented for proton-proton collisions at 14 TeV and proton-antiproton collisions at 2 TeV. The corrections are negative and their size increases with p. At the LHC, where transverse momenta of 2 TeV or more can be reached, the one- and two-loop corrections amount up to -40% and +10%, respectively, and will be important for a precise analysis of W production. At the Tevatron, transverse momenta up to 300 GeV are within reach. In this case the electroweak corrections amount up to -10% and are thus larger than the expected statistical error.

  13. Premeasured Chordal Loops for Mitral Valve Repair.

    PubMed

    Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael

    2016-09-01

    Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. A note on closed-string interactions a la witten

    NASA Astrophysics Data System (ADS)

    Romans, L. J.

    1987-08-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.

  15. On supersymmetry anomalies

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Parkes, A. J.; West, P. C.

    1985-01-01

    It is shown analytically that there are no one-loop supersymmetry anomalies in N = 2 and N = 4 supersymmetric Yang-Mills theories. This implies that the two-loop β functions in these theories are in accord with supersymmetry when the one-loop finite local counter terms required by supersymmetry are correctly taken into account. Permanent address: Department of Mathematics, King's College, London, UK.

  16. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    PubMed

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Heavy-quark production in gluon fusion at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2008-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.

  18. Conformal blocks from Wilson lines with loop corrections

    NASA Astrophysics Data System (ADS)

    Hikida, Yasuaki; Uetoko, Takahiro

    2018-04-01

    We compute the conformal blocks of the Virasoro minimal model or its WN extension with large central charge from Wilson line networks in a Chern-Simons theory including loop corrections. In our previous work, we offered a prescription to regularize divergences from loops attached to Wilson lines. In this paper, we generalize our method with the prescription by dealing with more general operators for N =3 and apply it to the identity W3 block. We further compute general light-light blocks and heavy-light correlators for N =2 with the Wilson line method and compare the results with known ones obtained using a different prescription. We briefly discuss general W3 blocks.

  19. Funding for LoopFest IV and RADCOR2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi

    This is a request for funds to help run two conferences: RADCOR2015 (the 12th International Symposium on Radiative Corrections) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders). These conferences will be jointly held June 15--19, 2015 at the Department of Physics and Astronomy at UCLA. These conferences are central to providing theoretical support to the experimental physics programs at particle colliders, including the Large Hadron Collider and possible future colliders.

  20. Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study.

    PubMed

    Desmurget, M; Gréa, H; Grethe, J S; Prablanc, C; Alexander, G E; Grafton, S T

    2001-04-15

    Reaching movements performed without vision of the moving limb are continuously monitored, during their execution, by feedback loops (designated nonvisual). In this study, we investigated the functional anatomy of these nonvisual loops using positron emission tomography (PET). Seven subjects had to "look at" (eye) or "look and point to" (eye-arm) visual targets whose location either remained stationary or changed undetectably during the ocular saccade (when vision is suppressed). Slightly changing the target location during gaze shift causes an increase in the amount of correction to be generated. Functional anatomy of nonvisual feedback loops was identified by comparing the reaching condition involving large corrections (jump) with the reaching condition involving small corrections (stationary), after subtracting the activations associated with saccadic movements and hand movement planning [(eye-arm-jumping minus eye-jumping) minus (eye-arm-stationary minus eye-stationary)]. Behavioral data confirmed that the subjects were both accurate at reaching to the stationary targets and able to update their movement smoothly and early in response to the target jump. PET difference images showed that these corrections were mediated by a restricted network involving the left posterior parietal cortex, the right anterior intermediate cerebellum, and the left primary motor cortex. These results are consistent with our knowledge of the functional properties of these areas and more generally with models emphasizing parietal-cerebellar circuits for processing a dynamic motor error signal.

  1. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun

    2008-08-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.

  2. Invariant measure of the one-loop quantum gravitational backreaction on inflation

    NASA Astrophysics Data System (ADS)

    Miao, S. P.; Tsamis, N. C.; Woodard, R. P.

    2017-06-01

    We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.

  3. [Acute abdomen caused by eosinophilic enteritis: six observations].

    PubMed

    Martínez-Ubieto, Fernando; Bueno-Delgado, Alvaro; Jiménez-Bernadó, Teresa; Santero Ramírez, María Pilar; Arribas-Del Amo, Dolores; Martínez-Ubieto, Javier

    2013-01-01

    Eosinophilic enteritis is a rather rare condition characterized by infiltration of the gastrointestinal tract by eosinophils; as a casue of acute abdomen it is really exceptional. The etiology is unclear and its description in the literature is sparse, but associations have been made with collagen vascular disease, inflammatory bowel disease, food allergy and parasitic infections as it was confirmed in one of our pathologic studies. From 1997 to 2011 six cases of eosinophilic enteritis that involved a small bowel segment were diagnosed. A partial resection by an irreversible necrosis was necessary in three of them; in the other three only a biopsy was necessary due to the inflammatory aspect of the affected loop causing the acute abdomen. Eosinophilic enteritis can originate acute abdomen processes where an urgent surgical treatment is necessary. The intraoperative aspect can be from a segment of small bowel with inflammatory signs up to a completely irrecoverable loop, where removing of the affected segment is the correct treatment, which can be done laparoscopically.

  4. Very heavy MSSM higgs-bosson production at the linear collider

    NASA Astrophysics Data System (ADS)

    Hahn, T.; Heinemeyer, S.; Weiglein, G.

    2003-03-01

    In the Minimal Supersymmetric Standard Model (MSSM) we present the corrections to the heavy neutral CP-even Higgs-boson production in the WW-fusion and Higgs-strahlung channel, e +e - → overlinevv H , taking into account all O(α) corrections arising from loops of fermions and sfermions. While the H boson shows decoupling behavior at the tree-level, we find non-negligible loop corrections that can enhance the cross section considerably. At a center-of-mass energy of √ s = 1000 GeV, masses of up to MH ⪅ 750 GeV are accessible at the LC in favorable regions of the MSSM parameter space.

  5. Transforming graph states using single-qubit operations.

    PubMed

    Dahlberg, Axel; Wehner, Stephanie

    2018-07-13

    Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  6. 14 CFR 29.75 - Landing: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rotorcraft— (1) The corrected landing data must be determined for a smooth, dry, hard, and level surface; (2..., nose over, ground loop, porpoise, or water loop. (b) The landing data required by §§ 29.77, 29.79, 29...

  7. 14 CFR 29.75 - Landing: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rotorcraft— (1) The corrected landing data must be determined for a smooth, dry, hard, and level surface; (2..., nose over, ground loop, porpoise, or water loop. (b) The landing data required by §§ 29.77, 29.79, 29...

  8. 14 CFR 29.75 - Landing: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rotorcraft— (1) The corrected landing data must be determined for a smooth, dry, hard, and level surface; (2..., nose over, ground loop, porpoise, or water loop. (b) The landing data required by §§ 29.77, 29.79, 29...

  9. Scaling of Loop-Erased Walks in 2 to 4 Dimensions

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2009-07-01

    We simulate loop-erased random walks on simple (hyper-)cubic lattices of dimensions 2, 3 and 4. These simulations were mainly motivated to test recent two loop renormalization group predictions for logarithmic corrections in d=4, simulations in lower dimensions were done for completeness and in order to test the algorithm. In d=2, we verify with high precision the prediction D=5/4, where the number of steps n after erasure scales with the number N of steps before erasure as n˜ N D/2. In d=3 we again find a power law, but with an exponent different from the one found in the most precise previous simulations: D=1.6236±0.0004. Finally, we see clear deviations from the naive scaling n˜ N in d=4. While they agree only qualitatively with the leading logarithmic corrections predicted by several authors, their agreement with the two-loop prediction is nearly perfect.

  10. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  11. Renormalization scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM.

    PubMed

    Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W

    Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.

  12. Oriented matroids—combinatorial structures underlying loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Brunnemann, Johannes; Rideout, David

    2010-10-01

    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator (Ashtekar A and Lewandowski J 1998 Adv. Theor. Math. Phys. 1 388) in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in three-dimensional Riemannian space and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)). Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence, the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of Brunnemann and Rideout (2008 Class. Quantum Grav. 25 065001 and 065002), and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3 (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)), and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.

  13. Speed-Accuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical Control Loops

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Crump, Matthew J. C.; Logan, Gordon D.

    2013-01-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer-…

  14. Field theoretic approach to roughness corrections

    NASA Astrophysics Data System (ADS)

    Wu, Hua Yao; Schaden, Martin

    2012-02-01

    We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.

  15. Bayesian, maximum parsimony and UPGMA models for inferring the phylogenies of antelopes using mitochondrial markers.

    PubMed

    Khan, Haseeb A; Arif, Ibrahim A; Bahkali, Ali H; Al Farhan, Ahmad H; Al Homaidan, Ali A

    2008-10-06

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65%) followed by cyt-b (94.22%) and d-loop (87.29%). There were few transitions (2.35%) and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions) and d-loop (11.57% transitions and 1.14% transversions) while comparing the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx) to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella) with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers.

  16. Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers

    PubMed Central

    Khan, Haseeb A.; Arif, Ibrahim A.; Bahkali, Ali H.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.

    2008-01-01

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65%) followed by cyt-b (94.22%) and d-loop (87.29%). There were few transitions (2.35%) and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions) and d-loop (11.57% transitions and 1.14% transversions) while comparing the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx) to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella) with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers. PMID:19204824

  17. Radiative corrections to quantum sticking on graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Clougherty, Dennis P.

    2017-07-01

    We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method (SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED. The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane. We find that for micromembranes (sizes ranging 100 nm to 10 μ m ), the latter three methods give results that are in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.

  18. RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription

    PubMed Central

    Huang, Xuhui; Wang, Dong; Weiss, Dahlia R.; Bushnell, David A.; Kornberg, Roger D.; Levitt, Michael

    2010-01-01

    A structurally conserved element, the trigger loop, has been suggested to play a key role in substrate selection and catalysis of RNA polymerase II (pol II) transcription elongation. Recently resolved X-ray structures showed that the trigger loop forms direct interactions with the β-phosphate and base of the matched nucleotide triphosphate (NTP) through residues His1085 and Leu1081, respectively. In order to understand the role of these two critical residues in stabilizing active site conformation in the dynamic complex, we performed all-atom molecular dynamics simulations of the wild-type pol II elongation complex and its mutants in explicit solvent. In the wild-type complex, we found that the trigger loop is stabilized in the “closed” conformation, and His1085 forms a stable interaction with the NTP. Simulations of point mutations of His1085 are shown to affect this interaction; simulations of alternative protonation states, which are inaccessible through experiment, indicate that only the protonated form is able to stabilize the His1085-NTP interaction. Another trigger loop residue, Leu1081, stabilizes the incoming nucleotide position through interaction with the nucleotide base. Our simulations of this Leu mutant suggest a three-component mechanism for correctly positioning the incoming NTP in which (i) hydrophobic contact through Leu1081, (ii) base stacking, and (iii) base pairing work together to minimize the motion of the incoming NTP base. These results complement experimental observations and provide insight into the role of the trigger loop on transcription fidelity. PMID:20798057

  19. The relative vertex clustering value - a new criterion for the fast discovery of functional modules in protein interaction networks

    PubMed Central

    2015-01-01

    Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691

  20. THE LITTLEST HIGGS MODEL AND ONE-LOOP ELECTROWEAK PRECISION CONSTRAINTS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHEN, M.C.; DAWSON,S.

    2004-06-16

    We present in this talk the one-loop electroweak precision constraints in the Littlest Higgs model, including the logarithmically enhanced contributions from both fermion and scalar loops. We find the one-loop contributions are comparable to the tree level corrections in some regions of parameter space. A low cutoff scale is allowed for a non-zero triplet VEV. Constraints on various other parameters in the model are also discussed. The role of triplet scalars in constructing a consistent renormalization scheme is emphasized.

  1. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions

    NASA Astrophysics Data System (ADS)

    Netz, R. R.; Orland, H.

    2000-02-01

    We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.

  2. Higgs bosons with large transverse momentum at the LHC

    NASA Astrophysics Data System (ADS)

    Kudashkin, Kirill; Lindert, Jonas M.; Melnikov, Kirill; Wever, Christopher

    2018-07-01

    We compute the next-to-leading order QCD corrections to the production of Higgs bosons with large transverse momentum p⊥ ≫ 2mt at the LHC. To accomplish this, we combine the two-loop amplitudes for processes gg → Hg, qg → Hq and q q bar → Hg, recently computed in the approximation of nearly massless top quarks, with the numerical calculation of the squared one-loop amplitudes for gg → Hgg, qg → Hqg and q q bar → Hgg processes. The latter computation is performed with OpenLoops. We find that the QCD corrections to the Higgs transverse momentum distribution at very high p⊥ are large but quite similar to the QCD corrections obtained for point-like Hgg coupling. Our result removes one of the largest sources of theoretical uncertainty in the description of high-p⊥ Higgs boson production and opens a way to use the high-p⊥ region to search for physics beyond the Standard Model.

  3. Integrated source and channel encoded digital communication system design study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  4. A Many-Body Formalism of ΔSCF Approach for Simulating X-Ray Spectra from First-Principles

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter; Shirley, Eric; Prendegast, David

    Accurately reproducing X-ray spectral fingerprints for materials characterization relies heavily on how to correctly model the many-electron response to the generation of an X-ray core hole. In this talk, we present a novel first-principles theory for simulating X-ray spectra that is based on many-electron wavefunctions. The proposed theory go beyond the electron-hole correlations within the Bethe-Saltpeter Equation and consider higher-order vertex corrections up to the level of Mahan-Noziéres-De Dominicis (MND) theory. An efficient algorithm is invented to incorporate these many-electron processes by using linear algebra rather than iterating over all Feynman diag United States Department of Energy under Contact No. DE-AC02-05CH11231, No. DE-SC0004993.

  5. Electronic thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.; Shvaika, A. M.

    2007-01-01

    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.

  6. Binary phase lock loops for simplified OMEGA receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1974-01-01

    A sampled binary phase lock loop is proposed for periodically correcting OMEGA receiver internal clocks. The circuit is particularly simple to implement and provides a means of generating long range 3.4 KHz difference frequency lanes from simultaneous pair measurements.

  7. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    Initial optical communications experiments with a Vertex polished aluminum panel have been described. The polished panel was mounted on the main reflector of the DSN's research antenna at DSS-13. The PSF was recorded via remotely controlled digital camera mounted on the subreflector structure. Initial PSF generated by Jupiter showed significant tilt error and some mechanical deformation. After upgrades, the PSF improved significantly, leading to much better concentration of light. Communications performance of the initial and upgraded panel structure were compared. After the upgrades, simulated PPM symbol error probability decreased by six orders of magnitude. Work is continuing to demonstrate closed-loop tracking of sources from zenith to horizon, and better characterize communications performance in realistic daytime background environments.

  8. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Tlalpa, A.; Montano, J.; Ramirez-Zavaleta, F.

    We perform a complete calculation at the one-loop level for the Zggg and Z{sup '}ggg couplings in the context of the minimal 331 model, which predicts the existence of a new Z{sup '} gauge boson and new exotic quarks. Bose symmetry is exploited to write a compact and manifest SU{sub C}(3)-invariant vertex function for the Vggg (V=Z, Z{sup '}) coupling. Previous results on the Z{yields}ggg decay in the standard model are reproduced. It is found that this decay is insensitive to the effects of the new exotic quarks. This in contrast with the Z{sup '}{yields}ggg decay, which is sensitive tomore » both the standard model and exotic quarks, whose branching ratio is larger than that of the Z{yields}ggg transition by about a factor of 4.« less

  10. Closed loop adaptive optics for microscopy without a wavefront sensor.

    PubMed

    Kner, Peter; Winoto, Lukman; Agard, David A; Sedat, John W

    2010-02-24

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

  11. R 4 couplings in M- and type II theories on Calabi-Yau spaces

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.; Feffara, S.; Minasian, R.; Narain, K. S.

    1997-02-01

    We discuss several implications of R 4 couplings in M-theory when compactified on Calabi-Yau (CY) manifolds. In particular, these couplings can be predicted by supersymmetry from the mixed gauge-gravitational Chem-Simons couplings in five dimensions and are related to the one-loop holomorphic anomaly in four-dimensional N = 2 theories. We find a new contribution to the Einstein term in five dimensions proportional to the Euler number of the internal CY threefold, which corresponds to a one-loop correction of the hypermultiplet geometry. This correction is reproduced by a direct computation in type 11 string theories. Finally, we discuss a universal non-perturbative correction to the type IIB hyper-metric.

  12. Search for C=+ charmonium and bottomonium states in e{sup +}e{sup -}{yields}{gamma}+ X at B factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Chao Kuangta; He Zhiguo

    2009-12-01

    We study the production of C=+ charmonium states X in e{sup +}e{sup -}{yields}{gamma}+X at B factories with X={eta}{sub c}(nS) (n=1, 2, 3), {chi}{sub cJ}(mP) (m=1, 2), and {sup 1}D{sub 2}(1D). In the S- and P-wave case, contributions of QED with one-loop QCD corrections are calculated within the framework of nonrelativistic QCD (NRQCD), and in the D-wave case only the QED contribution is considered. We find that in most cases the one-loop QCD corrections are negative and moderate, in contrast to the case of double charmonium production e{sup +}e{sup -}{yields}J/{psi}+X, where one-loop QCD corrections are positive and large in most cases.more » We also find that the production cross sections of some of these states in e{sup +}e{sup -}{yields}{gamma}+X are larger than that in e{sup +}e{sup -}{yields}J/{psi}+X by an order of magnitude even after the negative one-loop QCD corrections are included. We then argue that search for the X(3872), X(3940), Y(3940), and X(4160) in e{sup +}e{sup -}{yields}{gamma}+X at B factories may be helpful to clarify the nature of these states. For completeness, the production of bottomonium states in e{sup +}e{sup -} annihilation is also discussed.« less

  13. Locking mechanisms in degree-4 vertex origami structures

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  14. New multigrid approach for three-dimensional unstructured, adaptive grids

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Vijayan; Kallinderis, Y.

    1994-01-01

    A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.

  15. TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis

    NASA Technical Reports Server (NTRS)

    Heidmann, James D. (Technical Monitor); Rigby, David L.

    2004-01-01

    A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.

  16. Evaluating Multi-core Architectures through Accelerating the Three-Dimensional Lax–Wendroff Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2014-07-18

    Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less

  17. QSPR modeling: graph connectivity indices versus line graph connectivity indices

    PubMed

    Basak; Nikolic; Trinajstic; Amic; Beslo

    2000-07-01

    Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.

  18. Nonlinear response from transport theory and quantum field theory at finite temperature

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Defu, Hou; Kobes, R.

    2001-07-01

    We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.

  19. Graphs and Enhancing Maple Multiplication.

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2002-01-01

    Description of a technique in Maple programming language that automatically prints all paths of any desired length along with the name of each vertex, proceeding in order from the beginning vertex to the ending vertex for a given graph. (Author/MM)

  20. Anomaly free cosmological perturbations with generalised holonomy correction in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Han, Yu; Liu, Molin

    2018-05-01

    In the spatially flat case of loop quantum cosmology, the connection is usually replaced by the holonomy in effective theory. In this paper, instead of the standard scheme, we use a generalised, undetermined function to represent the holonomy and by using the approach of anomaly free constraint algebra we fix all the counter terms in the constraints and find the restriction in the form of , then we derive the gauge-invariant equations of motion of the scalar, tensor and vector perturbations and study the inflationary power spectra with generalised holonomy correction.

  1. NNLO computational techniques: The cases H→γγ and H→gg

    NASA Astrophysics Data System (ADS)

    Actis, Stefano; Passarino, Giampiero; Sturm, Christian; Uccirati, Sandro

    2009-04-01

    A large set of techniques needed to compute decay rates at the two-loop level are derived and systematized. The main emphasis of the paper is on the two Standard Model decays H→γγ and H→gg. The techniques, however, have a much wider range of application: they give practical examples of general rules for two-loop renormalization; they introduce simple recipes for handling internal unstable particles in two-loop processes; they illustrate simple procedures for the extraction of collinear logarithms from the amplitude. The latter is particularly relevant to show cancellations, e.g. cancellation of collinear divergencies. Furthermore, the paper deals with the proper treatment of non-enhanced two-loop QCD and electroweak contributions to different physical (pseudo-)observables, showing how they can be transformed in a way that allows for a stable numerical integration. Numerical results for the two-loop percentage corrections to H→γγ,gg are presented and discussed. When applied to the process pp→gg+X→H+X, the results show that the electroweak scaling factor for the cross section is between -4% and +6% in the range 100 GeV

  2. On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model

    DOE PAGES

    Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona

    2016-07-21

    Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less

  3. From the trees to the forest: a review of radiative neutrino mass models

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Herrero García, Juan; Schmidt, Michael A.; Vicente, Avelino; Volkas, Raymond R.

    2017-12-01

    A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.

  4. Antisymmetric Wilson loops in N = 4 SYM beyond the planar limit

    NASA Astrophysics Data System (ADS)

    Gordon, James

    2018-01-01

    We study the 1/2 -BPS circular Wilson loop in the totally antisymmetric representation of the gauge group in N = 4 supersymmetric Yang-Mills. This observable is captured by a Gaussian matrix model with appropriate insertion. We compute the first 1 /N correction at leading order in 't Hooft coupling by means of the matrix model loop equations. Disagreement with the 1-loop effective action of the holographically dual D5-brane suggests the need to account for gravitational backreaction on the string theory side.

  5. The growth rate of vertex-transitive planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babai, L.

    1997-06-01

    A graph is vertex-transitive if all of its vertices axe equivalent under automorphisms. Confirming a conjecture of Jon Kleinberg and Eva Tardos, we prove the following trichotomy theorem concerning locally finite vertex-transitive planar graphs: the rate of growth of a graph with these properties is either linear or quadratic or exponential. The same result holds more generally for locally finite, almost vertex-transitive planar graphs (the automorphism group has a finite number of orbits). The proof uses the elements of hyperbolic plane geometry.

  6. The vertex operator for a generalization of MacMahon’s formula

    NASA Astrophysics Data System (ADS)

    Cai, Liqiang; Wang, Lifang; Wu, Ke; Yang, Jie

    2015-10-01

    We provide a vertex operator realization for a two-parameter generalization of MacMahon’s formula introduced by M. Vuletić [Trans. Amer. Math. Soc. 361, 2789 (2009)]. Since the generalized MacMahon function is the kernel function of some Macdonald symmetric function, we consider the action of two vertex operators on a state corresponding to a Macdonald symmetric function. It becomes evident that the vertex operators appear to be the creation and annihilation operators, respectively on the state.

  7. Locating domination number of m-shadowing of graphs

    NASA Astrophysics Data System (ADS)

    Dafik; Hesti Agustin, Ika; Rizki Albirri, Ermita; Alfarisi, Ridho; Prihandini, R. M.

    2018-04-01

    Let G = (V, E) be a connected, undirected and simple graph. We define a set D as a dominating set if for every vertex u\\in V-D is adjacent to some vertex v\\in D. The domination number γ (G) is the minimum cardinality of dominating set. A vertex set D in graph G = (V, E) is called locating dominating set if for every pair of different vertex u and v in V(G) ‑ D which occupies \\rlap{/}{0}\

  8. Preparation and measurement of three-qubit entanglement in a superconducting circuit.

    PubMed

    Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J

    2010-09-30

    Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.

  9. QCD corrections to ZZ production in gluon fusion at the LHC

    DOE PAGES

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...

    2015-11-23

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  10. TeV scale dark matter and electroweak radiative corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-08-15

    Recent anomalies in cosmic rays data, namely, from the PAMELA Collaboration, can be interpreted in terms of TeV scale decaying/annihilating dark matter. We analyze the impact of radiative corrections coming from the electroweak sector of the standard model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We find electroweak corrections that are relevant, but not as big as sometimes found in the literature; we relate this mismatch to the issue ofmore » gauge invariance. At scales much higher than the symmetry breaking scale, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Monte Carlo models aiming at the description of TeV scale physics.« less

  11. Top-quark loops and the muon anomalous magnetic moment

    DOE PAGES

    Czarnecki, Andrzej; Marciano, William J.

    2017-12-07

    The current status of electroweak radiative corrections to the muon anomalous magnetic moment is discussed. Asymptotic expansions for some important electroweak two-loop top quark triangle diagrams are illustrated and extended to higher order. Results are compared with the more general integral representation solution for generic fermion triangle loops coupled to pseudoscalar and scalar bosons of arbitrary mass. Furthermore, excellent agreement is found for a broader than expected range of mass parameters.

  12. Vertex Space Analysis for Model-Based Target Recognition.

    DTIC Science & Technology

    1996-08-01

    performed in our unique invariant representation, Vertex Space, that reduces both the dimensionality and size of the required search space. Vertex Space ... mapping results in a reduced representation that serves as a characteristic target signature which is invariant to four of the six viewing geometry

  13. Higgs boson gluon-fusion production in QCD at three loops.

    PubMed

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard

    2015-05-29

    We present the cross section for the production of a Higgs boson at hadron colliders at next-to-next-to-next-to-leading order (N^{3}LO) in perturbative QCD. The calculation is based on a method to perform a series expansion of the partonic cross section around the threshold limit to an arbitrary order. We perform this expansion to sufficiently high order to obtain the value of the hadronic cross at N^{3}LO in the large top-mass limit. For renormalization and factorization scales equal to half the Higgs boson mass, the N^{3}LO corrections are of the order of +2.2%. The total scale variation at N^{3}LO is 3%, reducing the uncertainty due to missing higher order QCD corrections by a factor of 3.

  14. Vector-Boson Fusion Higgs Production at Three Loops in QCD.

    PubMed

    Dreyer, Frédéric A; Karlberg, Alexander

    2016-08-12

    We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

  15. Five-dimensional gauge theory and compactification on a torus

    NASA Astrophysics Data System (ADS)

    Haghighat, Babak; Vandoren, Stefan

    2011-09-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.

  16. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  17. Gluon-fusion Higgs production in the Standard Model Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Deutschmann, Nicolas; Duhr, Claude; Maltoni, Fabio; Vryonidou, Eleni

    2017-12-01

    We provide the complete set of predictions needed to achieve NLO accuracy in the Standard Model Effective Field Theory at dimension six for Higgs production in gluon fusion. In particular, we compute for the first time the contribution of the chromomagnetic operator {\\overline{Q}}_LΦ σ {q}_RG at NLO in QCD, which entails two-loop virtual and one-loop real contributions, as well as renormalisation and mixing with the Yukawa operator {Φ}^{\\dagger}Φ{\\overline{Q}}_LΦ {q}_R and the gluon-fusion operator Φ†Φ GG. Focusing on the top-quark-Higgs couplings, we consider the phenomenological impact of the NLO corrections in constraining the three relevant operators by implementing the results into the M adG raph5_ aMC@NLO frame-work. This allows us to compute total cross sections as well as to perform event generation at NLO that can be directly employed in experimental analyses.

  18. Spin-foam models and the physical scalar product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alesci, Emanuele; Centre de Physique Theorique de Luminy, Universite de la Mediterranee, F-13288 Marseille; Noui, Karim

    2008-11-15

    This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl({gamma}), where {gamma} is the four-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P should be the so-called ''projector'' into physical statesmore » and its matrix elements should give the physical scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.« less

  19. Regge meets collinear in strongly-coupled N=4 super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Sprenger, Martin

    2017-01-01

    We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in [1], which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.

  20. Minimum triplet covers of binary phylogenetic X-trees.

    PubMed

    Huber, K T; Moulton, V; Steel, M

    2017-12-01

    Trees with labelled leaves and with all other vertices of degree three play an important role in systematic biology and other areas of classification. A classical combinatorial result ensures that such trees can be uniquely reconstructed from the distances between the leaves (when the edges are given any strictly positive lengths). Moreover, a linear number of these pairwise distance values suffices to determine both the tree and its edge lengths. A natural set of pairs of leaves is provided by any 'triplet cover' of the tree (based on the fact that each non-leaf vertex is the median vertex of three leaves). In this paper we describe a number of new results concerning triplet covers of minimum size. In particular, we characterize such covers in terms of an associated graph being a 2-tree. Also, we show that minimum triplet covers are 'shellable' and thereby provide a set of pairs for which the inter-leaf distance values will uniquely determine the underlying tree and its associated branch lengths.

  1. Theoretical Studies of the Interface Electronic Properties of Tetrahedrally Coordinated Semiconductors.

    DTIC Science & Technology

    1987-09-29

    PAGE l. REPOR 1b. RESTRICTIVE MARKINGS N/A 2& ECU AD A 1 7 23. DISTRIBUTION/A VAI LAB]ILITY OF REP RSA16 N/A 2b. DECLASSiFICATION/OOW~ir~u- E E N/A 0...ADDRESS (City. State and ZIP Code) DEPARTMENT OF MATERIALS SCIENCE 800 NORTH QUINCY STREET LOS ANGELES, CA 90089-0241 ARLINGTON, VA 22217 e . NAME OF...vertex correction for the electron-phonon interaction in a 2D e - gas goes like, ?(i) 0 ( X" (.&°/EF)P/ 2 where /. is the dimensionless coupling strength

  2. Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity.

    PubMed

    Wohlert, A B

    1993-10-01

    Cortical preparation for movement is reflected in the readiness potential (RP) waveform preceding voluntary limb movements. In the case of oral movements, the RP may be affected by the complexity or linguistic nature of the tasks. In this experiment, EEG potentials before a nonspeech task (lip pursing), a speech-like task (lip rounding), and single word production were recorded from scalp electrodes placed at the cranial vertex (Cz) and over the left and right motor strips (C3' and C4'). Seven right-handed female subjects produced at least 70 repetitions of the three tasks, in each of five repeated sessions. EEG records were averaged with respect to EMG onset at the lip. The word task, as opposed to the other tasks, was associated with greater negative amplitude in the RP waveform at the vertex site. Differences between the waveforms recorded at the right- and left-hemisphere sites were insignificant. Although intersubject variability was high, individuals had relatively stable patterns of response across sessions. Results suggest that the RP recorded at the vertex site is sensitive to changes in task complexity. The RP did not reflect lateralized activity indicative of hemispheric dominance.

  3. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  4. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.

    PubMed

    Wu, Yifei; Thibos, Larry N; Candy, T Rowan

    2018-05-07

    Eccentric photorefraction and Purkinje image tracking are used to estimate refractive state and eye position simultaneously. Beyond vision screening, they provide insight into typical and atypical visual development. Systematic analysis of the effect of refractive error and spectacles on photorefraction data is needed to gauge the accuracy and precision of the technique. Simulation of two-dimensional, double-pass eccentric photorefraction was performed (Zemax). The inward pass included appropriate light sources, lenses and a single surface pupil plane eye model to create an extended retinal image that served as the source for the outward pass. Refractive state, as computed from the luminance gradient in the image of the pupil captured by the model's camera, was evaluated for a range of refractive errors (-15D to +15D), pupil sizes (3 mm to 7 mm) and two sets of higher-order monochromatic aberrations. Instrument calibration was simulated using -8D to +8D trial lenses at the spectacle plane for: (1) vertex distances from 3 mm to 23 mm, (2) uncorrected and corrected hyperopic refractive errors of +4D and +7D, and (3) uncorrected and corrected astigmatism of 4D at four different axes. Empirical calibration of a commercial photorefractor was also compared with a wavefront aberrometer for human eyes. The pupil luminance gradient varied linearly with refractive state for defocus less than approximately 4D (5 mm pupil). For larger errors, the gradient magnitude saturated and then reduced, leading to under-estimation of refractive state. Additional inaccuracy (up to 1D for 8D of defocus) resulted from spectacle magnification in the pupil image, which would reduce precision in situations where vertex distance is variable. The empirical calibration revealed a constant offset between the two clinical instruments. Computational modelling demonstrates the principles and limitations of photorefraction to help users avoid potential measurement errors. Factors that could cause clinically significant errors in photorefraction estimates include high refractive error, vertex distance and magnification effects of a spectacle lens, increased higher-order monochromatic aberrations, and changes in primary spherical aberration with accommodation. The impact of these errors increases with increasing defocus. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.

  5. The singular behavior of one-loop massive QCD amplitudes with one external soft gluon

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander

    2012-03-01

    We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.

  6. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  7. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  8. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  9. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence.

    PubMed

    Jones, S P; Kerner, M; Luisoni, G

    2018-04-20

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  10. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  11. Directional errors of movements and their correction in a discrete tracking task. [pilot reaction time and sensorimotor performance

    NASA Technical Reports Server (NTRS)

    Jaeger, R. J.; Agarwal, G. C.; Gottlieb, G. L.

    1978-01-01

    Subjects can correct their own errors of movement more quickly than they can react to external stimuli by using three general categories of feedback: (1) knowledge of results, primarily visually mediated; (2) proprioceptive or kinaesthetic such as from muscle spindles and joint receptors, and (3) corollary discharge or efference copy within the central nervous system. The effects of these feedbacks on simple reaction time, choice reaction time, and error correction time were studied in four normal human subjects. The movement used was plantarflexion and dorsiflexion of the ankle joint. The feedback loops were modified, by changing the sign of the visual display to alter the subject's perception of results, and by applying vibration at 100 Hz simultaneously to both the agonist and antagonist muscles of the ankle joint. The central processing was interfered with when the subjects were given moderate doses of alcohol (blood alcohol concentration levels of up to 0.07%). Vibration and alcohol increase both the simple and choice reaction times but not the error correction time.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novales-Sanchez, H.; Toscano, J. J.; Rosado, A.

    In this paper, we review the search of possible physics effects beyond the standard model on the electromagnetic charge and anapole form factors, f{sub Q}(q{sup 2}) and f{sub A}(q{sup 2}), for a no massive Dirac neutrino, when these quantities are calculated in the frame of an effective electroweak Yang-Mills theory, which induces the most general SU{sub L}(2)-invariant Lorentz tensor structure of nonrenormalizable type for the WW{gamma} vertex. We found that in this frame, besides the standard model contribution, the additional contribution to f{sub Q}(q{sup 2}) and f{sub A}(q{sup 2}) (f{sub Q}{sup O{sub W}}(q{sup 2}) and f{sub A}{sup O{sub W}}(q{sup 2}),more » respectively) are gauge independent and finite functions of q{sup 2} after adopting a renormalization scheme. These form factors, f{sub Q}{sup O{sub W}}(q{sup 2}) and f{sub A}{sup O{sub W}}(q{sup 2}), get contribution at the one loop level only from the proper neutrino electromagnetic vertex. Besides, the relation f{sub Q}{sup eff}(q{sup 2}) = q{sup 2}f{sub A}{sup eff}(q{sup 2})(f{sub Q}{sup eff}(q{sup 2}) = f{sub Q}{sup SM}(q{sup 2})+f{sub Q}{sup O{sub W}}(q{sup 2}),f{sub A}{sup eff}(q{sup 2}) = f{sub A}{sup SM}(q{sup 2})+f{sub A}{sup O{sub W}}(q{sup 2})) is still fulfilled and hence the relation a{sub v}{sup eff} = {sup eff}/6(a{sub v}{sup eff} = a{sub v}{sup SM}+a{sub v}{sup O{sub W}},{sup eff} = {sup SM}+{sup O{sub W}}) is obtained, just as in the SM. Using the experimental constraint on the anomalous WW{gamma} vertex, a value for the additional contribution to the charge radius of Double-Vertical-Line {sup O{sub W}} Double-Vertical-Line Less-Than-Or-Equivalent-To 10{sup -34} cm{sup 2} is gotten, which is one order of magnitude lower than the SM value.« less

  13. Multi-link laser interferometer architecture for a next generation GRACE

    NASA Astrophysics Data System (ADS)

    Francis, Samuel Peter

    When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. (Abstract shortened by ProQuest.).

  14. Layer-by-layer growth of vertex graph of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-09-01

    The growth form for the vertex graph of Penrose tiling is found to be a regular decagon. The lower and upper bounds for this form, coinciding with it, are strictly proven. A fractal character of layer-by-layer growth is revealed for some subgraphs of the vertex graph of Penrose tiling.

  15. Orthopositronium decay form factors and two-photon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkins, Gregory S.; Droz, Daniel R.; Rastawicki, Dominik

    2010-04-15

    We give results for the orthopositronium decay form factors through one-loop order. We use the form factors to calculate momentum correlations of the final-state photons and , including one-loop corrections, for ensembles of initial orthopositronium atoms having arbitrary polarization.

  16. A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data.

    PubMed

    Rangan, Aaditya V; McGrouther, Caroline C; Kelsoe, John; Schork, Nicholas; Stahl, Eli; Zhu, Qian; Krishnan, Arjun; Yao, Vicky; Troyanskaya, Olga; Bilaloglu, Seda; Raghavan, Preeti; Bergen, Sarah; Jureus, Anders; Landen, Mikael

    2018-05-14

    A common goal in data-analysis is to sift through a large data-matrix and detect any significant submatrices (i.e., biclusters) that have a low numerical rank. We present a simple algorithm for tackling this biclustering problem. Our algorithm accumulates information about 2-by-2 submatrices (i.e., 'loops') within the data-matrix, and focuses on rows and columns of the data-matrix that participate in an abundance of low-rank loops. We demonstrate, through analysis and numerical-experiments, that this loop-counting method performs well in a variety of scenarios, outperforming simple spectral methods in many situations of interest. Another important feature of our method is that it can easily be modified to account for aspects of experimental design which commonly arise in practice. For example, our algorithm can be modified to correct for controls, categorical- and continuous-covariates, as well as sparsity within the data. We demonstrate these practical features with two examples; the first drawn from gene-expression analysis and the second drawn from a much larger genome-wide-association-study (GWAS).

  17. Generic calculation of two-body partial decay widths at the full one-loop level

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Liebler, Stefan; Staub, Florian

    2017-11-01

    We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.

  18. Reconstructing Unrooted Phylogenetic Trees from Symbolic Ternary Metrics.

    PubMed

    Grünewald, Stefan; Long, Yangjing; Wu, Yaokun

    2018-03-09

    Böcker and Dress (Adv Math 138:105-125, 1998) presented a 1-to-1 correspondence between symbolically dated rooted trees and symbolic ultrametrics. We consider the corresponding problem for unrooted trees. More precisely, given a tree T with leaf set X and a proper vertex coloring of its interior vertices, we can map every triple of three different leaves to the color of its median vertex. We characterize all ternary maps that can be obtained in this way in terms of 4- and 5-point conditions, and we show that the corresponding tree and its coloring can be reconstructed from a ternary map that satisfies those conditions. Further, we give an additional condition that characterizes whether the tree is binary, and we describe an algorithm that reconstructs general trees in a bottom-up fashion.

  19. RAVE—a Detector-independent vertex reconstruction toolkit

    NASA Astrophysics Data System (ADS)

    Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian

    2007-10-01

    A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".

  20. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-03-01

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less

  2. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.

    PubMed

    Oguri, Akira; Hewson, A C

    2018-03-23

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  3. Closed loop adaptive optics for microscopy without a wavefront sensor

    PubMed Central

    Kner, Peter; Winoto, Lukman; Agard, David A.; Sedat, John W.

    2013-01-01

    A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity. PMID:24392198

  4. Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC

    NASA Astrophysics Data System (ADS)

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu

    2017-10-01

    The process pp → μ +ν μ e+νejj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ +ν μ e+νejj final state should be preferably measured together.

  5. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, T.; Kapec, D.; Raclariu, A.

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  6. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE PAGES

    He, T.; Kapec, D.; Raclariu, A.; ...

    2017-08-16

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  7. A Single-Centre, Randomized, Double-Blind, Placebo-Controlled Clinical Trial to Investigate the Efficacy and Safety of Minoxidil Topical Foam in Frontotemporal and Vertex Androgenetic Alopecia in Men.

    PubMed

    Hillmann, Kathrin; Garcia Bartels, Natalie; Kottner, Jan; Stroux, Andrea; Canfield, Douglas; Blume-Peytavi, Ulrike

    2015-01-01

    5% minoxidil formulations twice daily are effective in treating vertex male androgenetic alopecia (AGA); however, efficacy and safety data in frontotemporal regions are lacking. To assess the efficacy of 5% minoxidil topical foam (5% MTF) in the frontotemporal region of male AGA patients after 24 weeks of treatment compared to placebo treatment and to the vertex region. Seventy males with moderate AGA applied 5% MTF or placebo foam (plaTF) twice daily for 24 weeks in frontotemporal and vertex regions. Target area non-vellus hair count (TAHC) was the primary end point. Frontotemporal and vertex TAHC and target area cumulative non-vellus hair width (TAHW) showed similar responses to 5% MTF with significant increases up to week 16 compared to baseline (p < 0.001). After 24 weeks of treatment, frontotemporal TAHW increased significantly in the 5% MTF group compared to the plaTF group (p = 0.017), while TAHC showed a similar non-significant increase from baseline in both regions. At 24 weeks, 5% MTF users rated a significant improvement in scalp coverage for the frontotemporal (p = 0.016) and vertex areas (p = 0.027). 5% MTF twice a day promotes hair density and width in both frontotemporal and vertex regions in men with moderate stages of AGA. © 2015 S. Karger AG, Basel.

  8. Long distance quantum communication using quantum error correction

    NASA Technical Reports Server (NTRS)

    Gingrich, R. M.; Lee, H.; Dowling, J. P.

    2004-01-01

    We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.

  9. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2018-05-31

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  10. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  11. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  12. LBSizeCleav: improved support vector machine (SVM)-based prediction of Dicer cleavage sites using loop/bulge length.

    PubMed

    Bao, Yu; Hayashida, Morihiro; Akutsu, Tatsuya

    2016-11-25

    Dicer is necessary for the process of mature microRNA (miRNA) formation because the Dicer enzyme cleaves pre-miRNA correctly to generate miRNA with correct seed regions. Nonetheless, the mechanism underlying the selection of a Dicer cleavage site is still not fully understood. To date, several studies have been conducted to solve this problem, for example, a recent discovery indicates that the loop/bulge structure plays a central role in the selection of Dicer cleavage sites. In accordance with this breakthrough, a support vector machine (SVM)-based method called PHDCleav was developed to predict Dicer cleavage sites which outperforms other methods based on random forest and naive Bayes. PHDCleav, however, tests only whether a position in the shift window belongs to a loop/bulge structure. In this paper, we used the length of loop/bulge structures (in addition to their presence or absence) to develop an improved method, LBSizeCleav, for predicting Dicer cleavage sites. To evaluate our method, we used 810 empirically validated sequences of human pre-miRNAs and performed fivefold cross-validation. In both 5p and 3p arms of pre-miRNAs, LBSizeCleav showed greater prediction accuracy than PHDCleav did. This result suggests that the length of loop/bulge structures is useful for prediction of Dicer cleavage sites. We developed a novel algorithm for feature space mapping based on the length of a loop/bulge for predicting Dicer cleavage sites. The better performance of our method indicates the usefulness of the length of loop/bulge structures for such predictions.

  13. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  14. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  15. Can a pseudo-Nambu-Goldstone Higgs lead to symmetry non-restoration?

    NASA Astrophysics Data System (ADS)

    Kilic, Can; Swaminathan, Sivaramakrishnan

    2016-01-01

    The calculation of finite temperature contributions to the scalar potential in a quantum field theory is similar to the calculation of loop corrections at zero temperature. In natural extensions of the Standard Model where loop corrections to the Higgs potential cancel between Standard Model degrees of freedom and their symmetry partners, it is interesting to contemplate whether finite temperature corrections also cancel, raising the question of whether a broken phase of electroweak symmetry may persist at high temperature. It is well known that this does not happen in supersymmetric theories because the thermal contributions of bosons and fermions do not cancel each other. However, for theories with same spin partners, the answer is less obvious. Using the Twin Higgs model as a benchmark, we show that although thermal corrections do cancel at the level of quadratic divergences, subleading corrections still drive the system to a restored phase. We further argue that our conclusions generalize to other well-known extensions of the Standard Model where the Higgs is rendered natural by being the pseudo-Nambu-Goldstone mode of an approximate global symmetry.

  16. Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders

    NASA Astrophysics Data System (ADS)

    Chen, Du-Xing; Pardo, Enric; Zhu, Yong-Hong; Xiang, Li-Xiong; Ding, Jia-Quan

    2018-03-01

    A technique is proposed for demagnetizing correction of the measured magnetization curve and hysteresis loop, i.e., the M∗ (Ha) curve, of a ferromagnetic cylinder into the true M (H) curve of the material, where Ha is the uniform applied field provided by a long solenoid and M∗ is the magnetization measured by a fluxmeter with the measuring coil surrounding the cylinder midplane. Different from ordinary demagnetizing correction by using a fixed demagnetizing factor, an (Ha,M∗) -dependent fluxmetric demagnetizing factor Nf (γ,χd) is used in this technique, where γ is the ratio of cylinder length to diameter, χd is the differential susceptibility on the corrected M (H) curve, and Nf (γ,χd) is approximated by accurately calculated Nf (γ, χ) of paramagnetic cylinders of the same γ and χ =χd . The validity of the technique is studied by comparing results for several samples of different lengths cut from the same cylinder. Such a demagnetizing correction is unambiguous but its success requires very high accuracy in the Nf determination and M∗ (Ha) measurements.

  17. Chiral symmetry breaking in quenched massive strong-coupling four-dimensional QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, F.T.; Williams, A.G.

    1995-03-15

    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched four-dimensional QED. The results are compared for three different fermion-photon proper vertex [ital Ansa]$[ital uml---tze]: bare [gamma][sup [mu

  18. Calculus students' understanding of the vertex of the quadratic function in relation to the concept of derivative

    NASA Astrophysics Data System (ADS)

    Burns-Childers, Annie; Vidakovic, Draga

    2018-07-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.

  19. Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron

    NASA Astrophysics Data System (ADS)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-12-01

    The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.

  20. Nuclear axial currents in chiral effective field theory

    DOE PAGES

    Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...

    2016-01-11

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less

  1. Two-loop top and bottom Yukawa corrections to the Higgs-boson masses in the complex MSSM

    NASA Astrophysics Data System (ADS)

    Paßehr, Sebastian; Weiglein, Georg

    2018-03-01

    Results for the two-loop corrections to the Higgs-boson masses of the MSSM with complex parameters of O{( α _t^2+α _tα _b+α _b^2) } from the Yukawa sector in the gauge-less limit are presented. The corresponding self-energies and their renormalization have been obtained in the Feynman-diagrammatic approach. The impact of the new contributions on the Higgs spectrum is investigated. Furthermore, a comparison with an existing result in the limit of the MSSM with real parameters is carried out. The new results will be included in the public code FeynHiggs.

  2. Two-loop self-energy in the Lamb shift of the ground and excited states of hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.

    2018-05-01

    The two-loop self-energy correction to the Lamb shift of hydrogenlike ions is calculated for the 1 s , 2 s , and 2 p1 /2 states and nuclear charge numbers Z =30 -100 . The calculation is performed to all orders in the nuclear binding strength parameter Z α . As compared to previous calculations of this correction, numerical accuracy is improved by an order of magnitude and the region of the nuclear charges is extended. An analysis of the Z dependence of the obtained results demonstrates their consistency with the known Z α -expansion coefficients.

  3. Towards apparent convergence in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Denz, T.; Pawlowski, J. M.; Reichert, M.

    2018-04-01

    The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to Λ , R, R^2 as well as R_{μ ν }^2 and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  5. Fetal presentation and successful twin vaginal delivery.

    PubMed

    Easter, Sarah Rae; Lieberman, Ellice; Carusi, Daniela

    2016-01-01

    Despite the demonstrated safety of a trial of labor for pregnancies with a vertex-presenting twin and clinical guidelines in support of this plan, the rate of planned cesarean delivery for twin pregnancies remains high. This high rate, as well as variation in cesarean rates for twin pregnancies across providers, may be influenced strongly by concern about delivery of the second twin, particularly when it is in a nonvertex presentation. There are limited data in the literature that has examined the impact of the position of the nonpresenting twin on successful vaginal delivery or maternal/neonatal morbidity. We hypothesized that nonvertex presentation of the second twin would be associated with lower rates of successful vaginal birth for those patients attempting labor. This institutional review board-approved, retrospective cohort study of women who labored with twin pregnancies in a single urban hospital from 2007-2011. We included women with vertex-presenting first twins at >32 weeks gestation without a contraindication to labor and excluded those with uterine scar or lethal fetal anomaly. Vaginal delivery rates were evaluated according to vertex or nonvertex presentation of the second twin at admission and again at delivery. Maternal and neonatal morbidities were evaluated separately. Logistic regression was used to control for multiple confounders. Seven hundred sixteen patients met the inclusion criteria; 349 patients (49%) underwent a trial of labor. This included 73% (296/406) of eligible vertex/vertex twins and 17% (53/310) eligible vertex/nonvertex twins (P < .01). When compared with laboring patients with vertex/vertex-presenting twins, those with vertex/nonvertex twins were younger (median age, 32 vs 33 years; P = .05), were more often multiparous (60% vs 43%; P = .02), and were less likely to have hypertension (13% vs 27%; P = .03). Eighty-five percent of patients with nonvertex second twins at admission delivered vaginally, compared with 70% of patients with vertex second twins (P = .02). After we controlled for confounders, the difference was not statistically significant (adjusted odds ratio, 2.10; 95% confidence interval, 0.93-4.73). In the subset of patients with nonvertex second twins at delivery, those who initiated labor had an 89% vaginal delivery rate, compared with a 56% rate for those who changed from vertex to nonvertex presentation during labor (adjusted odds ratio, 19.90; 95% confidence interval, 3.86-102.78). Labor induction and increasing provider years in practice were also significant positive predictors of vaginal birth when the second twin was nonvertex at delivery. Maternal and neonatal morbidity was low and similar between groups, although 8% of women with nonvertex second twins experienced cervical lacerations, compared with 1% with vertex second twins (P = .01). Patients with nonvertex second twins had comparable, if not higher, rates of vaginal delivery than their vertex-presenting counterparts. The higher rate of vaginal delivery with stable nonvertex lie and the association with labor induction and the physician's years in practice all suggest a role for provider selection and delivery planning. These findings and the observed 11% rate of intrapartum presentation change support vaginal delivery of the nonvertex second twin. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.

    PubMed

    Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri

    2009-01-20

    In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.

  7. Genus Ranges of 4-Regular Rigid Vertex Graphs

    PubMed Central

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2016-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395

  8. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR

    PubMed Central

    Bonner, Eric R.; D’Elia, John N.; Billips, Benjamin K.; Switzer, Robert L.

    2001-01-01

    The pyrimidine nucleotide biosynthesis (pyr) operon in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR protein binds in a uridine nucleotide-dependent manner to three attenuation sites at the 5′-end of pyr mRNA. PyrR binds an RNA-binding loop, allowing a terminator hairpin to form and repressing the downstream genes. The binding of PyrR to defined RNA molecules was characterized by a gel mobility shift assay. Titration indicated that PyrR binds RNA in an equimolar ratio. PyrR bound more tightly to the binding loops from the second (BL2 RNA) and third (BL3 RNA) attenuation sites than to the binding loop from the first (BL1 RNA) attenuation site. PyrR bound BL2 RNA 4–5-fold tighter in the presence of saturating UMP or UDP and 150- fold tighter with saturating UTP, suggesting that UTP is the more important co-regulator. The minimal RNA that bound tightly to PyrR was 28 nt long. Thirty-one structural variants of BL2 RNA were tested for PyrR binding affinity. Two highly conserved regions of the RNA, the terminal loop and top of the upper stem and a purine-rich internal bulge and the base pairs below it, were crucial for tight binding. Conserved elements of RNA secondary structure were also required for tight binding. PyrR protected conserved areas of the binding loop in hydroxyl radical footprinting experiments. PyrR likely recognizes conserved RNA sequences, but only if they are properly positioned in the correct secondary structure. PMID:11726695

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivasseau, Vincent, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property tomore » lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.« less

  10. Fe modified BaTiO{sub 3}: Influence of doping on ferroelectric property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh; Bisen, Supriya, E-mail: sbisen.sop@gmail.com; Jarabana, Kanaka Mahalakshmi

    2015-06-24

    We have investigate the ferroelectric property of Fe modified Barium Titanate (BaTiO{sub 3}) with possible tetragonal structure via solid state route was prepared. Modified sample of BaTi{sub 1−x}Fe{sub x}O{sub 3} (x=0.01, 0.02) were structural characterized by X-ray Diffraction (XRD) using a Bruker D8 Advance XRD instruments, the value of 2θ is in between 20° to 80°. Fourier transform infrared spectroscopy (FTIR) using a Bruker, vertex instruments has been performs to obtain Ti-O bonding in the modified sample; the region of wavenumber is from 4000 cm{sup −1} to 400 cm{sup −1}. P-E hysteresis loop measurements have been traced for different applied voltage- 100V,more » 300V and 500V.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda, J. I.; Ramirez-Zavaleta, F.; Tututi, E. S.

    The rare top quark couplings tu{sub i{gamma}} and tu{sub i{gamma}{gamma}} (u{sub i}=u, c) induced at the one-loop level by a flavor violating tu{sub i}H vertex are studied within the context of an effective Yukawa sector that incorporates SU{sub L}(2)xU{sub Y}(1)-invariant operators of up to dimension six. Data on the recently observed D{sup 0}-D{sup 0} mixing are employed to constrain the tu{sub i}H vertex, which is then used to predict the t{yields}u{sub i}H, t{yields}u{sub i{gamma}}, and t{yields}u{sub i{gamma}{gamma}} decays, as well as the {gamma}{gamma}{yields}tu{sub i}+tu{sub i} reaction in the context of the ILC. It is found that the t{yields}cH and t{yields}c{gamma}{gamma}more » decays can reach sizable branching ratios as high as 5x10{sup -3} and 10{sup -4}, respectively. As for the t{yields}c{gamma} decay, it can have a branching ratio of 5x10{sup -8} that is about 6 orders of magnitude larger than the standard model prediction, which, however, is still very small to be detected. As for tc production, it is found that, due to the presence of a resonant effect in the convoluted cross section {sigma}(e{sup +}e{sup -{yields}{gamma}{gamma}{yields}}tc+tc), about (0.5-2.7)x10{sup 3} tc events may be produced at the ILC for a value of the Higgs mass near to the top mass.« less

  12. Association between vaginal birth after cesarean delivery and primary cesarean delivery rates.

    PubMed

    Rosenstein, Melissa G; Kuppermann, Miriam; Gregorich, Steven E; Cottrell, Erika K; Caughey, Aaron B; Cheng, Yvonne W

    2013-11-01

    To estimate the association between vaginal birth after cesarean delivery (VBAC) rates and primary cesarean delivery rates in California hospitals. Hospital VBAC rates were calculated using birth certificate and discharge data from 2009, and hospitals were categorized by quartile of VBAC rate. Multivariable logistic regression analysis was performed to estimate the odds of cesarean delivery among low-risk nulliparous women with singleton pregnancies at term in vertex presentation (nulliparous term singleton vertex) by hospital VBAC quartile while controlling for many patient-level and hospital-level confounders. There were 468,789 term singleton births in California in 2009 at 255 hospitals, 125,471 of which were low-risk nulliparous term singleton vertex. Vaginal birth after cesarean delivery rates varied between hospitals, with a range of 0-44.6%. Rates of cesarean delivery among low-risk nulliparous term singleton vertex women declined significantly with increasing VBAC rate. When adjusted for maternal and hospital characteristics, low-risk nulliparous term singleton vertex women who gave birth in hospitals in the highest VBAC quartile had an odds ratio of 0.55 (95% confidence interval 0.46-0.66) of cesarean delivery compared with women at hospitals with the lowest VBAC rates. Each percentage point increase in a hospital's VBAC rate was associated with a 0.65% decrease in the low-risk nulliparous term singleton vertex cesarean delivery rate. Hospitals with higher rates of VBAC have lower rates of primary cesarean delivery among low-risk nulliparous women with singleton pregnancies at term in vertex presentation. II.

  13. The effectiveness of pendulum, K-loop, and distal jet distalization techniques in growing children and its effects on anchor unit: A comparative study.

    PubMed

    Marure, Pravinkumar S; Patil, Raju Umaji; Reddy, Sumitra; Prakash, Amit; Kshetrimayum, Nillachandra; Shukla, Rajeevkumar

    2016-01-01

    A common strategy to correct Class II malocclusions using a nonextraction protocol in children is to move the maxillary molars distally using molar distalization appliances, which usually derive their anchorage from maxillary premolars, causing mesialization of premolars and protrusion of incisors. To evaluate the skeletal, dental and soft tissue changes produced by three different distalizing appliances, namely, pendulum, K-loop, and distal jet appliances. Sixty-six children of mean age 14.13 years requiring molar distalization were divided into three groups: Group I (pendulum appliance), Group II (K-loop), and Group III (distal jet). Lateral cephalometric films were taken before and after 5 months of molar distalization and following cephalometric parameters were used to assess the effects of maxillary molar distalization, namely, anteroposterior skeletal (SNA/SNB/ANB), vertical skeletal (face height ratio/Frankfort-mandibular plane [FMA]/angle formed between Maxillary plane & Mandibular plane (MM)), interdental (overjet/overbite), maxillary dentoalveolar, and soft tissue parameters. There was no significant age difference between the three groups. In overall treatment changes among the three groups, the Anteroposterior skeletal changes were not statistically significant, vertically FMA angle increased by 1.79° ± 2.25° and overbite reduced by 2.38 ± 1.83 mm. The maxillary first molars were distalized by an average of 4.70 ± 3.01 mm (Upper 6 [U6] to pterygoid vertical [PTV]). The maxillary central incisor labial tipping increased to an average of 1.61 ± 2.73 mm and cant of upper lip increased by 3.40° ± 5.88° are statistically significant (P < 0.05). All three distalization techniques in growing children produced significant effects on anchor unit. There was an increase in FMA angle, significant bite opening, proclination of the maxillary incisors and increase in the cant of the upper lip.

  14. Hsc70-induced Changes in Clathrin-Auxilin Cage Structure Suggest a Role for Clathrin Light Chains in Cage Disassembly

    PubMed Central

    Young, Anna; Stoilova-McPhie, Svetla; Rothnie, Alice; Vallis, Yvonne; Harvey-Smith, Phillip; Ranson, Neil; Kent, Helen; Brodsky, Frances M; Pearse, Barbara M F; Roseman, Alan; Smith, Corinne J

    2013-01-01

    The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly. PMID:23710728

  15. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus

    NASA Astrophysics Data System (ADS)

    Jiang, Wen; Chang, Juan; Jakana, Joanita; Weigele, Peter; King, Jonathan; Chiu, Wah

    2006-02-01

    The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with ~90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.

  16. Multi-jet merged top-pair production including electroweak corrections

    NASA Astrophysics Data System (ADS)

    Gütschow, Christian; Lindert, Jonas M.; Schönherr, Marek

    2018-04-01

    We present theoretical predictions for the production of top-quark pairs in association with jets at the LHC including electroweak (EW) corrections. First, we present and compare differential predictions at the fixed-order level for t\\bar{t} and t\\bar{t}+ {jet} production at the LHC considering the dominant NLO EW corrections of order O(α_{s}^2 α ) and O(α_{s}^3 α ) respectively together with all additional subleading Born and one-loop contributions. The NLO EW corrections are enhanced at large energies and in particular alter the shape of the top transverse momentum distribution, whose reliable modelling is crucial for many searches for new physics at the energy frontier. Based on the fixed-order results we motivate an approximation of the EW corrections valid at the percent level, that allows us to readily incorporate the EW corrections in the MePs@Nlo framework of Sherpa combined with OpenLoops. Subsequently, we present multi-jet merged parton-level predictions for inclusive top-pair production incorporating NLO QCD + EW corrections to t\\bar{t} and t\\bar{t}+ {jet}. Finally, we compare at the particle-level against a recent 8 TeV measurement of the top transverse momentum distribution performed by ATLAS in the lepton + jet channel. We find very good agreement between the Monte Carlo prediction and the data when the EW corrections are included.

  17. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2017-08-01

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  18. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Shaoyang; Pennington, M. R.

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  19. Visualisation and graph-theoretic analysis of a large-scale protein structural interactome

    PubMed Central

    Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael

    2003-01-01

    Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933

  20. The role of the baryon junction in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Vance, Stephen Earl

    The non-perturbative nature of the conserved baryon number of nuclei is investigated by studying the role of the baryon junction in relativistic heavy-ion collisions. The junction, J, of a baryon originates in the Standard Model of Strong Interactions (QCD) and is the vertex which connects the color flux (Wilson) lines flowing from the three valence quarks. In high energy interactions, the baryon junction can play a dynamical role through the Regge exchange of junction states. We show that the junction exchange provides a natural mechanism for the transport of baryon number into the central rapidity region and has the remarkable ability to produce valence hyperons, including W- baryons. This mechanism is used to describe the observed baryon stopping and associated hyperon production in nucleus-nucleus collisions at the CERN SPS. We also show that junction - antijunction excitations or JJ loops provide a new mechanism for baryon pair production and lead to enhanced hyperon and antihyperon production. The combination of these two mechanisms is able to explain part of the anomalous hyperon production observed in Pb + Pb collisions at the SPS. Using the junction initial state dynamics, final state strangeness exchange interactions are shown to further enhance hyperon production and are proposed as an explanation of the remaining anomalous hyperon production. With larger phase space (higher energy) accessible at the newly constructed BNL RHIC facility, we propose that the observation of valence W- baryons in pp collisions will be a decisive observable to confirm the junction exchange picture of baryon number transport. In addition, we note that novel rapidity correlations between baryons and antibaryons of completely different quark flavors, like D++(uuu) and W+( ss s) , are predicted by the JJ loop mechanism. For numerical calculations of multiparticle observables associated with these junction mechanisms, we developed the HIJING/BB¯ nuclear event generator. HIJING/BB¯ was then coupled to the General Cascade Program (GCP) to study the role of the final state flavor changing interactions.

  1. Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele

    2017-10-20

    Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.

  2. Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shikha; Gellert, Martin; Yang, Wei

    2012-04-17

    DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flippedmore » out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.« less

  3. An Exploratory Study of Mothers' Perceptions of Acculturation within the Preschool Context. Working Paper. WR-523

    ERIC Educational Resources Information Center

    Lara-Cinisomo, Sandraluz; Thomas, Audrey Alforque

    2007-01-01

    This exploratory study examines the mother's perceptions of her preschooler's acculturation process, using qualitative methods to collect data from six Latino immigrant mothers about their own acculturation and that of their preschool child. Three patterns emerged: parallel dyadic acculturation, vertex dyadic acculturation, and intersegmented…

  4. On the symmetries of integrability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellon, M.; Maillard, J.M.; Viallet, C.

    1992-06-01

    In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less

  5. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.

    2017-04-01

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb-1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements. [Figure not available: see fulltext.

  6. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at $$ \\sqrt{s}=8 $$ TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb –1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured withmore » respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. Here, the measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements.« less

  7. The role of meson exchanges in light-by-light scattering

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2017-09-01

    We discuss the role of meson exchange mechanisms in γγ → γγ scattering. Several pseudoscalar (π0, η, η‧ (958), ηc (1 S), ηc (2 S)), scalar (f0 (500), f0 (980), a0 (980), f0 (1370), χc0 (1 P)) and tensor (f2 (1270), a2 (1320), f2‧ (1525), f2 (1565), a2 (1700)) mesons are taken into account. We consider not only s-channel but also for the first time t- and u-channel meson exchange amplitudes corrected for off-shell effects including vertex form factors. We find that, depending on not well known vertex form factors, the meson exchange amplitudes interfere among themselves and could interfere with fermion-box amplitudes and modify the resulting cross sections. The meson contributions are shown as a function of collision energy as well as angular distributions are presented. Interesting interference effects separately for light pseudoscalar, scalar and tensor meson groups are discussed. The meson exchange contributions may be potentially important in the context of a measurement performed recently in ultraperipheral collisions of heavy ions by the ATLAS collaboration. The light-by-light interactions could be studied in future in electron-positron collisions by the Belle II at SuperKEKB accelerator.

  8. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at $$ \\sqrt{s}=8 $$ TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-04-20

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb –1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured withmore » respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. Here, the measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements.« less

  9. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falewicz, R.; Rudawy, P.; Murawski, K.

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters ofmore » the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.« less

  10. Adams' Closed-Loop Concept of Learning and Motor Performance: It's Application in Behavioural Kinesiology and Patients Education in Rehabilitation.

    ERIC Educational Resources Information Center

    Olaogun, Matthew O. B.

    1986-01-01

    J. Adams' application of the closed-loop theory (involving feedback and correction) on human learning and motor performance is described. The theory's applicability to behavioral kinesiology (the science of human movement) is discussed in the context of physical therapy, stressing the importance of knowledge of results as a motivating factor.…

  11. Digital compensation techniques for the effects of time lag in closed-loop simulation using the 6 DOF motion system

    NASA Technical Reports Server (NTRS)

    Brown, R.

    1982-01-01

    Efforts are continued to develop digital filter compensation schemes for the correction of momentum gains observed in the closed loop simulation of the docking of two satellites using the 6 DOF motion system. Several filters that work well for small delays ( .100ms) and a non-preloaded probe are discussed.

  12. Track reconstruction in the inhomogeneous magnetic field for Vertex Detector of NA61/SHINE experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Merzlaya, Anastasia; NA61/SHINE Collaboration

    2017-01-01

    The heavy-ion programme of the NA61/SHINE experiment at CERN SPS is expanding to allow precise measurements of exotic particles with lifetime few hundred microns. A Vertex Detector for open charm measurements at the SPS is being constructed by the NA61/SHINE Collaboration to meet the challenges of high spatial resolution of secondary vertices and efficiency of track registration. This task is solved by the application of the coordinate sensitive CMOS Monolithic Active Pixel Sensors with extremely low material budget in the new Vertex Detector. A small-acceptance version of the Vertex Detector is being tested this year, later it will be expanded to a large-acceptance version. Simulation studies will be presented. A method of track reconstruction in the inhomogeneous magnetic field for the Vertex Detector was developed and implemented. Numerical calculations show the possibility of high precision measurements in heavy ion collisions of strange and multi strange particles, as well as heavy flavours, like charmed particles.

  13. Coevolution of Vertex Weights Resolves Social Dilemma in Spatial Networks.

    PubMed

    Shen, Chen; Chu, Chen; Guo, Hao; Shi, Lei; Duan, Jiangyan

    2017-11-09

    In realistic social system, the role or influence of each individual varies and adaptively changes in time in the population. Inspired by this fact, we thus consider a new coevolution setup of game strategy and vertex weight on a square lattice. In detail, we model the structured population on a square lattice, on which the role or influence of each individual is depicted by vertex weight, and the prisoner's dilemma game has been applied to describe the social dilemma of pairwise interactions of players. Through numerical simulation, we conclude that our coevolution setup can promote the evolution of cooperation effectively. Especially, there exists a moderate value of δ for each ε that can warrant an optimal resolution of social dilemma. For a further understanding of these results, we find that intermediate value of δ enables the strongest heterogeneous distribution of vertex weight. We hope our coevolution setup of vertex weight will provide new insight for the future research.

  14. Geometric interpretation of vertex operator algebras.

    PubMed Central

    Huang, Y Z

    1991-01-01

    In this paper, Vafa's approach to the formulation of conformal field theories is combined with the formal calculus developed in Frenkel, Lepowsky, and Meurman's work on the vertex operator construction of the Monster to give a geometric definition of vertex operator algebras. The main result announced is the equivalence between this definition and the algebraic one in the sense that the categories determined by these definitions are isomorphic. PMID:11607240

  15. NPSNET: Dynamic Terrain and Cultured Feature Depiction

    DTIC Science & Technology

    1992-09-01

    defaults. bridge(terrain *ptr, vertex pos, bridge mattype bmat ); This constructor takes only the pointer to the underlying terrain, a placement, and a...material to use for construction. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir); This constructor takes a terrain pointer, a...placement position, a material to use, and a direction to run. bridge(terrain *ptr, vertex pos, bridge-mattype bmat , float dir, float width, float height

  16. Note: Switching crosstalk on and off in Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polak, Leo, E-mail: l.polak@vu.nl; Wijngaarden, Rinke J.; Man, Sven de

    2014-04-15

    In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalkmore » has been eliminated.« less

  17. The 1-loop effective potential for the Standard Model in curved spacetime

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  18. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  19. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Hodges, Dewey H.

    1990-01-01

    A regular perturbation analysis is presented. Closed-loop simulations were performed with a first order correction including all of the atmospheric terms. In addition, a method was developed for independently checking the accuracy of the analysis and the rather extensive programming required to implement the complete first order correction with all of the aerodynamic effects included. This amounted to developing an equivalent Hamiltonian computed from the first order analysis. A second order correction was also completed for the neglected spherical Earth and back-pressure effects. Finally, an analysis was begun on a method for dealing with control inequality constraints. The results on including higher order corrections do show some improvement for this application; however, it is not known at this stage if significant improvement will result when the aerodynamic forces are included. The weak formulation for solving optimal problems was extended in order to account for state inequality constraints. The formulation was tested on three example problems and numerical results were compared to the exact solutions. Development of a general purpose computational environment for the solution of a large class of optimal control problems is under way. An example, along with the necessary input and the output, is given.

  20. PolyCheck: Dynamic Verification of Iteration Space Transformations on Affine Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Wenlei; Krishnamoorthy, Sriram; Pouchet, Louis-noel

    2016-01-11

    High-level compiler transformations, especially loop transformations, are widely recognized as critical optimizations to restructure programs to improve data locality and expose parallelism. Guaranteeing the correctness of program transformations is essential, and to date three main approaches have been developed: proof of equivalence of affine programs, matching the execution traces of programs, and checking bit-by-bit equivalence of the outputs of the programs. Each technique suffers from limitations in either the kind of transformations supported, space complexity, or the sensitivity to the testing dataset. In this paper, we take a novel approach addressing all three limitations to provide an automatic bug checkermore » to verify any iteration reordering transformations on affine programs, including non-affine transformations, with space consumption proportional to the original program data, and robust to arbitrary datasets of a given size. We achieve this by exploiting the structure of affine program control- and data-flow to generate at compile-time lightweight checker code to be executed within the transformed program. Experimental results assess the correctness and effectiveness of our method, and its increased coverage over previous approaches.« less

  1. Coherent beam combining of collimated fiber array based on target-in-the-loop technique

    NASA Astrophysics Data System (ADS)

    Li, Xinyang; Geng, Chao; Zhang, Xiaojun; Rao, Changhui

    2011-11-01

    Coherent beam combining (CBC) of fiber array is a promising way to generate high power and high quality laser beams. Target-in-the-loop (TIL) technique might be an effective way to ensure atmosphere propagation compensation without wavefront sensors. In this paper, we present very recent research work about CBC of collimated fiber array using TIL technique at the Key Lab on Adaptive Optics (KLAO), CAS. A novel Adaptive Fiber Optics Collimator (AFOC) composed of phase-locking module and tip/tilt control module was developed. CBC experimental setup of three-element fiber array was established. Feedback control is realized using stochastic parallel gradient descent (SPGD) algorithm. The CBC based on TIL with piston and tip/tilt correction simultaneously is demonstrated. And the beam pointing to locate or sweep position of combined spot on target was achieved through TIL technique too. The goal of our work is achieve multi-element CBC for long-distance transmission in atmosphere.

  2. Asymptotic One-Point Functions in Gauge-String Duality with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2017-12-29

    We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of SU(2) operators in the defect version of N=4 supersymmetric Yang-Mills theory, dual to the D5-D3 probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The asymptotic formula correctly encodes the information about the one-loop correction to the one-point functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by an explicit computation involving a novel object denoted as an amputated matrix product state. Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in the dual string theory up to wrapping order.

  3. One-loop gravitational wave spectrum in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Roura, Albert; Verdaguer, Enric

    2012-08-01

    The two-point function for tensor metric perturbations around de Sitter spacetime including one-loop corrections from massless conformally coupled scalar fields is calculated exactly. We work in the Poincaré patch (with spatially flat sections) and employ dimensional regularization for the renormalization process. Unlike previous studies we obtain the result for arbitrary time separations rather than just equal times. Moreover, in contrast to existing results for tensor perturbations, ours is manifestly invariant with respect to the subgroup of de Sitter isometries corresponding to a simultaneous time translation and rescaling of the spatial coordinates. Having selected the right initial state for the interacting theory via an appropriate iepsilon prescription is crucial for that. Finally, we show that although the two-point function is a well-defined spacetime distribution, the equal-time limit of its spatial Fourier transform is divergent. Therefore, contrary to the well-defined distribution for arbitrary time separations, the power spectrum is strictly speaking ill-defined when loop corrections are included.

  4. Renormalization of the Higgs sector in the triplet model

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2012-08-01

    We study radiative corrections to the mass spectrum and the triple Higgs boson coupling in the model with an additional Y = 1 triplet field. In this model, the vacuum expectation value for the triplet field is strongly constrained from the electroweak precision data, under which characteristic mass spectrum appear at the tree level; i.e., mH++2 - mH+2 ≃ mH+2 - mA2 and mA2 ≃ mH2, where the CP-even (H), the CP-odd (A) and the doubly-charged (H±±) as well as the singly-charged (H±) Higgs bosons are the triplet-like. We evaluate how the tree-level formulae are modified at the one-loop level. The hhh coupling for the standard model-like Higgs boson (h) is also calculated at the one-loop level. One-loop corrections to these quantities can be large enough for identification of the model by future precision data at the LHC or the International Linear Collider.

  5. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2012-01-01

    G-protein-coupled receptors are universally regulated by arrestin binding. Here we show that rod arrestin induces uptake of the agonist all-trans-retinal [corrected] in only half the population of phosphorylated opsin in the native membrane. Agonist uptake blocks subsequent entry of the inverse agonist 11-cis-retinal (that is, regeneration of rhodopsin), but regeneration is not blocked in the other half of aporeceptors. Environmentally sensitive fluorophores attached to arrestin reported that conformational changes in loop(V-VI) (N-domain) are coupled to the entry of agonist, while loop(XVIII-XIX) (C-domain) engages the aporeceptor even before agonist is added. The data are most consistent with a model in which each domain of arrestin engages its own aporeceptor, and the different binding preferences of the domains lead to asymmetric ligand binding by the aporeceptors. Such a mechanism would protect the rod cell in bright light by concurrently sequestering toxic all-trans-retinal [corrected] and allowing regeneration with 11-cis-retinal.

  6. Riemann correlator in de Sitter including loop corrections from conformal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric; Roura, Albert, E-mail: mfroeb@ffn.ub.edu, E-mail: albert.roura@uni-ulm.de, E-mail: enric.verdaguer@ub.edu

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicitmore » result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.« less

  7. The two and three-loop matter bispectrum in perturbation theories

    NASA Astrophysics Data System (ADS)

    Lazanu, Andrei; Liguori, Michele

    2018-04-01

    We evaluate for the first time the dark matter bispectrum of large-scale structure at two loops in the Standard Perturbation Theory and at three loops in the Renormalised Perturbation Theory (MPTBREEZE formalism), removing in each case the leading divergences in the integrals in order to make them infrared-safe. We show that the Standard Perturbation Theory at two loops can be employed to model the matter bispectrum further into the quasi-nonlinear regime compared to the one loop, up to kmax ~ 0.1 h/Mpc at z = 0, but without reaching a high level of accuracy. In the case of the MPTBREEZE method, we show that its bispectra decay at smaller and smaller scales with increasing loop order, but with smaller improvements decreases with loop order. At three loops, this model predicts the bispectrum accurately up to scales kmax ~ 0.17 h/Mpc at z = 0 and kmax ~ 0.24 h/Mpc at z = 1.

  8. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li

    2012-08-13

    A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.

  9. One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2016-12-02

    We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.

  10. Long-lived particle searches in R-parity violating MSSM

    NASA Astrophysics Data System (ADS)

    Zwane, Nosiphiwo

    2017-10-01

    In this paper we study the constraints on MSSM R-Parity violating decays when the lightest superpartner (LSP) is moderately long lived. In this scenario the LSP vertex displacement may be observed at the LHC. We compute limits on the RPV Yukawa couplings for which the vertex displacement signature maybe used. We then use ATLAS and CMS displaced vertex, meta-stable and prompt decay searches to rule out a region of sparticle masses.

  11. Universal vertex-IRF transformation for quantum affine algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffenoir, E.; Roche, Ph.; Terras, V.

    2012-10-15

    We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less

  12. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  13. Plethystic vertex operators and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  14. Detecting Corresponding Vertex Pairs between Planar Tessellation Datasets with Agglomerative Hierarchical Cell-Set Matching.

    PubMed

    Huh, Yong; Yu, Kiyun; Park, Woojin

    2016-01-01

    This paper proposes a method to detect corresponding vertex pairs between planar tessellation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geometrically corresponding cell-set pairs from which corresponding vertex pairs are detected. Then, the map transformation is performed with the vertex pairs. Since these pairs are independently detected for each corresponding cell-set pairs, the method presents improved matching performance regardless of locally uneven positional discrepancies between dataset. The proposed method was applied to complicated synthetic cell datasets assumed as a cadastral map and a topographical map, and showed an improved result with the F-measures of 0.84 comparing to a previous matching method with the F-measure of 0.48.

  15. Higgs mass prediction in the MSSM at three-loop level in a pure \\overline{{ {DR}}} context

    NASA Astrophysics Data System (ADS)

    Harlander, Robert V.; Klappert, Jonas; Voigt, Alexander

    2017-12-01

    The impact of the three-loop effects of order α _tα _s^2 on the mass of the light CP-even Higgs boson in the { {MSSM}} is studied in a pure \\overline{{ {DR}}} context. For this purpose, we implement the results of Kant et al. (JHEP 08:104, 2010) into the C++ module Himalaya and link it to FlexibleSUSY, a Mathematica and C++ package to create spectrum generators for BSM models. The three-loop result is compared to the fixed-order two-loop calculations of the original FlexibleSUSY and of FeynHiggs, as well as to the result based on an EFT approach. Aside from the expected reduction of the renormalization scale dependence with respect to the lower-order results, we find that the three-loop contributions significantly reduce the difference from the EFT prediction in the TeV-region of the { {SUSY}} scale {M_S}. Himalaya can be linked also to other two-loop \\overline{{ {DR}}} codes, thus allowing for the elevation of these codes to the three-loop level.

  16. Laparoscopic correction of right transverse colostomy prolapse.

    PubMed

    Gundogdu, Gokhan; Topuz, Ufuk; Umutoglu, Tarik

    2013-08-01

    Colostomy prolapse is a frequently seen complication of transverse colostomy. In one child with recurrent stoma prolapse, we performed a loop-to-loop fixation and peritoneal tethering laparoscopically. No prolapse had recurred at follow-up. Laparoscopic repair of transverse colostomy prolapse seems to be a less invasive method than other techniques. © 2013 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  18. Higgs boson self-coupling from two-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less

  19. FPGA-based real time controller for high order correction in EDIFISE

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Chulani, H.; Martín, Y.; Dorta, T.; Alonso, A.; Fuensalida, J. J.

    2012-07-01

    EDIFISE is a technology demonstrator instrument developed at the Institute of Astrophysics of the Canary Islands (IAC), intended to explore the feasibility of combining Adaptive Optics with attenuated optical fibers in order to obtain high spatial resolution spectra at the surroundings of a star, as an alternative to coronagraphy. A simplified version with only tip tilt correction has been tested at the OGS telescope in Observatorio del Teide (Canary islands, Spain) and a complete version is intended to be tested at the OGS and at the WHT telescope in Observatorio del Roque de los Muchachos, (Canary Islands, Spain). This paper describes the FPGA-based real time control of the High Order unit, responsible of the computation of the actuation values of a 97-actuactor deformable mirror (11x11) with the information provided by a configurable wavefront sensor of up to 16x16 subpupils at 500 Hz (128x128 pixels). The reconfigurable logic hardware will allow both zonal and modal control approaches, will full access to select which mode loops should be closed and with a number of utilities for influence matrix and open loop response measurements. The system has been designed in a modular way to allow for easy upgrade to faster frame rates (1500 Hz) and bigger wavefront sensors (240x240 pixels), accepting also several interfaces from the WFS and towards the mirror driver. The FPGA-based (Field Programmable Gate Array) real time controller provides bias and flat-fielding corrections, subpupil slopes to modal matrix computation for up to 97 modes, independent servo loop controllers for each mode with user control for independent loop opening or closing, mode to actuator matrix computation and non-common path aberration correction capability. It also provides full housekeeping control via UPD/IP for matrix reloading and full system data logging.

  20. 77 FR 23193 - Medicare and Medicaid Programs; Electronic Health Record Incentive Program-Stage 2; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... for electronic medication administration record (eMAR). In addition, in Sec. 495.6(m)(1)(iii) we... description contact information TBD Title: Closing the referral loop: Centers for Medicare Care Coordination... corrected to read ``(ii) Measure. More than 10 percent of medication orders created by authorized providers...

  1. Electroweak radiative corrections to neutrino scattering at NuTeV

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Baur, Ulrich; Wackeroth, Doreen

    2007-04-01

    The W boson mass extracted by the NuTeV collaboration from the ratios of neutral and charged-current neutrino and anti-neutrino cross sections differs from direct measurements performed at LEP2 and the Fermilab Tevatron by about 3 σ. Several possible sources for the observed difference have been discussed in the literature, including new physics beyond the Standard Model (SM). However, in order to be able to pin down the cause of this discrepancy and to interpret this result as a deviation to the SM, it is important to include the complete electroweak one-loop corrections when extracting the W boson mass from neutrino scattering cross sections. We will present results of a Monte Carlo program for νN (νN) scattering including the complete electroweak O(α) corrections, which will be used to study the effects of these corrections on the extracted values for the electroweak parameters. We will briefly introduce some of the newly developed computational tools for generating Feynman diagrams and corresponding analytic expressions for one-loop matrix elements.

  2. Note on: 'EMLCLLER-A program for computing the EM response of a large loop source over a layered earth model' by N.P. Singh and T. Mogi, Computers & Geosciences 29 (2003) 1301-1307

    NASA Astrophysics Data System (ADS)

    Jamie, Majid

    2016-11-01

    Singh and Mogi (2003) presented a forward modeling (FWD) program, coded in FORTRAN 77 called "EMLCLLER", which is capable of computing the frequency-domain electromagnetic (EM) response of a large circular loop, in terms of vertical magnetic component (Hz), over 1D layer earth models; computations at this program could be performed by assuming variable transmitter-receiver configurations and incorporating both conduction and displacement currents into computations. Integral equations at this program are computed through digital linear filters based on the Hankel transforms together with analytic solutions based on hyper-geometric functions. Despite capabilities of EMLCLLER, there are some mistakes at this program that make its FWD results unreliable. The mistakes in EMLCLLER arise in using wrong algorithm for computing reflection coefficient of the EM wave in TE-mode (rTE), and using flawed algorithms for computing phase and normalized phase values relating to Hz; in this paper corrected form of these mistakes are presented. Moreover, in order to illustrate how these mistakes can affect FWD results, EMLCLLER and corrected version of this program presented in this paper titled "EMLCLLER_Corr" are conducted on different two- and three-layered earth models; afterwards their FWD results in terms of real and imaginary parts of Hz, its normalized amplitude, and the corresponding normalized phase curves are plotted versus frequency and compared to each other. In addition, in Singh and Mogi (2003) extra derivations for computing radial component of the magnetic field (Hr) and angular component of the electric field (Eϕ) are also presented where the numerical solution presented for Hr is incorrect; in this paper the correct numerical solution for this derivation is also presented.

  3. Tree-level disk amplitude of three closed strings

    NASA Astrophysics Data System (ADS)

    Mousavi, Sepideh; Velni, Komeil Babaei

    2018-05-01

    It has been shown that the disk-level S-matrix elements of one Ramond-Ramond (RR) and two Neveu-Schwarz-Neveu-Schwarz (NSNS) states could be found by applying the Ward identity associated with the string duality and the gauge symmetry on a given component of the S matrix. These amplitudes have appeared as the components of six different T-dual multiplets. It is predicted in the literature that there are some nonzero disk-level scattering amplitudes, such as one RR (p -1 ) form with zero transverse index and two N S N S states, could not be captured by the T-dual Ward identity. We explicitly find this amplitude in terms of a minimal context of the integral functions by the insertion of one closed string RR vertex operator and two NSNS vertex operators. From the amplitude invariance under the Ward identity associated with the NSNS gauge transformations and T-duality, we also find some integral identities.

  4. Using the concept of pseudo amino acid composition to predict resistance gene against Xanthomonas oryzae pv. oryzae in rice: an approach from chaos games representation.

    PubMed

    Jingbo, Xia; Silan, Zhang; Feng, Shi; Huijuan, Xiong; Xuehai, Hu; Xiaohui, Niu; Zhi, Li

    2011-09-07

    To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Belle II SVD ladder assembly procedure and electrical qualification

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration

    2016-07-01

    The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.

  6. Inferring topological features of proteins from amino acid residue networks

    NASA Astrophysics Data System (ADS)

    Alves, Nelson Augusto; Martinez, Alexandre Souto

    2007-02-01

    Topological properties of native folds are obtained from statistical analysis of 160 low homology proteins covering the four structural classes. This is done analyzing one, two and three-vertex joint distribution of quantities related to the corresponding network of amino acid residues. Emphasis on the amino acid residue hydrophobicity leads to the definition of their center of mass as vertices in this contact network model with interactions represented by edges. The network analysis helps us to interpret experimental results such as hydrophobic scales and fraction of buried accessible surface area in terms of the network connectivity. Moreover, those networks show assortative mixing by degree. To explore the vertex-type dependent correlations, we build a network of hydrophobic and polar vertices. This procedure presents the wiring diagram of the topological structure of globular proteins leading to the following attachment probabilities between hydrophobic-hydrophobic 0.424(5), hydrophobic-polar 0.419(2) and polar-polar 0.157(3) residues.

  7. Torus Knots and the Topological Vertex

    NASA Astrophysics Data System (ADS)

    Jockers, Hans; Klemm, Albrecht; Soroush, Masoud

    2014-08-01

    We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S 3. The key role is played by the transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Mariño. Compared to the recent proposal by Aganagic and Vafa for knots on S 3, we demonstrate that the disk amplitude of the A-brane associated with any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.

  8. Validation of the second-generation Olympus colonoscopy simulator for skills assessment.

    PubMed

    Haycock, A V; Bassett, P; Bladen, J; Thomas-Gibson, S

    2009-11-01

    Simulators have potential value in providing objective evidence of technical skill for procedures within medicine. The aim of this study was to determine face and construct validity for the Olympus colonoscopy simulator and to establish which assessment measures map to clinical benchmarks of expertise. Thirty-four participants were recruited: 10 novices with no prior colonoscopy experience, 13 intermediate (trainee) endoscopists with fewer than 1000 previous colonoscopies, and 11 experienced endoscopists with more than 1000 previous colonoscopies. All participants completed three standardized cases on the simulator and experts gave feedback regarding the realism of the simulator. Forty metrics recorded automatically by the simulator were analyzed for their ability to distinguish between the groups. The simulator discriminated participants by experience level for 22 different parameters. Completion rates were lower for novices than for trainees and experts (37 % vs. 79 % and 88 % respectively, P < 0.001) and both novices and trainees took significantly longer to reach all major landmarks than the experts. Several technical aspects of competency were discriminatory; pushing with an embedded tip ( P = 0.03), correct use of the variable stiffness function ( P = 0.004), number of sigmoid N-loops ( P = 0.02); size of sigmoid N-loops ( P = 0.01), and time to remove alpha loops ( P = 0.004). Out of 10, experts rated the realism of movement at 6.4, force feedback at 6.6, looping at 6.6, and loop resolution at 6.8. The Olympus colonoscopy simulator has good face validity and excellent construct validity. It provides an objective assessment of colonoscopic skill on multiple measures and benchmarks have been set to allow its use as both a formative and a summative assessment tool. Georg Thieme Verlag KG Stuttgart. New York.

  9. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  10. Absorptive corrections for vector mesons: matching to complex mass scheme and longitudinal corrections

    NASA Astrophysics Data System (ADS)

    Jiménez Pérez, L. A.; Toledo Sánchez, G.

    2017-12-01

    Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.

  11. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops

    PubMed Central

    Paslawski, Wojciech; Lillelund, Ove K.; Kristensen, Julie Veje; Schafer, Nicholas P.; Baker, Rosanna P.; Urban, Sinisa; Otzen, Daniel E.

    2015-01-01

    Despite the ubiquity of helical membrane proteins in nature and their pharmacological importance, the mechanisms guiding their folding remain unclear. We performed kinetic folding and unfolding experiments on 69 mutants (engineered every 2–3 residues throughout the 178-residue transmembrane domain) of GlpG, a membrane-embedded rhomboid protease from Escherichia coli. The only clustering of significantly positive ϕ-values occurs at the cytosolic termini of transmembrane helices 1 and 2, which we identify as a compact nucleus. The three loops flanking these helices show a preponderance of negative ϕ-values, which are sometimes taken to be indicative of nonnative interactions in the transition state. Mutations in transmembrane helices 3–6 yielded predominantly ϕ-values near zero, indicating that this part of the protein has denatured-state–level structure in the transition state. We propose that loops 1–3 undergo conformational rearrangements to position the folding nucleus correctly, which then drives folding of the rest of the domain. A compact N-terminal nucleus is consistent with the vectorial nature of cotranslational membrane insertion found in vivo. The origin of the interactions in the transition state that lead to a large number of negative ϕ-values remains to be elucidated. PMID:26056273

  12. Local adjacency metric dimension of sun graph and stacked book graph

    NASA Astrophysics Data System (ADS)

    Yulisda Badri, Alifiah; Darmaji

    2018-03-01

    A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.

  13. Characteristic angles in the wetting of an angular region: deposit growth.

    PubMed

    Popov, Yuri O; Witten, Thomas A

    2003-09-01

    Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power gamma of distance close to the vertex and as a stronger power beta of distance further from the vertex. The power gamma depends only slightly on the opening angle alpha and stays roughly between -1/3 and 0. The power beta varies from -1 to 0 as the opening angle increases from 0 degrees to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.

  14. Quantum corrections for spinning particles in de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalarmore » Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.« less

  15. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    DOE PAGES

    Hu, J.; Wu, L.; Kuttiyiel, K.; ...

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less

  16. Top-quark loop corrections in Z+jet and Z + 2 jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Keith Ellis, R.

    2017-01-01

    The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less

  17. Community Detection Algorithm Combining Stochastic Block Model and Attribute Data Clustering

    NASA Astrophysics Data System (ADS)

    Kataoka, Shun; Kobayashi, Takuto; Yasuda, Muneki; Tanaka, Kazuyuki

    2016-11-01

    We propose a new algorithm to detect the community structure in a network that utilizes both the network structure and vertex attribute data. Suppose we have the network structure together with the vertex attribute data, that is, the information assigned to each vertex associated with the community to which it belongs. The problem addressed this paper is the detection of the community structure from the information of both the network structure and the vertex attribute data. Our approach is based on the Bayesian approach that models the posterior probability distribution of the community labels. The detection of the community structure in our method is achieved by using belief propagation and an EM algorithm. We numerically verified the performance of our method using computer-generated networks and real-world networks.

  18. Application of laser differential confocal technique in back vertex power measurement for phoropters

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli

    2012-10-01

    A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.

  19. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  20. Step-control of electromechanical systems

    DOEpatents

    Lewis, Robert N.

    1979-01-01

    The response of an automatic control system to a general input signal is improved by applying a test input signal, observing the response to the test input signal and determining correctional constants necessary to provide a modified input signal to be added to the input to the system. A method is disclosed for determining correctional constants. The modified input signal, when applied in conjunction with an operating signal, provides a total system output exhibiting an improved response. This method is applicable to open-loop or closed-loop control systems. The method is also applicable to unstable systems, thus allowing controlled shut-down before dangerous or destructive response is achieved and to systems whose characteristics vary with time, thus resulting in improved adaptive systems.

  1. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  2. Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Takeo

    2012-08-15

    We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.

  3. NLO vertex for a forward jet plus a rapidity gap at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice

    Here we present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  4. NLO vertex for a forward jet plus a rapidity gap at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)

  5. Noncommutative Jackiw-Pi model: One-loop renormalization

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Ghasemkhani, M.; Alipour, M.

    2018-06-01

    In this paper, we study the quantum behavior of the noncommutative Jackiw-Pi model. After establishing the Becchi-Rouet-Store-Tyutin (BRST) invariant action, the perturbative renormalizability is discussed, allowing us to introduce the renormalized mass and gauge coupling. We then proceed to compute the one-loop correction to the basic 1PI functions, necessary to determine the renormalized parameters (mass and charge), next we discuss the physical behavior of these parameters.

  6. Folded Supersymmetry and the LDP Paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdman, Gustavo; Chacko, Z.; Goh, Hock-Seng

    2006-09-21

    We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these ''folded supersymmetric'' theories the one loop quadratic divergences of the Standard Model Higgs field are canceled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters.more » By identifying the mechanism which underlies the cancellation of one loop quadratic divergences in these theories, we are able to construct simple extensions of the Standard Model which are radiatively stable at one loop. Ultraviolet completions of these theories can be obtained by imposing suitable boundary conditions on an appropriate supersymmetric higher dimensional theory compactified down to four dimensions. We construct a specific model based on these ideas which stabilizes the weak scale up to about 20 TeV and where the states which cancel the top loop are scalars not charged under Standard Model color. Its collider signatures are distinct from conventional supersymmetric theories and include characteristic events with hard leptons and missing energy.« less

  7. Two loop correction to interference in $$gg \\to ZZ$$

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal; ...

    2016-08-01

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less

  8. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop.

    PubMed

    Liang, Yu-Rong; Duan, Hui-Zong; Xiao, Xin-Long; Wei, Bing-Bing; Yeh, Hsien-Chi

    2015-01-01

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future's gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10(-8) Hz/Hz(1/2)@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  9. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yu-Rong; Department of Electronics and Information Engineering, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074; Duan, Hui-Zong

    2015-01-15

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future’s gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10{sup −8} Hz/Hz{sup 1/2}@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  10. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Rong; Duan, Hui-Zong; Xiao, Xin-Long; Wei, Bing-Bing; Yeh, Hsien-Chi

    2015-01-01

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future's gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10-8 Hz/Hz1/2@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  11. Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, S. A., E-mail: volkoff-sergey@mail.ru

    2016-06-15

    A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.

  12. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  13. Performance of pile-up mitigation techniques for jets in pp collisions at √{s}=8 TeV using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Dos Santos, S. P. Amor; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; van Huysduynen, L. Hooft; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, M.; Mori, D.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Pino, S. A. Olivares; Damazio, D. Oliveira; Garcia, E. Oliver; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Temming, K. K.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Gallego, E. Valladolid; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vaque, F. Vives; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-11-01

    The large rate of multiple simultaneous proton-proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb^{-1} data sample collected at a centre-of-mass energy of √{s} = 8 TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

  14. Performance of pile-up mitigation techniques for jets in pp collisions at √s=8 TeV using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-10-27

    The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb -1 data sample collected at a centre-of-mass energy ofmore » $$\\sqrt{s}$$ = 8TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.« less

  15. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  16. Performance of pile-up mitigation techniques for jets in [Formula: see text] collisions at [Formula: see text] TeV using the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, S P Amor; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Barajas, C A Chavez; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; El Moursli, R Cherkaoui; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; Garberson, F; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; van Huysduynen, L Hooft; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Rozas, A Juste; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Miguens, J Machado; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; de Andrade Filho, L Manhaes; Ramos, J Manjarres; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, M; Mori, D; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Hanninger, G Nunes; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Pino, S A Olivares; Damazio, D Oliveira; Garcia, E Oliver; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Codina, E Perez; García-Estañ, M T Pérez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Castanheira, M Teixeira Dias; Teixeira-Dias, P; Temming, K K; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Gallego, E Valladolid; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vaque, F Vives; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    The large rate of multiple simultaneous proton-proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 [Formula: see text] data sample collected at a centre-of-mass energy of [Formula: see text]. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

  17. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  18. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  19. Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime

    NASA Astrophysics Data System (ADS)

    Nelson, Harry Norman

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb}mid = 0.047 +/- 0.006 +/- 0.005, where the first error is from this experiment, and the second theoretical uncertainty. If b-u dominates, midV _{ub}mid = 0.033 +/- 0.004 +/- 0.12.

  20. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    PubMed Central

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696

  1. Conformational sampling in template-free protein loop structure modeling: an overview.

    PubMed

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  2. An approach to the instanton effect in B system

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki; Sakai, Yuki

    2018-01-01

    We discuss the constraint on the size of QCD instanton effects in low-energy effective theory. Among various instanton effects in meson mass spectrum and dynamics, we concentrate on the instanton-induced masses of light quarks. The famous instanton-induced six-quark interaction, so-called ’t Hooft vertex, could give nonperturbative quantum corrections to light quark masses. Many works have already been achieved to constrain the mass corrections in light meson system, or the system of π, K, η and η‧, and now we know for a fact that the instanton-induced mass of up-quark is too small to realize the solution of the strong CP problem by vanishing current mass of up-quark. In this work, we give a constraint on the instanton-induced mass correction to light quarks from the mass spectrum of heavy mesons, B+, B0, Bs and their antiparticles. To accomplish this, the complete second-order chiral symmetry breaking terms are identified in heavy meson effective theory. We find that the strength of the constraint from heavy meson masses is at the same level of that from light mesons, and it would be made even stronger by more precise data from future B factories and lattice calculations.

  3. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    NASA Astrophysics Data System (ADS)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose gauge sector can be any direct product of SU(N) gauge groups. The chiral superfields can transform as any, irreducible representation with respect to these gauge groups and it is possible to handle an arbitrary number of symmetry breakings or particle rotations. Also the gauge fixing terms can be specified. Using this information, SARAH derives the mass matrices and Feynman rules at tree-level and generates model files for CalcHep/CompHep and FeynArts/FormCalc. In addition, it can calculate the renormalization group equations at one- and two-loop level and the one-loop corrections to the one- and two-point functions. Unusual features: SARAH just needs the superpotential and gauge sector as input and not the complete Lagrangian. Therefore, the complete implementation of new models is done in some minutes. Running time: Measured CPU time for the evaluation of the MSSM on an Intel Q8200 with 2.33 GHz. Calculating the complete Lagrangian: 12 seconds. Calculating all vertices: 75 seconds. Calculating the one- and two-loop RGEs: 50 seconds. Calculating the one-loop corrections: 7 seconds. Writing a FeynArts file: 1 second. Writing a CalcHep/CompHep file: 6 seconds. Writing the LaTeX output: 1 second.

  4. A General Framework of Persistence Strategies for Biological Systems Helps Explain Domains of Life

    PubMed Central

    Yafremava, Liudmila S.; Wielgos, Monica; Thomas, Suravi; Nasir, Arshan; Wang, Minglei; Mittenthal, Jay E.; Caetano-Anollés, Gustavo

    2012-01-01

    The nature and cause of the division of organisms in superkingdoms is not fully understood. Assuming that environment shapes physiology, here we construct a novel theoretical framework that helps identify general patterns of organism persistence. This framework is based on Jacob von Uexküll’s organism-centric view of the environment and James G. Miller’s view of organisms as matter-energy-information processing molecular machines. Three concepts describe an organism’s environmental niche: scope, umwelt, and gap. Scope denotes the entirety of environmental events and conditions to which the organism is exposed during its lifetime. Umwelt encompasses an organism’s perception of these events. The gap is the organism’s blind spot, the scope that is not covered by umwelt. These concepts bring organisms of different complexity to a common ecological denominator. Ecological and physiological data suggest organisms persist using three strategies: flexibility, robustness, and economy. All organisms use umwelt information to flexibly adapt to environmental change. They implement robustness against environmental perturbations within the gap generally through redundancy and reliability of internal constituents. Both flexibility and robustness improve survival. However, they also incur metabolic matter-energy processing costs, which otherwise could have been used for growth and reproduction. Lineages evolve unique tradeoff solutions among strategies in the space of what we call “a persistence triangle.” Protein domain architecture and other evidence support the preferential use of flexibility and robustness properties. Archaea and Bacteria gravitate toward the triangle’s economy vertex, with Archaea biased toward robustness. Eukarya trade economy for survivability. Protista occupy a saddle manifold separating akaryotes from multicellular organisms. Plants and the more flexible Fungi share an economic stratum, and Metazoa are locked in a positive feedback loop toward flexibility. PMID:23443991

  5. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  6. Towards ab initio Calculations with the Dynamical Vertex Approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten

    2018-04-01

    While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.

  7. High Performance Automatic Character Skinning Based on Projection Distance

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lin, Feng; Liu, Xiuling; Wang, Hongrui

    2018-03-01

    Skeleton-driven-deformation methods have been commonly used in the character deformations. The process of painting skin weights for character deformation is a long-winded task requiring manual tweaking. We present a novel method to calculate skinning weights automatically from 3D human geometric model and corresponding skeleton. The method first, groups each mesh vertex of 3D human model to a skeleton bone by the minimum distance from a mesh vertex to each bone. Secondly, calculates each vertex's weights to the adjacent bones by the vertex's projection point distance to the bone joints. Our method's output can not only be applied to any kind of skeleton-driven deformation, but also to motion capture driven (mocap-driven) deformation. Experiments results show that our method not only has strong generality and robustness, but also has high performance.

  8. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact

    NASA Astrophysics Data System (ADS)

    McGaughey, Georgia; Patrick Walters, W.

    2017-03-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  9. [Umbilical blood-gas status at cesarean section for breech presentation: a comparison with vertex presentation].

    PubMed

    Haruta, M; Saeki, N; Naka, Y; Funato, T; Ohtsuki, Y

    1989-10-01

    Umbilical blood-gas status at elective cesarean section with oxygen inhalation for breech presentation (25 cases) was compared with that for vertex presentation (25 cases), so as to confirm the security of full-term breech fetuses delivered by cesarean section under spinal anesthesia. Umbilical arterial oxygen levels were significantly lower in the breech group (Mean PO2:18.9 mmHg; SO2:37.3%; Oxygen content:7.6 ml/dl). The number of hypoxemic fetuses was significantly higher in the breech group (the breech: 7; the vertex; 0). The other umbilical blood-gas values revealed no significant differences between the breech and vertex groups, and were within normal limits in both groups. Oxygen extraction in the breech (Mean: 49.0%) was higher than that in the vertex (32.9%). Therefore decreased umbilical blood flow in the breech was suggested. The incidence of depression at 1 minute after delivery in the breech infants (24%) was significantly higher than that in the vertex infants (0%). It became obvious in the breech that as the interval between the uterine incision and delivery increased, umbilical arterial blood tended to acidosis and the 1 minute Apgar score decreased. Cesarean section for breech presentation requires sufficient and optimal incisions of the abdominal wall and uterus as well as a skillful manual delivery technique, because the fetus or neonate should be protected against asphyxia resulting from umbilical compression and prolonged delivery interval.

  10. Scalar and tensor perturbations in loop quantum cosmology: high-order corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tao; Wang, Anzhong; Wu, Qiang

    2015-10-01

    Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratiomore » is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.« less

  11. Improved tilt sensing in an LGS-based tomographic AO system based on instantaneous PSF estimation

    NASA Astrophysics Data System (ADS)

    Veran, Jean-Pierre

    2013-12-01

    Laser guide star (LGS)-based tomographic AO systems, such as Multi-Conjugate AO (MCAO), Multi-Object AO (MOAO) and Laser Tomography AO (LTAO), require natural guide stars (NGSs) to sense tip-tilt (TT) and possibly other low order modes, to get rid of the LGS-tilt indetermination problem. For example, NFIRAOS, the first-light facility MCAO system for the Thirty Meter Telescope requires three NGSs, in addition to six LGSs: two to measure TT and one to measure TT and defocus. In order to improve sky coverage, these NGSs are selected in a so-called technical field (2 arcmin in diameter for NFIRAOS), which is much larger than the on-axis science field (17x17 arcsec for NFIRAOS), on which the AO correction is optimized. Most times, the NGSs are far off-axis and thus poorly corrected by the high-order AO loop, resulting in spots with low contrast and high speckle noise. Accurately finding the position of such spots is difficult, even with advanced methods such as matched-filtering or correlation, because these methods rely on the knowledge of an average spot image, which is quite different from the instantaneous spot image, especially in case of poor correction. This results in poor tilt estimation, which, ultimately, impacts sky coverage. We propose to improve the estimation of the position of the NGS spots by using, for each frame, a current estimate of the instantaneous spot profile instead of an average profile. This estimate can be readily obtained by tracing wavefront errors in the direction of the NGS through the turbulence volume. The latter is already computed by the tomographic process from the LGS measurements as part of the high order AO loop. Computing such a wavefront estimate has actually already been proposed for the purpose of driving a deformable mirror (DM) in each NGS WFS, to optically correct the NGS spot, which does lead to improved centroiding accuracy. Our approach, however, is much simpler, because it does not require the complication of extra DMs, which would need to be driven in open-loop. Instead, it can be purely implemented in software, does not increase the real-time computational burden significantly, and can still provide a significant improvement in tilt measurement accuracy, and therefore in sky-coverage. In this paper, we illustrate the benefit of this new tilt measurement strategy in the specific case of NFIRAOS, under various observing conditions, in comparison with the more traditional approaches that ignore the instantaneous variations of the NGS spot profiles.

  12. Criticality in conserved dynamical systems: experimental observation vs. exact properties.

    PubMed

    Marković, Dimitrije; Gros, Claudius; Schuelein, André

    2013-03-01

    Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.

  13. Design and verification of wide-band, simultaneous, multi-frequency, tuning circuits for large moment transmitter loops

    NASA Astrophysics Data System (ADS)

    Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie

    2017-03-01

    In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.

  14. Is it possible to detect malposition of the vertex at an early stage in labour? A case-control study.

    PubMed

    Mathisen, Marit; Olsen, Rudi Valde; Andreasen, Stine; Nielsen, Erik Waage

    2014-12-01

    The aim of this study was to investigate if there are clinical signs which allow detection of malposition of the vertex on admission to the delivery unit, or when crossing the action line on the partogram. Case-control study from 2007 to 2010 conducted on the delivery unit of Nordland Hospital, Bodø. Labours with malposition of the vertex (n = 171) were compared with a group with normal vertex presentation (n = 165). The positive predictive value was estimated for each sign using Bayes' rule. Magnitude of positive predictive value for each clinical sign. The positive predictive values for malposition were 9% if the foetus were in a right position, 11% if the labour was induced, 5% if the foetus was above the ischial spines, 4% if the reason for admission was contractions and 6% if cervix was <3 cm. The ability of clinical assessment to predict malposition, either on admission or when crossing the action line on the partogram, was poor. Diagnosing malposition of the vertex requires other methods with a higher predictive value. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Vertex stability and topological transitions in vertex models of foams and epithelia

    NASA Astrophysics Data System (ADS)

    Spencer, Meryl; Jabeen, Zahera; Lubensky, David

    Vertex models are widely used to computationally simulate dry foams and epithelial tissues. This class of models describes the shape and motion of cells as a function of the forces on vertices where 3 or more cells meet. Despite the widespread use of these models, relatively little is known about their basic theoretical properties. One outstanding issue is the stability of fourfold vertices. In real foams, fourfold vertices are always unstable, but it has been unclear whether vertex models necessarily reflect this behavior. In biological tissues, fourfold vertices arise as an intermediate in T1 transitions, which are one of the fundamental processes by which tissues change topology, and stable fourfold vertices have recently been observed in several different epithelia. We show that, when all edges have the same tension, stationary fourfold vertices in vertex models must always break up. However, when tensions depend on edge orientation, as they might in a planar-polarized tissue, fourfold vertices can become stable. These findings pave the way for studies of more biologically realistic models that couple topological transitions to the dynamics of regulatory proteins. NSF Grant No. DMR-1056456 and NSF-GRFP Grant No. DGE-1256260.

  16. A neural network z-vertex trigger for Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.

    2015-05-01

    We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.

  17. Rumor Processes in Random Environment on and on Galton-Watson Trees

    NASA Astrophysics Data System (ADS)

    Bertacchi, Daniela; Zucca, Fabio

    2013-11-01

    The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they “listen” for it up to a random distance. The first random environment that we consider is the deterministic 1-dimensional tree with a random number of stations on each vertex; in this case the root is the origin of . We give conditions for the survival/extinction on almost every realization of the sequence of stations. Later on, we study the processes on Galton-Watson trees with random number of stations on each vertex. We show that if the probability of survival is positive, then there is survival on almost every realization of the infinite tree such that there is at least one station at the root. We characterize the survival of the process in some cases and we give sufficient conditions for survival/extinction.

  18. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  19. Cosmological footprints of loop quantum gravity.

    PubMed

    Grain, J; Barrau, A

    2009-02-27

    The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.

  20. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    NASA Astrophysics Data System (ADS)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  1. One-loop corrections from higher dimensional tree amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  2. Dynamics of visual feedback in a laboratory simulation of a penalty kick.

    PubMed

    Morya, Edgard; Ranvaud, Ronald; Pinheiro, Walter Machado

    2003-02-01

    Sport scientists have devoted relatively little attention to soccer penalty kicks, despite their decisive role in important competitions such as the World Cup. Two possible kicker strategies have been described: ignoring the goalkeeper action (open loop) or trying to react to the goalkeeper action (closed loop). We used a paradigm simulating a penalty kick in the laboratory to investigate the dynamics of the closed-loop strategy in these controlled conditions. The probability of correctly responding to the simulated goalkeeper motion as a function of time available followed a logistic curve. Kickers on average reached perfect performance only if the goalkeeper committed him or herself to one side about 400 ms before ball contact and showed chance performance if the goalkeeper motion occurred less than 150 ms before ball contact. Interestingly, coincidence judgement--another aspect of the laboratory responses--appeared to be affected for a much longer time (> 500 ms) than was needed to correctly determine laterality. The present study is meant as groundwork for experiments in more ecological conditions applicable to kickers and goalkeepers.

  3. One-loop corrections from higher dimensional tree amplitudes

    DOE PAGES

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2016-08-01

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  4. Toward one-loop tunneling rates of near-extremal magnetic black hole pair production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, P.

    Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less

  5. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlensinger, Adam M.

    2012-01-01

    Modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more overhead through noisier channels, and software-defined radios use error-correction techniques that approach Shannon s theoretical limit of performance. The authors describe the benefit of closed-loop measurements for a receiver when paired with a counterpart transmitter and representative channel conditions. We also describe a real-time Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in real-time during the development of software defined radios.

  6. First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to-device variability

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2017-03-01

    Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified and effective first-principles quantum transport method for analyzing effects of chemical or substitutional disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method, we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium statistics by the nonequilbrium Green's function method, and include the effects of multiple impurity scattering with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation (CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged two-Green's-function correlators. This method provides a unified way to obtain different disorder-averaged transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply the method to investigate the shot noise in the disordered copper conductor, and find all our results for different disorder concentrations approach a universal Fano factor 1 /3 . As the second test, we calculate the device-to-device variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results agree well with experimental measurements and other theories. In both applications, we show the generalized nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate the effectiveness of the first-principles generalized CPA-NVC for atomistic analysis of disordered nanoelectronics, extending the capability of quantum transport simulation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, H.B.; Ueda, Y.; Grebogi, C.

    A crisis is a sudden discontinuous change in a chaotic attractor as a system parameter is varied. We investigate phenomena observed when two parameters of a dissipative system are varied simultaneously, following a crisis along a curve in the parameter plane. Two such curves intersect at a point we call a double crisis vertex. The phenomena we study include the double crisis vertex at which an interior and a boundary crisis coincide, and related forms of double crisis. We show how an experimenter can infer a crisis from observations of other related crises at a vertex.

  8. Connectivity algorithm with depth first search (DFS) on simple graphs

    NASA Astrophysics Data System (ADS)

    Riansanti, O.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).

  9. The RAVE/VERTIGO vertex reconstruction toolkit and framework

    NASA Astrophysics Data System (ADS)

    Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.

    2008-07-01

    A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.

  10. Chiral topological insulating phases from three-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Yin, Chuanhao; Chen, Shu; Araujo, Miguel

    We begin with a minimal model of three-dimensional nodal loop semimetals, and study the effect of anticommuting gap terms. The resulting topological insulating phases are protected by a chiral symmetry, and can be characterized by a winding number defined along the nodal loop. We illustrate the geometric relation between the nodal loop and the gap terms, which has a correspondence to the nodal loop winding number. We further investigate a lattice model and study its edge states under open boundary condition. The edge states hold Dirac cones with the same number as the summation of the winding numbers of each nodal loop in the first Brillouin zone.

  11. Statistical metrics for the characterization of karst network geometry and topology

    NASA Astrophysics Data System (ADS)

    Collon, Pauline; Bernasconi, David; Vuilleumier, Cécile; Renard, Philippe

    2017-04-01

    Statistical metrics can be used to analyse the morphology of natural or simulated karst systems; they allow describing, comparing, and quantifying their geometry and topology. In this paper, we present and discuss a set of such metrics. We study their properties and their usefulness based on a set of more than 30 karstic networks mapped by speleologists. The data set includes some of the largest explored cave systems in the world and represents a broad range of geological and speleogenetic conditions allowing us to test the proposed metrics, their variability, and their usefulness for the discrimination of different morphologies. All the proposed metrics require that the topographical survey of the caves are first converted to graphs consisting of vertices and edges. This data preprocessing includes several quality check operations and some corrections to ensure that the karst is represented as accurately as possible. The statistical parameters relating to the geometry of the system are then directly computed on the graphs, while the topological parameters are computed on a reduced version of the network focusing only on its structure. Among the tested metrics, we include some that were previously proposed such as tortuosity or the Howard's coefficients. We also investigate the possibility to use new metrics derived from graph theory. In total, 21 metrics are introduced, discussed in detail, and compared on the basis of our data set. This work shows that orientation analysis and, in particular, the entropy of the orientation data can help to detect the existence of inception features. The statistics on branch length are useful to describe the extension of the conduits within the network. Rather surprisingly, the tortuosity does not vary very significantly. It could be heavily influenced by the survey methodology. The degree of interconnectivity of the network, related to the presence of maze patterns, can be measured using different metrics such as the Howard's parameters, global cyclic coefficient, or the average vertex degree. The average vertex degree of the reduced graph proved to be the most useful as it is simple to compute, it discriminates properly the interconnected systems (mazes) from the acyclic ones (tree-like structures), and it permits us to classify the acyclic systems as a function of the total number of branches. This topological information is completed by three parameters, allowing us to refine the description. The correlation of vertex degree is rather simple to obtain. It is systematically positive on all studied data sets indicating a predominance of assortative networks among karst systems. The average shortest path length is related to the transport efficiency. It is shown to be mainly correlated to the size of the network. Finally, central point dominance allows us to identify the presence of a centralized organization.

  12. Experiment of low resistance joints for the ITER correction coil.

    PubMed

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  13. Constraining the loop quantum gravity parameter space from phenomenology

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa; Ronco, Michele

    2018-03-01

    Development of quantum gravity theories rarely takes inputs from experimental physics. In this letter, we take a small step towards correcting this by establishing a paradigm for incorporating putative quantum corrections, arising from canonical quantum gravity (QG) theories, in deriving falsifiable modified dispersion relations (MDRs) for particles on a deformed Minkowski space-time. This allows us to differentiate and, hopefully, pick between several quantization choices via testable, state-of-the-art phenomenological predictions. Although a few explicit examples from loop quantum gravity (LQG) (such as the regularization scheme used or the representation of the gauge group) are shown here to establish the claim, our framework is more general and is capable of addressing other quantization ambiguities within LQG and also those arising from other similar QG approaches.

  14. Detecting and Correcting Errors in Rapid Aiming Movements: Effects of Movement Time, Distance, and Velocity

    ERIC Educational Resources Information Center

    Sherwood, David E.

    2010-01-01

    According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…

  15. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new,more » higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.« less

  16. An integrand reconstruction method for three-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Badger, Simon; Frellesvig, Hjalte; Zhang, Yang

    2012-08-01

    We consider the maximal cut of a three-loop four point function with massless kinematics. By applying Gröbner bases and primary decomposition we develop a method which extracts all ten propagator master integral coefficients for an arbitrary triple-box configuration via generalized unitarity cuts. As an example we present analytic results for the three loop triple-box contribution to gluon-gluon scattering in Yang-Mills with adjoint fermions and scalars in terms of three master integrals.

  17. A semi-automatic computer-aided method for surgical template design

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-02-01

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.

  18. Influence of reciprocal edges on degree distribution and degree correlations

    NASA Astrophysics Data System (ADS)

    Zlatić, Vinko; Štefančić, Hrvoje

    2009-07-01

    Reciprocal edges represent the lowest-order cycle possible to find in directed graphs without self-loops. Representing also a measure of feedback between vertices, it is interesting to understand how reciprocal edges influence other properties of complex networks. In this paper, we focus on the influence of reciprocal edges on vertex degree distribution and degree correlations. We show that there is a fundamental difference between properties observed on the static network compared to the properties of networks, which are obtained by simple evolution mechanism driven by reciprocity. We also present a way to statistically infer the portion of reciprocal edges, which can be explained as a consequence of feedback process on the static network. In the rest of the paper, the influence of reciprocal edges on a model of growing network is also presented. It is shown that our model of growing network nicely interpolates between Barabási-Albert (BA) model for undirected and the BA model for directed networks.

  19. A semi-automatic computer-aided method for surgical template design

    PubMed Central

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-01-01

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method. PMID:26843434

  20. A semi-automatic computer-aided method for surgical template design.

    PubMed

    Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan

    2016-02-04

    This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.

Top