NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
Peculiar velocity effect on galaxy correlation functions in nonlinear clustering regime
NASA Astrophysics Data System (ADS)
Matsubara, Takahiko
1994-03-01
We studied the distortion of the apparent distribution of galaxies in redshift space contaminated by the peculiar velocity effect. Specifically we obtained the expressions for N-point correlation functions in redshift space with given functional form for velocity distribution f(v) and evaluated two- and three-point correlation functions quantitatively. The effect of velocity correlations is also discussed. When the two-point correlation function in real space has a power-law form, Xir(r) is proportional to r(-gamma), the redshift-space counterpart on small scales also has a power-law form but with an increased power-law index: Xis(s) is proportional to s(1-gamma). When the three-point correlation function has the hierarchical form and the two-point correlation function has the power-law form in real space, the hierarchical form of the three-point correlation function is almost preserved in redshift space. The above analytic results are compared with the direct analysis based on N-body simulation data for cold dark matter models. Implications on the hierarchical clustering ansatz are discussed in detail.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation functionmore » in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.« less
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Kogut, A.
1995-01-01
We compute the three-point temperature correlation function of the COBE Differential Microwave Radiometer (DMR) 2 year sky maps to search for evidence of non-Gaussian temperature fluctuations. We detect three-point correlations in our sky with a substantially higher signal-to-noise ratio than from the first-year data. However, the magnitude of the signal is consistent with the level of cosmic variance expected from Gaussian fluctuations, even when the low-order multipole moments, up to l = 9, are filtered from the data. These results do not strongly constrain most existing models of structure formation, but the absence of intrinsic three-point correlations on large angular scales is an important consistency test for such models.
Advances in QCD sum-rule calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melikhov, Dmitri
2016-01-22
We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.
Voronoi Tessellation for reducing the processing time of correlation functions
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Sevilla-Noarbe, Ignacio
2018-01-01
The increase of data volume in Cosmology is motivating the search of new solutions for solving the difficulties associated with the large processing time and precision of calculations. This is specially true in the case of several relevant statistics of the galaxy distribution of the Large Scale Structure of the Universe, namely the two and three point angular correlation functions. For these, the processing time has critically grown with the increase of the size of the data sample. Beyond parallel implementations to overcome the barrier of processing time, space partitioning algorithms are necessary to reduce the computational load. These can delimit the elements involved in the correlation function estimation to those that can potentially contribute to the final result. In this work, Voronoi Tessellation is used to reduce the processing time of the two-point and three-point angular correlation functions. The results of this proof-of-concept show a significant reduction of the processing time when preprocessing the galaxy positions with Voronoi Tessellation.
Three-point Green functions in the odd sector of QCD
NASA Astrophysics Data System (ADS)
Kadavý, T.; Kampf, K.; Novotný, J.
2016-11-01
A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also shortly present some of the new results for VVA and AAA Green functions with a discussion of their high-energy behaviour and its relation to the QCD condensates.
Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
On the universality of the two-point galaxy correlation function
NASA Technical Reports Server (NTRS)
Davis, Marc; Meiksin, Avery; Strauss, Michael A.; Da Costa, L. Nicolaci; Yahil, Amos
1988-01-01
The behavior of the two-point galaxy correlation function in volume-limited subsamples of three complete redshift surveys is investigated. The correlation length is shown to scale approximately as the square root of the distance limit in both the CfA and Southern Sky catalogs, but to be independent of the distance limit in the IRAS sample. This effect is found to be due to factors such as the large positive density fluctuations in the foreground of the optically selected catalogs biasing the correlation length estimate downward, and the brightest galaxies appearing to be more strongly clustered than the mean.
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1993-01-01
One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.
Linear and quadratic static response functions and structure functions in Yukawa liquids.
Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I
2014-08-01
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2017-06-01
We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.
Gluon amplitudes as 2 d conformal correlators
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Baryonic and mesonic 3-point functions with open spin indices
NASA Astrophysics Data System (ADS)
Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas
2018-03-01
We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.
Consistency relations for sharp inflationary non-Gaussian features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less
NASA Astrophysics Data System (ADS)
Li, Xuxu; Li, Xinyang; wang, Caixia
2018-03-01
This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.
Fast Computation of the Two-Point Correlation Function in the Age of Big Data
NASA Astrophysics Data System (ADS)
Pellegrino, Andrew; Timlin, John
2018-01-01
We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.
NASA Astrophysics Data System (ADS)
Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás
2018-05-01
In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.
Isovector charges of the nucleon from 2 + 1 -flavor QCD with clover fermions
Yoon, Boram; Jang, Yong -Chull; Gupta, Rajan; ...
2017-04-13
We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacingsmore » $a=0.114$ and $0.080$ fm and with $$M_\\pi \\approx 315$$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator construction are used to cost-effectively achieve $O(10^5)$ measurements on each ensemble. Using these data, the analysis of two-point correlation functions is extended to include four states in the fits and of three-point functions to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates using this multistate analysis of the spectral decomposition of the correlation functions and from simulations of the three-point functions at multiple values of the source-sink separation. Lastly, the results for all three charges, $$g_A$$, $$g_S$$ and $$g_T$$, are in good agreement with calculations done using the clover-on-HISQ lattice formulation with similar values of the lattice parameters.« less
COSMOS-e'-soft Higgsotic attractors
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan
2017-07-01
In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.
Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2016-01-01
Though Fourier transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein. In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large data sets of Dark Energy Spectroscopic Instrument, Euclid, and Large Synoptic Survey Telescope, FT techniques will therefore offer an important complement to simple pair or triplet counts.
NASA Astrophysics Data System (ADS)
Wu, J. Z.; Fang, L.; Shao, L.; Lu, L. P.
2018-06-01
In order to introduce new physics to traditional two-point correlations, we define the second-order correlation of longitudinal velocity increments at three points and obtain the analytical expressions in isotropic turbulence. By introducing the Kolmogorov 4/5 law, this three-point correlation explicitly contains velocity second- and third-order moments, which correspond to energy and energy transfer respectively. The combination of them then shows additional information of non-equilibrium turbulence by comparing to two-point correlations. Moreover, this three-point correlation shows the underlying inconsistency between numerical interpolation and three-point scaling law in numerical calculations, and inspires a preliminary model to correct this problem in isotropic turbulence.
Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema
2018-01-01
Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196
Boundary terms and three-point functions: an AdS/CFT puzzle resolved
Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.; ...
2017-06-12
N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less
Boundary terms and three-point functions: an AdS/CFT puzzle resolved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.
N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less
Correlation functions of warped CFT
NASA Astrophysics Data System (ADS)
Song, Wei; Xu, Jianfei
2018-04-01
Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure
Skvortsova, Elena B.; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, L.F.
Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less
Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states
NASA Astrophysics Data System (ADS)
Kalaga, J. K.; Leoński, W.; Peřina, J.
2018-04-01
Considering the system of three interacting qubits, we analyze four families of states from the point of view of bipartite correlations appearing in two-qubit subsystems of a three-qubit model, such as Einstein-Podolsky-Rosen steering, entanglement, and coherence. We reveal mutual relations among the steering parameter, concurrence, and three measures of coherence (degree of coherence, first-, and second-order correlation functions). Analyzing in parallel the steerable and unsteerable states, we derive analytical formulas giving the maximal and minimal values of coherence measures as concurrence varies.
Einstein gravity 3-point functions from conformal field theory
NASA Astrophysics Data System (ADS)
Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-12-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-04-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-06-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
A Kinematically Consistent Two-Point Correlation Function
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1998-01-01
A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.
The three-point function as a probe of models for large-scale structure
NASA Astrophysics Data System (ADS)
Frieman, Joshua A.; Gaztanaga, Enrique
1994-04-01
We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Higher order correlations of IRAS galaxies
NASA Technical Reports Server (NTRS)
Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander
1992-01-01
The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.
Factors of the Earning Functions and Their Influence on the Intellectual Capital of an Organization
ERIC Educational Resources Information Center
Ileanu, Bogdan Vasile; Tanasoiu, Ovidiu Emil
2008-01-01
This paper tries to consider some earning function as "start point" for the construction of indicators for intellectual capital measure. The analyze combines concepts from Mincer's and Becker theories and intellectual capital definitions currently in use. The correlation, significance and relation between elements are shown using three econometric…
Coping strategies among patients with newly diagnosed amyotrophic lateral sclerosis.
Jakobsson Larsson, Birgitta; Nordin, Karin; Askmark, Håkan; Nygren, Ingela
2014-11-01
To prospectively identify different coping strategies among newly diagnosed amyotrophic lateral sclerosis patients and whether they change over time and to determine whether physical function, psychological well-being, age and gender correlated with the use of different coping strategies. Amyotrophic lateral sclerosis is a fatal disease with impact on both physical function and psychological well-being. Different coping strategies are used to manage symptoms and disease progression, but knowledge about coping in newly diagnosed amyotrophic lateral sclerosis patients is scarce. This was a prospective study with a longitudinal and descriptive design. A total of 33 patients were included and evaluation was made at two time points, one to three months and six months after diagnosis. Patients were asked to complete the Motor Neuron Disease Coping Scale and the Hospital Anxiety and Depression Scale. Physical function was estimated using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale. The most commonly used strategies were support and independence. Avoidance/venting and information seeking were seldom used at both time points. The use of information seeking decreased between the two time points. Men did not differ from women, but patients ≤64 years used positive action more often than older patients. Amyotrophic Lateral Sclerosis Functional Rating Scale was positively correlated with positive action at time point 1, but not at time point 2. Patients' psychological well-being was correlated with the use of different coping strategies. Support and independence were the most used coping strategies, and the use of different strategies changed over time. Psychological well-being was correlated with different coping strategies in newly diagnosed amyotrophic lateral sclerosis patients. The knowledge about coping strategies in early stage of the disease may help the nurses to improve and develop the care and support for these patients. © 2014 John Wiley & Sons Ltd.
Correlation between solar flare productivity and photospheric vector magnetic fields
NASA Astrophysics Data System (ADS)
Cui, Yanmei; Wang, Huaning
2008-11-01
Studying the statistical correlation between the solar flare productivity and photospheric magnetic fields is very important and necessary. It is helpful to set up a practical flare forecast model based on magnetic properties and improve the physical understanding of solar flare eruptions. In the previous study ([Cui, Y.M., Li, R., Zhang, L.Y., He, Y.L., Wang, H.N. Correlation between solar flare productivity and photospheric magnetic field properties 1. Maximum horizontal gradient, length of neutral line, number of singular points. Sol. Phys. 237, 45 59, 2006]; from now on we refer to this paper as ‘Paper I’), three measures of the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed from 23990 SOHO/MDI longitudinal magnetograms. The statistical relationship between the solar flare productivity and these three measures is well fitted with sigmoid functions. In the current work, the three measures of the length of strong-shear neutral line, total unsigned current, and total unsigned current helicity are computed from 1353 vector magnetograms observed at Huairou Solar Observing Station. The relationship between the solar flare productivity and the current three measures can also be well fitted with sigmoid functions. These results are expected to be beneficial to future operational flare forecasting models.
Large-scale structure of randomly jammed spheres
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio
2017-05-01
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
Calculating the n-point correlation function with general and efficient python code
NASA Astrophysics Data System (ADS)
Genier, Fred; Bellis, Matthew
2018-01-01
There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.
Evidence for biasing in the CfA survey
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.
The three-point function as a probe of models for large-scale structure
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gaztanaga, Enrique
1993-01-01
The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Concerted hydrogen atom exchange between three HF molecules
NASA Technical Reports Server (NTRS)
Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.
1992-01-01
We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2017-08-01
We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.
Some semiclassical structure constants for AdS 4 × CP 3
NASA Astrophysics Data System (ADS)
Ahn, Changrim; Bozhilov, Plamen
2018-02-01
We compute structure constants in three-point functions of three string states in AdS 4× CP 3 in the framework of the semiclassical approach. We consider HHL correlation functions where two of the states are "heavy" string states of finite-size giant magnons carrying one or two angular momenta and the other one corresponds to such "light" states as dilaton operators with non-zero momentum, primary scalar operators, and singlet scalar operators with higher string levels.
On non-primitively divergent vertices of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Huber, Markus Q.
2017-11-01
Two correlation functions of Yang-Mills beyond the primitively divergent ones, the two-ghost-two-gluon and the four-ghost vertices, are calculated and their influence on lower vertices is examined. Their full (transverse) tensor structure is taken into account. As input, a solution of the full two-point equations - including two-loop terms - is used that respects the resummed perturbative ultraviolet behavior. A clear hierarchy is found with regard to the color structure that reduces the number of relevant dressing functions. The impact of the two-ghost-two-gluon vertex on the three-gluon vertex is negligible, which is explained by the fact that all non-small dressing functions drop out due to their color factors. Only in the ghost-gluon vertex a small net effect below 2% is seen. The four-ghost vertex is found to be extremely small in general. Since these two four-point functions do not enter into the propagator equations, these findings establish their small overall effect on lower correlation functions.
NASA Technical Reports Server (NTRS)
Eggleston, John M; Diederich, Franklin W
1957-01-01
The correlation functions and power spectra of the rolling and yawing moments on an airplane wing due to the three components of continuous random turbulence are calculated. The rolling moments to the longitudinal (horizontal) and normal (vertical) components depend on the spanwise distributions of instantaneous gust intensity, which are taken into account by using the inherent properties of symmetry of isotropic turbulence. The results consist of expressions for correlation functions or spectra of the rolling moment in terms of the point correlation functions of the two components of turbulence. Specific numerical calculations are made for a pair of correlation functions given by simple analytic expressions which fit available experimental data quite well. Calculations are made for four lift distributions. Comparison is made with the results of previous analyses which assumed random turbulence along the flight path and linear variations of gust velocity across the span.
Shokouhi, Sepideh; Rogers, Baxter P; Kang, Hakmook; Ding, Zhaohua; Claassen, Daniel O; Mckay, John W; Riddle, William R
2015-01-01
Amyloid-beta (Aβ) imaging with positron emission tomography (PET) holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2), have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB) to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation. We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2) to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR). For three-dimensional data, we compared the area under the wS2 curves with the subjects' cerebrospinal fluid measures. Overall, the longitudinal changes in wS2 correlated with the increase in mean SUVR but showed lower variance. The whole brain results showed a higher inverse correlation between the cerebrospinal Aβ and wS2 than between the cerebrospinal Aβ and SUVR mean/median. We did not observe any confounding of wS2 by region size or injected dose. The wS2 detects subtle changes and provides additional information about the binding characteristics of radiotracers and Aβ accumulation that are difficult to verify with mean SUVR alone.
NASA Astrophysics Data System (ADS)
Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie
2018-05-01
Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.
Redshift distortions of galaxy correlation functions
NASA Technical Reports Server (NTRS)
Fry, J. N.; Gaztanaga, Enrique
1994-01-01
To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.
OPE of Green functions in the odd sector of QCD
NASA Astrophysics Data System (ADS)
Kadavý, T.; Kampf, K.; Novotný, J.
2017-03-01
A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also present new results for VVA and AAA Green functions that have not yet been studied extensively in the literature before, more importantly with a phenomenological study and a discussion of the highenergy behaviour and its relation to the QCD condensates.
Correlated noise in the COBE DMR sky maps
NASA Technical Reports Server (NTRS)
Lineweaver, C. H.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Tenorio, L.; Kogut, A.; Keegstra, P. B.; Hinshaw, G.; Banday, A. J.
1994-01-01
The Cosmic Background Explorer Satellite Differential Radiometer (COBE DMR) sky maps contain low-level correlated noise. We obtain estimates of the amplitude and pattern of the correlated noise from three techniques: angular averages of the covariance matrix, Monte Carlo simulations of two-point correlation functions and direct analysis of the DMR maps. The results from the three methods are mutually consistent. The noise covariance matrix of a DMR sky maps is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occure with the ring of pixels at an angular separation of 60 deg due to the 60 deg separation of the DMR horns. The mean covariance at 60 deg is 0.45%((sup +0.18)(sub -0.14)) of the mean variance. Additionally, the variance in a given pixel is 0.7% greater than would be expected from a single beam experiment with the same noise properties. Autocorrelation functions suffer from a approximately 1.5 sigma positive bias at 60 deg while cross-correlations have no bias. Published COBE DMR results are not significantly affected by correlated noise.
Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A
2012-01-01
Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.
Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure
NASA Astrophysics Data System (ADS)
Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel
2018-01-01
We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps
NASA Technical Reports Server (NTRS)
Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.
1996-01-01
As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.
The scalar-scalar-tensor inflationary three-point function in the axion monodromy model
NASA Astrophysics Data System (ADS)
Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.
2016-11-01
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.
Cosmological Constraints from Fourier Phase Statistics
NASA Astrophysics Data System (ADS)
Ali, Kamran; Obreschkow, Danail; Howlett, Cullan; Bonvin, Camille; Llinares, Claudio; Oliveira Franco, Felipe; Power, Chris
2018-06-01
Most statistical inference from cosmic large-scale structure relies on two-point statistics, i.e. on the galaxy-galaxy correlation function (2PCF) or the power spectrum. These statistics capture the full information encoded in the Fourier amplitudes of the galaxy density field but do not describe the Fourier phases of the field. Here, we quantify the information contained in the line correlation function (LCF), a three-point Fourier phase correlation function. Using cosmological simulations, we estimate the Fisher information (at redshift z = 0) of the 2PCF, LCF and their combination, regarding the cosmological parameters of the standard ΛCDM model, as well as a Warm Dark Matter (WDM) model and the f(R) and Symmetron modified gravity models. The galaxy bias is accounted for at the level of a linear bias. The relative information of the 2PCF and the LCF depends on the survey volume, sampling density (shot noise) and the bias uncertainty. For a volume of 1h^{-3}Gpc^3, sampled with points of mean density \\bar{n} = 2× 10^{-3} h3 Mpc^{-3} and a bias uncertainty of 13%, the LCF improves the parameter constraints by about 20% in the ΛCDM cosmology and potentially even more in alternative models. Finally, since a linear bias only affects the Fourier amplitudes (2PCF), but not the phases (LCF), the combination of the 2PCF and the LCF can be used to break the degeneracy between the linear bias and σ8, present in 2-point statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin, E-mail: kurt.hinterbichler@case.edu, E-mail: austin.joyce@columbia.edu, E-mail: jkhoury@sas.upenn.edu
We investigate the symmetry structure of inflation in 2+1 dimensions. In particular, we show that the asymptotic symmetries of three-dimensional de Sitter space are in one-to-one correspondence with cosmological adiabatic modes for the curvature perturbation. In 2+1 dimensions, the asymptotic symmetry algebra is infinite-dimensional, given by two copies of the Virasoro algebra, and can be traced to the conformal symmetries of the two-dimensional spatial slices of de Sitter. We study the consequences of this infinite-dimensional symmetry for inflationary correlation functions, finding new soft theorems that hold only in 2+1 dimensions. Expanding the correlation functions as a power series in themore » soft momentum q , these relations constrain the traceless part of the tensorial coefficient at each order in q in terms of a lower-point function. As a check, we verify that the O( q {sup 2}) identity is satisfied by inflationary correlation functions in the limit of small sound speed.« less
The mean density and two-point correlation function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1988-01-01
The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
Discriminating topology in galaxy distributions using network analysis
NASA Astrophysics Data System (ADS)
Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl
2016-07-01
The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.
Disentangling interacting dark energy cosmologies with the three-point correlation function
NASA Astrophysics Data System (ADS)
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 < r [h-1 Mpc ] < 40) and redshifts (0 ≤ z ≤ 2). In all cDE models considered in this work, Q(θ) appears flat at small scales (for all redshifts) and at low redshifts (for all scales), while it builds up the characteristic V-shape anisotropy at increasing redshifts and scales. With respect to the ΛCDM predictions, cDE models show lower (higher) values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
NASA Astrophysics Data System (ADS)
Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji
2016-09-01
We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
Coulomb branch operators and mirror symmetry in three dimensions
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola; Fan, Yale; Pufu, Silviu S.; Yacoby, Ran
2018-04-01
We develop new techniques for computing exact correlation functions of a class of local operators, including certain monopole operators, in three-dimensional N=4 abelian gauge theories that have superconformal infrared limits. These operators are position-dependent linear combinations of Coulomb branch operators. They form a one-dimensional topological sector that encodes a deformation quantization of the Coulomb branch chiral ring, and their correlation functions completely fix the ( n ≤ 3)-point functions of all half-BPS Coulomb branch operators. Using these results, we provide new derivations of the conformal dimension of half-BPS monopole operators as well as new and detailed tests of mirror symmetry. Our main approach involves supersymmetric localization on a hemisphere HS 3 with half-BPS boundary conditions, where operator insertions within the hemisphere are represented by certain shift operators acting on the HS 3 wavefunction. By gluing a pair of such wavefunctions, we obtain correlators on S 3 with an arbitrary number of operator insertions. Finally, we show that our results can be recovered by dimensionally reducing the Schur index of 4D N=2 theories decorated by BPS 't Hooft-Wilson loops.
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2018-04-01
We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.
NASA Astrophysics Data System (ADS)
Wiedenmann, Jonas; Liebhaber, Eva; Kübert, Johannes; Bocquillon, Erwann; Burset, Pablo; Ames, Christopher; Buhmann, Hartmut; Klapwijk, Teun M.; Molenkamp, Laurens W.
2017-10-01
The proximity-induced superconducting state in the three-dimensional topological insulator HgTe has been studied using electronic transport of a normal metal-superconducting point contact as a spectroscopic tool (Andreev point-contact spectroscopy). By analyzing the conductance as a function of voltage for various temperatures, magnetic fields, and gate voltages, we find evidence, in equilibrium, for an induced order parameter in HgTe of 70 µeV and a niobium order parameter of 1.1 meV. To understand the full conductance curve as a function of applied voltage we suggest a non-equilibrium-driven transformation of the quantum transport process where the relevant scattering region and equilibrium reservoirs change with voltage. This change implies that the spectroscopy probes the superconducting correlations at different positions in the sample, depending on the bias voltage.
Ho, Kimberly K; Abrams-Ogg, Anthony Cg; Wood, R Darren; O'Sullivan, M Lynne; Kirby, Gordon M; Blois, Shauna L
2017-06-01
Objectives The objective was to determine if decreased platelet function could be detected after treatment with aspirin and/or clopidogrel in healthy cats using three point-of-care platelet function tests that evaluate platelet function by different methods: Multiplate (by impedance), Platelet Function Analyzer 100 (by mechanical aperture closure) and Plateletworks (by platelet counting). Methods Thirty-six healthy cats were randomly assigned to receive one of three oral treatments over an 8 day period: (1) aspirin 5 mg q72h; (2) aspirin 20.25 mg q72h; or (3) clopidogrel 18.75 mg q24h. Cats treated with 5 and 20.25 mg aspirin also received clopidogrel on days 4-8. Platelet aggregation in response to adenosine diphosphate and collagen ± arachidonic acid was assessed on days 1 (baseline), 4 and 8. Aspirin and clopidogrel metabolites were measured by high-performance liquid chromatography. Platelet function in response to treatment was analyzed by ANCOVA, linear regression and Spearman correlation. Results The only solitary aspirin effect was detected using Plateletworks with collagen in cats treated with 20.25 mg. The only effect detected by Multiplate was using arachidonic acid in cats treated with both aspirin 20.25 mg and clopidogrel. All clopidogrel treatment effects were detected by Platelet Function Analyzer 100, Plateletworks (adenosine diphosphate) and Plateletworks (collagen). Drug metabolites were present in all cats, but concentrations were minimally correlated to platelet function test results. Conclusions and relevance Platelet Function Analyzer 100 and Plateletworks using adenosine diphosphate ± collagen agonists may be used to detect decreased platelet function in response to clopidogrel treatment. Either aspirin is not as effective an antiplatelet drug as clopidogrel, or the tests used were not optimal to measure aspirin effect. Cats with heart disease are commonly prescribed antiplatelet drugs to decrease the risk of aortic thromboembolism. Platelet Function Analyzer 100 and Plateletworks may be useful for confirming clopidogrel treatment in these cats.
Constraints on parity violating conformal field theories in d = 3
NASA Astrophysics Data System (ADS)
Chowdhury, Subham Dutta; David, Justin R.; Prakash, Shiroman
2017-11-01
We derive constraints on three-point functions involving the stress tensor, T, and a conserved U(1) current, j, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the 〈 T T T〉 and 〈 jjT〉 correlation functions which are unique to three space-time dimensions. Let the parameters which determine the 〈 T T T〉 correlation function be t 4 and α T , where α T is the parity-violating contribution. Similarly let the parameters which determine 〈 jjT〉 correlation function be a 2, and α J , where α J is the parity-violating contribution. We show that the parameters ( t 4, α T ) and (a2, α J ) are bounded to lie inside a disc at the origin of the t 4 - α T plane and the a 2 - α J plane respectively. We then show that large N Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.
Optimized effective potential method and application to static RPA correlation
NASA Astrophysics Data System (ADS)
Fukazawa, Taro; Akai, Hisazumi
2015-03-01
The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.
The Angular Three-Point Correlation Function in the Quasi-linear Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchalter, Ari; Kamionkowski, Marc; Jaffe, Andrew H.
2000-02-10
We calculate the normalized angular three-point correlation function (3PCF), q, as well as the normalized angular skewness, s{sub 3}, assuming the small-angle approximation, for a biased mass distribution in flat and open cold dark matter (CDM) models with Gaussian initial conditions. The leading-order perturbative results incorporate the explicit dependence on the cosmological parameters, the shape of the CDM transfer function, the linear evolution of the power spectrum, the form of the assumed redshift distribution function, and linear and nonlinear biasing, which may be evolving. Results are presented for different redshift distributions, including that appropriate for the APM Galaxy Survey, asmore » well as for a survey with a mean redshift of z{approx_equal}1 (such as the VLA FIRST Survey). Qualitatively, many of the results found for s{sub 3} and q are similar to those obtained in a related treatment of the spatial skewness and 3PCF, such as a leading-order correction to the standard result for s{sub 3} in the case of nonlinear bias (as defined for unsmoothed density fields), and the sensitivity of the configuration dependence of q to both cosmological and biasing models. We show that since angular correlation functions (CFs) are sensitive to clustering over a range of redshifts, the various evolutionary dependences included in our predictions imply that measurements of q in a deep survey might better discriminate between models with different histories, such as evolving versus nonevolving bias, that can have similar spatial CFs at low redshift. Our calculations employ a derived equation, valid for open, closed, and flat models, to obtain the angular bispectrum from the spatial bispectrum in the small-angle approximation. (c) (c) 2000. The American Astronomical Society.« less
Estimation of regionalized compositions: A comparison of three methods
Pawlowsky, V.; Olea, R.A.; Davis, J.C.
1995-01-01
A regionalized composition is a random vector function whose components are positive and sum to a constant at every point of the sampling region. Consequently, the components of a regionalized composition are necessarily spatially correlated. This spatial dependence-induced by the constant sum constraint-is a spurious spatial correlation and may lead to misinterpretations of statistical analyses. Furthermore, the cross-covariance matrices of the regionalized composition are singular, as is the coefficient matrix of the cokriging system of equations. Three methods of performing estimation or prediction of a regionalized composition at unsampled points are discussed: (1) the direct approach of estimating each variable separately; (2) the basis method, which is applicable only when a random function is available that can he regarded as the size of the regionalized composition under study; (3) the logratio approach, using the additive-log-ratio transformation proposed by J. Aitchison, which allows statistical analysis of compositional data. We present a brief theoretical review of these three methods and compare them using compositional data from the Lyons West Oil Field in Kansas (USA). It is shown that, although there are no important numerical differences, the direct approach leads to invalid results, whereas the basis method and the additive-log-ratio approach are comparable. ?? 1995 International Association for Mathematical Geology.
Leading singularities and off-shell conformal integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, James; Duhr, Claude; Eden, Burkhard
2013-08-29
The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less
Second feature of the matter two-point function
NASA Astrophysics Data System (ADS)
Tansella, Vittorio
2018-05-01
We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.
Large-scale 3D galaxy correlation function and non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele
We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less
Deepak, Kishore K; Al-Umran, Khalid Umran; AI-Sheikh, Mona H; Dkoli, B V; Al-Rubaish, Abdullah
2015-01-01
The functionality of distracters in a multiple choice question plays a very important role. We examined the frequency and impact of functioning and non-functioning distracters on psychometric properties of 5-option items in clinical disciplines. We analyzed item statistics of 1115 multiple choice questions from 15 summative assessments of undergraduate medical students and classified the items into five groups by their number of non-functioning distracters. We analyzed the effect of varying degree of non-functionality ranging from 0 to 4, on test reliability, difficulty index, discrimination index and point biserial correlation. The non-functionality of distracters inversely affected the test reliability and quality of items in a predictable manner. The non-functioning distracters made the items easier and lowered the discrimination index significantly. Three non-functional distracters in a 5-option MCQ significantly affected all psychometric properties (p < 0.5). The corrected point biserial correlation revealed that the items with 3 functional options were psychometrically as effective as 5-option items. Our study reveals that a multiple choice question with 3 functional options provides lower most limit of item format that has adequate psychometric property. The test containing items with less number of functioning options have significantly lower reliability. The distracter function analysis and revision of nonfunctioning distracters can serve as important methods to improve the psychometrics and reliability of assessment.
Mapping the current–current correlation function near a quantum critical point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Emil, E-mail: prodan@yu.edu; Bellissard, Jean
2016-05-15
The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near amore » critical point and confirm the theoretical predictions.« less
von Kármán-Howarth equation for three-dimensional two-fluid plasmas.
Andrés, N; Mininni, P D; Dmitruk, P; Gómez, D O
2016-06-01
We derive the von Kármán-Howarth equation for a full three-dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifths" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the solar wind at different spatial ranges.
Avalanche of entanglement and correlations at quantum phase transitions.
Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf
2017-06-16
We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.
Towards spinning Mellin amplitudes
NASA Astrophysics Data System (ADS)
Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki
2018-06-01
We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.
A color prediction model for imagery analysis
NASA Technical Reports Server (NTRS)
Skaley, J. E.; Fisher, J. R.; Hardy, E. E.
1977-01-01
A simple model has been devised to selectively construct several points within a scene using multispectral imagery. The model correlates black-and-white density values to color components of diazo film so as to maximize the color contrast of two or three points per composite. The CIE (Commission Internationale de l'Eclairage) color coordinate system is used as a quantitative reference to locate these points in color space. Superimposed on this quantitative reference is a perceptional framework which functionally contrasts color values in a psychophysical sense. This methodology permits a more quantitative approach to the manual interpretation of multispectral imagery while resulting in improved accuracy and lower costs.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
Alecu, I M; Zheng, Jingjing; Zhao, Yan; Truhlar, Donald G
2010-09-14
Optimized scale factors for calculating vibrational harmonic and fundamental frequencies and zero-point energies have been determined for 145 electronic model chemistries, including 119 based on approximate functionals depending on occupied orbitals, 19 based on single-level wave function theory, three based on the neglect-of-diatomic-differential-overlap, two based on doubly hybrid density functional theory, and two based on multicoefficient correlation methods. Forty of the scale factors are obtained from large databases, which are also used to derive two universal scale factor ratios that can be used to interconvert between scale factors optimized for various properties, enabling the derivation of three key scale factors at the effort of optimizing only one of them. A reduced scale factor optimization model is formulated in order to further reduce the cost of optimizing scale factors, and the reduced model is illustrated by using it to obtain 105 additional scale factors. Using root-mean-square errors from the values in the large databases, we find that scaling reduces errors in zero-point energies by a factor of 2.3 and errors in fundamental vibrational frequencies by a factor of 3.0, but it reduces errors in harmonic vibrational frequencies by only a factor of 1.3. It is shown that, upon scaling, the balanced multicoefficient correlation method based on coupled cluster theory with single and double excitations (BMC-CCSD) can lead to very accurate predictions of vibrational frequencies. With a polarized, minimally augmented basis set, the density functionals with zero-point energy scale factors closest to unity are MPWLYP1M (1.009), τHCTHhyb (0.989), BB95 (1.012), BLYP (1.013), BP86 (1.014), B3LYP (0.986), MPW3LYP (0.986), and VSXC (0.986).
He, Feng; Zeng, An-Ping
2006-01-01
Background The increasing availability of time-series expression data opens up new possibilities to study functional linkages of genes. Present methods used to infer functional linkages between genes from expression data are mainly based on a point-to-point comparison. Change trends between consecutive time points in time-series data have been so far not well explored. Results In this work we present a new method based on extracting main features of the change trend and level of gene expression between consecutive time points. The method, termed as trend correlation (TC), includes two major steps: 1, calculating a maximal local alignment of change trend score by dynamic programming and a change trend correlation coefficient between the maximal matched change levels of each gene pair; 2, inferring relationships of gene pairs based on two statistical extraction procedures. The new method considers time shifts and inverted relationships in a similar way as the local clustering (LC) method but the latter is merely based on a point-to-point comparison. The TC method is demonstrated with data from yeast cell cycle and compared with the LC method and the widely used Pearson correlation coefficient (PCC) based clustering method. The biological significance of the gene pairs is examined with several large-scale yeast databases. Although the TC method predicts an overall lower number of gene pairs than the other two methods at a same p-value threshold, the additional number of gene pairs inferred by the TC method is considerable: e.g. 20.5% compared with the LC method and 49.6% with the PCC method for a p-value threshold of 2.7E-3. Moreover, the percentage of the inferred gene pairs consistent with databases by our method is generally higher than the LC method and similar to the PCC method. A significant number of the gene pairs only inferred by the TC method are process-identity or function-similarity pairs or have well-documented biological interactions, including 443 known protein interactions and some known cell cycle related regulatory interactions. It should be emphasized that the overlapping of gene pairs detected by the three methods is normally not very high, indicating a necessity of combining the different methods in search of functional association of genes from time-series data. For a p-value threshold of 1E-5 the percentage of process-identity and function-similarity gene pairs among the shared part of the three methods reaches 60.2% and 55.6% respectively, building a good basis for further experimental and functional study. Furthermore, the combined use of methods is important to infer more complete regulatory circuits and network as exemplified in this study. Conclusion The TC method can significantly augment the current major methods to infer functional linkages and biological network and is well suitable for exploring temporal relationships of gene expression in time-series data. PMID:16478547
Analysis of the two-point velocity correlations in turbulent boundary layer flows
NASA Technical Reports Server (NTRS)
Oberlack, M.
1995-01-01
The general objective of the present work is to explore the use of Rapid Distortion Theory (RDT) in analysis of the two-point statistics of the log-layer. RDT is applicable only to unsteady flows where the non-linear turbulence-turbulence interaction can be neglected in comparison to linear turbulence-mean interactions. Here we propose to use RDT to examine the structure of the large energy-containing scales and their interaction with the mean flow in the log-region. The contents of the work are twofold: First, two-point analysis methods will be used to derive the law-of-the-wall for the special case of zero mean pressure gradient. The basic assumptions needed are one-dimensionality in the mean flow and homogeneity of the fluctuations. It will be shown that a formal solution of the two-point correlation equation can be obtained as a power series in the von Karman constant, known to be on the order of 0.4. In the second part, a detailed analysis of the two-point correlation function in the log-layer will be given. The fundamental set of equations and a functional relation for the two-point correlation function will be derived. An asymptotic expansion procedure will be used in the log-layer to match Kolmogorov's universal range and the one-point correlations to the inviscid outer region valid for large correlation distances.
NASA Astrophysics Data System (ADS)
Barry, J. H.; Muttalib, K. A.; Tanaka, T.
2008-01-01
We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.
Generalized -deformed correlation functions as spectral functions of hyperbolic geometry
NASA Astrophysics Data System (ADS)
Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.
2014-08-01
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.
Translation and Validation of the Dysphagia Handicap Index in Hebrew-Speaking Patients.
Shapira-Galitz, Yael; Drendel, Michael; Yousovich-Ulriech, Ruth; Shtreiffler-Moskovich, Liat; Wolf, Michael; Lahav, Yonatan
2018-06-07
The Dysphagia Handicap Index (DHI) is a 25-item questionnaire assessing the physical, functional, and emotional aspects of dysphagia patients' quality of life (QoL). The study goal was to translate and validate the Hebrew-DHI. 148 patients undergoing fiberoptic endoscopic examination of swallowing (FEES) in two specialized dysphagia clinics between February and August 2017 filled the Hebrew-DHI and self-reported their dysphagia severity on a scale of 1-7. 21 patients refilled the DHI during a 2-week period following their first visit. FEES were scored for residue (1 point per consistency), penetration and aspiration (1 point for penetration, 2 points for aspiration, per consistency). 51 healthy volunteers also filled the DHI. Internal consistency and test-retest reproducibility were used for reliability testing. Validity was established by comparing DHI scores of dysphagia patients and healthy controls. Concurrent validity was established by correlating the DHI score with the FEES score. Internal consistency of the Hebrew-DHI was high (Cronbach's alpha = 0.96), as was the test-retest reproducibility (Spearman's correlation coefficient = 0.82, p < 0.001). The Hebrew-DHI's total score, and its three subscales (physical/functional/emotional) were significantly higher in dysphagia patients compared to those in healthy controls (median 38 pts, IQR 18-56 for dysphagia patients compared to 0, IQR 0-2 for healthy controls, p < 0.0001). A strong correlation was observed between the DHI score and the self-reported dysphagia severity measure (Spearman's correlation coefficient = 0.88, p < 0.0001). A moderate correlation was found between the DHI score and the FEES score (Pearson's correlation coefficient = 0.245, p = 0.003). The Hebrew-DHI is a reliable and valid questionnaire assessing dysphagia patients' QoL.
Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr
2006-01-01
In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.
Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space
NASA Astrophysics Data System (ADS)
Shyaka, Claude; Kharel, Savan
2016-03-01
The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.
Estimation of correlation functions by stochastic approximation.
NASA Technical Reports Server (NTRS)
Habibi, A.; Wintz, P. A.
1972-01-01
Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.
New angles on energy correlation functions
Moult, Ian; Necib, Lina; Thaler, Jesse
2016-12-29
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/Hmore » tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i, N i, and U i. The Mi series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.« less
New angles on energy correlation functions
NASA Astrophysics Data System (ADS)
Moult, Ian; Necib, Lina; Thaler, Jesse
2016-12-01
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.
Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub
2016-12-02
We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.
Short-time dynamics of 2-thiouracil in the light absorbing S{sub 2}(ππ{sup ∗}) state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jie; Zhang, Teng-shuo; Xue, Jia-dan
2015-11-07
Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T{sub 1} are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated using second-order perturbation methods with a high-level complete-active space self-consistent field. Three competitive nonadiabatic pathways to the lowest triplet state T{sub 1} from the initially populated singlet excited state S{sub 2} were proposed. We investigate the initial decay dynamics of 2TU from the light absorbing excited statesmore » using resonance Raman spectroscopy, time-dependent wave-packet theory in the simple model, and complete-active space self-consistent field (CASSCF) and time dependent-Becke’s three-parameter exchange and correlation functional with the Lee-Yang-Parr correlation functional (TD-B3LYP) calculations. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were compared with the CASSCF(16,11) predicted key nonadiabatic decay routes. Our results indicate that the predominant decay pathway initiated at the Franck-Condon region is toward the S{sub 2}/S{sub 1} conical intersection point and S{sub 2}T{sub 3} intersystem crossing point, but not toward the S{sub 2}T{sub 2} intersystem crossing point.« less
Pilliod, David S.; Arkle, Robert S.
2013-01-01
Resource managers and scientists need efficient, reliable methods for quantifying vegetation to conduct basic research, evaluate land management actions, and monitor trends in habitat conditions. We examined three methods for quantifying vegetation in 1-ha plots among different plant communities in the northern Great Basin: photography-based grid-point intercept (GPI), line-point intercept (LPI), and point-quarter (PQ). We also evaluated each method for within-plot subsampling adequacy and effort requirements relative to information gain. We found that, for most functional groups, percent cover measurements collected with the use of LPI, GPI, and PQ methods were strongly correlated. These correlations were even stronger when we used data from the upper canopy only (i.e., top “hit” of pin flags) in LPI to estimate cover. PQ was best at quantifying cover of sparse plants such as shrubs in early successional habitats. As cover of a given functional group decreased within plots, the variance of the cover estimate increased substantially, which required more subsamples per plot (i.e., transect lines, quadrats) to achieve reliable precision. For GPI, we found that that six–nine quadrats per hectare were sufficient to characterize the vegetation in most of the plant communities sampled. All three methods reasonably characterized the vegetation in our plots, and each has advantages depending on characteristics of the vegetation, such as cover or heterogeneity, study goals, precision of measurements required, and efficiency needed.
Bounds on the conductivity of a suspension of random impenetrable spheres
NASA Astrophysics Data System (ADS)
Beasley, J. D.; Torquato, S.
1986-11-01
We compare the general Beran bounds on the effective electrical conductivity of a two-phase composite to the bounds derived by Torquato for the specific model of spheres distributed throughout a matrix phase. For the case of impenetrable spheres, these bounds are shown to be identical and to depend on the microstructure through the sphere volume fraction φ2 and a three-point parameter ζ2, which is an integral over a three-point correlation function. We evaluate ζ2 exactly through third order in φ2 for distributions of impenetrable spheres. This expansion is compared to the analogous results of Felderhof and of Torquato and Lado, all of whom employed the superposition approximation for the three-particle distribution function involved in ζ2. The results indicate that the exact ζ2 will be greater than the value calculated under the superposition approximation. For reasons of mathematical analogy, the results obtained here apply as well to the determination of the thermal conductivity, dielectric constant, and magnetic permeability of composite media and the diffusion coefficient of porous media.
Comments on the present state and future directions of PDF methods
NASA Technical Reports Server (NTRS)
Obrien, E. E.
1992-01-01
The one point probability density function (PDF) method is examined in light of its use in actual engineering problems. The PDF method, although relatively complicated, appears to be the only format available to handle the nonlinear stochastic difficulties caused by typical reaction kinetics. Turbulence modeling, if it is to play a central role in combustion modeling, has to be integrated with the chemistry in a way which produces accurate numerical solutions to combustion problems. It is questionable whether the development of turbulent models in isolation from the peculiar statistics of reactant concentrations is a fruitful line of development as far as propulsion is concerned. There are three issues for which additional viewgraphs are prepared: the one point pdf method; the amplitude mapping closure; and a hybrid strategy for replacing a full two point pdf treatment of reacting flows by a single point pdf and correlation functions. An appeal is made for the establishment of an adequate data base for compressible flow with reactions for Mach numbers of unity or higher.
Measurement of the dipole in the cross-correlation function of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less
Phase transitions in the first-passage time of scale-invariant correlated processes
Carretero-Campos, Concepción; Bernaola-Galván, Pedro; Ch. Ivanov, Plamen
2012-01-01
A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The statistical properties of FPT depend on the specifics of the underlying system dynamics. We present a unified approach to account for the diversity of statistical behaviors of FPT observed in real-world systems. We find three distinct regimes, separated by two transition points, with fundamentally different behavior for FPT as a function of increasing strength of the correlations in the system dynamics: stretched exponential, power-law, and saturation regimes. In the saturation regime, the average length of FPT diverges proportionally to the system size, with important implications for understanding electronic delocalization in one-dimensional correlated-disordered systems. PMID:22400544
Hexagonalization of correlation functions II: two-particle contributions
NASA Astrophysics Data System (ADS)
Fleury, Thiago; Komatsu, Shota
2018-02-01
In this work, we compute one-loop planar five-point functions in N=4 super-Yang-Mills using integrability. As in the previous work, we decompose the correlation functions into hexagon form factors and glue them using the weight factors which depend on the cross-ratios. The main new ingredient in the computation, as compared to the four-point functions studied in the previous paper, is the two-particle mirror contribution. We develop techniques to evaluate it and find agreement with the perturbative results in all the cases we analyzed. In addition, we consider next-to-extremal four-point functions, which are known to be protected, and show that the sum of one-particle and two-particle contributions at one loop adds up to zero as expected. The tools developed in this work would be useful for computing higher-particle contributions which would be relevant for more complicated quantities such as higher-loop corrections and non-planar correlators.
Medical student psychological distress and academic performance.
Dendle, Claire; Baulch, Julie; Pellicano, Rebecca; Hay, Margaret; Lichtwark, Irene; Ayoub, Sally; Clarke, David M; Morand, Eric F; Kumar, Arunaz; Leech, Michelle; Horne, Kylie
2018-01-21
The impact of medical student psychological distress on academic performance has not been systematically examined. This study provided an opportunity to closely examine the potential impacts of workplace and study related stress factors on student's psychological distress and their academic performance during their first clinical year. This one-year prospective cohort study was performed at a tertiary hospital based medical school in Melbourne, Australia. Students completed a questionnaire at three time points during the year. The questionnaire included the validated Kessler psychological distress scale (K10) and the General Health Questionnaire-28 (GHQ-28), as well as items about sources of workplace stress. Academic outcome scores were aggregated and correlated with questionnaire results. One hundred and twenty six students participated; 126 (94.7%), 102 (76.7%), and 99 (74.4%) at time points one, two, and three, respectively. 33.1% reported psychological distress at time point one, increasing to 47.4% at time point three. There was no correlation between the K10 scores and academic performance. There was weak negative correlation between the GHQ-28 at time point three and academic performance. Keeping up to date with knowledge, need to do well and fear of negative feedback were the most common workplace stress factors. Poor correlation was noted between psychological distress and academic performance.
Gkioulekas, Eleftherios
2016-09-01
Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.
On the divergences of inflationary superhorizon perturbations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, K; Nurmi, S; Podolsky, D
2008-04-15
We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less
Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.
2014-01-01
Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106
Berger, Peter B; Kirchner, H Lester; Wagner, Eric S; Ismail-Sayed, Ibrahim; Yahya, Salma; Benoit, Charles; Blankenship, James C; Carter, Russell; Casale, Alfred S; Green, Sandy M; Scott, Thomas D; Skelding, Kimberly A; Woods, Edward; Henry, Yvette M
2015-06-01
We sought to examine the relationship between preoperative platelet function and perioperative bleeding in patients undergoing CABG. There are many ways to measure platelet aggregability. Little is known about their correlations with one another, or with bleeding. We prospectively studied 50 patients undergoing a first isolated off-pump CABG. Thirty-four were exposed to a thienopyridine prior to surgery; 16 were not. Preoperative platelet function was measured by VerifyNow®, TEG®, AggreGuide™, Plateletworks®, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and light transmission aggregometry. Bleeding was assessed 2 ways: drop from pre- to nadir postoperative hematocrit, and chest tube drainage. Correlation coefficients were calculated using Spearman's rank-order correlation. Mean age was 62 years. Patient characteristics and surgical details were similar between the thienopyridine-exposed and non-exposed patients. The correlation coefficients between the 4 point-of-care platelet function measurements and hematocrit change ranged from -0.2274 to 0.2882. Only Plateletworks® correlated with drop in hematocrit (r = 0.2882, P = 0.0470). The correlation coefficients between each of the 4 point-of-care platelet function tests and the chest tube drainage were also poor, ranging from -0.3073 to 0.2272. Both AggreGuide™ (r = -0.3073, P = 0.0317) and VASP (r = -0.3187, P = 0.0272) were weakly but significantly correlated with chest tube drainage. The correlation among the 4 point-of-care platelet function measurements was poor, with coefficients ranging from -0.2504 to 0.1968. We observed little correlation among 4 platelet function tests, and between those assays and perioperative bleeding defined 2 different ways. Whether any of these assays should be used to guide decision making in individual patients is unclear. © 2015, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.
2017-06-01
Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.
Pan, Feng; Tao, Guohua
2013-03-07
Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.
Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order
Favalli, Andrea; Croft, Stephen; Santi, Peter
2015-06-15
Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less
Seeing in three dimensions: correlation and triangulation of Mars Exploration Rover imagery
NASA Technical Reports Server (NTRS)
Deen, Robert; Lorre, Jean
2005-01-01
This paper describes in detail the middle parts of the ground-based terrain derivation process: correlation, which finds matching points in the stereo pair, and triangulation, which converts those points to XYZ coordinates.
Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function
2009-03-01
greater than .001 seconds [Goodman, 2000]. Cross-Correlation Cross-Correlation measures the strength and direction of the linear relationship between...real(ifft2(fftshift(otf_long)))); %normalize point spread funtion 55 if (Corner == 1) psf_source = makeshift(psf*source_img(ccd_x/2,ccd_y/2
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe
2016-08-01
In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.
Consistency condition for inflation from (broken) conformal symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalm, Koenraad; Aalst, Ted van der; Shiu, Gary, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: shiu@physics.wisc.edu, E-mail: vdaalst@lorentz.leidenuniv.nl
2013-03-01
We investigate the symmetry constraints on the bispectrum, i.e. the three-point correlation function of primordial density fluctuations, in slow-roll inflation. It follows from the defining property of slow-roll inflation that primordial correlation functions inherit most of their structure from weakly broken de Sitter symmetries. Using holographic techniques borrowed from the AdS/CFT correspondence, the symmetry constraints on the bispectrum can be mapped to a set of stress-tensor Ward identities in a weakly broken 2+1-dimensional Euclidean CFT. We construct the consistency condition from these Ward identities using conformal perturbation theory. This requires a second order Ward identity and the use of themore » evolution equation. Our result also illustrates a subtle difference between conformal perturbation theory and the slow-roll expansion.« less
Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes
NASA Astrophysics Data System (ADS)
Scoccimarro, Román; Frieman, Joshua A.
1999-07-01
We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less
Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog
NASA Astrophysics Data System (ADS)
Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.
We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups
Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response
NASA Astrophysics Data System (ADS)
Floerchinger, Stefan; Wiedemann, Urs Achim
2014-08-01
An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.
Silva, Adriana Lucia Pastore E; Croci, Alberto Tesconi; Gobbi, Riccardo Gomes; Hinckel, Betina Bremer; Pecora, José Ricardo; Demange, Marco Kawamura
2017-01-01
Translation, cultural adaptation, and validation of the new version of the Knee Society Score - The 2011 KS Score - into Brazilian Portuguese and verification of its measurement properties, reproducibility, and validity. In 2012, the new version of the Knee Society Score was developed and validated. This scale comprises four separate subscales: (a) objective knee score (seven items: 100 points); (b) patient satisfaction score (five items: 40 points); (c) patient expectations score (three items: 15 points); and (d) functional activity score (19 items: 100 points). A total of 90 patients aged 55-85 years were evaluated in a clinical cross-sectional study. The pre-operative translated version was applied to patients with TKA referral, and the post-operative translated version was applied to patients who underwent TKA. Each patient answered the same questionnaire twice and was evaluated by two experts in orthopedic knee surgery. Evaluations were performed pre-operatively and three, six, or 12 months post-operatively. The reliability of the questionnaire was evaluated using the intraclass correlation coefficient (ICC) between the two applications. Internal consistency was evaluated using Cronbach's alpha. The ICC found no difference between the means of the pre-operative, three-month, and six-month post-operative evaluations between sub-scale items. The Brazilian Portuguese version of The 2011 KS Score is a valid and reliable instrument for objective and subjective evaluation of the functionality of Brazilian patients who undergo TKA and revision TKA.
Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2016-01-01
Abstract Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery. PMID:26754787
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Tukhashvili, Giorgi
2018-07-01
The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2018-01-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.
Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less
Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms
Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick
2016-05-01
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks
NASA Astrophysics Data System (ADS)
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Uniform electron gases. III. Low-density gases on three-dimensional spheres.
Agboola, Davids; Knol, Anneke L; Gill, Peter M W; Loos, Pierre-François
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids - the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) - and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification
Zancanaro, Carlo
2015-01-01
The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei
2015-12-22
Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(α em 2α s), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading ordermore » calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less
New generalized corresponding states correlation for surface tension of normal saturated liquids
NASA Astrophysics Data System (ADS)
Yi, Huili; Tian, Jianxiang
2015-08-01
A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The new correlation contains three coefficients obtained by fitting 17,051 surface tension data of 38 saturated normal liquids. These 38 liquids contain refrigerants, hydrocarbons and some other inorganic liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to well represent the experimental surface tension data for each of the 38 saturated normal liquids from the triple temperature up to the point near the critical point. The new correlation gives absolute average deviations (AAD) values below 3% for all of these 38 liquids with the only exception being octane with AAD=4.30%. Thus, the new correlation gives better overall results in comparison with other correlations for these 38 normal saturated liquids.
Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B
2015-01-01
Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.
Statistical analysis of atmospheric turbulence about a simulated block building
NASA Technical Reports Server (NTRS)
Steely, S. L., Jr.
1981-01-01
An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.
Two-point correlation function for Dirichlet L-functions
NASA Astrophysics Data System (ADS)
Bogomolny, E.; Keating, J. P.
2013-03-01
The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.
Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model
NASA Astrophysics Data System (ADS)
Ji, Yao; Kelly, Michael
2018-05-01
We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].
Inubushi, Tomoo; Sakai, Kuniyoshi L.
2013-01-01
In both vocal and sign languages, we can distinguish word-, sentence-, and discourse-level integration in terms of hierarchical processes, which integrate various elements into another higher level of constructs. In the present study, we used magnetic resonance imaging and voxel-based morphometry (VBM) to test three language tasks in Japanese Sign Language (JSL): word-level (Word), sentence-level (Sent), and discourse-level (Disc) decision tasks. We analyzed cortical activity and gray matter (GM) volumes of Deaf signers, and clarified three major points. First, we found that the activated regions in the frontal language areas gradually expanded in the dorso-ventral axis, corresponding to a difference in linguistic units for the three tasks. Moreover, the activations in each region of the frontal language areas were incrementally modulated with the level of linguistic integration. These dual mechanisms of the frontal language areas may reflect a basic organization principle of hierarchically integrating linguistic information. Secondly, activations in the lateral premotor cortex and inferior frontal gyrus were left-lateralized. Direct comparisons among the language tasks exhibited more focal activation in these regions, suggesting their functional localization. Thirdly, we found significantly positive correlations between individual task performances and GM volumes in localized regions, even when the ages of acquisition (AOAs) of JSL and Japanese were factored out. More specifically, correlations with the performances of the Word and Sent tasks were found in the left precentral/postcentral gyrus and insula, respectively, while correlations with those of the Disc task were found in the left ventral inferior frontal gyrus and precuneus. The unification of functional and anatomical studies would thus be fruitful for understanding human language systems from the aspects of both universality and individuality. PMID:24155706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro
We give some evidences of the Alday-Gaiotto-Tachikawa-Wyllard relation between SU(3) quiver gauge theories and A{sub 2} Toda theory. In particular, we derive the explicit form of 5-point correlation functions in the lower orders and confirm the agreement with Nekrasov's partition function for SU(3)xSU(3) quiver gauge theory. The algorithm to derive the correlation functions can be applied to a general n-point function in A{sub 2} Toda theory, which will be useful to establish the relation for more generic quivers. Partial analysis is also given for the SU(3)xSU(2) case, and we comment on some technical issues that need clarification before establishing themore » relation.« less
Interactions in higher-spin gravity: a holographic perspective
NASA Astrophysics Data System (ADS)
Sleight, Charlotte
2017-09-01
This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.
Atmospheric Teleconnections From Cumulants
NASA Astrophysics Data System (ADS)
Sabou, F.; Kaspi, Y.; Marston, B.; Schneider, T.
2011-12-01
Multi-point cumulants of fields such as vorticity provide a way to visualize atmospheric teleconnections, complementing other approaches such as the method of empirical orthogonal functions (EOFs). We calculate equal-time two-point cumulants of the vorticity from NCEP reanalysis data during the period 1980 -- 2010 and from direct numerical simulation (DNS) using an idealized dry general circulation model (GCM) (Schneider and Walker, 2006). Extratropical correlations seen in the NCEP data are qualitatively reproduced by the model. Three- and four-point cumulants accumulated from DNS quantify departures of the probability distribution function from a normal distribution, shedding light on the efficacy of direct statistical simulation (DSS) of atmosphere dynamics by cumulant expansions (Marston, Conover, and Schneider, 2008; Marston 2011). Lagged-time two-point cumulants between temperature gradients and eddy kinetic energy (EKE), accumulated by DNS of an idealized moist aquaplanet GCM (O'Gorman and Schneider, 2008), reveal dynamics of storm tracks. Regions of enhanced baroclinicity (as found along the eastern boundary of continents) lead to a local enhancement of EKE and a suppression of EKE further downstream as the storm track self-destructs (Kaspi and Schneider, 2011).
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
The JCMT Gould Belt Survey: Dense Core Clusters in Orion B
NASA Astrophysics Data System (ADS)
Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team
2016-04-01
The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
Variational Calculation of the Ground State of Closed-Shell Nuclei Up to $A$ = 40
Lonardoni, Diego; Lovato, Alessandro; Pieper, Steven C.; ...
2017-08-31
Variational calculations of ground-state properties of 4He, 16O and 40Ca are carried out employing realistic phenomenological two- and three-nucleon potentials. The trial wave function includes twoand three-body correlations acting on a product of single-particle determinants. Expectation values are evaluated with a cluster expansion for the spin-isospin dependent correlations considering up to five-body cluster terms. The optimal wave function is obtained by minimizing the energy expectation value over a set of up to 20 parameters by means of a nonlinear optimization library. We present results for the binding energy, charge radius, point density, single-nucleon momentum distribution, charge form factor, and Coulombmore » sum rule. We find that the employed three-nucleon interaction becomes repulsive for A ≥ 16. In 16O the inclusion of such a force provides a better description of the properties of the nucleus. In 40Ca instead, the repulsive behavior of the three-body interaction fails to reproduce experimental data for the charge radius and the charge form factor. We find that the high-momentum region of the momentum distributions, determined by the short-range terms of nuclear correlations, exhibit a universal behavior independent of the particular nucleus. The comparison of the Coulomb sum rules for 4He, 16O, and 40Ca reported in this work will help elucidate in-medium modifications of the nucleon form factors.« less
Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model
NASA Astrophysics Data System (ADS)
Cheng, Song; Jiang, Yuzhu; Yu, Yi-Cong; Batchelor, Murray T.; Guan, Xi-Wen
2018-04-01
We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency ΔkF (2 ΔkF). Here ΔkF = π (n↑ -n↓) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch k = ΔkF, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter β representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.
NASA Astrophysics Data System (ADS)
Bonezzi, Roberto; Boulanger, Nicolas; De Filippi, David; Sundell, Per
2017-11-01
We first prove that, in Vasiliev’s theory, the zero-form charges studied in Sezgin E and Sundell P 2011 (arXiv:1103.2360 [hep-th]) and Colombo N and Sundell P 20 (arXiv:1208.3880 [hep-th]) are twisted open Wilson lines in the noncommutative Z space. This is shown by mapping Vasiliev’s higher-spin model on noncommutative Yang-Mills theory. We then prove that, prior to Bose-symmetrising, the cyclically-symmetric higher-spin invariants given by the leading order of these n-point zero-form charges are equal to corresponding cyclically-invariant building blocks of n-point correlation functions of bilinear operators in free conformal field theories (CFT) in three dimensions. On the higher spin gravity side, our computation reproduces the results of Didenko V and Skvortsov E 2013 J. High Energy Phys. JHEP04(2013)158 using an alternative method amenable to the computation of subleading corrections obtained by perturbation theory in normal order. On the free CFT side, our proof involves the explicit computation of the separate cyclic building blocks of the correlation functions of n conserved currents in arbitrary dimension d>2 using polarization vectors, which is an original result. It is shown to agree, for d=3 , with the results obtained in Gelfond O A and Vasiliev M A 2013 Nucl. Phys. B 876 871-917 in various dimensions and where polarization spinors were used.
Angular resolution and range of dipole-dipole correlations in water
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Tavan, Paul
2004-03-01
We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.
Three-point functions in duality-invariant higher-derivative gravity
Naseer, Usman; Zwiebach, Barton
2016-03-21
Here, doubled α'-geometry is the simplest higher-derivative gravitational theory with exact global duality symmetry. We use the double metric formulation of this theory to compute on-shell three-point functions to all orders in α'. A simple pattern emerges when comparing with the analogous bosonic and heterotic three-point functions. As in these theories, the amplitudes factorize. The theory has no Gauss-Bonnet term, but contains a Riemann-cubed interaction to second order in α'.
The distribution of galaxies within the 'Great Wall'
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1992-01-01
The galaxy distribution within the 'Great Wall', the most striking feature in the first three 'slices' of the CfA redshift survey extension is examined. The Great Wall is extracted from the sample and is analyzed by counting galaxies in cells. The 'local' two-point correlation function within the Great Wall is computed and the local correlation length, is estimated 15/h Mpc, about 3 times larger than the correlation length for the entire sample. The redshift distribution of galaxies in the pencil-beam survey by Broadhurst et al. (1990) shows peaks separated about by large 'voids', at least to a redshift of about 0.3. The peaks might represent the intersections of their about 5/h Mpc pencil beams with structures similar to the Great Wall. Under this hypothesis, sampling of the Great Walls shows that l approximately 12/h Mpc is the minimum projected beam size required to detect all the 'walls' at redshifts between the peak of the selection function and the effective depth of the survey.
A short note on the maximal point-biserial correlation under non-normality.
Cheng, Ying; Liu, Haiyan
2016-11-01
The aim of this paper is to derive the maximal point-biserial correlation under non-normality. Several widely used non-normal distributions are considered, namely the uniform distribution, t-distribution, exponential distribution, and a mixture of two normal distributions. Results show that the maximal point-biserial correlation, depending on the non-normal continuous variable underlying the binary manifest variable, may not be a function of p (the probability that the dichotomous variable takes the value 1), can be symmetric or non-symmetric around p = .5, and may still lie in the range from -1.0 to 1.0. Therefore researchers should exercise caution when they interpret their sample point-biserial correlation coefficients based on popular beliefs that the maximal point-biserial correlation is always smaller than 1, and that the size of the correlation is always further restricted as p deviates from .5. © 2016 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.
A density spike on astrophysical scales from an N-field waterfall transition
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.
2015-09-01
Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debika; Sriramkumar, L.; Sreenath, V., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in
The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter tomore » rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.« less
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Effect of the image resolution on the statistical descriptors of heterogeneous media.
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
Effect of the image resolution on the statistical descriptors of heterogeneous media
NASA Astrophysics Data System (ADS)
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure
NASA Astrophysics Data System (ADS)
Motamedifar, M.
2017-10-01
We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.
Colour-dressed hexagon tessellations for correlation functions and non-planar corrections
NASA Astrophysics Data System (ADS)
Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro
2018-02-01
We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.
Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee
2014-10-10
Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased Kd value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R(49) that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding. Copyright © 2014 Elsevier Inc. All rights reserved.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
On two-point boundary correlations in the six-vertex model with domain wall boundary conditions
NASA Astrophysics Data System (ADS)
Colomo, F.; Pronko, A. G.
2005-05-01
The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.
Topologically massive gravity and the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.
2009-09-01
We set up the AdS/CFT correspondence for topologically massive gravity (TMG) in three dimensions. The first step in this procedure is to determine the appropriate fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk theory under consideration and are derived by solving asymptotically the non-linear field equations. We discuss in detail the asymptotic structure of the field equations for TMG, showing that it contains leading and subleading logarithms, determine the map between bulk fields and CFT operators, obtain the appropriate counterterms needed for holographic renormalization and compute holographically one- and two-point functions at and away from the ``chiral point'' (μ = 1). The 2-point functions at the chiral point are those of a logarithmic CFT (LCFT) with cL = 0,cR = 3l/GN and b = -3l/GN, where b is a parameter characterizing different c = 0 LCFTs. The bulk correlators away from the chiral point (μ ≠ 1) smoothly limit to the LCFT ones as μ → 1. Away from the chiral point, the CFT contains a state of negative norm and the expectation value of the energy momentum tensor in that state is also negative, reflecting a corresponding bulk instability due to negative energy modes.
Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.
Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael
2009-04-14
The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.
Economic weights of somatic cell score in dairy sheep.
Legarra, A; Ramón, M; Ugarte, E; Pérez-Guzmán, M D; Arranz, J
2007-03-01
The economic weights for somatic cell score (SCS) have been calculated using profit functions. Economic data were collected in the Latxa breed. Three aspects have been considered: bulk tank milk payment, veterinary treatments due to high SCS, and culling. All of them are non-linear profit functions. Milk payment is based on the sum of the log-normal distributions of somatic cell count, and veterinary treatments on the probability of subclinical mastitis, which is inferred when individual SCS surpass some threshold. Both functions lead to non-standard distributions. The derivatives of the profit function were computed numerically. Culling was computed by assuming that a conceptual trait culled by mastitis (CBM) is genetically correlated to SCS. The economic weight considers the increase in the breeding value of CBM correlated to an increase in the breeding value of SCS, assuming genetic correlations ranging from 0 to 0.9. The relevance of the economic weights for selection purposes was checked by the estimation of genetic gains for milk yield and SCS under several scenarios of genetic parameters and economic weights. The overall economic weights for SCS range from - 2.6 to - 9.5 € per point of SCS, with an average of - 4 € per point of SCS, depending on the expected average SCS of the flock. The economic weight is higher around the thresholds for payment policies. Economic weights did not change greatly with other assumptions. The estimated genetic gains with economic weights of 0.83 € per l of milk yield and - 4 € per point of SCS, assuming a genetic correlation of - 0.30, were 3.85 l and - 0.031 SCS per year, with an associated increase in profit of 3.32 €. This represents a very small increase in profit (about 1%) relative to selecting only for milk yield. Other situations (increased economic weights, different genetic correlations) produced similar genetic gains and changes in profit. A desired-gains index reduced the increase in profit by 3%, although it could be greater depending on the genetic parameters. It is concluded that the inclusion of SCS in dairy sheep breeding programs is of low economic relevance and recommended only if recording is inexpensive or for animal welfare concerns.
2008-12-20
Equation 6 for the sample likelihood function gives a “concentrated likelihood function,” which depends on correlation parameters θh and ph. This...step one and estimates correlation parameters using the new data set including all previous sample points and the new data point x. The algorithm...Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified UU 279 19b. TELEPHONE NUMBER (include area code ) N/A
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Liu, Keh-Fei
2012-03-01
It is argued by the author that the canonical form of the quark energy-momentum tensor with a partial derivative instead of the covariant derivative is the correct definition for the quark momentum and angular momentum fraction of the nucleon in covariant quantization. Although it is not manifestly gauge-invariant, its matrix elements in the nucleon will be nonvanishing and are gauge-invariant. We test this idea in the path-integral quantization by calculating correlation functions on the lattice with a gauge-invariant nucleon interpolation field and replacing the gauge link in the quark lattice momentum operator with unity, which corresponds to the partial derivative in the continuum. We find that the ratios of three-point to two-point functions are zero within errors for both the u and d quarks, contrary to the case without setting the gauge links to unity.
Semiclassics, Goldstone bosons and CFT data
NASA Astrophysics Data System (ADS)
Monin, A.; Pirtskhalava, D.; Rattazzi, R.; Seibold, F. K.
2017-06-01
Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied.
Ab-initio calculations on melting of thorium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.
2016-05-23
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less
Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations
NASA Astrophysics Data System (ADS)
Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.
2018-03-01
We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.
Uniform electron gases. III. Low-density gases on three-dimensional spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGFmore » centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.« less
Cumulants and correlation functions versus the QCD phase diagram
Bzdak, Adam; Koch, Volker; Strodthoff, Nils
2017-05-12
Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less
Cumulants and correlation functions versus the QCD phase diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzdak, Adam; Koch, Volker; Strodthoff, Nils
Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less
Segmentation of time series with long-range fractal correlations.
Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P
2012-06-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.
From Head to Sword: The Clustering Properties of Stars in Orion
NASA Astrophysics Data System (ADS)
Gomez, Mercedes; Lada, Charles J.
1998-04-01
We investigate the structure in the spatial distributions of optically selected samples of young stars in the Head (lambda Orionis) and in the Sword (Orion A) regions of the constellation of Orion with the aid of stellar surface density maps and the two-point angular correlation function. The distributions of young stars in both regions are found to be nonrandom and highly clustered. Stellar surface density maps reveal three distinct clusters in the lambda Ori region. The two-point correlation function displays significant features at angular scales that correspond to the radii and separations of the three clusters identified in the surface density maps. Most young stars in the lambda Ori region (~80%) are presently found within these three clusters, consistent with the idea that the majority of young stars in this region were formed in dense protostellar clusters that have significantly expanded since their formation. Over a scale of ~0.05d-0.5d the correlation function is well described by a single power law that increases smoothly with decreasing angular scale. This suggests that, within the clusters, the stars either are themselves hierarchically clustered or have a volume density distribution that falls steeply with radius. The relative lack of Hα emission-line stars in the one cluster in this region that contains OB stars suggests a timescale for emission-line activity of less than 4 Myr around late-type stars in the cluster and may indicate that the lifetimes of protoplanetary disks around young stellar objects are reduced in clusters containing O stars. The spatial distribution of young stars in the Orion A region is considerably more complex. The angular correlation function of the OB stars (which are mostly foreground to the Orion A molecular cloud) is very similar to that of the Hα stars (which are located mostly within the molecular cloud) and significantly different from that of the young stars in the lambda Ori region. This suggests that, although spatially separated, both populations in the Orion A region may have originated from a similar fragmentation process. Stellar surface density maps and modeling of the angular correlation function suggest that somewhat less than half of the OB and Hα stars in the Orion A cloud are presently within well-defined stellar clusters. Although all the OB stars could have originated in rich clusters, a significant fraction of the Hα stars appear to have formed outside such clusters in a more spatially dispersed manner. The close similarity of the angular correlation functions of the OB and Hα stars toward the molecular cloud, in conjunction with the earlier indications of a relatively high star formation rate and high gas pressure in this cloud, is consistent with the idea that older, foreground OB stars triggered the current episode of star formation in the Orion A cloud. One of the OB clusters (Upper Sword) that is foreground to the cloud does not appear to be associated with any of the clusterings of emission-line stars, again suggesting a timescale (<4 Myr) for emission-line activity and disk lifetimes around late-type stars born in OB clusters.
The Lyman-α power spectrum—CMB lensing convergence cross-correlation
Chiang, Chi-Ting; Slosar, Anže
2018-01-11
We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less
The Lyman-α power spectrum—CMB lensing convergence cross-correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Slosar, Anže
We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less
Results from the Wilkinson Microwave Anisotropy Probe
NASA Technical Reports Server (NTRS)
Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro
2015-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.
2017-12-01
Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.
NASA Astrophysics Data System (ADS)
Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.
2016-04-01
We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.
Ways to improve your correlation functions
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
This paper describes a number of ways to improve on the standard method for measuring the two-point correlation function of large scale structure in the Universe. Issues addressed are: (1) the problem of the mean density, and how to solve it; (2) how to estimate the uncertainty in a measured correlation function; (3) minimum variance pair weighting; (4) unbiased estimation of the selection function when magnitudes are discrete; and (5) analytic computation of angular integrals in background pair counts.
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
Field theoretic approach to roughness corrections
NASA Astrophysics Data System (ADS)
Wu, Hua Yao; Schaden, Martin
2012-02-01
We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
NASA Technical Reports Server (NTRS)
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
Elucidation of spin echo small angle neutron scattering correlation functions through model studies.
Shew, Chwen-Yang; Chen, Wei-Ren
2012-02-14
Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Non-invasive evaluation of stable renal allograft function using point shear-wave elastography.
Kim, Bom Jun; Kim, Chan Kyo; Park, Jung Jae
2018-01-01
To investigate the feasibility of point shear-wave elastography (SWE) in evaluating patients with stable renal allograft function who underwent protocol biopsies. 95 patients with stable renal allograft function that underwent ultrasound-guided biopsies at predefined time points (10 days or 1 year after transplantation) were enrolled. Ultrasound and point SWE examinations were performed immediately before protocol biopsies. Patients were categorized into two groups: subclinical rejection (SCR) and non-SCR. Tissue elasticity (kPa) on SWE was measured in the cortex of all renal allografts. SCR was pathologically confirmed in 34 patients. Tissue elasticity of the SCR group (31.0 kPa) was significantly greater than that of the non-SCR group (24.5 kPa) (=0.016), while resistive index value did not show a significant difference between the two groups (p = 0.112). Tissue elasticity in renal allografts demonstrated significantly moderate negative correlation with estimated glomerular filtration rate (correlation coefficient = -0.604, p < 0.001). Tissue elasticity was not independent factor for SCR prediction on multivariate analysis. As a non-invasive tool, point SWE appears feasible in distinguishing between patients with SCR and without SCR in stable functioning renal allografts. Moreover, it may demonstrate the functional state of renal allografts. Advances in knowledge: On point SWE, SCR has greater tissue elasticity than non-SCR.
Connecting Archimedean and Non-Archimedean AdS/CFT
NASA Astrophysics Data System (ADS)
Parikh, Sarthak
This thesis develops a non-Archimedean analog of the usual Archimedean anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. AdS space gets replaced by a Bruhat-Tits tree, which is a regular graph with no cycles. The boundary of the Bruhat-Tits tree is described by an unramified extension of the p-adic numbers, which replaces the real valued Euclidean vector space on which the CFT lives. Conformal transformations on the boundary act as linear fractional transformations. In the first part of the thesis, correlation functions are computed in the simple case of massive, interacting scalars in the bulk. They are found to be surprisingly similar to standard holographic correlation functions down to precise numerical coefficients, when expressed in terms of local zeta functions. Along the way, we show that like in the Archimedean case, CFT conformal blocks are dual to geodesic bulk diagrams, which are bulk exchange diagrams with the bulk points of integration restricted to certain geodesics. Other than these intriguing similarities, significant simplifications also arise. Notably, all derivatives disappear from the operator product expansion, and the conformal block decomposition of the four-point function. Finally, a minimal bulk action is constructed on the Bruhat-Tits tree for a single scalar field with nearest neighbor interactions, which reproduces the two-, three-, and four-point functions of the free O(N) model. In the second part, the p-adic O(N) model is studied at the interacting fixed point. Leading order results for the anomalous dimensions of low dimension operators are obtained in two separate regimes: the epsilon-expansion and the large N limit. Remarkably, formulae for anomalous dimensions in the large N limit are valid equally for Archimedean and non-Archimedean field theories, when expressed in terms of local zeta functions. Finally, higher derivative versions of the O(N) model in the Archimedean case are considered, where the general formula for anomalous dimensions obtained earlier is still valid. Analogies with two-derivative theories hint at the existence of some interesting new field theories in four real Euclidean dimensions.
Multipoint propagators in cosmological gravitational instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardeau, Francis; Crocce, Martin; Scoccimarro, Roman
2008-11-15
We introduce the concept of multipoint propagators between linear cosmic fields and their nonlinear counterparts in the context of cosmological perturbation theory. Such functions express how a nonlinearly evolved Fourier mode depends on the full ensemble of modes in the initial density field. We identify and resum the dominant diagrams in the large-k limit, showing explicitly that multipoint propagators decay into the nonlinear regime at the same rate as the two-point propagator. These analytic results generalize the large-k limit behavior of the two-point propagator to arbitrary order. We measure the three-point propagator as a function of triangle shape in numericalmore » simulations and confirm the results of our high-k resummation. We show that any n-point spectrum can be reconstructed from multipoint propagators, which leads to a physical connection between nonlinear corrections to the power spectrum at small scales and higher-order correlations at large scales. As a first application of these results, we calculate the reduced bispectrum at one loop in renormalized perturbation theory and show that we can predict the decrease in its dependence on triangle shape at redshift zero, when standard perturbation theory is least successful.« less
Entanglement properties of boundary state and thermalization
NASA Astrophysics Data System (ADS)
Guo, Wu-zhong
2018-06-01
We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.
Real- and redshift-space halo clustering in f(R) cosmologies
NASA Astrophysics Data System (ADS)
Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder
2017-05-01
We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
Bikondoa, Oier
2017-04-01
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.
An inventory of bispectrum estimators for redshift space distortions
NASA Astrophysics Data System (ADS)
Regan, Donough
2017-12-01
In order to best improve constraints on cosmological parameters and on models of modified gravity using current and future galaxy surveys it is necessary maximally exploit the available data. As redshift-space distortions mean statistical translation invariance is broken for galaxy observations, this will require measurement of the monopole, quadrupole and hexadecapole of not just the galaxy power spectrum, but also the galaxy bispectrum. A recent (2015) paper by Scoccimarro demonstrated how the standard bispectrum estimator may be expressed in terms of Fast Fourier Transforms (FFTs) to afford an extremely efficient algorithm, allowing the bispectrum multipoles on all scales and triangle shapes to be measured in comparable time to those of the power spectrum. In this paper we present a suite of alternative proxies to measure the three-point correlation multipoles. In particular, we describe a modal (or plane wave) decomposition to capture the information in each multipole in a series of basis coefficients, and also describe three compressed estimators formed using the skew-spectrum, the line correlation function and the integrated bispectrum, respectively. As well as each of the estimators offering a different measurement channel, and thereby a robustness check, it is expected that some (especially the modal estimator) will offer a vast data compression, and so a much reduced covariance matrix. This compression may be vital to reduce the computational load involved in extracting the available three-point information.
Nontrivial thermodynamics in 't Hooft's large-N limit
NASA Astrophysics Data System (ADS)
Cubero, Axel Cortés
2015-05-01
We study the finite volume/temperature correlation functions of the (1 +1 )-dimensional SU (N ) principal chiral sigma model in the planar limit. The exact S-matrix of the sigma model is known to simplify drastically at large N , and this leads to trivial thermodynamic Bethe ansatz (TBA) equations. The partition function, if derived using the TBA, can be shown to be that of free particles. We show that the correlation functions and expectation values of operators at finite volume/temperature are not those of the free theory, and that the TBA does not give enough information to calculate them. Our analysis is done using the Leclair-Mussardo formula for finite-volume correlators, and knowledge of the exact infinite-volume form factors. We present analytical results for the one-point function of the energy-momentum tensor, and the two-point function of the renormalized field operator. The results for the energy-momentum tensor can be used to define a nontrivial partition function.
Change Point Detection in Correlation Networks
NASA Astrophysics Data System (ADS)
Barnett, Ian; Onnela, Jukka-Pekka
2016-01-01
Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qing; Shi, Chaowei; Yu, Lu
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Lagrangian space consistency relation for large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Bart; Hui, Lam; Xiao, Xiao
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
Lagrangian space consistency relation for large scale structure
Horn, Bart; Hui, Lam; Xiao, Xiao
2015-09-29
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios
2014-01-01
In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.
Patel, Nitesh V; Sundararajan, Sri; Keller, Irwin; Danish, Shabbar
2018-01-01
Objective: Magnetic resonance (MR)-guided stereotactic laser amygdalohippocampectomy is a minimally invasive procedure for the treatment of refractory epilepsy in patients with mesial temporal sclerosis. Limited data exist on post-ablation volumetric trends associated with the procedure. Methods: 10 patients with mesial temporal sclerosis underwent MR-guided stereotactic laser amygdalohippocampectomy. Three independent raters computed ablation volumes at the following time points: pre-ablation (PreA), immediate post-ablation (IPA), 24 hours post-ablation (24PA), first follow-up post-ablation (FPA), and greater than three months follow-up post-ablation (>3MPA), using OsiriX DICOM Viewer (Pixmeo, Bernex, Switzerland). Statistical trends in post-ablation volumes were determined for the time points. Results: MR-guided stereotactic laser amygdalohippocampectomy produces a rapid rise and distinct peak in post-ablation volume immediately following the procedure. IPA volumes are significantly higher than all other time points. Comparing individual time points within each raters dataset (intra-rater), a significant difference was seen between the IPA time point and all others. There was no statistical difference between the 24PA, FPA, and >3MPA time points. A correlation analysis demonstrated the strongest correlations at the 24PA (r=0.97), FPA (r=0.95), and 3MPA time points (r=0.99), with a weaker correlation at IPA (r=0.92). Conclusion: MR-guided stereotactic laser amygdalohippocampectomy produces a maximal increase in post-ablation volume immediately following the procedure, which decreases and stabilizes at 24 hours post-procedure and beyond three months follow-up. Based on the correlation analysis, the lower inter-rater reliability at the IPA time point suggests it may be less accurate to assess volume at this time point. We recommend post-ablation volume assessments be made at least 24 hours post-selective ablation of the amygdalohippocampal complex (SLAH).
Segmentation of time series with long-range fractal correlations
Bernaola-Galván, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Ivanov, P.Ch.; Carpena, P.
2012-01-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome. PMID:23645997
[Present status and trend of heart fluid mechanics research based on medical image analysis].
Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo
2014-06-01
With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.
NASA Astrophysics Data System (ADS)
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-01
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 1010 choices carved out of a functional space of almost 1040 possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2016-06-07
A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented in this paper. The final 12-parameter functional form is selected from approximately 10 × 10 9 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearlymore » 5000 data points clearly surpasses that of all of the tested density functionals. Finally, in order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.« less
NASA Astrophysics Data System (ADS)
Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team
2014-12-01
We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.
Spherical Ornstein-Uhlenbeck Processes
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Pumir, Alain
2011-10-01
The paper considers random motion of a point on the surface of a sphere, in the case where the angular velocity is determined by an Ornstein-Uhlenbeck process. The solution is fully characterised by only one dimensionless number, the persistence angle, which is the typical angle of rotation during the correlation time of the angular velocity. We first show that the two-dimensional case is exactly solvable. When the persistence angle is large, a series for the correlation function has the surprising property that its sum varies much more slowly than any of its individual terms. In three dimensions we obtain asymptotic forms for the correlation function, in the limits where the persistence angle is very small and very large. The latter case exhibits a complicated transient, followed by a much slower exponential decay. The decay rate is determined by the solution of a radial Schrödinger equation in which the angular momentum quantum number takes an irrational value, namely j=1/2(sqrt{17}-1). Possible applications of the model to objects tumbling in a turbulent environment are discussed.
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
Gerendas, Bianca S; Kroisamer, Julia-Sophie; Buehl, Wolf; Rezar-Dreindl, Sandra M; Eibenberger, Katharina M; Pablik, Eleonore; Schmidt-Erfurth, Ursula; Sacu, Stefan
2018-01-16
The purpose of this study was to identify quantitatively measurable morphologic optical coherence tomography (OCT) characteristics in patients with an acute episode of central serous chorioretinopathy (CSC) and evaluate their correlation to functional and psychological variables for their use in daily clinical practice. Retinal thickness (RT), the height, area and volume of subretinal fluid (SRF)/pigment epithelium detachments were evaluated using the standardized procedures of the Vienna Reading Center. These morphologic characteristics were compared with functional variables [best-corrected visual acuity (BCVA), contrast sensitivity (CS), retinal sensitivity/microperimetry, fixation stability], and patients' subjective handicap from CSC using the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25). Data from 39 CSC patients were included in this analysis. Three different SRF height measures showed a high negative correlation (r = -0.7) to retinal sensitivity within the central 9°, which was also negatively correlated with SRF area and volume (r = -0.6). The CS score and fixation stability (fixation points within 2°) showed a moderate negative correlation (r = -0.4) with SRF height variables. Comparison of the subjective handicap with morphological characteristics in spectral-domain (SD)-OCT showed SRF height had the highest correlation (r = -0.4) with the subjective problems reported and overall NEI VFQ-25 score. In conclusion, SRF height measured in SD-OCT showed the best correlation with functional variables and patients' subjective handicap caused by the disease and therefore seems to be the best variable to look at in daily clinical routine. Even though area and volume also show a correlation, these cannot be so easily measured as height and are therefore not suggested for daily clinical routine. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
The PROMIS physical function correlates with the QuickDASH in patients with upper extremity illness.
Overbeek, Celeste L; Nota, Sjoerd P F T; Jayakumar, Prakash; Hageman, Michiel G; Ring, David
2015-01-01
To assess disability more efficiently with less burden on the patient, the National Institutes of Health has developed the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function-an instrument based on item response theory and using computer adaptive testing (CAT). Initially, upper and lower extremity disabilities were not separated and we were curious if the PROMIS Physical Function CAT could measure upper extremity disability and the Quick Disability of Arm, Shoulder and Hand (QuickDASH). We aimed to find correlation between the PROMIS Physical Function and the QuickDASH questionnaires in patients with upper extremity illness. Secondarily, we addressed whether the PROMIS Physical Function and QuickDASH correlate with the PROMIS Depression CAT and PROMIS Pain Interference CAT instruments. Finally, we assessed factors associated with QuickDASH and PROMIS Physical Function in multivariable analysis. A cohort of 93 outpatients with upper extremity illnesses completed the QuickDASH and three PROMIS CAT questionnaires: Physical Function, Pain Interference, and Depression. Pain intensity was measured with an 11-point ordinal measure (0-10 numeric rating scale). Correlation between PROMIS Physical Function and the QuickDASH was assessed. Factors that correlated with the PROMIS Physical Function and QuickDASH were assessed in multivariable regression analysis after initial bivariate analysis. There was a moderate correlation between the PROMIS Physical Function and the QuickDASH questionnaire (r=-0.55, p<0.001). Greater disability as measured with the PROMIS and QuickDASH correlated most strongly with PROMIS Depression (r=-0.35, p<0.001 and r=0.34, p<0.001 respectively) and Pain Interference (r=-0.51, p<0.001 and r=0.74, p<0.001 respectively). The factors accounting for the variability in PROMIS scores are comparable to those for the QuickDASH except that the PROMIS Physical Function is influenced by other pain conditions while the QuickDASH is not. The PROMIS Physical Function instrument may be used as an upper extremity disability measure, as it correlates with the QuickDASH questionnaire, and both instruments are influenced most strongly by the degree to which pain interferes with achieving goals. Level III, diagnostic study. See the Instructions for Authors for a complete description of levels of evidence.
Extremal Correlators in the Ads/cft Correspondence
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo
The non-renormalization of the 3-point functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L; Braunstein, S; Chiu, J
2016-06-15
Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less
Extension of local-type inequality for the higher order correlation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Teruaki; Yokoyama, Shuichiro, E-mail: suyama@resceu.s.u-tokyo.ac.jp, E-mail: shu@a.phys.nagoya-u.ac.jp
2011-07-01
For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.
On mini-superspace limit of boundary three-point function in Liouville field theory
NASA Astrophysics Data System (ADS)
Apresyan, Elena; Sarkissian, Gor
2017-12-01
We study the mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.
Chern-Simons gauge theory on orbifolds: Open strings from three dimensions
NASA Astrophysics Data System (ADS)
Hořava, Petr
1996-12-01
Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.
Scattone, Dorothy; Raggio, Donald J; May, Warren
2012-11-01
The concurrent validity of the KBIT-2 Nonverbal IQ and Leiter-R Brief IQ was evaluated for two groups of children: those with high functioning autism and those with language impairments without autism. Fifty-three children between the ages of 4 and 13 years of age participated in the study. The correlation between the scales was large (r = .62) and no statistical difference was found between the means. However, large intraindividual differences were found for 11 children who received scores at least 10 points higher on the Leiter-R Brief IQ, 5 of those scored beyond 20 points higher than nonverbal scores on the KBIT-2. Conversely, 11 children scored at least 10 points higher on the KBIT-2 than on the Leiter-R with 4 of those scoring 20 points higher. These findings highlight the importance of using multiple measures when assessing individuals with autism or language disorders.
Statistical indicators of collective behavior and functional clusters in gene networks of yeast
NASA Astrophysics Data System (ADS)
Živković, J.; Tadić, B.; Wick, N.; Thurner, S.
2006-03-01
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.
Lagrangian space consistency relation for large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
Cai, Ronglin; Guan, Yuanyuan; Wu, Hongli; Xu, Chunsheng; Li, Chuanfu; Hu, Ling; Shen, Guoming
2018-04-12
To observe the regional homogeneity (ReHo) of resting-state brain function in the healthy subjects of gastric distention treated with acupuncture at the back- shu and front- mu points of the stomach, Weishu (BL 21) and Zhongwan (CV 12) and the correlation with gastric motility so as to explore the mechanism on the central integration of the front- mu and back- shu points of the stomach. The crossover test design was adopted. Twenty-four healthy subjects were assigned to a Weishu group, a Zhongwan group and a combined-point group separately, 8 cases in each one in each of the three times. Totally, 24 subjects were included in each group. Under the water load condition, the subjects received acupuncture at Weishu (BL 21), Zhongwan (CV 12) and the combined Weishu (BL 21) and Zhongwan (CV 12). Before and after each acupuncture, the resting-state brain functional magnetic resonance imaging (fMRI) scan and electrogastrogram (EGG) test were applied. The ReHo value was calculated in the collected fMRI imaging data. The changes in ReHo values were analyzed and compared before and after acupuncture in each group, as well as among the groups. The gastric motility was analyzed before and after acupuncture. Additionally, the correlative analysis was conducted between the gastric motility and ReHo changes before and after acupuncture. (1) After acupuncture, EGG amplitudes in the subjects of each group were lower remarkably as compared with those before acupuncture (all P <0.01). The EGG frequencies were not different significantly as compared with those before acupuncture (all P >0.05). The EGG amplitudes in the Weishu group and the Zhongwan group were higher than those in the combined-point group (both P <0.05). (2) As compared with the conditions before acupuncture, acupuncture at the combined front- mu and the back- shu points as well as Weishu (BL 21) and Zhongwan (CV 12) separately all induced the changes in the brain ReHo. Acupuncture at the combined front- mu and the back- shu points significantly increased Reho values in the right inferior temporal gyrus, the left thalamus, the precuneus and the posterior cingulate gyrus (all P <0.05) and remarkably reduced the ReHo values in the the middle temporal gyrus of the right temporal pole, sulcus calcarinus and precuneus (all P <0.05). Compared with the single point groups, acupuncture at the combined front- mu and the back- shu points induced the increase of ReHo value in the posterior cingulate gyrus and the decrease of ReHo in the temporal pole (all P <0.05). (3) The correlative analysis showed that the changes in the ReHo values in the posterior cingulate gyrus, the thalamus and the precuneus were positively correlated to the changes of the gastric motility amplitudes. The changes in the ReHo values in the temporal pole was negatively correlated to the changes of the gastric motility amplitudes. Acupuncture at the combined back- shu and front- mu points of the stomach, as well as acupuncture at single Weishu (BL 21) and Zhongwan (CV 12) induce the ReHo changes in the different brain regions. Acupuncture at the combined back- shu and front- mu points of the stomach may induce the ReHo changes in some new brain regions as compared with the acupuncture at the single point. The thalamus, the posterior cingulate gyrus and the precuneus may be the the important integrated brain regions for acupuncture at the back- shu and the front- mu points in regulating the gastric motility. The effects of acupuncture at the back- shu and the front- mu points for the regulation of the gastric motility are closely related to the thalamus, the limbic system and the default network of the brain regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo
2015-09-01
We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Sumit Kumar; Yadav, Achla Bharti
2016-11-01
Beta angle utilizes three skeletal landmarks - point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. The present study was designed to evaluate the correlation of Beta angle with point A-Nasion-point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit's appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit's appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology.
Singh, Gurinder; Verma, Sanjeev; Singh, Devinder Preet; Yadav, Achla Bharti
2016-01-01
Introduction Beta angle utilizes three skeletal landmarks – point A, point B, and point C (the apparent axis of the condyle). It is formed between A-B line and point A perpendicular to C-B line. Further this angle indicates the severity and the type of skeletal dysplasia in the sagittal dimension and it changes with the growth pattern of the patient. Hence, it is important to study the dependence of beta angle on the growth pattern. Aim The present study was designed to evaluate the correlation of Beta angle with point A–Nasion–point B (ANB) angle, points A and B to palatal plane (App-Bpp), Wit’s appraisal and Maxillary-Mandibular plane angle Bisector (MMB) and Frankfort-Mandibular plane Angle (FMA) in Skeletal Class I, Class II and Class III malocclusion groups. Materials and Methods Pre-treatment lateral head cephalo-grams of 120 subjects in age group of 15-25 years were obtained. Three skeletal Class I, Class II and Class III malocclusion groups (40 each) were assorted on the basis of ANB, MMB, App-Bpp, Wit’s appraisal and FMA. Analysis of variance (ANOVA) and mean differences were calculated to compare the study groups. Bivariate correlations among different parameters of these groups were obtained. Results Normal values of beta angle in skeletal Class I group, skeletal Class II group and skeletal Class III group was 31.33±3.25, 25.28±4.28 and 40.93±4.55 respectively. Overall beta angle showed a strong correlation with all parameters of anterio-posterior dysplasia indicators except FMA. Conclusion Beta angle shows weak correlation with FMA and is not affected by growth pattern/jaw rotation. The normal values are in same range irrespective of the differences in craniofacial morphology. PMID:28050509
Test-retest reliability of the irrational performance beliefs inventory.
Turner, M J; Slater, M J; Dixon, J; Miller, A
2018-02-01
The irrational performance beliefs inventory (iPBI) was developed to measure irrational beliefs within performance domains such as sport, academia, business, and the military. Past research indicates that the iPBI has good construct, concurrent, and predictive validity, but the test-retest reliability of the iPBI has not yet been examined. Therefore, in the present study the iPBI was administered to university sport and exercise students (n = 160) and academy soccer athletes (n = 75) at three-time points. Time point two occurred 7 days after time point one, and time point three occurred 21 days after time point two. In addition, social desirability was also measured. Repeated-measures MANCOVAs, intra-class coefficients, and Pearson's (r) correlations demonstrate that the iPBI has good test-retest reliability, with iPBI scores remaining stable across the three-time points. Pearson's correlation coefficients revealed no relationships between the iPBI and social desirability, indicating that the iPBI is not highly susceptible to response bias. The results are discussed with reference to the continued usage and development of the iPBI, and future research recommendations relating to the investigation of irrational performance beliefs are proposed.
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 degmore » $^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $$\\Lambda$$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $$\\Lambda$$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $$\\times$$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $$S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$$ and $$\\Omega_m = 0.264^{+0.032}_{-0.019}$$ for $$\\Lambda$$CDM for $w$CDM, we find $$S_8 = 0.794^{+0.029}_{-0.027}$$, $$\\Omega_m = 0.279^{+0.043}_{-0.022}$$, and $$w=-0.80^{+0.20}_{-0.22}$$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $$S_8$$ and $$\\Omega_m$$ are lower than the central values from Planck ...« less
Experimental Investigation of Triplet Correlation Approximations for Fluid Water.
Pallewela, Gayani N; Ploetz, Elizabeth A; Smith, Paul E
2018-08-25
Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.
Analysis of short single rest/activation epoch fMRI by self-organizing map neural network
NASA Astrophysics Data System (ADS)
Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter
2000-04-01
Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a Kolmogorov-Smirnov statistical test of all 66 time points. To remove non- periodical time courses from training an auto-correlation function and bandwidth limiting Fourier filtering in combination with Gauss temporal smoothing was used. None of the trained maps, with one, two and three epochs, were significantly different which indicates that the feature space of only one on/off epoch is sufficient to differentiate between the rest and task condition. We found, that without pre-processing of the data no meaningful results can be achieved because of the huge amount of the non-activated and background voxels represents the majority of the features and is therefore learned by the SOM. Thus it is crucial to remove unnecessary capacity load of the neural network by selection of the training input, using auto-correlation function and/or Fourier spectrum analysis. However by reducing the time points to one rest and one activation epoch either strong auto- correlation or a precise periodical frequency is vanishing. Self-organizing maps can be used to separate rest and activation epochs of with only a 1/3 of the usually acquired time points. Because of the nature of the SOM technique, the pattern or feature separation, only the presence of a state change between the conditions is necessary for differentiation. Also the variance of the individual hemodynamic response function (HRF) and the variance of the spatial different regional cerebral blood flow (rCBF) is learned from the subject and not compared with a fixed model done by statistical evaluation. We found that reducing the information to only a few time points around the BOLD effect was not successful due to delays of rCBF and the insufficient extension of the BOLD feature in the time space. Especially for patient routine observation and pre-surgical planing a reduced scan time is of interest.
Multitime correlation functions in nonclassical stochastic processes
NASA Astrophysics Data System (ADS)
Krumm, F.; Sperling, J.; Vogel, W.
2016-06-01
A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.
Mutations in the Norrie disease gene.
Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B
1995-01-01
We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1990-01-01
The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.
Panebianco, Valeria; Sciarra, Alessandro; Osimani, Marcello; Lisi, Danilo; Ciccariello, Mauro; Salciccia, Stefano; Gentile, Vincenzo; Di Silverio, Franco; Passariello, Roberto
2009-01-01
The aim of this study was to assess the capability of a 3D isotropic MRI T2-weighted sequence (3D T2 ISO) in the depiction of changes of neurovascular bundles (NVBs) after bilateral nerve-sparing radical retropubic prostatectomy (RRP). Furthermore, our aim was also to introduce a new MRI classification score of the NVB alteration patterns using the International Index Erectile Function Five-Item (IIEF-5) score as standard of reference. Fifty-three consecutive patients were postoperatively submitted to two MR examinations, including both 2D TSE T2-weighted (2D T2) and 3D T2 ISO sequences. Image findings were scored using a relative five-point classification and correlated with the postoperative IIEF-5 score. Radiologists attributed 13.2% of patients to class 0, 11.3% to class I, 34% to class II, 24.5% to class III, and 16.9% to class IV. With 3D T2 ISO images, the same radiologists determined 43.3% class 0, 32% class I, 11.4% class II, 7.5% class III, and 5.7% class IV. In all cases, the correlation and regression analysis between the 3D T2 ISO and IIEF-5 score resulted in higher coefficients values. The 3D sequence correlated most closely with patients' grading of erectile function.
Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka
2015-08-01
Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.
An infinite set of Ward identities for adiabatic modes in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, E-mail: khinterbichler@perimeterinstitute.ca, E-mail: lh399@columbia.edu, E-mail: jkhoury@sas.upenn.edu
2014-01-01
We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — themore » q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.« less
Instanton effects on CP-violating gluonic correlators
NASA Astrophysics Data System (ADS)
Mori, Shingo; Frison, Julien; Kitano, Ryuichiro; Matsufuru, Hideo; Yamada, Norikazu
2018-03-01
In order to better understand the role played by instantons behind nonperturbative dynamics, we investigate the instanton contributions to the gluonic two point correlation functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions are calculated on the lattice at various temperatures and compared with the instanton calculus. We discuss how the instanton effects emerge or disappear with temperature and try to provide the interpretation behind it.
A pilot study examining correlates of body image among women living with SCI.
Bassett, R L; Martin Ginis, K A; Buchholz, A C
2009-06-01
Cross-sectional pilot study. To explore correlates of body image among women with spinal cord injury (SCI), within the framework of Cash's cognitive behavioral model of body image. Hamilton, Ontario, Canada. Women with SCI (N=11, 64% with tetraplegia) reported their functional and appearance body image (Adult Body Satisfaction Questionnaire). A 3-day recall of leisure time physical activity (LTPA), three measures of body composition (that is, weight, waist circumference, body fat) and several demographic variables were assessed as potential correlates. Appearance satisfaction was negatively correlated with all three measures of body composition and positively correlated with years postinjury. Functional satisfaction was positively correlated with years postinjury, and negatively correlated with various LTPA variables. Functional and appearance body image may improve with time following SCI. Body composition may impact satisfaction with physical appearance for some women. The negative relationship between LTPA and functional satisfaction merits further examination, as functional dissatisfaction may motivate individuals to engage in certain types and intensities of LTPA. Correlates of body image differ between appearance and functional satisfaction. Future research should examine appearance and functional satisfaction separately among women with SCI.
NASA Astrophysics Data System (ADS)
Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel
2016-08-01
We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
2015-02-21
A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based onmore » a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less
Mardirossian, Narbe; Head-Gordon, Martin
2015-02-20
We present a meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional. The functional form is selected from more than 10 10 choices carved out of a functional space of almost 10 40 possibilities. This raw data comes from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filteredmore » based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less
N-point functions in rolling tachyon background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokela, Niko; Keski-Vakkuri, Esko; Department of Physics, P.O. Box 64, FIN-00014, University of Helsinki
2009-04-15
We study n-point boundary correlation functions in timelike boundary Liouville theory, relevant for open string multiproduction by a decaying unstable D brane. We give an exact result for the one-point function of the tachyon vertex operator and show that it is consistent with a previously proposed relation to a conserved charge in string theory. We also discuss when the one-point amplitude vanishes. Using a straightforward perturbative expansion, we find an explicit expression for a tachyon n-point amplitude for all n, however the result is still a toy model. The calculation uses a new asymptotic approximation for Toeplitz determinants, derived bymore » relating the system to a Dyson gas at finite temperature.« less
Taninishi, Hideki; Pearlstein, Molly; Sheng, Huaxin; Izutsu, Miwa; Chaparro, Rafael E; Goldstein, Larry B; Warner, David S
2016-12-01
Scoring systems are used to measure behavioral deficits in stroke research. Video-assisted training is used to standardize stroke-related neurologic deficit scoring in humans. We hypothesized that a video-assisted training and certification program can improve inter-rater reliability in assessing neurologic function after middle cerebral artery occlusion in rats. Three expert raters scored neurologic deficits in post-middle cerebral artery occlusion rats using three published systems having different complexity levels (3, 18, or 48 points). The system having the highest point estimate for the correlation between neurologic score and infarct size was selected to create a video-assisted training and certification program. Eight trainee raters completed the video-assisted training and certification program. Inter-rater agreement ( Κ: score) and agreement with expert consensus scores were measured before and after video-assisted training and certification program completion. The 48-point system correlated best with infarct size. Video-assisted training and certification improved agreement with expert consensus scores (pretraining = 65 ± 10, posttraining = 87 ± 14, 112 possible scores, P < 0.0001), median number of trainee raters with scores within ±2 points of the expert consensus score (pretraining = 4, posttraining = 6.5, P < 0.01), categories with Κ: > 0.4 (pretraining = 4, posttraining = 9), and number of categories with an improvement in the Κ: score from pretraining to posttraining (n = 6). Video-assisted training and certification improved trainee inter-rater reliability and agreement with expert consensus behavioral scores in rats after middle cerebral artery occlusion. Video-assisted training and certification may be useful in multilaboratory preclinical studies. © The Author(s) 2015.
Spectral determinants for twist field correlators
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2018-04-01
Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.
Self similarity of two point correlations in wall bounded turbulent flows
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.; Moin, P.; Moser, R. D.; Spalart, P. R.
1987-01-01
The structure of turbulence at a height y from a wall is affected by the local mean shear at y, by the direct effect of the wall on the eddies, and by the action of other eddies close to or far from the wall. Some researchers believe that a single one of these mechanisms is dominant, while others believe that these effects have to be considered together. It is important to understand the relative importance of these effects in order to develop closure models, for example for the dissipation or for the Reynolds stress equation, and to understand the eddy structure of cross correlation functions and other measures. The specific objective was to examine the two point correlation, R sub vv, of the normal velocity component v near the wall in a turbulent channel flow and in a turbulent boundary layer. The preliminary results show that even in the inhomogeneous turbulent boundary layer, the two-point correlation function may have self similar forms. The results also show that the effects of shear and of blocking are equally important in the form of correlation functions for spacing normal to the wall. But for spanwise spacing, it was found that the eddy structure is quire different in these near flows. So any theory for turbulent structure must take both these effects into account.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solimo, H.N.; Martinez, H.E.; Riggio, R.
1989-04-01
Experimental mutual solubility and tie-line data were determined for three ternary liquid-liquid systems containing water, ethanol, and amyl acetate, benzyl alcohol, and methyl isobutyl ketone at 298.15{Kappa} in order to obtain their complete phase diagrams and to determine which is the most suitable solvent for extraction of ethanol from aqueous solutions. Tie lines were determined correlating the density of the binodal curve as a function of composition and the plait points using the Othmer and Tobias method. The experimental data were also correlated with the UNIFAC group contribution method. A qualitative agreement was obtained. Experimental results show that amyl acetatemore » is a better solvent than methyl isobutyl ketone and benzyl alcohol.« less
Two-Point Microrheology of Phase-Separated Domains in Lipid Bilayers
Hormel, Tristan T.; Reyer, Matthew A.; Parthasarathy, Raghuveer
2015-01-01
Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer. PMID:26287625
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
NASA Astrophysics Data System (ADS)
Cleve, J.; Greiner, M.; Sreenivasan, K. R.
2003-03-01
The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.
2018-05-01
Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D
2011-01-01
We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.
Mayers, Matthew Z.; Hybertsen, Mark S.; Reichman, David R.
2016-08-22
A cumulant-based GW approximation for the retarded one-particle Green's function is proposed, motivated by an exact relation between the improper Dyson self-energy and the cumulant generating function. We explore qualitative aspects of this method within a simple one-electron independent phonon model, where it is seen that the method preserves the energy moment of the spectral weight while also reproducing the exact Green's function in the weak-coupling limit. For the three-dimensional electron gas, this method predicts multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. But, its quasiparticle properties and correlation energies are more accurate than bothmore » previous cumulant methods and standard G0W0. These results point to features that may be exploited within the framework of cumulant-based methods and suggest promising directions for future exploration and improvements of cumulant-based GW approaches.« less
Hire, Kelly; Hering, Bernhard; Bansal-Pakala, Pratima
2010-08-01
Despite advances in islet transplantation, challenges remain in monitoring for anti-islet immune responses. Soluble CD30 (sCD30) has been investigated as a predictor of acute rejection in kidney, lung, and heart transplantation as well as in a single study in human islet cell recipients. In this study, sCD30 levels were retrospectively assessed in 19 allograft recipients treated with three different immunosuppression induction therapies. Soluble CD30 levels were assessed at pre-transplant; early post-transplant (day 4-day 7); one-month post-transplant; and late post-transplant (day 90-day 120) and then correlated with eventual graft outcomes at 1-year follow-up. Results showed no correlation between mean serum sCD30 levels at any point in time pre- or post-transplant and graft function at 1-year follow-up. However, analysis demonstrated that mean sCD30 levels at day 28 or day 90-day 120 decreased from pre-transplant levels in recipients with long-term islet allograft function compared to recipients with partial or non-graft function (a decrease of 43.6+/-25.6% compared to 16.7+/-35.2%, p<0.05). In another finding, immunosuppression with the ATG protocol led to a greater reduction in sCD30 levels post-transplant overall. A larger reduction post-transplant correlated with full graft function. The results demonstrate that a relative reduction in sCD30 levels post-transplant may be applicable as a biomarker to monitor graft function in islet allograft recipients. Additionally, knowledge of the impact of various immunosuppression protocols on the timing and extent of changes in post-transplant sCD30 levels could aid in patient-specific tailoring of immunosuppression. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.
1986-01-01
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
NASA Astrophysics Data System (ADS)
Glatter, Otto; Fuchs, Heribert; Jorde, Christian; Eigner, Wolf-Dieter
1987-03-01
The microprocessor of an 8-bit PC system is used as a central control unit for the acquisition and evaluation of data from quasi-elastic light scattering experiments. Data are sampled with a width of 8 bits under control of the CPU. This limits the minimum sample time to 20 μs. Shorter sample times would need a direct memory access channel. The 8-bit CPU can address a 64-kbyte RAM without additional paging. Up to 49 000 sample points can be measured without interruption. After storage, a correlation function or a power spectrum can be calculated from such a primary data set. Furthermore access is provided to the primary data for stability control, statistical tests, and for comparison of different evaluation methods for the same experiment. A detailed analysis of the signal (histogram) and of the effect of overflows is possible and shows that the number of pulses but not the number of overflows determines the error in the result. The correlation function can be computed with reasonable accuracy from data with a mean pulse rate greater than one, the power spectrum needs a three times higher pulse rate for convergence. The statistical accuracy of the results from 49 000 sample points is of the order of a few percent. Additional averages are necessary to improve their quality. The hardware extensions for the PC system are inexpensive. The main disadvantage of the present system is the high minimum sampling time of 20 μs and the fact that the correlogram or the power spectrum cannot be computed on-line as it can be done with hardware correlators or spectrum analyzers. These shortcomings and the storage size restrictions can be removed with a faster 16/32-bit CPU.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Jürg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2011-06-01
Seismic interferometry, also known as Green's function retrieval by crosscorrelation, has a wide range of applications, ranging from surface-wave tomography using ambient noise, to creating virtual sources for improved reflection seismology. Despite its successful applications, the crosscorrelation approach also has its limitations. The main underlying assumptions are that the medium is lossless and that the wavefield is equipartitioned. These assumptions are in practice often violated: the medium of interest is often illuminated from one side only, the sources may be irregularly distributed, and losses may be significant. These limitations may partly be overcome by reformulating seismic interferometry as a multidimensional deconvolution (MDD) process. We present a systematic analysis of seismic interferometry by crosscorrelation and by MDD. We show that for the non-ideal situations mentioned above, the correlation function is proportional to a Green's function with a blurred source. The source blurring is quantified by a so-called interferometric point-spread function which, like the correlation function, can be derived from the observed data (i.e. without the need to know the sources and the medium). The source of the Green's function obtained by the correlation method can be deblurred by deconvolving the correlation function for the point-spread function. This is the essence of seismic interferometry by MDD. We illustrate the crosscorrelation and MDD methods for controlled-source and passive-data applications with numerical examples and discuss the advantages and limitations of both methods.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
Parker, Michael; Goldberg, Ross F; Dinkins, Maryane M; Asbun, Horacio J; Daniel Smith, C; Preissler, Susanne; Bowers, Steven P
2011-11-01
Outcomes after ventral incisional hernia (VIH) repair are measured by recurrence rate and subjective measures. No objective metrics evaluate functional outcomes after abdominal wall reconstruction. This study aimed to develop testing of abdominal wall strength (AWS) that could be validated as a useful metric. Data were prospectively collected during 9 months from 35 patients. A total of 10 patients were evaluated before and after VIH repair, for a total of 45 encounters. The patients were tested simultaneously or in succession by two of three examiners. Data were collected for three tests: double leg lowering (DLL), trunk raising (TR), and supine reaching (SR). Raw data were compared and tested for validity, and continuous data were transformed to categorical data. Agreement was measured using the intraclass correlation coefficient (ICC) for DLL and using kappa for the ordinal measures. Simultaneous testing yielded the following interobserver reliability: DLL (0.96 and 0.87), TR (1.00 and 0.95), and SR (0.76). Reproducibility was assessed by consecutive tests, with correlation as follows: DLL (0.81), TR (0.81), and RCH (0.21). Due to poor interobserver reliability for the SR test compared with the DLL and TR tests, the SR test was excluded from calculation of an overall score. Based on raw data distribution from the DLL and TR tests, the DLL data were categorized into 10º increments, allowing construction of a 10-point score. The median AWS score was 5 (interquartile range [IQR], 4-7), and there was agreement within 1 point for 42 of the 45 encounters (93%). The findings from this study demonstrate that the 10-point AWS score may measure AWS in an accurate and reproducible fashion, with potential for objective description of abdominal wall function of VIH patients. This score may help to identify patients suited for abdominal wall reconstruction while measuring progress after VIH repair. Further longitudinal outcomes studies are needed.
Turbulent mixing of a critical fluid: The non-perturbative renormalization
NASA Astrophysics Data System (ADS)
Hnatič, M.; Kalagov, G.; Nalimov, M.
2018-01-01
Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Evidence for magnetic Weyl fermions in a correlated metal
NASA Astrophysics Data System (ADS)
Kuroda, K.; Tomita, T.; Suzuki, M.-T.; Bareille, C.; Nugroho, A. A.; Goswami, P.; Ochi, M.; Ikhlas, M.; Nakayama, M.; Akebi, S.; Noguchi, R.; Ishii, R.; Inami, N.; Ono, K.; Kumigashira, H.; Varykhalov, A.; Muro, T.; Koretsune, T.; Arita, R.; Shin, S.; Kondo, Takeshi; Nakatsuji, S.
2017-11-01
Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions--namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution of Weyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems such as Mn3Sn.
The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.
Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong
2018-01-01
Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.
Hoffman, R
1992-09-01
Originating from the experiments of Alexis Carrel, tissues in culture were originally grown in three dimensions and maintained important in vivo-like structural and functional properties. However, in modem times, monolayer cell culture methods have become predominant despite losses of structural and functional properties of the cells. Strangeways, Fell, Leighton, Sutherland and others have designed various methods of three-dimensional culture using cellulose supports, mesh supports, collagen gel or sponge supports and floatation that allow tissues to maintain many in vivo-like properties such as native architecture, differentiated functions, gene regulation, invasive properties and drug sensitivities which are very different than cells in monolayer cultures. Collagen-sponge-gel-supported histoculture has been shown to support the growth and native three-dimensional architecture of both tumor and normal tissue, often for long periods of time. This method of histoculture was utilized to develop a chemosensitivity assay for individual cancer patients by assessing the effects of drug on the patients' histocultured tumor. Various end points to measure drug response have been utilized in histoculture, including [H-3]thymidine incorporation measured by histological autoradiography and the use of vital dyes to indicate cell viability. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H tetrazolium bromide (MTT) end point was applied to the histoculture assay in an attempt to increase in vitro-in vivo correlation. The chemosensitivities of 16 human tumor lines were determined in vitro by the histoculture assay, and retrospectively correlated to their in vivo chemosensitivity as xenografts in nude mice. The overall correlation rate of the efficacy results of the drug-response assay to in vivo chemosensitivities was 89.8%, with 90.0% true-positive and 89.7% true-negative rates, 81.7% sensitivity and 94.6% specificity, thereby indicating potential clinical use for tumor histoculture with the MTT end point. The data reviewed and analyzed here thus indicate that three-dimensional culture systems offer much more realistic model systems for evaluating potential new cancer agents and individualized treatment such as predictive drug-response testing. The 'MetaMouse' model developed in our laboratory allows direct 'onplantation' of intact patient surgical cancer specimens orthotopically to athymic 'nude' mice with high-level expression of local growth on the target organ and high metastatic potential. Eight MetaMouse human cancer models are reviewed including those for the colon, bladder, lung, stomach, prostate, ovary, pancreas and head and neck. The human tumors growing and metastasizing in the mice reflect the clinical situation and should be useful for new drug evaluation and development of strategies for individual treatment. The combined technologies of histoculture and MetaMouse thus offer an integrated in vitro-in vivo system for preclinical evaluation of experimental and standard cancer therapy.
Sade, Leyla Elif; Kozan, Hatice; Eroglu, Serpil; Pirat, Bahar; Aydinalp, Alp; Sezgin, Atilla; Muderrisoglu, Haldun
2017-02-01
Residual pulmonary hypertension challenges the right ventricular function and worsens the prognosis in heart transplant recipients. The complex geometry of the right ventricle complicates estimation of its function with conventional transthoracic echocardiography. We evaluated right ventricular function in heart transplant recipients with the use of 3-dimensional echocardiography in relation to systolic pulmonary artery pressure. We performed 32 studies in 26 heart transplant patients, with 6 patients having 2 studies at different time points with different pressures and thus included. Right atrial volume, tricuspid annular plane systolic excursion, peak systolic annular velocity, fractional area change, and 2-dimensional speckle tracking longitudinal strain were obtained by 2-dimensional and tissue Doppler imaging. Three-dimensional right ventricular volumes, ejection fraction, and 3-dimensional right ventricular strain were obtained from the 3-dimensional data set by echocardiographers. Systolic pulmonary artery pressure was obtained during right heart catheterization. Overall mean systolic pulmonary artery pressure was 26 ± 7 mm Hg (range, 14-44 mmHg). Three-dimensional end-diastolic (r = 0.75; P < .001) and end-systolic volumes (r = 0.55; P = .001)correlated well with systolic pulmonary artery pressure. Right ventricular ejection fraction and right atrium volume also significantly correlated with systolic pulmonary artery pressure (r = 0.49 and P = .01 for both). However, right ventricular 2- and 3-dimensional strain, tricuspid annular plane systolic excursion, and tricuspid annular velocity did not. The effects of pulmonary hemodynamic burden on right ventricular function are better estimated by a 3-dimensional volume evaluation than with 3-dimensional longitudinal strain and other 2-dimensional and tissue Doppler measurements. These results suggest that the peculiar anatomy of the right ventricle necessitates 3-dimensional volume quantification in heart transplant recipients in relation to residual pulmonary hypertension.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
NASA Technical Reports Server (NTRS)
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
Pain point system scale (PPSS): a method for postoperative pain estimation in retrospective studies
Gkotsi, Anastasia; Petsas, Dimosthenis; Sakalis, Vasilios; Fotas, Asterios; Triantafyllidis, Argyrios; Vouros, Ioannis; Saridakis, Evangelos; Salpiggidis, Georgios; Papathanasiou, Athanasios
2012-01-01
Purpose Pain rating scales are widely used for pain assessment. Nevertheless, a new tool is required for pain assessment needs in retrospective studies. Methods The postoperative pain episodes, during the first postoperative day, of three patient groups were analyzed. Each pain episode was assessed by a visual analog scale, numerical rating scale, verbal rating scale, and a new tool – pain point system scale (PPSS) – based on the analgesics administered. The type of analgesic was defined based on the authors’ clinic protocol, patient comorbidities, pain assessment tool scores, and preadministered medications by an artificial neural network system. At each pain episode, each patient was asked to fill the three pain scales. Bartlett’s test and Kaiser–Meyer–Olkin criterion were used to evaluate sample sufficiency. The proper scoring system was defined by varimax rotation. Spearman’s and Pearson’s coefficients assessed PPSS correlation to the known pain scales. Results A total of 262 pain episodes were evaluated in 124 patients. The PPSS scored one point for each dose of paracetamol, three points for each nonsteroidal antiinflammatory drug or codeine, and seven points for each dose of opioids. The correlation between the visual analog scale and PPSS was found to be strong and linear (rho: 0.715; P < 0.001 and Pearson: 0.631; P < 0.001). Conclusion PPSS correlated well with the known pain scale and could be used safely in the evaluation of postoperative pain in retrospective studies. PMID:23152699
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
NASA Astrophysics Data System (ADS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory
NASA Astrophysics Data System (ADS)
Torquato, Salvatore; Scardicchio, A.; Zachary, Chase E.
2008-11-01
It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line \\mathbb {R} . Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space \\mathbb {R}^d for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes in \\mathbb {R}^d . We also demonstrate that spin-polarized fermionic systems in \\mathbb {R}^d have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor (or power spectrum) S(k) has a non-analytic behavior at the origin given by S(k)~|k| (k \\rightarrow 0 ). The latter result implies that the pair correlation function g2(r) tends to unity for large pair distances with a decay rate that is controlled by the power law 1/rd+1, which is a well-known property of bosonic ground states and more recently has been shown to characterize maximally random jammed sphere packings. We graphically display one-and two-dimensional realizations of the point processes in order to vividly reveal their 'repulsive' nature. Indeed, we show that the point processes can be characterized by an effective 'hard core' diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d+1, i.e., this probability is given by exp[-κ(d)rd+1] for large r and finite d, where κ(d) is a positive d-dependent constant. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2d. This coverage fraction has a special significance in the study of sphere packings in high-dimensional Euclidean spaces.
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Approach to the origin of turbulence on the basis of two-point kinetic theory
NASA Technical Reports Server (NTRS)
Tsuge, S.
1974-01-01
Equations for the fluctuation correlation in an incompressible shear flow are derived on the basis of kinetic theory, utilizing the two-point distribution function which obeys the BBGKY hierarchy equation truncated with the hypothesis of 'ternary' molecular chaos. The step from the molecular to the hydrodynamic description is accomplished by a moment expansion which is a two-point version of the thirteen-moment method, and which leads to a series of correlation equations, viz., the two-point counterparts of the continuity equation, the Navier-Stokes equation, etc. For almost parallel shearing flows the two-point equation is separable and reduces to two Orr-Sommerfeld equations with different physical implications.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Asymptotic behaviour of two-point functions in multi-species models
NASA Astrophysics Data System (ADS)
Kozlowski, Karol K.; Ragoucy, Eric
2016-05-01
We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU (3)-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.
Alvarez, Tara L; Vicci, Vincent R; Alkan, Yelda; Kim, Eun H; Gohel, Suril; Barrett, Anna M; Chiaravalloti, Nancy; Biswal, Bharat B
2010-12-01
This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes.
Alvarez, Tara L.; Vicci, Vincent R.; Alkan, Yelda; Kim, Eun H.; Gohel, Suril; Barrett, Anna M.; Chiaravalloti, Nancy; Biswal, Bharat B.
2011-01-01
Purpose This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Methods Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Results Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Conclusions Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes. PMID:21057347
Dynamical correlation functions of the quadratic coupling spin-Boson model
NASA Astrophysics Data System (ADS)
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2009-03-01
The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].
Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.
Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo
2010-12-01
Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.
An experimental investigation of a three dimensional wall jet. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Catalano, G. D.
1977-01-01
One and two point statistical properties are measured in the flow fields of a coflowing turbulent jet. Two different confining surfaces (one flat, one with large curvature) are placed adjacent to the lip of the circular nozzle; and the resultant effects on the flow field are determined. The one point quantities measured include mean velocities, turbulent intensities, velocity and concentration autocorrelations and power spectral densities, and intermittencies. From the autocorrelation curves, the Taylor microscale and the integral length scale are calculated. Two point quantities measured include velocity and concentration space-time correlations and pressure velocity correlations. From the velocity space-time correlations, iso-correlation contours are constructed along with the lines of maximum maximorum. These lines allow a picture of the flow pattern to be determined. The pressures monitored in the pressure velocity correlations are measured both in the flow field and at the surface of the confining wall(s).
NASA Astrophysics Data System (ADS)
Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang
2018-04-01
This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.
Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ
NASA Astrophysics Data System (ADS)
Kleinert, Hagen; Nogueira, Flavio S.
2003-02-01
We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.
Aspects of the RVB Luttinger Liquid Theory of the High Temperature Superconductivity
NASA Astrophysics Data System (ADS)
Ren, Yong
1992-01-01
This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to the Hubbard model and the normal state properties of the high T_{rm c} superconductors, we briefly examine the definition of the Fermi liquid and its breakdown. Then we explain why the 1D Hubbard model is the best starting point to approach our problem. In one dimension, the exact Lieb-Wu solution is available. We discuss the Lieb-Wu solution, and calculate various asymptotic correlation functions in the ground state. This clarifies the nature of the ground state which has not been known before. Instead of simply getting the exponents of the correlation functions from the Bethe Ansatz integral equations, we establish the connection between phase shifts at different Fermi points and the asymptotic correlation functions. We believe that this connection contains the most important physics and it can be readily generalized into higher dimensions. We then discuss bosonization in two dimensions and define the 2D RVB-Luttinger liquid theory, proposing that the ground state of the 2D Hubbard model belongs to a different fixed point than the Landau Fermi liquid-Luttinger liquid. Finally we apply the understanding of the 1D result to explain the normal state properties of the high T_ {c} superconductors, putting emphasis on how the non-Fermi liquid correlation functions explain the "anomalous" experimental results. In the Appendix, several issues related to the 1D and 2D Hubbard model are discussed.
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Thermal form-factor approach to dynamical correlation functions of integrable lattice models
NASA Astrophysics Data System (ADS)
Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji
2017-11-01
We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.
Chen, Wei; Liu, Bo; Lv, Hongzhi; Su, Yanling; Chen, Xiao; Zhu, Yanbin; Du, Chenguang; Zhang, Xiaolin; Zhang, Yingze
2017-09-01
Early post-operative exercise and weight-bearing activities are found to improve the functional recovery of patients with displaced intra-articular calcaneal fractures (DIACFs). We hypothesized that early functional exercise after surgery might have a secondary reduction effect on the subtalar joint, in particular the smaller fracture fragments that were not fixed firmly. A prospective study was conducted to verify this hypothesis. From December 2012 to September 2013, patients with unilateral DIACFs were enrolled and received a treatment consisting of percutaneous leverage and minimally invasive fixation. After surgery, patients in the study group started exercising on days two to three, using partial weight bearing starting week three, and full weight bearing starting week 12. Patients in the control group followed a conventional post-operative protocol of partial weight bearing after week six and full weight bearing after the bone healed. Computed tomography (CT) scanning was performed at post-operative day one, week four, week eight, and week 12 to reconstruct coronal, sagittal, and axial images, on which the maximal residual displacements of the fractures were measured. Function was evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) scoring scale at the 12th post-operative month. Twenty-eight patients in the study group and 32 in the control group were followed up for more than 12 months; their data were collected and used for the final analysis. Repeated-measures analysis of variance (ANOVA) of the maximal residual displacements of the fracture measured on CT images revealed significant differences between the study and the control groups. There were interaction effects between group and time point. Except for the first time point, the differences between the groups at all studied time points were significant. In the study group, the differences between all studied time points were significant. Strong correlations were observed between the AOFAS score at post-operative month 12 and the maximal residual displacement of the fractures on the CT images at postoperative week 12. Early functional exercise and weight bearing activity can smooth and shape the subtalar joint and reduce the residual displacement of the articular surface, improving functional recovery of the affected foot. Therefore, early rehabilitation functional exercise can be recommended in clinical practice.
Van Dornshuld, Eric; Holy, Christina M; Tschumper, Gregory S
2014-05-08
This work provides the first characterization of five stationary points of the homogeneous thioformaldehyde dimer, (CH2S)2, and seven stationary points of the heterogeneous formaldehyde/thioformaldehyde dimer, CH2O/CH2S, with correlated ab initio electronic structure methods. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with second-order Møller-Plesset perturbation theory (MP2) and 13 different density functionals in conjunction with triple-ζ basis sets augmented with diffuse and multiple sets of polarization functions. The MP2 results indicate that the three stationary points of (CH2S)2 and four of CH2O/CH2S are minima, in contrast to two stationary points of the formaldehyde dimer, (CH2O)2. Single-point energies were also computed using the explicitly correlated MP2-F12 and CCSD(T)-F12 methods and basis sets as large as heavy-aug-cc-pVTZ. The (CH2O)2 and CH2O/CH2S MP2 and MP2-F12 binding energies deviated from the CCSD(T)-F12 binding energies by no more than 0.2 and 0.4 kcal mol(-1), respectively. The (CH2O)2 and CH2O/CH2S global minimum is the same at every level of theory. However, the MP2 methods overbind (CH2S)2 by as much as 1.1 kcal mol(-1), effectively altering the energetic ordering of the thioformaldehyde dimer minima relative to the CCSD(T)-F12 energies. The CCSD(T)-F12 binding energies of the (CH2O)2 and CH2O/CH2S stationary points are quite similar, with the former ranging from around -2.4 to -4.6 kcal mol(-1) and the latter from about -1.1 to -4.4 kcal mol(-1). Corresponding (CH2S)2 stationary points have appreciably smaller CCSD(T)-F12 binding energies ranging from ca. -1.1 to -3.4 kcal mol(-1). The vibrational frequency shifts upon dimerization are also reported for each minimum on the MP2 potential energy surfaces.
NASA Astrophysics Data System (ADS)
Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel
2014-06-01
A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr
2012-12-15
We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less
Algebraic approach to electronic spectroscopy and dynamics.
Toutounji, Mohamad
2008-04-28
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Shigaki, Cheryl L; Madsen, Richard; Wanchai, Ausanee; Stewart, Bob R; Armer, Jane M
2013-11-01
Our goal was to explore the effects of lymphedema on long-term adjustment among breast cancer survivors, in terms of functioning in important life environments. Limb volume measurements and psychosocial survey data were collected from women shortly after undergoing surgical intervention for breast cancer and annually thereafter. A subset of these women were selected for the current study because they had preoperative limb volume measurement data, which is best suited to determine presence and severity of lymphedema. Our final sample of 61 women had both the arm measurements (preoperative and 5-year) and survey data (baseline and 5-year) needed for this study, which comprises a secondary cross-sectional analysis of longitudinal data. A correlational approach was used to explore associations among lymphedema (presence, severity, and whether the participant met the criteria for lymphedema at any assessment point since their treatment for breast cancer) and outcome variables (physical functioning, vocational functioning, social functioning, domestic functioning, and sexual functioning). Each of the three measures of lymphedema was significantly correlated with domestic functioning, but not with functioning in other common environments. Long-term breast cancer survivors are at risk for developing secondary conditions, such as lymphedema, to which they must learn to adjust and adapt. Lymphedema may increase risk for compromised functioning in everyday environments, a problem which lies at the heart of rehabilitation. Breast cancer survivorship, therefore, fits well within the scope of a rehabilitation framework. PsycINFO Database Record (c) 2013 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hesheng, E-mail: hesheng@umich.edu; Feng, Mary; Frey, Kirk A.
2013-08-01
Purpose: High-dose radiation therapy (RT) for intrahepatic cancer is limited by the development of liver injury. This study investigated whether regional hepatic function assessed before and during the course of RT using 99mTc-labeled iminodiacetic acid (IDA) single photon emission computed tomography (SPECT) could predict regional liver function reserve after RT. Methods and Materials: Fourteen patients treated with RT for intrahepatic cancers underwent dynamic 99mTc-IDA SPECT scans before RT, during, and 1 month after completion of RT. Indocyanine green (ICG) tests, a measure of overall liver function, were performed within 1 day of each scan. Three-dimensional volumetric hepatic extraction fraction (HEF)more » images of the liver were estimated by deconvolution analysis. After coregistration of the CT/SPECT and the treatment planning CT, HEF dose–response functions during and after RT were generated. The volumetric mean of the HEFs in the whole liver was correlated with ICG clearance time. Three models, dose, priori, and adaptive models, were developed using multivariate linear regression to assess whether the regional HEFs measured before and during RT helped predict regional hepatic function after RT. Results: The mean of the volumetric liver HEFs was significantly correlated with ICG clearance half-life time (r=−0.80, P<.0001), for all time points. Linear correlations between local doses and regional HEFs 1 month after RT were significant in 12 patients. In the priori model, regional HEF after RT was predicted by the planned dose and regional HEF assessed before RT (R=0.71, P<.0001). In the adaptive model, regional HEF after RT was predicted by regional HEF reassessed during RT and the remaining planned local dose (R=0.83, P<.0001). Conclusions: 99mTc-IDA SPECT obtained during RT could be used to assess regional hepatic function and helped predict post-RT regional liver function reserve. This could support individualized adaptive radiation treatment strategies to maximize tumor control and minimize the risk of liver damage.« less
Wang, Hesheng; Feng, Mary; Frey, Kirk A; Ten Haken, Randall K; Lawrence, Theodore S; Cao, Yue
2013-08-01
High-dose radiation therapy (RT) for intrahepatic cancer is limited by the development of liver injury. This study investigated whether regional hepatic function assessed before and during the course of RT using 99mTc-labeled iminodiacetic acid (IDA) single photon emission computed tomography (SPECT) could predict regional liver function reserve after RT. Fourteen patients treated with RT for intrahepatic cancers underwent dynamic 99mTc-IDA SPECT scans before RT, during, and 1 month after completion of RT. Indocyanine green (ICG) tests, a measure of overall liver function, were performed within 1 day of each scan. Three-dimensional volumetric hepatic extraction fraction (HEF) images of the liver were estimated by deconvolution analysis. After coregistration of the CT/SPECT and the treatment planning CT, HEF dose-response functions during and after RT were generated. The volumetric mean of the HEFs in the whole liver was correlated with ICG clearance time. Three models, dose, priori, and adaptive models, were developed using multivariate linear regression to assess whether the regional HEFs measured before and during RT helped predict regional hepatic function after RT. The mean of the volumetric liver HEFs was significantly correlated with ICG clearance half-life time (r=-0.80, P<.0001), for all time points. Linear correlations between local doses and regional HEFs 1 month after RT were significant in 12 patients. In the priori model, regional HEF after RT was predicted by the planned dose and regional HEF assessed before RT (R=0.71, P<.0001). In the adaptive model, regional HEF after RT was predicted by regional HEF reassessed during RT and the remaining planned local dose (R=0.83, P<.0001). 99mTc-IDA SPECT obtained during RT could be used to assess regional hepatic function and helped predict post-RT regional liver function reserve. This could support individualized adaptive radiation treatment strategies to maximize tumor control and minimize the risk of liver damage. Published by Elsevier Inc.
Gluon and Wilson loop TMDs for hadrons of spin ≤ 1
NASA Astrophysics Data System (ADS)
Boer, Daniël; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin
2016-10-01
In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small x, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small- x `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small- x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-1 /2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter are of interest for studies with a future Electron-Ion Collider with polarized deuterons.
Entropy of finite random binary sequences with weak long-range correlations.
Melnik, S S; Usatenko, O V
2014-11-01
We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.
Entropy of finite random binary sequences with weak long-range correlations
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2014-11-01
We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.
Jern, Patrick; Hakala, Outi; Kärnä, Antti; Gunst, Annika
2018-04-01
The aim of the present study was to investigate how women's tendency to pretend orgasm during intercourse is associated with orgasm function and intercourse-related pain, using a longitudinal design where temporal stability and possible causal relationships could be modeled. The study sample consisted of 1421 Finnish women who had participated in large-scale population-based data collections conducted at two time points 7 years apart. Pretending orgasm was assessed for the past 4 weeks, and orgasm function and pain were assessed using the Female Sexual Function Index for the past 4 weeks. Associations were also computed separately in three groups of women based on relationship status. Pretending orgasm was considerably variable over time, with 34% of the women having pretended orgasm a few times or more at least at one time point, and 11% having done so at both time points. Initial bivariate correlations revealed associations between pretending orgasm and orgasm problems within and across time, whereas associations with pain were more ambiguous. However, we found no support in the path model for the leading hypotheses that pretending orgasms would predict pain or orgasm problems over a long period of time, or that pain or orgasm problems would predict pretending orgasm. The strongest predictor of future pretending in our model was previous pretending (R 2 = .14). Relationship status did not seem to affect pretending orgasm in any major way.
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Blazek, Jonathan A.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E.; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2018-02-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv < 0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of baryon acoustic oscillation (BAO) method measurements of the cosmic distance scale using the two-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3 per cent rms in the distance scale inferred from the BAO feature in the BOSS two-point clustering, well below the 1 per cent statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument (DESI) to self-protect against the relative velocity as a possible systematic.
Counting conformal correlators
NASA Astrophysics Data System (ADS)
Kravchuk, Petr; Simmons-Duffin, David
2018-02-01
We introduce simple group-theoretic techniques for classifying conformallyinvariant tensor structures. With them, we classify tensor structures of general n-point functions of non-conserved operators, and n ≥ 4-point functions of general conserved currents, with or without permutation symmetries, and in any spacetime dimension d. Our techniques are useful for bootstrap applications. The rules we derive simultaneously count tensor structures for flat-space scattering amplitudes in d + 1 dimensions.
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Yu; Li, Peng
2018-04-01
We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias
2017-12-01
We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
NASA Astrophysics Data System (ADS)
Zolotaryuk, A. V.
2017-06-01
Several families of one-point interactions are derived from the system consisting of two and three δ-potentials which are regularized by piecewise constant functions. In physical terms such an approximating system represents two or three extremely thin layers separated by some distance. The two-scale squeezing of this heterostructure to one point as both the width of δ-approximating functions and the distance between these functions simultaneously tend to zero is studied using the power parameterization through a squeezing parameter \\varepsilon \\to 0 , so that the intensity of each δ-potential is cj =aj \\varepsilon1-μ , aj \\in {R} , j = 1, 2, 3, the width of each layer l =\\varepsilon and the distance between the layers r = c\\varepsilon^τ , c > 0. It is shown that at some values of the intensities a 1, a 2 and a 3, the transmission across the limit point potentials is non-zero, whereas outside these (resonance) values the one-point interactions are opaque splitting the system at the point of singularity into two independent subsystems. Within the interval 1 < μ < 2 , the resonance sets consist of two curves on the (a_1, a_2) -plane and three surfaces in the (a_1, a_2, a_3) -space. As the parameter μ approaches the value μ =2 , three types of splitting the one-point interactions into countable families are observed.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
Baune, Bernhard T.; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological “genomic” correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological “genomic” correlates. The CoFaMS team welcomes collaborations with both national and international researchers. PMID:27616997
Baune, Bernhard T; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers.
NASA Astrophysics Data System (ADS)
Bary, Ghulam; Ru, Peng; Zhang, Wei-Ning
2018-06-01
We calculate the three- and four-particle correlations of identical pions in an evolving pion gas (EPG) model with Bose–Einstein condensation. The multi-pion correlation functions in the EPG model are analyzed in different momentum intervals and compared with the experimental data for Pb–Pb collisions at \\sqrt{{s}{NN}}=2.76 {TeV}. It is found that the multi-pion correlation functions and cumulant correlation functions are sensitive to the condensation fraction of the EPG sources in the low average transverse-momentum intervals of the three and four pions. The model results of the multi-pion correlations are consistent with the experimental data in a considerable degree, which gives a source condensation fraction between 16% and 47%.
An adipose segmentation and quantification scheme for the intra abdominal region on minipigs
NASA Astrophysics Data System (ADS)
Engholm, Rasmus; Dubinskiy, Aleksandr; Larsen, Rasmus; Hanson, Lars G.; Christoffersen, Berit Østergaard
2006-03-01
This article describes a method for automatic segmentation of the abdomen into three anatomical regions: subcutaneous, retroperitoneal and visceral. For the last two regions the amount of adipose tissue (fat) is quantified. According to recent medical research, the distinction between retroperitoneal and visceral fat is important for studying metabolic syndrome, which is closely related to diabetes. However previous work has neglected to address this point, treating the two types of fat together. We use T1-weighted three-dimensional magnetic resonance data of the abdomen of obese minipigs. The pigs were manually dissected right after the scan, to produce the "ground truth" segmentation. We perform automatic segmentation on a representative slice, which on humans has been shown to correlate with the amount of adipose tissue in the abdomen. The process of automatic fat estimation consists of three steps. First, the subcutaneous fat is removed with a modified active contour approach. The energy formulation of the active contour exploits the homogeneous nature of the subcutaneous fat and the smoothness of the boundary. Subsequently the retroperitoneal fat located around the abdominal cavity is separated from the visceral fat. For this, we formulate a cost function on a contour, based on intensities, edges, distance to center and smoothness, so as to exploit the properties of the retroperitoneal fat. We then globally optimize this function using dynamic programming. Finally, the fat content of the retroperitoneal and visceral regions is quantified based on a fuzzy c-means clustering of the intensities within the segmented regions. The segmentation proved satisfactory by visual inspection, and closely correlated with the manual dissection data. The correlation was 0.89 for the retroperitoneal fat, and 0.74 for the visceral fat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja
2014-02-01
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.
On the IR-resummation in the EFTofLSS
NASA Astrophysics Data System (ADS)
Senatore, Leonardo; Trevisan, Gabriele
2018-05-01
We propose a simplification for the IR-resummation scheme of [1] and also include its next-to-leading order corrections coming from the tree-level three-point function of the long displacement field. First we show that the new simplified formula shares the same properties of the resummation of [2]. In Fourier space, the IR-resummed power spectrum has no residual wiggles and the two-loop calculation matches the non-linear power spectrum of the Dark Sky simulation at z=0 up to ksimeq0.34 h Mpc‑1 within cosmic variance. Then, we find that the additional subleading terms (although parametrically infrared-enhanced) modify the leading-order IR-resummed correlation function only in a marginal way, implying that the IR-resummation scheme can robustly predict the shape of the BAO peak.
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.
1987-01-01
A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.
van den Berg, Thomas J T P
2017-05-01
The effect of cataract and other media opacities on functional vision is typically assessed clinically using visual acuity. In both clinical and basic research, straylight (the functional result of light scattering in the eye) is commonly measured. The purpose of the present study was to determine the link between these two measures: is visual acuity in cataract and other media opacities related to straylight? Interdependence between acuity and straylight is addressed from three different points of view: (1) Methodological: can acuity differences affect the measurement value of straylight, and vice versa? (2) Basic optics: does the optical process of light scattering in the human eye affect both straylight and visual acuity? (3) Statistical: how strongly are acuity and straylight correlated in the practice of important clinical conditions? Experimental and theoretical aspects will be considered, with a focus on normal ageing and cataract formation. (1) Methodological: testing potential effects of acuity, artificially manipulated with positive trial lenses, showed no effect on measured straylight values. Since light scattering in the eye involves a low percentage of the light and has large angular spreading, contrast reduction due to straylight is limited, resulting in virtually absent acuity effects. (2) Basic optics: light scattering from the human donor eye lens is found to have virtually no effect in the centre of the point-spread-function, also for cataractous lenses, resulting in virtually absent acuity effects. (3) Statistical: literature data on straylight and visual acuity show a weak correlation for the important groups of normal ageing and cataract populations. The point-spread-function of the normal ageing and cataractous human eye is built upon two rather independent basic parts. Aberrations control the central peak. Light scattering controls the periphery from about 1° onwards. The way acuity and straylight are measured ensures no confounding between them. Statistically within the normal ageing and cataract populations, visual acuity and straylight vary quite independently from each other. Visual acuity losses with cataract and other media opacities are not due to straylight, but caused by aberrations and micro-aberrations. Straylight defines disability glare, and causes symptoms of glare, haloes, hazy vision etc. Overall, visual acuity and straylight are rather independent aspects of quality of vision. © 2017 The Author Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
Burns, Angus; Dowling, Adam H; Garvey, Thérèse M; Fleming, Garry J P
2014-10-01
To investigate the inter-examiner variability of contact point displacement measurements (used to calculate the overall Little's Irregularity Index (LII) score) from digital models of the maxillary arch by four independent examiners. Maxillary orthodontic pre-treatment study models of ten patients were scanned using the Lava(tm) Chairside Oral Scanner (LCOS) and 3D digital models were created using Creo(®) computer aided design (CAD) software. Four independent examiners measured the contact point displacements of the anterior maxillary teeth using the software. Measurements were recorded randomly on three separate occasions by the examiners and the measurements (n=600) obtained were analysed using correlation analyses and analyses of variance (ANOVA). LII contact point displacement measurements for the maxillary arch were reproducible for inter-examiner assessment when using the digital method and were highly correlated between examiner pairs for contact point displacement measurements >2mm. The digital measurement technique showed poor correlation for smaller contact point displacement measurements (<2mm) for repeated measurements. The coefficient of variation (CoV) of the digital contact point displacement measurements highlighted 348 of the 600 measurements differed by more than 20% of the mean compared with 516 of 600 for the same measurements performed using the conventional LII measurement technique. Although the inter-examiner variability of LII contact point displacement measurements on the maxillary arch was reduced using the digital compared with the conventional LII measurement methodology, neither method was considered appropriate for orthodontic research purposes particularly when measuring small contact point displacements. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
Binder model system to be used for determination of prepolymer functionality
NASA Technical Reports Server (NTRS)
Martinelli, F. J.; Hodgkin, J. H.
1971-01-01
Development of a method for determining the functionality distribution of prepolymers used for rocket binders is discussed. Research has been concerned with accurately determining the gel point of a model polyester system containing a single trifunctional crosslinker, and the application of these methods to more complicated model systems containing a second trifunctional crosslinker, monofunctional ingredients, or a higher functionality crosslinker. Correlations of observed with theoretical gel points for these systems would allow the methods to be applied directly to prepolymers.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field
NASA Astrophysics Data System (ADS)
Sallabi, A. K.; Alkhttab, M.
2014-12-01
Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
NASA Astrophysics Data System (ADS)
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
Lai, Shigang; Shi, Li; Fok, Alex; ...
2017-01-01
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Shigang; Shi, Li; Fok, Alex
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
Universal RCFT correlators from the holomorphic bootstrap
NASA Astrophysics Data System (ADS)
Mukhi, Sunil; Muralidhara, Girish
2018-02-01
We elaborate and extend the method of Wronskian differential equations for conformal blocks to compute four-point correlation functions on the plane for classes of primary fields in rational (and possibly more general) conformal field theories. This approach leads to universal differential equations for families of CFT's and provides a very simple re-derivation of the BPZ results for the degenerate fields ϕ 1,2 and ϕ 2,1 in the c < 1 minimal models. We apply this technique to compute correlators for the WZW models corresponding to the Deligne-Cvitanović exceptional series of Lie algebras. The application turns out to be subtle in certain cases where there are multiple decoupled primaries. The power of this approach is demonstrated by applying it to compute four-point functions for the Baby Monster CFT, which does not belong to any minimal series.
Nucleon Axial and Electromagnetic Form Factors
NASA Astrophysics Data System (ADS)
Jang, Yong-Chull; Bhattacharya, Tanmoy; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present results for the isovector axial, induced pseudoscalar, electric, and magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and by comparing two-versus three-states in three-point correlators. The Q2 behavior is analyzed using the model independent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
Correlation between urodynamic function and 3D cat scan anatomy in neobladders: does it exist?
Crivellaro, S; Mami, E; Wald, C; Smith, J J; Kocjancic, E; Stoffel, J; Bresette, J; Libertino, J A
2009-01-01
We compared the functional and anatomical differences among three different orthotopic neobladders, utilizing video urodynamics and 3D CT to determine what parameters, if any, correlate to function. Thirty-four patients were able to participate in the evaluation of their neobladder by 3D CT and video urodynamics. Three different orthotopic neobladders were identified (12 ileal, 7 ileocecal, 15 sigmoid). Multiple measurements, observations and functional data have been obtained. Statistical analysis for this study employed a linear regression test and an odds ratio calculation (using StatSoft V. 5.1). In comparing three different neobladders, no significant differences were noted. Looking at the entire population, the following association was statistically significant in linear correlation: the maximal capacity and the neobladder volume; the pressure at the maximal capacity and the distance from the symphysis, the pressure at maximal flow and both the distance from the symphysis and the thickness of the neobladder. The distance from the left femoral head was directly correlated with the post void residual and inversely correlated with the maximal flow. The Odds ratio calculation revealed (with significant P < 0.05) that the further the center of the neobladder is from the right femoral head, the higher risk of incontinence. The study seems to show no significant anatomical or functional difference among the three different types of neobladders. A possible correlation between the position of the neobladder and urinary incontinence is suggested, recognizing further study in a larger population is required.
Equilibration and GGE in interacting-to-free quantum quenches in dimensions d\\gt 1
NASA Astrophysics Data System (ADS)
Sotiriadis, Spyros; Martelloni, Gabriele
2016-03-01
Ground states ofinteracting QFTs are non-Gaussian states, i.e. their connected n-point correlation functions do not vanish for n\\gt 2, in contrast to the free QFT case. We show that, when the ground state of an interacting QFT evolves under a free massive QFT for a long time (a scenario that can be realised by a quantum quench), the connected correlation functions decay and all local physical observables equilibrate to values that are given by a Gaussian density matrix that retains memory only of the two-point initial correlation function. The argument hinges upon the fundamental physical principle of cluster decomposition, which is valid for the ground state of a general QFT. An analogous result was already known to be valid in the case of d = 1 spatial dimensions, where it is a special case of the so-called generalised Gibbs ensemble (GGE) hypothesis, and we now generalise it to higher dimensions. Moreover, in the case of massless free evolution, despite the fact that the evolution may lead not to equilibration but instead to unbounded increase of correlations with time, the GGE gives correctly the leading-order asymptotic behaviour of correlation functions in the thermodynamic and large time limit. The demonstration is performed in the context of a bosonic relativistic QFT, but the arguments apply more generally.
Covariance analyses of satellite-derived mesoscale wind fields
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Vonder Haar, T. H.
1979-01-01
Statistical structure functions have been computed independently for nine satellite-derived mesoscale wind fields that were obtained on two different days. Small cumulus clouds were tracked at 5 min intervals, but since these clouds occurred primarily in the warm sectors of midlatitude cyclones the results cannot be considered representative of the circulations within cyclones in general. The field structure varied considerably with time and was especially affected if mesoscale features were observed. The wind fields on the 2 days studied were highly anisotropic with large gradients in structure occurring approximately normal to the mean flow. Structure function calculations for the combined set of satellite winds were used to estimate random error present in the fields. It is concluded for these data that the random error in vector winds derived from cumulus cloud tracking using high-frequency satellite data is less than 1.75 m/s. Spatial correlation functions were also computed for the nine data sets. Normalized correlation functions were considerably different for u and v components and decreased rapidly as data point separation increased for both components. The correlation functions for transverse and longitudinal components decreased less rapidly as data point separation increased.
Analysis of pressure distortion testing
NASA Technical Reports Server (NTRS)
Koch, K. E.; Rees, R. L.
1976-01-01
The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern.
NASA Astrophysics Data System (ADS)
Sanders, Sören; Holthaus, Martin
2017-10-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.; et al.
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less
Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.
2016-01-01
Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276
Influence in Canonical Correlation Analysis.
ERIC Educational Resources Information Center
Romanazzi, Mario
1992-01-01
The perturbation theory of the generalized eigenproblem is used to derive influence functions of each squared canonical correlation coefficient and the corresponding canonical vector pair. Three sample versions of these functions are described, and some properties are noted. Two obvious applications, multiple correlation and correspondence…
Giesbertz, Klaas J H; van Leeuwen, Robert
2014-05-14
Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.
Modulational Instability of Cylindrical and Spherical NLS Equations. Statistical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grecu, A. T.; Grecu, D.; Visinescu, Anca
2010-01-21
The modulational (Benjamin-Feir) instability for cylindrical and spherical NLS equations (c/s NLS equations) is studied using a statistical approach (SAMI). A kinetic equation for a two-point correlation function is written and analyzed using the Wigner-Moyal transform. The linear stability of the Fourier transform of the two-point correlation function is studied and an implicit integral form for the dispersion relation is found. This is solved for different expressions of the initial spectrum (delta-spectrum, Lorentzian, Gaussian), and in the case of a Lorentzian spectrum the total growth of the instability is calculated. The similarities and differences with the usual one-dimensional NLS equationmore » are emphasized.« less
Wigner molecules: the strong-correlation limit of the three-electron harmonium.
Cioslowski, Jerzy; Pernal, Katarzyna
2006-08-14
At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.
Stochastic Gravity: Theory and Applications.
Hu, Bei Lok; Verdaguer, Enric
2004-01-01
Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.
Je, Hyung Gon; Kim, Bo Hyun; Cho, Kyoung Im; Jang, Jae Sik; Park, Yong Hyun; Spertus, John
2015-05-18
Improvement in quality of life (QoL) is a primary treatment goal for patients with peripheral arterial disease (PAD). The current study aimed to quantify improvement in the health status of PAD patients following peripheral revascularization using the peripheral artery questionnaire (PAQ) and ankle-brachial index (ABI), and to evaluate possible correlation between the two methods. The PAQ and ABI were assessed in 149 symptomatic PAD patients before, and three months after peripheral revascularization. Mean PAQ summary scores improved significantly three months after revascularization (+49.3 ± 15 points, p < 0.001). PAQ scores relating to patient symptoms showed the largest improvement following revascularization. The smallest increases were seen in reported treatment satisfaction (all p's < 0.001). As expected the ABI of treated limbs showed significant improvement post-revascularization (p < 0.001). ABI after revascularization correlated with patient-reported changes in the physical function and QoL domains of the PAQ. Twenty-two percent of PAD patients were identified as having a poor response to revascularization (increase in ABI < 0.15). Interestingly, poor responders reported improvement in symptoms on the PAQ, although this was less marked than in patients with an increase in ABI > 0.15 following revascularization. In conclusion, data from the current study suggest a significant correlation between improvement in patient-reported outcomes assessed by PAQ and ABI in symptomatic PAD patients undergoing peripheral revascularization.
Je, Hyung Gon; Kim, Bo Hyun; Cho, Kyoung Im; Jang, Jae Sik; Park, Yong Hyun; Spertus, John
2015-01-01
Improvement in quality of life (QoL) is a primary treatment goal for patients with peripheral arterial disease (PAD). The current study aimed to quantify improvement in the health status of PAD patients following peripheral revascularization using the peripheral artery questionnaire (PAQ) and ankle-brachial index (ABI), and to evaluate possible correlation between the two methods. The PAQ and ABI were assessed in 149 symptomatic PAD patients before, and three months after peripheral revascularization. Mean PAQ summary scores improved significantly three months after revascularization (+49.3 ± 15 points, p < 0.001). PAQ scores relating to patient symptoms showed the largest improvement following revascularization. The smallest increases were seen in reported treatment satisfaction (all p’s < 0.001). As expected the ABI of treated limbs showed significant improvement post-revascularization (p < 0.001). ABI after revascularization correlated with patient-reported changes in the physical function and QoL domains of the PAQ. Twenty-two percent of PAD patients were identified as having a poor response to revascularization (increase in ABI < 0.15). Interestingly, poor responders reported improvement in symptoms on the PAQ, although this was less marked than in patients with an increase in ABI > 0.15 following revascularization. In conclusion, data from the current study suggest a significant correlation between improvement in patient-reported outcomes assessed by PAQ and ABI in symptomatic PAD patients undergoing peripheral revascularization. PMID:25993299
Onyeaso, C O; Aderinokun, G A
2003-09-01
The purpose of the study was to investigate the relationship between a professionally derived index, the Dental Aesthetic Index, and some indications for orthodontic treatment as perceived by potential patients. An epidemiological survey of 614 secondary school students, 327 males (53.3%) and 287 females (46.7%) was carried out in Ibadan, Nigeria. Children aged 12-18 years (mean age, 14.9+/-2.9 SD) were randomly selected, none of them had received previous orthodontic treatment. One examiner assessed the students using the Dental Aesthetic Index (DAI). Subjects were also asked to complete a questionnaire consisting of three questions concerning appearance, function, and speech, using a 5-point Likert scale. Weak but statistically significant correlations were found for subjective assessments of appearance of teeth and the DAI (r=0.174; P<0.01) and between biting/chewing and appearance of teeth (r=0.095; P<0.05). Statistically significant correlations were found between appearance of teeth and speech (r=0.148; P<0.01) and biting/chewing and speech. The last showed the strongest correlation (r=0.268; P<0.01). The study has shown weak but significant correlation between DAI and children's perceptions of the appearance of their teeth. We recommend further study involving both DAI and Index of Orthodontic Treatment Need (IOTN) for comparison in the Nigerian population.
Takada; Komatsu; Futamase
2000-04-20
We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.
Tuning charge and correlation effects for a single molecule on a graphene device
Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; ...
2016-11-25
The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule’s lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function ofmore » gate voltage due to graphene polarization effects. Our results show that electron–electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesink, Judith M.; Schipper, Maria; Busschers, Wim
2005-11-15
Purpose: To determine the most adequate parameter to measure the consequences of reducing the parotid gland dose. Methods and Materials: One hundred eight patients treated with radiotherapy for various malignancies of the head and neck were prospectively evaluated using three methods. Parotid gland function was objectively determined by measuring stimulated parotid flow using Lashley cups and scintigraphy. To assess xerostomia-related quality of life, the head-and-neck cancer module European Organization for Research and Treatment of Cancer QLQ (Quality of Life Questionnaire) H and N35 was used. Measurements took place before radiotherapy and 6 weeks and 12 months after the completion ofmore » radiotherapy. Complication was defined for each method using cutoff values. The correlation between these complications and the mean parotid gland dose was investigated to find the best measure for parotid gland function. Results: For both flow and scintigraphy data, the best definition for objective parotid gland toxicity seemed to be reduction of stimulated parotid flow to {<=}25% of the preradiotherapy flow. Of all the subjective variables, only the single item dry mouth 6 weeks after radiotherapy was found to be significant. The best correlation with the mean parotid gland dose was found for the stimulated flow measurements. The predictive ability was the highest for the time point 1 year after radiotherapy. Subjective findings did not correlate with the mean parotid dose. Conclusions: Stimulated flow measurements using Lashley cups, with a complication defined as flow {<=}25% of the preradiotherapy output, correlated best with the mean parotid gland dose. When reduction of the mean dose to the parotid gland is intended, the stimulated flow measurement is the best method for evaluating parotid gland function.« less
Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
2000-02-01
Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera exhibits a relatively large number of sudden width behavior occurrences.
NASA Astrophysics Data System (ADS)
Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe
2016-11-01
For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.
Fishbein, Kenneth W; Makrogiannis, Sokratis K; Lukas, Vanessa A; Okine, Marilyn; Ramachandran, Ramona; Ferrucci, Luigi; Egan, Josephine M; Chia, Chee W; Spencer, Richard G
2018-07-01
To develop a protocol to non-invasively measure and map fat fraction, fat/(fat+water), as a function of age in the adult thymus for future studies monitoring the effects of interventions aimed at promoting thymic rejuvenation and preservation of immunity in older adults. Three-dimensional spoiled gradient echo 3T MRI with 3-point Dixon fat-water separation was performed at full inspiration for thymus conspicuity in 36 volunteers 19 to 56 years old. Reproducible breath-holding was facilitated by real-time pressure recording external to the console. The MRI method was validated against localized spectroscopy in vivo, with ECG triggering to compensate for stretching during the cardiac cycle. Fat fractions were corrected for T 1 and T 2 bias using relaxation times measured using inversion recovery-prepared PRESS with incremented echo time. In thymus at 3 T, T 1water = 978 ± 75 ms, T 1fat = 323 ± 37 ms, T 2water = 43.4 ± 9.7 ms and T 2fat = 52.1 ± 7.6 ms were measured. Mean T 1 -corrected MRI fat fractions varied from 0.2 to 0.8 and were positively correlated with age, weight and body mass index (BMI). In subjects with matching MRI and MRS fat fraction measurements, the difference between these measurements exhibited a mean of -0.008 with a 95% confidence interval of (0.123, -0.138). 3-point Dixon MRI of the thymus with T 1 bias correction produces quantitative fat fraction maps that correlate with T 2 -corrected MRS measurements and show age trends consistent with thymic involution. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tian, Jianxiang; Zhang, Cuihua; Zhang, Laibin; Zheng, Mengmeng; Liu, Shuzhen
2017-10-01
Based on the recent progresses on the corresponding state-based correlations for the temperature-dependent surface tension of saturated fluids [I. Cachadiña, A. Mulero and J. X. Tian, Fluid Phase Equilibr. 442 (2017) 68; J. X. Tian, M. M. Zheng, H. L. Yi, L. B. Zhang and S. Z. Liu, Mod. Phys. Lett. B 31 (2017) 1750110], we proposed a new correlation for saturated hydrocarbons. This correlation includes three fluid-independent parameters and inquires the critical temperature, the triple-point temperature and the surface tension at the triple-point temperature as inputs for each hydrocarbon. Results show that this correlation can reproduce NIST data with absolute average deviation (AAD) less than 1% for 10 out of 19 hydrocarbons and AAD less than 5% for 17 out of 19 hydrocarbons, clearly better than other correlations.
Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F
2010-12-23
A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.
Exact special twist method for quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro
2016-12-01
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
Mineral element correlation with adenohypophyseal-adrenal cortex function and stress.
Flynn, A; Pories, W J; Strain, W H; Hill, O A
1971-09-10
A statistical correlationl was made between adrenocorticotropin (ACTH) and four elements in rats under control, stress, and stress-recovery conditions. Blood serum zinc showed a strong positive correlation with the rise in ACTH during stress and its decline in stress recovery. Serum calcium, copper, and magnesium demonstrated little correlation with ACTH changes. The strong ACTH-zinc correlation points to an as yet undefined interaction between ACTH and zinc
Amygdala reactivity in healthy adults is correlated with prefrontal cortical thickness.
Foland-Ross, Lara C; Altshuler, Lori L; Bookheimer, Susan Y; Lieberman, Matthew D; Townsend, Jennifer; Penfold, Conor; Moody, Teena; Ahlf, Kyle; Shen, Jim K; Madsen, Sarah K; Rasser, Paul E; Toga, Arthur W; Thompson, Paul M
2010-12-08
Recent evidence suggests that putting feelings into words activates the prefrontal cortex (PFC) and suppresses the response of the amygdala, potentially helping to alleviate emotional distress. To further elucidate the relationship between brain structure and function in these regions, structural and functional magnetic resonance imaging (MRI) data were collected from a sample of 20 healthy human subjects. Structural MRI data were processed using cortical pattern-matching algorithms to produce spatially normalized maps of cortical thickness. During functional scanning, subjects cognitively assessed an emotional target face by choosing one of two linguistic labels (label emotion condition) or matched geometric forms (control condition). Manually prescribed regions of interest for the left amygdala were used to extract percentage signal change in this region occurring during the contrast of label emotion versus match forms. A correlation analysis between left amygdala activation and cortical thickness was then performed along each point of the cortical surface, resulting in a color-coded r value at each cortical point. Correlation analyses revealed that gray matter thickness in left ventromedial PFC was inversely correlated with task-related activation in the amygdala. These data add support to a general role of the ventromedial PFC in regulating activity of the amygdala.
Critical phenomena in active matter
NASA Astrophysics Data System (ADS)
Paoluzzi, M.; Maggi, C.; Marini Bettolo Marconi, U.; Gnan, N.
2016-11-01
We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ4 scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D . Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
NASA Technical Reports Server (NTRS)
Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.
1995-01-01
We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katanin, A. A., E-mail: katanin@mail.ru
We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32].more » We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.« less
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
The Fine-Scale Functional Correlation of Striate Cortex in Sighted and Blind People
Butt, Omar H.; Benson, Noah C.; Datta, Ritobrato
2013-01-01
To what extent are spontaneous neural signals within striate cortex organized by vision? We examined the fine-scale pattern of striate cortex correlations within and between hemispheres in rest-state BOLD fMRI data from sighted and blind people. In the sighted, we find that corticocortico correlation is well modeled as a Gaussian point-spread function across millimeters of striate cortical surface, rather than degrees of visual angle. Blindness produces a subtle change in the pattern of fine-scale striate correlations between hemispheres. Across participants blind before the age of 18, the degree of pattern alteration covaries with the strength of long-range correlation between left striate cortex and Broca's area. This suggests that early blindness exchanges local, vision-driven pattern synchrony of the striate cortices for long-range functional correlations potentially related to cross-modal representation. PMID:24107953
Caccamo, Maria Teresa; Magazù, Salvatore
2017-03-01
Infrared spectra were collected on mixtures of ethylene glycol (EG) and polyethylene glycol 600 (PEG600) as a function of weight fraction from pure EG to pure PEG600. In this paper, it will be shown that while the OH vibrational contribution drastically reduces its center frequency from 3450 cm -1 to 3300 cm -1 in the weight fraction range 0-25%, the displacement of the mixture spectral features of the mixtures from ideal behavior, i.e., in the absence of interaction, shows the presence of a non-ideal mixing process. Furthermore, wavelet cross-correlation analysis of the registered pairs of spectra and of the intramolecular O-H stretching contributions reveals how the addition of a small amount of pure EG to PEG600 dramatically influences the structural properties of the polymeric matrix, owing to an increase the intermolecular connectivity. In particular, the wavelet cross-correlation parameters, evaluated between each pair of the registered data as a function of weight fraction, in a linear-logarithmic plot, reveals an inflection point for a weight fraction of about 25% of EG, which confirms that, within the three-dimensional networks of hydrogen-bonded EG-PEG600 molecules, a key role is played by EG in determining an increase in the hydrogen-bond network density.
Chemosensory interaction: acquired olfactory impairment is associated with decreased taste function.
Landis, Basile N; Scheibe, Mandy; Weber, Cornelia; Berger, Robert; Brämerson, Annika; Bende, Mats; Nordin, Steven; Hummel, Thomas
2010-08-01
Olfaction, taste and trigeminal function are three distinct modalities. However, in daily life they are often activated concomitantly. In health and disease, it has been shown that in two of these senses, the trigeminal and olfactory senses, modification of one sense leads to changes in the other sense and vice versa. The objective of the study was to investigate whether and (if so) how, the third modality, taste, is influenced by olfactory impairment. We tested 210 subjects with normal (n = 107) or impaired (n = 103) olfactory function for their taste identification capacities. Validated tests were used for olfactory and gustatory testing (Sniffin' Sticks, Taste Strips). In an additional experiment, healthy volunteers underwent reversible olfactory cleft obstruction to investigate short-time changes of gustatory function after olfactory alteration. Mean gustatory identification (taste strip score) for the subjects with impaired olfaction was 19.4 +/- 0.6 points and 22.9 +/- 0.5 points for those with normal olfactory function (t = 4.6, p < 0.001). The frequencies of both, smell and taste impairments interacted significantly (Chi(2), F = 16.4, p < 0.001), and olfactory and gustatory function correlated (r (210) = 0.30, p < 0.001). Neither age nor olfactory impairment cause effects interfered with this olfactory-gustatory interaction. In contrast, after short-lasting induced olfactory decrease, gustatory function remained unchanged. The present study suggests that longstanding impaired olfactory function is associated with decreased gustatory function. These findings seem to extend previously described mutual chemosensory interactions also to smell and taste. It further raises the question whether chemical senses in general decrease mutually after acquired damage.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.
1986-01-01
The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.
Kitaguchi, Nobuya; Hasegawa, Midori; Ito, Shinji; Kawaguchi, Kazunori; Hiki, Yoshiyuki; Nakai, Sigeru; Suzuki, Nobuo; Shimano, Yasunobu; Ishida, Osamu; Kushimoto, Hiroko; Kato, Masao; Koide, Sigehisa; Kanayama, Kyoko; Kato, Takashi; Ito, Kengo; Takahashi, Hiroshi; Mutoh, Tatsuro; Sugiyama, Satoshi; Yuzawa, Yukio
2015-11-01
To obtain the proof of concept of a novel therapy for Alzheimer's disease (AD), we conducted two prospective studies with hemodialysis patients who had amyloid β protein (Aβ) removed from their blood three times a week. One major pathological change in the brain associated with AD is Aβ deposition, mainly 40 amino acids Aβ1-40 and 42 amino acids Aβ1-42. Impaired Aβ clearance is proposed to be one cause of increased Aβ in the AD brain. Thus, we hypothesized that an extracorporeal removal system of Aβ from the blood may remove brain Aβ and be a useful therapeutic strategy for AD. In the first prospective study, plasma Aβ levels and the cognitive function of 30 hemodialysis patients (65-76 years old) were evaluated at baseline as well as 18 or 36 months after. Although plasma Aβ1-40 levels either decreased or remained unchanged, levels of Aβ1-42 either remained unchanged or increased at the second time point. Mini-Mental State Examination scores of most subjects increased or were maintained at the second time point. Aβ1-40 influx into the blood correlated with MMSE at the second time point. In the second prospective study, five patients (51-84 years old) with renal failure were evaluated before and after the initiation of hemodialysis. Plasma Aβ levels decreased, while cognitive function improved after initiating blood Aβ removal. Therefore, long-term hemodialysis, which effectively removes blood Aβ, might alter Aβ influx and help maintain cognitive function.
Fate of superconductivity in three-dimensional disordered Luttinger semimetals
NASA Astrophysics Data System (ADS)
Mandal, Ipsita
2018-05-01
Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.
Bootstrapping the O(N) archipelago
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, Filip; Poland, David; Simmons-Duffin, David
2015-11-17
We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector Φ i and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ Φ , Δ s ) to lie inside small islands. Here, we also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport inmore » condensed matter systems.« less
Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach
NASA Astrophysics Data System (ADS)
Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.
2018-05-01
Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.
Improvements to the kernel function method of steady, subsonic lifting surface theory
NASA Technical Reports Server (NTRS)
Medan, R. T.
1974-01-01
The application of a kernel function lifting surface method to three dimensional, thin wing theory is discussed. A technique for determining the influence functions is presented. The technique is shown to require fewer quadrature points, while still calculating the influence functions accurately enough to guarantee convergence with an increasing number of spanwise quadrature points. The method also treats control points on the wing leading and trailing edges. The report introduces and employs an aspect of the kernel function method which apparently has never been used before and which significantly enhances the efficiency of the kernel function approach.
Clustering properties of g -selected galaxies at z ~ 0.8
Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...
2016-06-21
In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less
Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.
Matthaeus, W H; Weygand, J M; Dasso, S
2016-06-17
Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.
Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.
2010-01-01
The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317
Flynn, Kathryn E.; Lin, Li; Moe, Gordon W.; Howlett, Jonathan G.; Fine, Lawrence J.; Spertus, John A.; McConnell, Timothy R.; Piña, Ileana L.; Weinfurt, Kevin P.
2011-01-01
Background Heart failure trials use a variety of measures of functional capacity and quality of life. Lack of formal assessments of the relationships between changes in multiple aspects of patient-reported health status and measures of functional capacity over time limit the ability to compare results across studies. Methods Using data from HF-ACTION (N = 2331), we used Pearson correlation coefficients and predicted change scores from linear mixed-effects modeling to demonstrate associations between changes in patient-reported health status measured with the EQ-5D visual analog scale (VAS) and the Kansas City Cardiomyopathy Questionnaire (KCCQ) and changes in peak VO2 and 6-minute walk distance at 3 and 12 months. We examined a 5-point change in KCCQ within individuals to provide a framework for interpreting changes in these measures. Results After adjustment for baseline characteristics, correlations between changes in the VAS and changes in peak VO2 and 6-minute walk distance ranged from 0.13 to 0.28, and correlations between changes in the KCCQ overall and subscale scores and changes in peak VO2 and 6-minute walk distance ranged from 0.18 to 0.34. A 5-point change in KCCQ was associated with a 2.50 ml/kg/min change in peak VO2 (95% confidence interval, 2.21–2.86) and a 112-meter change in 6-minute walk distance (95% confidence interval, 96–134). Conclusions Changes in patient-reported health status are not highly correlated with changes in functional capacity. Our findings generally support the current practice of considering a 5-point change in the KCCQ within individuals to be clinically meaningful. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:22172441
CCP Receiver-Function Imaging of the Moho beneath Volcanic Fields in Western Saudi Arabia
NASA Astrophysics Data System (ADS)
Blanchette, A. R.; Mooney, W. D.; Klemperer, S. L.; Zahran, H. M.; El-Hadidy, S. Y.
2015-12-01
We are searching for structural complexity in the crust and upper mantle beneath the Neogene volcanic fields ('harrats') of western Saudi Arabia. We determined P-wave seismic receiver functions for 50 broadband seismographic stations located within or adjacent to three volcanic fields: Harrats Lunayyir, Rahat, and Khaybar. There are 18 seismographic stations within Lunayyir, 11 in Khaybar, and 15 in Rahat with average interstation spacing of 10 km, 30km, and 50 km. For each station we calculated 300 to 600 receiver functions with an iterative time-domain deconvolution; noisy receiver functions (outliers) were rejected by cross correlating each receiver function with a station stack; we only accepted those with a cross correlation coefficient ≥ 0.6. We used these receiver functions to create a common-conversion point (CCP) image of the crust and upper mantle. The Moho and lithosphere-asthenosphere boundary (LAB) are clearly imaged, particularly beneath Lunayyir, and have average depths of about 38 km and 60 km. We do not find any evidence for structural disruption of the Moho within our ~70 km x 70 km image of the Moho beneath Lunayyir. We image a clear crust-mantle boundary beneath Rahat and Khaybar also at ~38 km, 2-3 km deeper than anticipated from prior receiver function results outside of the harrats. Mid-crustal low velocity zones seen locally beneath all three harrats, most commonly at 10-15 km or 15-20 km in depth, may more likely represent silicic Precambrian basement than accumulations of magma. Estimates of up to ~0.5 km3 of magma erupted during each eruptive episode are consistent with the lack of a disrupted Moho. However, the total erupted volume of magma, e.g. > 1000 km3 at Rahat, together with associated intrusions from the mantle, is consistent with crustal thickening of ~2 km beneath the harrats.
Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.
Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R
2007-12-01
After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.
Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V
2015-01-01
Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning.
Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.
2015-01-01
Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning. PMID:26106566
Analysis of data from NASA B-57B gust gradient program
NASA Technical Reports Server (NTRS)
Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.
1985-01-01
Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.
NASA Astrophysics Data System (ADS)
Savitri, D.
2018-01-01
This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenkarev, Zakhar O.; Panteleev, Pavel V.; Balandin, Sergey V.
Highlights: Black-Right-Pointing-Pointer Aurelin was overexpressed in Escherichia coli, and its spatial structure was studied by NMR. Black-Right-Pointing-Pointer Aurelin compact structure encloses helical regions cross-linked by three disulfide bonds. Black-Right-Pointing-Pointer Aurelin shows structural homology to the BgK and ShK toxins of sea anemones. Black-Right-Pointing-Pointer Aurelin binds to the anionic lipid vesicles, but does not interact with zwitterionic ones. Black-Right-Pointing-Pointer Aurelin binds to DPC micelle surface with moderate affinity via two helical regions. -- Abstract: Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its {sup 15}N-labeled analogue were overexpressed in Escherichiamore » coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 3{sub 10}-helix and two {alpha}-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two {alpha}-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the 'functional dyad' required for the high-affinity interaction with the K{sup +}-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.« less
Electron correlations and pre-collision in the re-collision picture of high harmonic generation
NASA Astrophysics Data System (ADS)
Mašín, Zdeněk; Harvey, Alex G.; Spanner, Michael; Patchkovskii, Serguei; Ivanov, Misha; Smirnova, Olga
2018-07-01
We discuss the seminal three-step model and the re-collision picture in the context of high harmonic generation in molecules. In particular, we stress the importance of multi-electron correlation during the first and the third of the three steps of the process: (1) the strong-field ionization and (3) the recombination. We point out how an accurate account of multi-electron correlations during the third recombination step allows one to gauge the importance of pre-collision: the term coined by Eberly (n.d. private communication) to describe unusual pathways during the first, ionization, step.
Finite size of hadrons and Bose-Einstein correlations
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2013-11-01
It is observed that the finite size of hadrons produced in high energy collisions implies that their positions are correlated, since the probability to find two hadrons on top of each other is highly reduced. It is then shown that this effect can naturally explain the values of the correlation function below one, observed at LEP and LHC for pairs of identical pions. to emphasize the role of inter-hadron correlations in the explanation of the observed negative values of C(p1,p2)-1 and to point out that a natural source of such inter-hadron correlations can be provided by the finite sizes of the produced hadrons. Several comments are in order.(i) Our use of the Θ-function to parametrize the excluded volume correlations is clearly only a crude approximation. For a precise description of data almost certainly a more sophisticated parametrization of the effect will be needed. In particular, note that with our parametrization the correlation in space-time does not affect the single-particle and two-particle non-symmetrized momentum distributions. The same comment applies to our use of Gaussians.(ii) It has been recently found [6,7] that in pp collisions at LHC, the volume of the system (as determined from the fitted HBT parameters) depends weakly on the multiplicity of the particles produced in the collision. This suggests that large multiplicity in an event is due to a longer emission time. If true, this should be also reflected in the HBT measurements and it may be interesting to investigate this aspect of the problem in more detail.(iii) To investigate further the space and/or time correlations between the emitted particles more information is needed. It would be interesting to study the minima in the correlation functions separately for the “side”, “out” and “long” directions. Such studies may allow to determine the size of the “excluded volume” and compare it with other estimates [14,15]. We also feel that with the present accuracy and statistics of data, measurements of three-particle B-E correlations represent the potential to provide some essential information helping to understand what is really going on.
He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing
2017-11-02
Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.
Contractor, Kaiyumars B; Kenny, Laura M; Coombes, Charles R; Turkheimer, Federico E; Aboagye, Eric O; Rosso, Lula
2012-03-24
Quantification of kinetic parameters of positron emission tomography (PET) imaging agents normally requires collecting arterial blood samples which is inconvenient for patients and difficult to implement in routine clinical practice. The aim of this study was to investigate whether a population-based input function (POP-IF) reliant on only a few individual discrete samples allows accurate estimates of tumour proliferation using [18F]fluorothymidine (FLT). Thirty-six historical FLT-PET data with concurrent arterial sampling were available for this study. A population average of baseline scans blood data was constructed using leave-one-out cross-validation for each scan and used in conjunction with individual blood samples. Three limited sampling protocols were investigated including, respectively, only seven (POP-IF7), five (POP-IF5) and three (POP-IF3) discrete samples of the historical dataset. Additionally, using the three-point protocol, we derived a POP-IF3M, the only input function which was not corrected for the fraction of radiolabelled metabolites present in blood. The kinetic parameter for net FLT retention at steady state, Ki, was derived using the modified Patlak plot and compared with the original full arterial set for validation. Small percentage differences in the area under the curve between all the POP-IFs and full arterial sampling IF was found over 60 min (4.2%-5.7%), while there were, as expected, larger differences in the peak position and peak height.A high correlation between Ki values calculated using the original arterial input function and all the population-derived IFs was observed (R2 = 0.85-0.98). The population-based input showed good intra-subject reproducibility of Ki values (R2 = 0.81-0.94) and good correlation (R2 = 0.60-0.85) with Ki-67. Input functions generated using these simplified protocols over scan duration of 60 min estimate net PET-FLT retention with reasonable accuracy.
Income distribution dependence of poverty measure: A theoretical analysis
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Mallick, Sushanta K.
2007-04-01
Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the ‘global’ mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy.
Stoeckel, Luke E; Murdaugh, Donna L; Cox, James E; Cook, Edwin W; Weller, Rosalyn E
2013-06-01
Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD), or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual's 'indifference point', or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain.
USDA-ARS?s Scientific Manuscript database
This study compared the utility of three sampling methods for ecological monitoring based on: interchangeability of data (rank correlations), precision (coefficient of variation), cost (minutes/transect), and potential of each method to generate multiple indicators. Species richness and foliar cover...
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward
1991-01-01
It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.
Regularity of p(ṡ)-superharmonic functions, the Kellogg property and semiregular boundary points
NASA Astrophysics Data System (ADS)
Adamowicz, Tomasz; Björn, Anders; Björn, Jana
2014-11-01
We study various boundary and inner regularity questions for $p(\\cdot)$-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for $p(\\cdot)$-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples. Along the way, we present a removability result for bounded $p(\\cdot)$-harmonic functions and give some new characterizations of $W^{1, p(\\cdot)}_0$ spaces. We also show that $p(\\cdot)$-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions.
Lew, Matthew D.; Lee, Steven F.; Badieirostami, Majid; Moerner, W. E.
2011-01-01
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 µm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z. PMID:21263500
Lew, Matthew D; Lee, Steven F; Badieirostami, Majid; Moerner, W E
2011-01-15
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 μm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z.
Lisková, Anna; Krivánková, Ludmila
2005-12-01
Accurate determination of pK(a) values is important for proper characterization of newly synthesized molecules. In this work we have used CZE for determination of pK(a) values of new compounds prepared from intermediates, 2, 3 and 4-(2-chloro-acetylamino)-phenoxyacetic acids, by substituting chloride for 2-oxo-pyrrolidine, 2-oxo-piperidine or 2-oxo-azepane. These substances are expected to have a cognition enhancing activity and free radicals scavenging effect. Measurements were performed in a polyacrylamide-coated fused-silica capillary of 0.075 mm ID using direct UV detection at 254 nm. Three electrolyte systems were used for measurements to eliminate effects of potential interactions between tested compounds and components of the BGE. In the pH range 2.7-5.4, chloride, formate, acetate and phosphate were used as BGE co-ions, and sodium, beta-alanine and epsilon-aminocaproate as counterions. Mobility standards were measured simultaneously with the tested compounds for calculations of correct electrophoretic mobilities. Several approaches for the calculation of the pK(a) values were used. The values of pK(a) were determined by standard point-to-point calculation using Henderson-Hasselbach equation. Mobility and pH data were also evaluated by using nonlinear regression. Three parameter sigmoidal function fitted the experimental data with correlation coefficients higher than 0.99. Results from CZE measurements were compared with spectrophotometric measurements performed in sodium formate buffer solutions and evaluated at wavelength where the highest absorbance difference for varying pH was recorded. The experimental pK(a) values were compared with corresponding values calculated by the SPARC online calculator. Results of all three used methods were in good correlation.
Correlation functions in the D1-D5 orbifold CFT
NASA Astrophysics Data System (ADS)
i Tormo, Joan Garcia; Taylor, Marika
2018-06-01
The D1-D5 system has an orbifold point in its moduli space, at which it may be described by an N = (4,4) supersymmetric sigma model with target space M N /S( N) where M is T^4 or K3. In this paper we consider correlation functions involving chiral operators constructed from twist fields: we find explicit expressions for processes involving a twist n operator joining n twist operators of arbitrary twist. These expressions are universal, in that they are independent of the choice of M , and the final results can be expressed in a compact form. We explain how these results are relevant to the black hole microstate programme: one point functions of chiral operators can be used to reconstruct AdS3 near horizon regions of D1-D5 microstates and to match microstates constructed in supergravity with the CFT.
Renormalization of QCD in the interpolating momentum subtraction scheme at three loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.; Simms, R. M.
2018-04-01
We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.
Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.
2013-12-01
Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].
Comparison of two stand-alone CADe systems at multiple operating points
NASA Astrophysics Data System (ADS)
Sahiner, Berkman; Chen, Weijie; Pezeshk, Aria; Petrick, Nicholas
2015-03-01
Computer-aided detection (CADe) systems are typically designed to work at a given operating point: The device displays a mark if and only if the level of suspiciousness of a region of interest is above a fixed threshold. To compare the standalone performances of two systems, one approach is to select the parameters of the systems to yield a target false-positive rate that defines the operating point, and to compare the sensitivities at that operating point. Increasingly, CADe developers offer multiple operating points, which necessitates the comparison of two CADe systems involving multiple comparisons. To control the Type I error, multiple-comparison correction is needed for keeping the family-wise error rate (FWER) less than a given alpha-level. The sensitivities of a single modality at different operating points are correlated. In addition, the sensitivities of the two modalities at the same or different operating points are also likely to be correlated. It has been shown in the literature that when test statistics are correlated, well-known methods for controlling the FWER are conservative. In this study, we compared the FWER and power of three methods, namely the Bonferroni, step-up, and adjusted step-up methods in comparing the sensitivities of two CADe systems at multiple operating points, where the adjusted step-up method uses the estimated correlations. Our results indicate that the adjusted step-up method has a substantial advantage over other the two methods both in terms of the FWER and power.
The use of copula functions for predictive analysis of correlations between extreme storm tides
NASA Astrophysics Data System (ADS)
Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy
2014-11-01
In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation
NASA Astrophysics Data System (ADS)
Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.
2009-03-01
In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.
The separate universe approach to soft limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenton, Zachary; Mulryne, David J., E-mail: z.a.kenton@qmul.ac.uk, E-mail: d.mulryne@qmul.ac.uk
We develop a formalism for calculating soft limits of n -point inflationary correlation functions using separate universe techniques. Our method naturally allows for multiple fields and leads to an elegant diagrammatic approach. As an application we focus on the trispectrum produced by inflation with multiple light fields, giving explicit formulae for all possible single- and double-soft limits. We also investigate consistency relations and present an infinite tower of inequalities between soft correlation functions which generalise the Suyama-Yamaguchi inequality.
Algebraic approach to electronic spectroscopy and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less
Time delay and distance measurement
NASA Technical Reports Server (NTRS)
Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)
2011-01-01
A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.
Thermodynamically self-consistent theory for the Blume-Capel model.
Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G
2001-04-01
We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.
Abraham, Adam C; Agarwalla, Avinesh; Yadavalli, Aditya; Liu, Jenny Y; Tang, Simon Y
2016-06-01
The assessment of fracture risk often relies primarily on measuring bone mineral density, thereby accounting for only a single pathology: the loss of bone mass. However, bone's ability to resist fracture is a result of its biphasic composition and hierarchical structure that imbue it with high strength and toughness. Reference point indentation (RPI) testing is designed to directly probe bone mechanical behavior at the microscale in situ, although it remains unclear which aspects of bone composition and structure influence the results at this scale. Therefore, our goal in this study was to investigate factors that contribute to bone mechanical behavior measured by cyclic reference point indentation, impact reference point indentation, and three-point bending. Twenty-eight female cadavers (ages 57-97) were subjected to cyclic and impact RPI in parallel at the unmodified tibia mid-diaphysis. After RPI, the middiaphyseal tibiae were removed, scanned using micro-CT to obtain cortical porosity (Ct.Po.) and tissue mineral density (TMD), then tested using three-point bending, and lastly assayed for the accumulation of advanced glycation end-products (AGEs). Both the indentation distance increase from cyclic RPI (IDI) and bone material strength index from impact RPI (BMSi) were significantly correlated with TMD (r=-0.390, p=0.006; r=0.430, p=0.002; respectively). Accumulation of AGEs was significantly correlated with IDI (r=0.281, p=0.046), creep indentation distance (CID, r=0.396, p=0.004), and BMSi (r=-0.613, p<0.001). There were no significant relationships between tissue TMD or AGEs accumulation with the quasi-static material properties. Toughness decreased with increasing tissue Ct.Po. (r=-0.621, p<0.001). Other three-point bending measures also correlated with tissue Ct.Po. including the bending modulus (r=-0.50, p<0.001) and ultimate stress (r=-0.56, p<0.001). The effects of Ct.Po. on indentation were less pronounced with IDI (r=0.290, p=0.043) and BMSi (r=-0.299, p=0.037) correlated modestly with tissue Ct.Po. These results suggest that RPI may be sensitive to bone quality changes relating to collagen. Copyright © 2016 Elsevier Inc. All rights reserved.
BINARY CORRELATIONS IN IONIZED GASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Taylor, H.S.
1961-01-01
An equation of evolution for the binary distribution function in a classical homogeneous, nonequilibrium plasma was derived. It is shown that the asymptotic (long-time) solution of this equation is the Debye distribution, thus providing a rigorous dynamical derivation of the equilibrium distribution. This proof is free from the fundamental conceptual difficulties of conventional equilibrium derivations. Out of equilibrium, a closed formula was obtained for the long living correlations, in terms of the momentum distribution function. These results should form an appropriate starting point for a rigorous theory of transport phenomena in plasmas, including the effect of molecular correlations. (auth)
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
Tasaka, Akinori; Kikuchi, Manaki; Nakanishi, Kousuke; Ueda, Takayuki; Yamashita, Shuichiro; Sakurai, Kaoru
2018-01-01
The objective of the present study was to investigate the relationship between masticatory function-related factors (masticatory performance, occlusal contact area, maximum bite force, number of chewing strokes, and muscle activity) and the stress-relieving effects of chewing. A total of 28 healthy male subjects were instructed to rest or chew for 10min after 30min of stress loading with arithmetic calculations. Their stress state was assessed by measuring salivary cortisol levels. Saliva was collected at three time points: before stress loading, immediately after stress loading, and 10min after stress loading. Compared to resting, chewing produced a significantly greater reduction in the rate of change in salivary cortisol levels 10min after stress loading. A negative correlation was observed between the rate of decrease in salivary cortisol levels and the number of chewing strokes. No significant correlation was observed between the rate of decrease in salivary cortisol levels and other measurement items. In healthy dentulous people, the number of chewing strokes has been shown to be a masticatory function-related factor that affects stress relief from chewing, suggesting the possibility that more appropriate chewing would produce a greater effect psychological stress relief. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mantus, M.; Pardo, H.
1973-01-01
Computer programming, data processing, and a correlation study that employed data collected in the first phase test were used to demonstrate that standard test procedures and equipment could be used to collect a significant number of transfer functions from tests of the Lunar Module test article LTA-11. The testing consisted of suspending the vehicle from the apex fittings of the outrigger trusses through a set of air springs to simulate the free-free state. Impulsive loadings were delivered, one at a time, at each of the landing gear's attachment points, in three mutually perpendicular directions; thus a total of 36 impulses were applied to the vehicle. Time histories of each pulse were recorded on magnetic tape along with 40 channels of strain gage response and 28 channels of accelerometer response. Since an automated data processing system was not available, oscillograph playbacks were made of all 2400 time histories as a check on the validity of the data taken. In addition, one channel of instrumentation was processed to determine its response to a set of forcing functions from a prior LTA-11 drop test. This prediction was compared with drop test results as a first measure of accuracy.
NASA Astrophysics Data System (ADS)
Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; Des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue
2017-03-01
Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications.
Dumée, Ludovic F.; Yi, Zhifeng; Tardy, Blaise; Merenda, Andrea; des Ligneris, Elise; Dagastine, Ray R.; Kong, Lingxue
2017-01-01
Nano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane. The surface energy of the silica monolith templates was tuned to improve the homogeneity of the reduction process while thiol functionalization facilitated the formation of a high density of seeding points for metal ions to reduce. The diameter of NMMs was between 2 and 1000 nm, corresponding to a silver loading between 1.23 and 41.16 at.%. A rates of catalytic degradation kinetics of these NMMS which is three orders of magnitude higher than those of the non-functionalized silver-silica structures. Furthermore, the enhancement in mechanical stability at nanoscale which was evaluated by Atomic Force Microscopy force measurements, electronic density and chemical inertness was assessed and critically correlated to their catalytic potential. This strategy opens up new avenues for design of complex architectures of either single or multi-metal alloy NMMs with enhanced surface properties for various applications. PMID:28332602
Lower Limb Function in Elderly Korean Adults Is Related to Cognitive Function.
Kim, A-Sol; Ko, Hae-Jin
2018-05-01
Patients with cognitive impairment have decreased lower limb function. Therefore, we aimed to investigate the relationship between lower limb function and cognitive disorders to determine whether lower limb function can be screened to identify cognitive decline. Using Korean National Health Insurance Service-National Sample Cohort database data, we assessed the cognitive and lower limb functioning of 66-year-olds who underwent national health screening between 2010 and 2014. Cognitive function was assessed via a questionnaire. Timed Up-and-Go (TUG) and one-leg-standing (OLS) tests were performed to evaluate lower limb function. Associations between cognitive and lower limb functions were analyzed, and optimal cut-off points for these tests to screen for cognitive decline, were determined. Cognitive function was significantly correlated with TUG interval ( r = 0.414, p < 0.001) and OLS duration ( r = −0.237, p < 0.001). Optimal cut-off points for screening cognitive disorders were >11 s and ≤12 s for TUG interval and OLS duration, respectively. Among 66-year-olds who underwent national health screening, a significant correlation between lower limb and cognitive function was demonstrated. The TUG and OLS tests are useful screening tools for cognitive disorders in elderly patients. A large-scale prospective cohort study should be conducted to investigate the causal relationship between cognitive and lower limb function.
Three-particle N π π state contribution to the nucleon two-point function in lattice QCD
NASA Astrophysics Data System (ADS)
Bär, Oliver
2018-05-01
The three-particle N π π state contribution to the QCD two-point function of standard nucleon interpolating fields is computed to leading order in chiral perturbation theory. Using the experimental values for two low-energy coefficients, the impact of this contribution on lattice QCD calculations of the nucleon mass is estimated. The impact is found to be at the per mille level at most and negligible in practice.
Functional outcomes of "floating elbow" injuries in adult patients.
Yokoyama, K; Itoman, M; Kobayashi, A; Shindo, M; Futami, T
1998-05-01
To assess elbow function, complications, and problems of floating elbow fractures in adults receiving surgical treatment. Retrospective clinical review. Level I trauma center in Kanagawa, Japan. Fourteen patients with fifteen floating elbow injuries, excluding one immediate amputation, seen at the Kitasato University Hospital from January 1, 1984, to April 30, 1995. All fractures were managed surgically by various methods. In ten cases, the humeral and forearm fractures were treated simultaneously with immediate fixation. In three cases, both the humeral and forearm fractures were treated with delayed fixation on Day 1, 4, or 7. In the remaining two cases, the open forearm fracture was managed with immediate fixation and the humerus fracture with delayed fixation on Day 10 or 25. All subjects underwent standardized elbow evaluations, and results were compared with an elbow score based on a 100-point scale. The parameters evaluated were pain, motion, elbow and grip strength, and function during daily activities. Complications such as infections, nonunions, malunions, and refractures were investigated. Mean follow-up was forty-three months (range 13 to 112 months). At final follow-up, the mean elbow function score was 79 points, with 67 percent (ten of fifteen) of the subjects having good or excellent results. The functional outcome did not correlate with the Injury Severity Score of the individual patients, the existence of open injuries or neurovascular injuries, or the timing of surgery. There were one deep infection, two nonunions of the humerus, two nonunions of the forearm, one varus deformity of the humerus, and one forearm refracture. Based on the present data, we could not clarify the factors influencing the final functional outcome after floating elbow injury. These injuries, however, potentially have many complications, such as infection or nonunion, especially when there is associated brachial plexus injury. We consider that floating elbow injuries are severe injuries and that surgical stabilization is needed; beyond that, there are no specific forms of surgical treatment to reliably guarantee excellent results.
Unitary subsector of generalized minimal models
NASA Astrophysics Data System (ADS)
Behan, Connor
2018-05-01
We revisit the line of nonunitary theories that interpolate between the Virasoro minimal models. Numerical bootstrap applications have brought about interest in the four-point function involving the scalar primary of lowest dimension. Using recent progress in harmonic analysis on the conformal group, we prove the conjecture that global conformal blocks in this correlator appear with positive coefficients. We also compute many such coefficients in the simplest mixed correlator system. Finally, we comment on the status of using global conformal blocks to isolate the truly unitary points on this line.
Okun, Michele L; Kline, Christopher E; Roberts, James M; Wettlaufer, Barbara; Glover, Khaleelah; Hall, Martica
2013-12-01
Sleep deficiency is an emerging concept denoting a deficit in the quantity or quality of sleep. This may be particularly salient for pregnant women since they report considerable sleep complaints. Sleep deficiency is linked with morbidity, including degradations in psychosocial functioning, (e.g., depression and stress), which are recognized risk factors for adverse pregnancy outcomes. We sought to describe the frequency of sleep deficiency across early gestation (10-20 weeks) and whether sleep deficiency is associated with reports of more depressive symptoms and stress. Pregnant women (N=160) with no self-reported sleep or psychological disorder provided sleep data collected via diary and actigraphy during early pregnancy: 10-12, 14-16, and 18-20 weeks' gestation. Sleep deficiency was defined as short sleep duration, insufficient sleep, or insomnia. Symptoms of depression and stress were collected at the same three time points. Linear mixed effects models were used to analyze the data. Approximately 28%-38% met criteria for sleep deficiency for at least one time point in early gestation. Women who were sleep deficient across all time points reported more perceived stress than those who were not sleep deficient (p<0.01). Depressive symptoms were higher among women with diary-defined sleep deficiency across all time points (p=0.02). Sleep deficiency is a useful concept to describe sleep recognized to be disturbed in pregnancy. Women with persistent sleep deficiency appear to be at greater risk for impairments in psychosocial functioning during early gestation. These associations are important since psychosocial functioning is a recognized correlate of adverse pregnancy outcomes. Sleep deficiency may be another important risk factor for adverse pregnancy outcomes.
Tree-level correlations in the strong field regime
NASA Astrophysics Data System (ADS)
Gelis, François
2017-09-01
We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mysina, N Yu; Maksimova, L A; Ryabukho, V P
Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the resultsmore » of numerical experiments. (laser applications and other topics in quantum electronics)« less
Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.
NASA Astrophysics Data System (ADS)
Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.
2016-12-01
Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.
Exact relations for energy transfer in self-gravitating isothermal turbulence
NASA Astrophysics Data System (ADS)
Banerjee, Supratik; Kritsuk, Alexei G.
2017-11-01
Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011), 10.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013), 10.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.
Changes in Neutrophil Functions in Astronauts
NASA Technical Reports Server (NTRS)
Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.
2002-01-01
Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.
NASA Astrophysics Data System (ADS)
Martin, E. R.; Dou, S.; Lindsey, N.; Chang, J. P.; Biondi, B. C.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Robertson, M.; Ulrich, C.; Williams, E. F.
2016-12-01
Localized strong sources of noise in an array have been shown to cause artifacts in Green's function estimates obtained via cross-correlation. Their effect is often reduced through the use of cross-coherence. Beyond independent localized sources, temporally or spatially correlated sources of noise frequently occur in practice but violate basic assumptions of much of the theory behind ambient noise Green's function retrieval. These correlated noise sources can occur in urban environments due to transportation infrastructure, or in areas around industrial operations like pumps running at CO2 sequestration sites or oil and gas drilling sites. Better understanding of these artifacts should help us develop and justify methods for their automatic removal from Green's function estimates. We derive expected artifacts in cross-correlations from several distributions of correlated noise sources including point sources that are exact time-lagged repeats of each other and Gaussian-distributed in space and time with covariance that exponentially decays. Assuming the noise distribution stays stationary over time, the artifacts become more coherent as more ambient noise is included in the Green's function estimates. We support our results with simple computational models. We observed these artifacts in Green's function estimates from a 2015 ambient noise study in Fairbanks, AK where a trenched distributed acoustic sensing (DAS) array was deployed to collect ambient noise alongside a road with the goal of developing a permafrost thaw monitoring system. We found that joints in the road repeatedly being hit by cars travelling at roughly the speed limit led to artifacts similar to those expected when several points are time-lagged copies of each other. We also show test results of attenuating the effects of these sources during time-lapse monitoring of an active thaw test in the same location with noise detected by a 2D trenched DAS array.
Theory of nonstationary Hawkes processes
NASA Astrophysics Data System (ADS)
Tannenbaum, Neta Ravid; Burak, Yoram
2017-12-01
We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.
Analysis of Measurement Error and Estimator Shape in Three-Point Hydraulic Gradient Estimators
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Wahi, A. K.
2003-12-01
Three spatially separated measurements of head provide a means of estimating the magnitude and orientation of the hydraulic gradient. Previous work with three-point estimators has focused on the effect of the size (area) of the three-point estimator and measurement error on the final estimates of the gradient magnitude and orientation in laboratory and field studies (Mizell, 1980; Silliman and Frost, 1995; Silliman and Mantz, 2000; Ruskauff and Rumbaugh, 1996). However, a systematic analysis of the combined effects of measurement error, estimator shape and estimator orientation relative to the gradient orientation has not previously been conducted. Monte Carlo simulation with an underlying assumption of a homogeneous transmissivity field is used to examine the effects of uncorrelated measurement error on a series of eleven different three-point estimators having the same size but different shapes as a function of the orientation of the true gradient. Results show that the variance in the estimate of both the magnitude and the orientation increase linearly with the increase in measurement error in agreement with the results of stochastic theory for estimators that are small relative to the correlation length of transmissivity (Mizell, 1980). Three-point estimator shapes with base to height ratios between 0.5 and 5.0 provide accurate estimates of magnitude and orientation across all orientations of the true gradient. As an example, these results are applied to data collected from a monitoring network of 25 wells at the WIPP site during two different time periods. The simulation results are used to reduce the set of all possible combinations of three wells to those combinations with acceptable measurement errors relative to the amount of head drop across the estimator and base to height ratios between 0.5 and 5.0. These limitations reduce the set of all possible well combinations by 98 percent and show that size alone as defined by triangle area is not a valid discriminator of whether or not the estimator provides accurate estimates of the gradient magnitude and orientation. This research was funded by WIPP programs administered by the U.S Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva
2018-01-15
Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.
Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar
2016-12-01
Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.
Bootstrapping N=2 chiral correlators
NASA Astrophysics Data System (ADS)
Lemos, Madalena; Liendo, Pedro
2016-01-01
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2017-06-01
We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.
The correlated network of acupuncture effect: a functional connectivity study.
Qin, Wei; Tian, Jie; Pan, Xiaohong; Yang, Lin; Zhen, Zonglei
2006-01-01
A functional connectivity, which are temporally correlated in functionally related brain regions, before and after acupuncture manipulation was measured by MRI. Amygdala, as the control system of endogenetic analgesia, was selected for "seed" point. We found that compelling similarity existed in the network of resting state before and after acupuncture manipulation. A paired student t-test was implemented to investigate under the different conditions. The main difference was found in the limbic system, brainstem and cerebellum. We conclude that the default endogenous analgesia functional network exists in human brain at a low level, and it could be increased to a higher level by acupuncture modulation.
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
It has been a longstanding debate on what the nature of Elsässer variables z- observed in the Alfvénic solar wind is. It is widely believed that z- represents inward propagating Alfvén waves and undergoes non-linear interaction with z+ to produce energy cascade. However, z- variations sometimes show nature of convective structures. Here we present a new data analysis on z- autocorrelation functions to get some definite information on its nature. We find that there is usually a break point on the z- auto-correlation function when the fluctuations show nearly pure Alfvénicity. The break point observed by Helios-2 spacecraft near 0.3 AU is at the first time lag ( 81 s), where the autocorrelation coefficient has the value less than that at zero-time lag by a factor of more than 0.4. The autocorrelation function breaks also appear in the WIND observations near 1 AU. The z- autocorrelation function is separated by the break into two parts: fast decreasing part and slowly decreasing part, which cannot be described in a whole by an exponential formula. The breaks in the z- autocorrelation function may represent that the z- time series are composed of high-frequency white noise and low-frequency apparent structures, which correspond to the flat and steep parts of the function, respectively. This explanation is supported by a simple test with a superposition of an artificial random data series and a smoothed random data series. Since in many cases z- autocorrelation functions do not decrease very quickly at large time lag and cannot be considered as the Lanczos type, no reliable value for correlation-time can be derived. Our results showed that in these cases with high Alfvénicity, z- should not be considered as inward-propagating wave. The power-law spectrum of z+ should be made by fluid turbulence cascade process presented by Kolmogorov.
NASA Astrophysics Data System (ADS)
Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko
2015-11-01
To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.
What correlation effects are covered by density functional theory?
NASA Astrophysics Data System (ADS)
He, Yuan; Grafenstein, Jurgen; Kraka, Elfi; Cremer, Dieter
The electron density distribution rho(r) generated by a DFT calculation was systematically studied by comparison with a series of reference densities obtained by wavefunction theory (WFT) methods that cover typical electron correlation effects. As a sensitive indicator for correlation effects the dipole moment of the CO molecule was used. The analysis reveals that typical LDA and GGA exchange functionals already simulate effects that are actually reminiscent of pair and three-electron correlation effects covered by MP2, MP4, and CCSD(T) in WFT. Correlation functionals contract the density towards the bond and the valence region thus taking negative charge out of the van der Waals region. It is shown that these improvements are relevant for the description of van der Waals interactions. Similar to certain correlated single-determinant WFT methods, BLYP and other GGA functionals underestimate ionic terms needed for a correct description of polar bonds. This is compensated for in hybrid functionals by mixing in HF exchange. The balanced mixing of local and non-local exchange and correlation effects leads to the correct description of polar bonds as in the B3LYP description of the CO molecule. The density obtained with B3LYP is closer to CCSD and CCSD(T) than to MP2 or MP4, which indicates that the B3LYP hybrid functional mimics those pair and three-electron correlation effects, which in WFT are only covered by coupled cluster methods.
Modelling deformation and fracture in confectionery wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon
2015-01-22
The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which wasmore » then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.« less
Modelling deformation and fracture in confectionery wafers
NASA Astrophysics Data System (ADS)
Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John
2015-01-01
The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
NASA Astrophysics Data System (ADS)
Zurek, Sebastian; Guzik, Przemyslaw; Pawlak, Sebastian; Kosmider, Marcin; Piskorski, Jaroslaw
2012-12-01
We explore the relation between correlation dimension, approximate entropy and sample entropy parameters, which are commonly used in nonlinear systems analysis. Using theoretical considerations we identify the points which are shared by all these complexity algorithms and show explicitly that the above parameters are intimately connected and mutually interdependent. A new geometrical interpretation of sample entropy and correlation dimension is provided and the consequences for the interpretation of sample entropy, its relative consistency and some of the algorithms for parameter selection for this quantity are discussed. To get an exact algorithmic relation between the three parameters we construct a very fast algorithm for simultaneous calculations of the above, which uses the full time series as the source of templates, rather than the usual 10%. This algorithm can be used in medical applications of complexity theory, as it can calculate all three parameters for a realistic recording of 104 points within minutes with the use of an average notebook computer.
correlcalc: Two-point correlation function from redshift surveys
NASA Astrophysics Data System (ADS)
Rohin, Yeluripati
2017-11-01
correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Kieburg, Mario; Guhr, Thomas
2017-06-01
The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.
Zhao, Xiaoxin; Sui, Yuxiu; Yao, Jingjing; Lv, Yiding; Zhang, Xinyue; Jin, Zhuma; Chen, Lijun; Zhang, Xiangrong
2017-07-03
Facial emotion perception is impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve abnormality in white matter (WM), few studies have examined the correlation between facial emotion perception and WM abnormalities in never-medicated patients with first-episode schizophrenia. The present study tested associations between facial emotion perception and WM integrity in order to investigate the neural basis of impaired facial emotion perception in schizophrenia. Sixty-three schizophrenic patients and thirty control subjects underwent facial emotion categorization (FEC). The FEC data was inserted into a logistic function model with subsequent analysis by independent-samples T test and the shift point and slope as outcome measurements. Severity of symptoms was measured using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). Voxelwise group comparison of WM fractional anisotropy (FA) was operated using tract-based spatial statistics (TBSS). The correlation between impaired facial emotion perception and FA reduction was examined in patients using simple regression analysis within brain areas that showed a significant FA reduction in patients compared with controls. The same correlation analysis was also performed for control subjects in the whole brain. The patients with schizophrenia reported a higher shift point and a steeper slope than control subjects in FEC. The patients showed a significant FA reduction in left deep WM in the parietal, temporal and occipital lobes, a small portion of the corpus callosum (CC), and the corona radiata. In voxelwise correlation analysis, we found that facial emotion perception significantly correlated with reduced FA in various WM regions, including left forceps major (FM), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), Left splenium of CC, and left ILF. The correlation analyses in healthy controls revealed no significant correlation of FA with FEC task. These results showed disrupted WM integrity in these regions constitutes a potential neural basis for the facial emotion perception impairments in schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Low Temperature Properties for Correlation Functions in Classical N-Vector Spin Models
NASA Astrophysics Data System (ADS)
Balaban, Tadeusz; O'Carroll, Michael
We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N- vector spin model in d>= 3 dimensions, N>= 2. The Gibbs factor is taken as
Natural occupation numbers in two-electron quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Analyzing survival curves at a fixed point in time for paired and clustered right-censored data
Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De
2018-01-01
In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280
The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data
NASA Astrophysics Data System (ADS)
Connolly, Andrew J.; Scranton, Ryan; Johnston, David; Dodelson, Scott; Eisenstein, Daniel J.; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Postman, Marc; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, István; Tegmark, Max; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta; Brinkmann, J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert; Ichikawa, Takashi; Ivezić, Željko; Kim, Rita S. J.; Knapp, Gillian R.; Kunszt, Peter; Lamb, D. Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Munn, Jeff; Peoples, John; Pier, Jeff; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.
2002-11-01
The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local universe. In this paper we present some of the initial results on the angular two-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18
Assessment of the reliability of protein-protein interactions and protein function prediction.
Deng, Minghua; Sun, Fengzhu; Chen, Ting
2003-01-01
As more and more high-throughput protein-protein interaction data are collected, the task of estimating the reliability of different data sets becomes increasingly important. In this paper, we present our study of two groups of protein-protein interaction data, the physical interaction data and the protein complex data, and estimate the reliability of these data sets using three different measurements: (1) the distribution of gene expression correlation coefficients, (2) the reliability based on gene expression correlation coefficients, and (3) the accuracy of protein function predictions. We develop a maximum likelihood method to estimate the reliability of protein interaction data sets according to the distribution of correlation coefficients of gene expression profiles of putative interacting protein pairs. The results of the three measurements are consistent with each other. The MIPS protein complex data have the highest mean gene expression correlation coefficients (0.256) and the highest accuracy in predicting protein functions (70% sensitivity and specificity), while Ito's Yeast two-hybrid data have the lowest mean (0.041) and the lowest accuracy (15% sensitivity and specificity). Uetz's data are more reliable than Ito's data in all three measurements, and the TAP protein complex data are more reliable than the HMS-PCI data in all three measurements as well. The complex data sets generally perform better in function predictions than do the physical interaction data sets. Proteins in complexes are shown to be more highly correlated in gene expression. The results confirm that the components of a protein complex can be assigned to functions that the complex carries out within a cell. There are three interaction data sets different from the above two groups: the genetic interaction data, the in-silico data and the syn-express data. Their capability of predicting protein functions generally falls between that of the Y2H data and that of the MIPS protein complex data. The supplementary information is available at the following Web site: http://www-hto.usc.edu/-msms/AssessInteraction/.
On non-homogeneous tachyon condensation in closed string theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston; Rado, Laura
2017-08-01
Lorentzian continuation of the Sine-Liouville model describes non-homogeneous rolling closed string tachyon. Via T-duality, this relates to the gauged H + 3 Wess-Zumino-Witten model at subcritical level. This model is exactly solvable. We give a closed formula for the 3-point correlation functions for the model at level k within the range 0 < k < 2, which relates to the analogous quantity for k > 2 in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike Liouville field theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov structure constants: we find that the ratio between both 3-point functions can be written in terms of quotients of Jacobi's θ-functions, while their product exhibits remarkable cancellations and eventually factorizes. Our formula is consistent with previous proposals made in the literature.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
Density matrix embedding in an antisymmetrized geminal power bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy, E-mail: tvan@mit.edu
2015-07-14
Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlationmore » energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.« less
van Stralen, R A; Heesterbeek, P J C; Wymenga, A B
2015-11-01
In anteroposterior (AP)-gliding mobile-bearing total knee arthroplasty (TKA), the femoral component can theoretically slide forward resulting in a more anterior contact point, causing pain due to impingement. A lower lever arm of the extensor apparatus can also attribute to higher patella pressures and pain. The goal of this study was to determine the contact point in a cohort of mobile- and fixed-bearing TKAs, to determine whether the contact point lies more anteriorly in mobile-bearing TKA and to confirm whether this results in anterior knee pain. We used 38 fixed-bearing TKA and 40 mobile-bearing TKA from a randomized trial with straight lateral knee X-rays and measured the contact point. The functional outcome was measured by Knee Society Score at 12 months postoperatively. Pain scores were analysed using a VAS score (0-100 mm) in all patients at rest and when moving. Difficulty at rising up out of a chair was also assessed using a VAS score. The contact point in mobile-bearing TKA was situated at 59.5 % of the AP distance of the tibia and in the fixed-bearing TKA group at 66.1 % (P< 0.05). Patients with mobile- and fixed-bearing TKAs had similar knee scores, pain scores and difficulty in chair rise. No significant correlation was found between contact point and knee pain. The hypothesis of a more anterior contact point in the mobile-bearing cohort was confirmed but no correlation with functional and pain scores in this cohort could be found. The tibiofemoral contact point could not be correlated with a different clinical outcome and higher incidence of anterior knee pain. This study further adds to the knowledge on possible differences between mobile- and fixed-bearing prostheses. Next to that, bad outcomes could not be explained by CP. Case series, Level IV.
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Momose, T.; Oku, S.
It is essential to obtain realistic brain surface images, in which sulci and gyri are easily recognized, when examining the correlation between functional (PET or SPECT) and anatomical (MRI) brain studies. The volume rendering technique (VRT) is commonly employed to make three-dimensional (3D) brain surface images. This technique, however, takes considerable time to make only one 3D image. Therefore it has not been practical to make the brain surface images in arbitrary directions on a real-time basis using ordinary work stations or personal computers. The surface rendering technique (SRT), on the other hand, is much less computationally demanding, but themore » quality of resulting images is not satisfactory for our purpose. A new computer algorithm has been developed to make 3D brain surface MR images very quickly using a volume-surface rendering technique (VSRT), in which the quality of resulting images is comparable to that of VRT and computation time to SRT. In VSRT the process of volume rendering is done only once to the direction of the normal vector of each surface point, rather than each time a new view point is determined as in VRT. Subsequent reconstruction of the 3D image uses a similar algorithm to that of SRT. Thus we can obtain brain surface MR images of sufficient quality viewed from any direction on a real-time basis using an easily available personal computer (Macintosh Quadra 800). The calculation time to make a 3D image is less than 1 sec. in VSRT, while that is more than 15 sec. in the conventional VRT. The difference of resulting image quality between VSRT and VRT is almost imperceptible. In conclusion, our new technique for real-time reconstruction of 3D brain surface MR image is very useful and practical in the functional and anatomical correlation study.« less
Past Taurine Intake Has a Positive Effect on Present Cognitive Function in the Elderly.
Bae, Mi Ae; Gao, Ranran; Kim, Sung Hoon; Chang, Kyung Ja
2017-01-01
This study investigated the associations between dietary history of past taurine intake and cognitive function in the elderly. Subjects of this study were 40 elderly persons with dementia (men 14, women 26) and 37 normal elderly persons (men 5, women 32). Data were collected using questionnaires by investigator-based interview to the elderly and family caregivers. We examined their general characteristics, anthropometric data, cognitive function, and taurine index. Cognitive function was measured using MMSE-DS and higher score means better cognitive function. As dietary history of past taurine intake, taurine index was evaluated by scoring the intake frequency of 41 kinds of taurine-containing foods. Part correlation analysis (sex, age, and school educational period correction) was used to analyze associations between taurine index and cognitive function. The analysis of all data was carried out by the SPSS 20.0 program for windows. The age, height, weight, and BMI of elderly with dementia showed no statistical significance compared to normal elderly. The elderly with dementia had significantly higher school education period (7.4 years) than the normal elderly (4.8 years) (p < 0.01). Nevertheless, the average total score of cognitive function (MMSE-DS) of the elderly with dementia (18.1 points) was significantly lower than score of the normal elderly (21.7 points) (p < 0.05). The average taurine index of the elderly with dementia (104.7 points) was significantly lower than average taurine index of the normal elderly (123.7 points) (p < 0.01). There were positive correlations between total taurine index and total score of cognitive function in all the elderly subjects (p < 0.05). In particular, as taurine index was higher, there were significantly higher scores of cognitive function such as 'time orientation' and 'judgement and abstract thinking' (p < 0.01). In conclusion, these results suggest that past taurine intake may have a positive effect on present cognitive function in the elderly.
Chaos and complexity by design
Roberts, Daniel A.; Yoshida, Beni
2017-04-20
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less
Strong correlations in gravity and biophysics
NASA Astrophysics Data System (ADS)
Krotov, Dmitry
The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and compare it with experimental data. How difficult is it to tune a network to criticality? In chapter 5 we construct the space of all possible networks within a simple thermodynamic model of biological enhancers. We demonstrate that there is a reasonable number of models within this framework that accurately capture the mean expression profiles of the gap genes that are observed experimentally.
Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Zeng, Xin
Utilizing the characteristic polynomial of Lax matrix for the Belov-Chaltikian (BC) lattice hierarchy associated with a 3 × 3 discrete matrix spectral problem, we introduce a trigonal curve with three infinite points, from which we establish the associated Dubrovin-type equations. The essential properties of the Baker-Akhiezer function and the meromorphic function are discussed, that include their asymptotic behavior near three infinite points on the trigonal curve and the divisor of the meromorphic function. The Abel map is introduced to straighten out the continuous flow and the discrete flow in the Jacobian variety, from which the quasi-periodic solutions of the entire BC lattice hierarchy are obtained in terms of the Riemann theta function.
Classification of footwear outsole patterns using Fourier transform and local interest points.
Richetelli, Nicole; Lee, Mackenzie C; Lasky, Carleen A; Gump, Madison E; Speir, Jacqueline A
2017-06-01
Successful classification of questioned footwear has tremendous evidentiary value; the result can minimize the potential suspect pool and link a suspect to a victim, a crime scene, or even multiple crime scenes to each other. With this in mind, several different automated and semi-automated classification models have been applied to the forensic footwear recognition problem, with superior performance commonly associated with two different approaches: correlation of image power (magnitude) or phase, and the use of local interest points transformed using the Scale Invariant Feature Transform (SIFT) and compared using Random Sample Consensus (RANSAC). Despite the distinction associated with each of these methods, all three have not been cross-compared using a single dataset, of limited quality (i.e., characteristic of crime scene-like imagery), and created using a wide combination of image inputs. To address this question, the research presented here examines the classification performance of the Fourier-Mellin transform (FMT), phase-only correlation (POC), and local interest points (transformed using SIFT and compared using RANSAC), as a function of inputs that include mixed media (blood and dust), transfer mechanisms (gel lifters), enhancement techniques (digital and chemical) and variations in print substrate (ceramic tiles, vinyl tiles and paper). Results indicate that POC outperforms both FMT and SIFT+RANSAC, regardless of image input (type, quality and totality), and that the difference in stochastic dominance detected for POC is significant across all image comparison scenarios evaluated in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatiotemporal correlation buildup after an interaction quench in the Luttinger model
NASA Astrophysics Data System (ADS)
Abeling, Nils O.; Kehrein, Stefan
We study the evolution of density-density correlations at different times and distances in the exactly solvable Luttinger model after a sudden quench from the ground state. We discuss the difference between correlations and susceptibilities, and how these results can be interpreted from the point of view of Lieb-Robinson bounds. For the correlation functions we specifically show that pre-quench entanglement in the ground state leads to algebraically decaying long distance tails outside the light cone.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, David C.
2006-10-15
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less
2008-01-01
Objective To compare optical coherence tomography (OCT)-measured retinal thickness and visual acuity in eyes with diabetic macular edema (DME) both before and after macular laser photocoagulation. Design Cross-sectional and longitudinal study. Participants 210 subjects (251 eyes) with DME enrolled in a randomized clinical trial of laser techniques. Methods Retinal thickness was measured with OCT and visual acuity was measured with the electronic-ETDRS procedure. Main Outcome Measures OCT-measured center point thickness and visual acuity Results The correlation coefficients for visual acuity versus OCT center point thickness were 0.52 at baseline and 0.49, 0.36, and 0.38 at 3.5, 8, and 12 months post-laser photocoagulation. The slope of the best fit line to the baseline data was approximately 4.4 letters (95% C.I.: 3.5, 5.3) better visual acuity for every 100 microns decrease in center point thickness at baseline with no important difference at follow-up visits. Approximately one-third of the variation in visual acuity could be predicted by a linear regression model that incorporated OCT center point thickness, age, hemoglobin A1C, and severity of fluorescein leakage in the center and inner subfields. The correlation between change in visual acuity and change in OCT center point thickening 3.5 months after laser treatment was 0.44 with no important difference at the other follow-up times. A subset of eyes showed paradoxical improvements in visual acuity with increased center point thickening (7–17% at the three time points) or paradoxical worsening of visual acuity with a decrease in center point thickening (18%–26% at the three time points). Conclusions There is modest correlation between OCT-measured center point thickness and visual acuity, and modest correlation of changes in retinal thickening and visual acuity following focal laser treatment for DME. However, a wide range of visual acuity may be observed for a given degree of retinal edema and paradoxical increases in center point thickening with increases in visual acuity as well as paradoxical decreases in center point thickening with decreases in visual acuity were not uncommon. Thus, although OCT measurements of retinal thickness represent an important tool in clinical evaluation, they cannot reliably substitute as a surrogate for visual acuity at a given point in time. This study does not address whether short-term changes on OCT are predictive of long-term effects on visual acuity. PMID:17123615
Correlation functional in screened-exchange density functional theory procedures.
Chan, Bun; Kawashima, Yukio; Hirao, Kimihiko
2017-10-15
In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (c OS,0 = c SS,0 = 1, c OS,1 = -1.5, c OS,2 = -0.644, c SS,1 = -0.5, and c SS,2 = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Mafalda; Frazer, Jonathan; Mulryne, David J.
2016-12-01
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantummore » and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or 'in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with | f {sub NL}| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.« less
Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere
NASA Astrophysics Data System (ADS)
Garner, David; Ramgoolam, Sanjaye
2013-10-01
The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.
Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code
NASA Astrophysics Data System (ADS)
Dias, Mafalda; Frazer, Jonathan; Mulryne, David J.; Seery, David
2016-12-01
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, including (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or `in-in' formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with |fNL| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
Collaborations between CpG sites in DNA methylation
NASA Astrophysics Data System (ADS)
Song, You; Ren, Honglei; Lei, Jinzhi
2017-08-01
DNA methylation patterns have profound impacts on genome stability, gene expression and development. The molecular base of DNA methylation patterns has long been focused at single CpG sites level. Here, we construct a kinetic model of DNA methylation with collaborations between CpG sites, from which a correlation function was established based on experimental data. The function consists of three parts that suggest three possible sources of the correlation: movement of enzymes along DNA, collaboration between DNA methylation and nucleosome modification, and global enzyme concentrations within a cell. Moreover, the collaboration strength between DNA methylation and nucleosome modification is universal for mouse early embryo cells. The obtained correlation function provides insightful understanding for the mechanisms of inheritance of DNA methylation patterns.
Comparing current definitions of return to work: a measurement approach.
Steenstra, I A; Lee, H; de Vroome, E M M; Busse, J W; Hogg-Johnson, S J
2012-09-01
Return-to-work (RTW) status is an often used outcome in work and health research. In low back pain, work is regarded as a normal activity a worker should return to in order to fully recover. Comparing outcomes across studies and even jurisdictions using different definitions of RTW can be challenging for readers in general and when performing a systematic review in particular. In this study, the measurement properties of previously defined RTW outcomes were examined with data from two studies from two countries. Data on RTW in low back pain (LBP) from the Canadian Early Claimant Cohort (ECC); a workers' compensation based study, and the Dutch Amsterdam Sherbrooke Evaluation (ASE) study were analyzed. Correlations between outcomes, differences in predictive validity when using different outcomes and construct validity when comparing outcomes to a functional status outcome were analyzed. In the ECC all definitions were highly correlated and performed similarly in predictive validity. When compared to functional status, RTW definitions in the ECC study performed fair to good on all time points. In the ASE study all definitions were highly correlated and performed similarly in predictive validity. The RTW definitions, however, failed to compare or compared poorly with functional status. Only one definition compared fairly on one time point. Differently defined outcomes are highly correlated, give similar results in prediction, but seem to differ in construct validity when compared to functional status depending on societal context or possibly birth cohort. Comparison of studies using different RTW definitions appears valid as long as RTW status is not considered as a measure of functional status.
Bek, T; Prause, J U
1996-12-01
The histopathology of three eyes obtained post mortem from 2 patients with age-related macular degeneration was correlated with the pre mortem fluorescein angiographic morphology. A precise point-by-point correlation between histopathology and the corresponding angiographic appearance was ensured by using the cast retinal vascular system as a pattern of reference. The study showed that both the photoreceptors, the pigment epithelium, and substances accumulated between the retinal and the choroidal vascular systems, may have a blocking effect on choroidal background fluorescence as seen on fluorescein angiograms. Furthermore, it is confirmed that fluorescein angiographic hyperfluorescence may be due to a lack of blocking of the choroidal fluorescence because of a window defect in the retinal photoreceptor layer and/or the pigment epithelium.
Spectral correlations in Anderson insulating wires
NASA Astrophysics Data System (ADS)
Marinho, M.; Micklitz, T.
2018-01-01
We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.
Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Mora Corral, M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Guedon, M; Guertin, S M; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Molnar, L; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Vznuzdaev, M; Wang, F; Wang, Y; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2003-12-31
Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[s(NN)]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.
Isovector and flavor-diagonal charges of the nucleon
NASA Astrophysics Data System (ADS)
Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.
Papasavvas, Emmanouil; Foulkes, Andrea; Yin, Xiangfan; Joseph, Jocelin; Ross, Brian; Azzoni, Livio; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J
2015-07-01
The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+) CD4(-) perforin(+) IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2) = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+) CD4(-) CSFE(lo) CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Anisotropic non-gaussianity from rotational symmetry breaking excited initial states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashoorioon, Amjad; Casadio, Roberto; Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna
2016-12-01
If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. Inmore » the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.« less
N-point correlation functions in the CfA and SSRS redshift distribution of galaxies
NASA Technical Reports Server (NTRS)
Gaztanaga, Enrique
1992-01-01
Using counts in cells, we estimate the volume-average N-point galaxy correlation functions for N = 2, 3, and 4, in redshift samples of the CfA and SSRS catalogs. Volume-limited samples of different sizes are used to study the uncertainties at different scales, the shot noise, and the problem with the boundaries. The hierarchical constants S3 and S4 agree well in all samples in CfA and SSRS, with average S3 = 194 +/- 0.07 and S4 = 4.56 +/- 0.53. We compare these results with estimates obtained from angular catalogs and recent analysis over IRAS samples. The amplitudes SJ seem larger in real space than in redshift space, although the values from the angular analysis correspond to smaller scales, where we might expect larger nonperturbative effects. It is also found that S3 and S4 are smaller for IRAS than for optical galaxies. This, together with the fact that IRAS galaxies have smaller amplitude for the above correlation functions, indicates that the density fluctuations of IRAS galaxies cannot be simply proportional to the density fluctuations of optical galaxies, i.e., biasing has to be nonlinear between them.
The correlation function for density perturbations in an expanding universe. I - Linear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.
Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike
2018-01-01
The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu
2017-04-07
Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.
Fu, Bo; Zhu, Wei; Shi, Qinwei; ...
2017-04-03
Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behaviormore » is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. Furthermore, we show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.« less
Generating functions for weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Guay-Paquet, Mathieu; Harnad, J.
2017-08-01
Double Hurwitz numbers enumerating weighted n-sheeted branched coverings of the Riemann sphere or, equivalently, weighted paths in the Cayley graph of Sn generated by transpositions are determined by an associated weight generating function. A uniquely determined 1-parameter family of 2D Toda τ -functions of hypergeometric type is shown to consist of generating functions for such weighted Hurwitz numbers. Four classical cases are detailed, in which the weighting is uniform: Okounkov's double Hurwitz numbers for which the ramification is simple at all but two specified branch points; the case of Belyi curves, with three branch points, two with specified profiles; the general case, with a specified number of branch points, two with fixed profiles, the rest constrained only by the genus; and the signed enumeration case, with sign determined by the parity of the number of branch points. Using the exponentiated quantum dilogarithm function as a weight generator, three new types of weighted enumerations are introduced. These determine quantum Hurwitz numbers depending on a deformation parameter q. By suitable interpretation of q, the statistical mechanics of quantum weighted branched covers may be related to that of Bosonic gases. The standard double Hurwitz numbers are recovered in the classical limit.
Vaskinn, Anja; Lagerberg, Trine Vik; Bjella, Thomas D; Simonsen, Carmen; Andreassen, Ole A; Ueland, Torill; Sundet, Kjetil
2017-12-01
Individuals with bipolar disorder present with moderate impairments in social cognition during the euthymic state. The impairment extends to theory of mind and to the perception of emotion in faces and voices, but it is unclear if emotion perception from body movements is affected. The main aim of this study was to examine if participants with bipolar disorder perform worse than healthy control participants on a task using point-light displays of human full figures moving in a manner indicative of a basic emotion (angry, happy, sad, fearful, neutral/no emotion). A secondary research question was whether diagnostic subtypes (bipolar I, bipolar II) and history of psychosis impacted on this type of emotion perception. Finally, symptomatic, neurocognitive, and functional correlates of emotion perception from body movements were investigated. Fifty-three individuals with bipolar I (n = 29) or bipolar II (n = 24) disorder, and 84 healthy control participants were assessed for emotion perception from body movements. The bipolar group also underwent clinical, cognitive, and functional assessment. Research questions were analyzed using analyses of variance and bivariate correlations. The bipolar disorder group differed significantly from healthy control participants for emotion perception from body movements (Cohen's d = 0.40). Analyses of variance yielded no effects of sex, diagnostic subtype (bipolar I, bipolar II), or history of psychosis. There was an effect of emotion, indicating that some emotions are easier to recognize. The lack of a significant group × emotion interaction effect points, however, to this being so regardless of the presence of bipolar disorder. Performance was unrelated to manic and depressive symptom load but showed significant associations with neurocognition and functional capacity. Individuals with bipolar disorder had a small but significant impairment in the ability to perceive emotions from body movement. The impairment was global, i.e., affecting all emotions and equally present for males and females. The impairment was associated with neurocognition and functional capacity, but not symptom load. Our findings identify pathopsychological factors underlying the functional impairment in bipolar disorder and suggest the consideration of social cognition training as part of the treatment for bipolar disorder.
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-01-01
Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831
Transverse spin correlations of the random transverse-field Ising model
NASA Astrophysics Data System (ADS)
Iglói, Ferenc; Kovács, István A.
2018-03-01
The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.
Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins
Sunagar, Kartik; Jackson, Timothy N. W.; Undheim, Eivind A. B.; Ali, Syed. A.; Antunes, Agostinho; Fry, Bryan G.
2013-01-01
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx. PMID:24253238
Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias
2013-04-05
For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.
Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.
Bianca, C; Lemarchand, A
2014-06-14
This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.
Poisson equation for the three-loop ladder diagram in string theory at genus one
NASA Astrophysics Data System (ADS)
Basu, Anirban
2016-11-01
The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the D12ℛ4 amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.
Modelling the large-scale redshift-space 3-point correlation function of galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2017-08-01
We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-03-01
We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less
Detecting dark-matter waves with a network of precision-measurement tools
NASA Astrophysics Data System (ADS)
Derevianko, Andrei
2018-04-01
Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.
EUV brightness variations in the quiet Sun
NASA Astrophysics Data System (ADS)
Brković, A.; Rüedi, I.; Solanki, S. K.; Fludra, A.; Harrison, R. A.; Huber, M. C. E.; Stenflo, J. O.; Stucki, K.
2000-01-01
The Coronal Diagnostic Spectrometer (CDS) onboard the SOHO satellite has been used to obtain movies of quiet Sun regions at disc centre. These movies were used to study brightness variations of solar features at three different temperatures sampled simultaneously in the chromospheric He I 584.3 Ä (2 * 104 K), the transition region O V 629.7 Ä (2.5 * 105 K) and coronal Mg IX 368.1 Ä (106 K) lines. In all parts of the quiet Sun, from darkest intranetwork to brightest network, we find significant variability in the He I and O V line, while the variability in the Mg IX line is more marginal. The relative variability, defined by rms of intensity normalised to the local intensity, is independent of brightness and strongest in the transition region line. Thus the relative variability is the same in the network and the intranetwork. More than half of the points on the solar surface show a relative variability, determined over a period of 4 hours, greater than 15.5% for the O V line, but only 5% of the points exhibit a variability above 25%. Most of the variability appears to take place on time-scales between 5 and 80 minutes for the He I and O V lines. Clear signs of ``high variability'' events are found. For these events the variability as a function of time seen in the different lines shows a good correlation. The correlation is higher for more variable events. These events coincide with the (time averaged) brightest points on the solar surface, i.e. they occur in the network. The spatial positions of the most variable points are identical in all the lines.
40 CFR 89.422 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...
40 CFR 89.422 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...
40 CFR 89.422 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...
40 CFR 89.422 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...
40 CFR 89.422 - Dilute sampling procedures-CVS calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...
Jackson, Leanne K; Ridner, Sheila H; Deng, Jie; Bartow, Carmin; Mannion, Kyle; Niermann, Ken; Gilbert, Jill; Dietrich, Mary S; Cmelak, Anthony J; Murphy, Barbara A
2016-09-01
Tumor/treatment-related internal lymphedema (IL) and/or external lymphedema (EL) are associated with functional deficits and increased symptom burden in head and neck cancer patients (HNCP). Previously, we noted association between EL/IL and patient-reported dysphagia using the Vanderbilt Head and Neck Symptom Survey (VHNSS) version 1.0. To determine the relationship between IL/EL and subjective and objective measures of swallowing function. Eighty-one HNCP completed: (1) VHNSS version 2.0, including 13 swallowing/nutrition-related questions grouped into three clusters: swallow solids (ss), swallow liquids (sl), and nutrition(nt); (2) physical assessment of EL using Foldi scale; (3) endoscopic assessment of IL using Patterson scale (n = 56); and (4) modified barium swallow study rated by dysphagia outcome and severity scale (DOSS) and in conjunction with a swallow evaluation by National Outcomes Measurement System (NOMS). Examinations were performed at varied time points to assess lymphedema spectrum, from baseline (n = 15, 18.1%) to 18 months post-therapy (n = 20, 24.1%). VHNSS swallow/nutrition items scores correlated with NOMS/DOSS ratings (p < 0.001). Highest correlation was with NOMS: ss (-0.73); sl (-0.61); nt (-0.56). VHNSS swallow/nutrition scores correlated with maximum grade of swelling for any single structure on Patterson scale: ss (0.43; p = 0.001); sl (0.38; p = 0.004); nt (0.41; p = 0.002). IL of aryepiglottic/pharyngoepiglottic folds, epiglottis, and pyriform sinus were most strongly correlated with VHNSS and NOMS ratings. NOMS/DOSS ratings correlated with EL (> = -0.34; p < 0.01). No meaningful correlations exist between VHNSS swallow/nutrition items and EL (< ± 0.15, p > 0.20). IL correlated with subjective and objective measures of swallow dysfunction. Longitudinal analysis of trajectory and impact of IL/EL on dysphagia is ongoing.
Zhang, Quan; Chen, Zheng; Chen, Shenghuo; Xu, Youyun; Deng, Huihua
2017-02-01
Cortisol, cortisone and the ratio of cortisol to cortisone in saliva, urine and hair are acute, short-term and long-term biomarkers to reliably assess the activity of hypothalamic-pituitary-adrenal (HPA) axis and 11β-hydroxysteroid dehydrogenase (11β-HSD). One key issue is whether these biomarkers have intraindividual relative stability. Salivary, urinary and hair cortisol was proven to show considerable long-term intraindividual relative stability. However, currently unknown is whether cortisone and the ratio in saliva, urine and hair show intraindividual relative stability. The present study utilized a longitudinal design to validate long-term stability within two weeks of three biomarkers in saliva and urine, and long-term stability within twelve months of three hair biomarkers. Salivary, urinary and hair steroids were measured with high performance liquid chromatography tandem mass spectrometry. Three biomarkers in urine and hair showed moderate test-retest correlations with coefficient (r) ranging between 0.22 and 0.56 and good multiple-test consistencies with coefficient of intraclass correlation (ICC) ranging between 0.42 and 0.67. Three single-point salivary biomarkers showed weak to moderate test-retest correlations (r's between 0.01 and 0.38) and poor to fair multiple-test consistencies (ICC's between 0.29 and 0.53) within two weeks. Three single-day salivary biomarkers showed moderate test-retest correlations (r's between 0.23 and 0.53) and good multiple-test consistencies (ICC's between 0.56 and 0.66) within two weeks. Three biomarkers in urine and hair showed moderate long-term intraindividual relative stability. Three single-point salivary biomarkers showed weak to moderate short-term and long-term intraindividual relative stability, but three single-day salivary biomarkers showed moderate short-term and long-term intraindividual relative stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Signatures of bifurcation on quantum correlations: Case of the quantum kicked top
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.; Santhanam, M. S.
2017-01-01
Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.
Loop series for discrete statistical models on graphs
NASA Astrophysics Data System (ADS)
Chertkov, Michael; Chernyak, Vladimir Y.
2006-06-01
In this paper we present the derivation details, logic, and motivation for the three loop calculus introduced in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Generating functions for each of the three interrelated discrete statistical models are expressed in terms of a finite series. The first term in the series corresponds to the Bethe-Peierls belief-propagation (BP) contribution; the other terms are labelled by loops on the factor graph. All loop contributions are simple rational functions of spin correlation functions calculated within the BP approach. We discuss two alternative derivations of the loop series. One approach implements a set of local auxiliary integrations over continuous fields with the BP contribution corresponding to an integrand saddle-point value. The integrals are replaced by sums in the complementary approach, briefly explained in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Local gauge symmetry transformations that clarify an important invariant feature of the BP solution are revealed in both approaches. The individual terms change under the gauge transformation while the partition function remains invariant. The requirement for all individual terms to be nonzero only for closed loops in the factor graph (as opposed to paths with loose ends) is equivalent to fixing the first term in the series to be exactly equal to the BP contribution. Further applications of the loop calculus to problems in statistical physics, computer and information sciences are discussed.
Two-point correlation function in systems with van der Waals type interaction
NASA Astrophysics Data System (ADS)
Dantchev, D.
2001-09-01
The behavior of the bulk two-point correlation function G( r; T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G( r; T| d ) decays as r - (d - 2) for 1 ≪ r≪ξ, exponentially for ξ≪ r≪ r *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for r≫ r *. The analytical form of the leading-order scaling function of G( r; T| d ) in any of these regimes is derived.