Sample records for threshold network model

  1. Epidemic threshold of the susceptible-infected-susceptible model on complex networks

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Keun; Shim, Pyoung-Seop; Noh, Jae Dong

    2013-06-01

    We demonstrate that the susceptible-infected-susceptible (SIS) model on complex networks can have an inactive Griffiths phase characterized by a slow relaxation dynamics. It contrasts with the mean-field theoretical prediction that the SIS model on complex networks is active at any nonzero infection rate. The dynamic fluctuation of infected nodes, ignored in the mean field approach, is responsible for the inactive phase. It is proposed that the question whether the epidemic threshold of the SIS model on complex networks is zero or not can be resolved by the percolation threshold in a model where nodes are occupied in degree-descending order. Our arguments are supported by the numerical studies on scale-free network models.

  2. Epidemic spreading with activity-driven awareness diffusion on multiplex network.

    PubMed

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  3. Epidemic spreading with activity-driven awareness diffusion on multiplex network

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming

    2016-04-01

    There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.

  4. Threshold model of cascades in empirical temporal networks

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Holme, Petter

    2013-08-01

    Threshold models try to explain the consequences of social influence like the spread of fads and opinions. Along with models of epidemics, they constitute a major theoretical framework of social spreading processes. In threshold models on static networks, an individual changes her state if a certain fraction of her neighbors has done the same. When there are strong correlations in the temporal aspects of contact patterns, it is useful to represent the system as a temporal network. In such a system, not only contacts but also the time of the contacts are represented explicitly. In many cases, bursty temporal patterns slow down disease spreading. However, as we will see, this is not a universal truth for threshold models. In this work we propose an extension of Watts’s classic threshold model to temporal networks. We do this by assuming that an agent is influenced by contacts which lie a certain time into the past. I.e., the individuals are affected by contacts within a time window. In addition to thresholds in the fraction of contacts, we also investigate the number of contacts within the time window as a basis for influence. To elucidate the model’s behavior, we run the model on real and randomized empirical contact datasets.

  5. Contagion on complex networks with persuasion

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  6. Contagion on complex networks with persuasion

    PubMed Central

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-01-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498

  7. Contagion on complex networks with persuasion.

    PubMed

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-31

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  8. Spreading dynamics of a SIQRS epidemic model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yuanmei; Guan, Zhi-Hong

    2014-03-01

    In order to investigate the influence of heterogeneity of the underlying networks and quarantine strategy on epidemic spreading, a SIQRS epidemic model on the scale-free networks is presented. Using the mean field theory the spreading dynamics of the virus is analyzed. The spreading critical threshold and equilibria are derived. Theoretical results indicate that the critical threshold value is significantly dependent on the topology of the underlying networks and quarantine rate. The existence of equilibria is determined by threshold value. The stability of disease-free equilibrium and the permanence of the disease are proved. Numerical simulations confirmed the analytical results.

  9. Estimating the epidemic threshold on networks by deterministic connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu; Fu, Xinchu

    2014-12-15

    For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect thanmore » those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.« less

  10. Turing instability in reaction-diffusion models on complex networks

    NASA Astrophysics Data System (ADS)

    Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya

    2016-09-01

    In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.

  11. A Queueing Approach to Optimal Resource Replication in Wireless Sensor Networks

    DTIC Science & Technology

    2009-04-29

    network (an energy- centric approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric ...replication strategies in wireless sensor networks. The model can be used to minimize either the total transmission rate of the network (an energy- centric ...approach) or to ensure the proportion of query failures does not exceed a predetermined threshold (a failure- centric approach). The model explicitly

  12. Optimal control strategy for a novel computer virus propagation model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Huang, Haitao

    2016-06-01

    This paper aims to study the combined impact of reinstalling system and network topology on the spread of computer viruses over the Internet. Based on scale-free network, this paper proposes a novel computer viruses propagation model-SLBOSmodel. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its spreading threshold is less than one; nevertheless, it is proved that the viral equilibrium is permanent if the spreading threshold is greater than one. Then, the impacts of different model parameters on spreading threshold are analyzed. Next, an optimally controlled SLBOS epidemic model on complex networks is also studied. We prove that there is an optimal control existing for the control problem. Some numerical simulations are finally given to illustrate the main results.

  13. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    NASA Astrophysics Data System (ADS)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.

  14. Epidemic Threshold in Structured Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    EguíLuz, VíCtor M.; Klemm, Konstantin

    2002-08-01

    We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations, as found in the Internet graph. For the susceptible-infected-susceptible model of epidemics the prevalence undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the absence of a finite threshold in networks with purely random wiring, our result suggests that high clustering (modularity) and degree correlations protect scale-free networks against the spreading of viruses. We introduce and verify a quantitative description of the epidemic threshold based on the connectivity of the neighborhoods of the hubs.

  15. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes

    USDA-ARS?s Scientific Manuscript database

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The ...

  16. Modeling the propagation of mobile malware on complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue

    2016-08-01

    In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.

  17. A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)

    DTIC Science & Technology

    2017-10-01

    TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY

  18. Cooperative spreading processes in multiplex networks.

    PubMed

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  19. Modeling the diffusion of complex innovations as a process of opinion formation through social networks.

    PubMed

    Assenova, Valentina A

    2018-01-01

    Complex innovations- ideas, practices, and technologies that hold uncertain benefits for potential adopters-often vary in their ability to diffuse in different communities over time. To explain why, I develop a model of innovation adoption in which agents engage in naïve (DeGroot) learning about the value of an innovation within their social networks. Using simulations on Bernoulli random graphs, I examine how adoption varies with network properties and with the distribution of initial opinions and adoption thresholds. The results show that: (i) low-density and high-asymmetry networks produce polarization in influence to adopt an innovation over time, (ii) increasing network density and asymmetry promote adoption under a variety of opinion and threshold distributions, and (iii) the optimal levels of density and asymmetry in networks depend on the distribution of thresholds: networks with high density (>0.25) and high asymmetry (>0.50) are optimal for maximizing diffusion when adoption thresholds are right-skewed (i.e., barriers to adoption are low), but networks with low density (<0.01) and low asymmetry (<0.25) are optimal when thresholds are left-skewed. I draw on data from a diffusion field experiment to predict adoption over time and compare the results to observed outcomes.

  20. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    PubMed

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  2. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  3. Analytical Computation of the Epidemic Threshold on Temporal Networks

    NASA Astrophysics Data System (ADS)

    Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria

    2015-04-01

    The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.

  4. Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hsien

    2015-06-01

    This paper studies the dynamics of a network-based SIS epidemic model with nonmonotone incidence rate. This type of nonlinear incidence can be used to describe the psychological effect of certain diseases spread in a contact network at high infective levels. We first find a threshold value for the transmission rate. This value completely determines the dynamics of the model and interestingly, the threshold is not dependent on the functional form of the nonlinear incidence rate. Furthermore, if the transmission rate is less than or equal to the threshold value, the disease will die out. Otherwise, it will be permanent. Numerical experiments are given to illustrate the theoretical results. We also consider the effect of the nonlinear incidence on the epidemic dynamics.

  5. Contagion processes on the static and activity-driven coupling networks

    NASA Astrophysics Data System (ADS)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  6. Influence of network dynamics on the spread of sexually transmitted diseases.

    PubMed

    Risau-Gusman, Sebastián

    2012-06-07

    Network epidemiology often assumes that the relationships defining the social network of a population are static. The dynamics of relationships is only taken indirectly into account by assuming that the relevant information to study epidemic spread is encoded in the network obtained, by considering numbers of partners accumulated over periods of time roughly proportional to the infectious period of the disease. On the other hand, models explicitly including social dynamics are often too schematic to provide a reasonable representation of a real population, or so detailed that no general conclusions can be drawn from them. Here, we present a model of social dynamics that is general enough so its parameters can be obtained by fitting data from surveys about sexual behaviour, but that can still be studied analytically, using mean-field techniques. This allows us to obtain some general results about epidemic spreading. We show that using accumulated network data to estimate the static epidemic threshold lead to a significant underestimation of that threshold. We also show that, for a dynamic network, the relative epidemic threshold is an increasing function of the infectious period of the disease, implying that the static value is a lower bound to the real threshold. A practical example is given of how to apply the model to the study of a real population.

  7. Influence of network dynamics on the spread of sexually transmitted diseases

    PubMed Central

    Risau-Gusman, Sebastián

    2012-01-01

    Network epidemiology often assumes that the relationships defining the social network of a population are static. The dynamics of relationships is only taken indirectly into account by assuming that the relevant information to study epidemic spread is encoded in the network obtained, by considering numbers of partners accumulated over periods of time roughly proportional to the infectious period of the disease. On the other hand, models explicitly including social dynamics are often too schematic to provide a reasonable representation of a real population, or so detailed that no general conclusions can be drawn from them. Here, we present a model of social dynamics that is general enough so its parameters can be obtained by fitting data from surveys about sexual behaviour, but that can still be studied analytically, using mean-field techniques. This allows us to obtain some general results about epidemic spreading. We show that using accumulated network data to estimate the static epidemic threshold lead to a significant underestimation of that threshold. We also show that, for a dynamic network, the relative epidemic threshold is an increasing function of the infectious period of the disease, implying that the static value is a lower bound to the real threshold. A practical example is given of how to apply the model to the study of a real population. PMID:22112655

  8. Effect of risk perception on epidemic spreading in temporal networks

    NASA Astrophysics Data System (ADS)

    Moinet, Antoine; Pastor-Satorras, Romualdo; Barrat, Alain

    2018-01-01

    Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.

  9. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  10. Toward a generalized theory of epidemic awareness in social networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhu, Wenfang

    We discuss the dynamics of a susceptible-infected-susceptible (SIS) model with local awareness in networks. Individual awareness to the infectious disease is characterized by a general function of epidemic information in its neighborhood. We build a high-accuracy approximate equation governing the spreading dynamics and derive an approximate epidemic threshold above which the epidemic spreads over the whole network. Our results extend the previous work and show that the epidemic threshold is dependent on the awareness function in terms of one infectious neighbor. Interestingly, when a pow-law awareness function is chosen, the epidemic threshold can emerge in infinite networks.

  11. Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin-Hansen model

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Jamalzadeh, Navid; Zare, Yasser; Hui, David; Rhee, Kyong Yop

    2018-07-01

    In this paper, a conventional Hashin-Hansen model is developed to analyze the tensile modulus of polymer/CNT nanocomposites above the percolation threshold. This model for composites containing dispersed particles utilizes the aspect ratio of the nanofiller (α), the number of nanotubes per unit area (N), the percolation threshold (φp) and the modulus of the filler network (EN), assuming that the filler network constitutes a third phase in the nanocomposites. The experimental results and the predictions agree well, verifying the proposed relations between the modulus and the other parameters in the Hashin-Hansen model. Moreover, large values of "α", "N" and "EN" result in an improved modulus of the polymer/CNT nanocomposites, while a low percolation threshold results in a high modulus.

  12. Selection Strategies for Social Influence in the Threshold Model

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy

    The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.

  13. Analysis of Critical Mass in Threshold Model of Diffusion

    NASA Astrophysics Data System (ADS)

    Kim, Jeehong; Hur, Wonchang; Kang, Suk-Ho

    2012-04-01

    Why does diffusion sometimes show cascade phenomena but at other times is impeded? In addressing this question, we considered a threshold model of diffusion, focusing on the formation of a critical mass, which enables diffusion to be self-sustaining. Performing an agent-based simulation, we found that the diffusion model produces only two outcomes: Almost perfect adoption or relatively few adoptions. In order to explain the difference, we considered the various properties of network structures and found that the manner in which thresholds are arrayed over a network is the most critical factor determining the size of a cascade. On the basis of the results, we derived a threshold arrangement method effective for generation of a critical mass and calculated the size required for perfect adoption.

  14. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

    PubMed Central

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608

  15. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

    PubMed

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-08-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.

  16. Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model

    NASA Astrophysics Data System (ADS)

    Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki

    2016-07-01

    Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.

  17. A Financial Market Model Incorporating Herd Behaviour.

    PubMed

    Wray, Christopher M; Bishop, Steven R

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents' accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents' accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option.

  18. Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making.

    PubMed

    Owen, Rhiannon K; Cooper, Nicola J; Quinn, Terence J; Lees, Rosalind; Sutton, Alex J

    2018-07-01

    Network meta-analyses (NMA) have extensively been used to compare the effectiveness of multiple interventions for health care policy and decision-making. However, methods for evaluating the performance of multiple diagnostic tests are less established. In a decision-making context, we are often interested in comparing and ranking the performance of multiple diagnostic tests, at varying levels of test thresholds, in one simultaneous analysis. Motivated by an example of cognitive impairment diagnosis following stroke, we synthesized data from 13 studies assessing the efficiency of two diagnostic tests: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), at two test thresholds: MMSE <25/30 and <27/30, and MoCA <22/30 and <26/30. Using Markov chain Monte Carlo (MCMC) methods, we fitted a bivariate network meta-analysis model incorporating constraints on increasing test threshold, and accounting for the correlations between multiple test accuracy measures from the same study. We developed and successfully fitted a model comparing multiple tests/threshold combinations while imposing threshold constraints. Using this model, we found that MoCA at threshold <26/30 appeared to have the best true positive rate, whereas MMSE at threshold <25/30 appeared to have the best true negative rate. The combined analysis of multiple tests at multiple thresholds allowed for more rigorous comparisons between competing diagnostics tests for decision making. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432

  20. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise

    NASA Astrophysics Data System (ADS)

    Keeler, James D.; Pichler, Elgar E.; Ross, John

    1989-03-01

    We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.

  1. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Treesearch

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  2. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  3. Theory and Experimental and Chemical Instabilities

    DTIC Science & Technology

    1989-01-31

    Thresholds, Hysteresis, and Neuromodulation of Signal-to-Noise; and Statistical-Mechanical Theory of Many-body Effects in Reaction Rates. T Ic 2 UL3...submitted to the Journal of Physical Chemistry. 6. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-to-Noise. We study a...neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation . For a first-order network, there is a

  4. Spread of information and infection on finite random networks

    NASA Astrophysics Data System (ADS)

    Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar

    2011-04-01

    The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.

  5. Second look at the spread of epidemics on networks

    NASA Astrophysics Data System (ADS)

    Kenah, Eben; Robins, James M.

    2007-09-01

    In an important paper, Newman [Phys. Rev. E66, 016128 (2002)] claimed that a general network-based stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model, where the bonds are the edges of the contact network and the bond occupation probability is equal to the marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show that this isomorphism is incorrect and define a semidirected random network we call the epidemic percolation network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small) out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly connected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the proportion of the network contained in the giant out-component. For the SIR model considered by Newman, we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model. However, the bond percolation model fails to predict the correct outbreak size distribution and probability of an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by comparing predictions from percolation networks and bond percolation models to the results of simulations. In the Appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model.

  6. Vaccination intervention on epidemic dynamics in networks

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao

    2013-02-01

    Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.

  7. [Application of artificial neural networks on the prediction of surface ozone concentrations].

    PubMed

    Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei

    2011-08-01

    Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

  8. Epidemic Model with Isolation in Multilayer Networks

    NASA Astrophysics Data System (ADS)

    Zuzek, L. G. Alvarez; Stanley, H. E.; Braunstein, L. A.

    2015-07-01

    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter w to measure the effect of quarantining infected individuals from both layers during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) model. Using the framework of link percolation we find that isolation increases the critical epidemic threshold of the disease because the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and tw. When the isolation period is maximum there is a critical threshold for w above which the disease never becomes an epidemic. We simulate the process and find an excellent agreement with the theoretical results.

  9. Research on energy stock market associated network structure based on financial indicators

    NASA Astrophysics Data System (ADS)

    Xi, Xian; An, Haizhong

    2018-01-01

    A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.

  10. Threshold cascades with response heterogeneity in multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  11. Analytical connection between thresholds and immunization strategies of SIS model in random networks

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian

    2018-05-01

    Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.

  12. A Financial Market Model Incorporating Herd Behaviour

    PubMed Central

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents’ accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents’ accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option. PMID:27007236

  13. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes.

    PubMed

    Schumm, Phillip; Scoglio, Caterina; Zhang, Qian; Balcan, Duygu

    2015-02-21

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model. Published by Elsevier Ltd.

  14. On the mixing time of geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan

    In this paper, we study the mixing time of random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Wemore » specifically study the mixing times of random walks on 2-dimensional GTGs near the connectivity threshold. We provide a set of criteria on the distribution of vertex weights that guarantees that the mixing time is {Theta}(n log n).« less

  15. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  16. Epidemic dynamics and endemic states in complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2001-06-01

    We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.

  17. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  18. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  19. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  20. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma:Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    death threshold. Using an injury threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  1. Throughput assurance of wireless body area networks coexistence based on stochastic geometry

    PubMed Central

    Wang, Yinglong; Shu, Minglei; Wu, Shangbin

    2017-01-01

    Wireless body area networks (WBANs) are expected to influence the traditional medical model by assisting caretakers with health telemonitoring. Within WBANs, the transmit power of the nodes should be as small as possible owing to their limited energy capacity but should be sufficiently large to guarantee the quality of the signal at the receiving nodes. When multiple WBANs coexist in a small area, the communication reliability and overall throughput can be seriously affected due to resource competition and interference. We show that the total network throughput largely depends on the WBANs distribution density (λp), transmit power of their nodes (Pt), and their carrier-sensing threshold (γ). Using stochastic geometry, a joint carrier-sensing threshold and power control strategy is proposed to meet the demand of coexisting WBANs based on the IEEE 802.15.4 standard. Given different network distributions and carrier-sensing thresholds, the proposed strategy derives a minimum transmit power according to varying surrounding environment. We obtain expressions for transmission success probability and throughput adopting this strategy. Using numerical examples, we show that joint carrier-sensing thresholds and transmit power strategy can effectively improve the overall system throughput and reduce interference. Additionally, this paper studies the effects of a guard zone on the throughput using a Matern hard-core point process (HCPP) type II model. Theoretical analysis and simulation results show that the HCPP model can increase the success probability and throughput of networks. PMID:28141841

  2. Synergistic effects in threshold models on networks.

    PubMed

    Juul, Jonas S; Porter, Mason A

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can-depending on a parameter-either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  3. Synergistic effects in threshold models on networks

    NASA Astrophysics Data System (ADS)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  4. Robustness of assembly supply chain networks by considering risk propagation and cascading failure

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Jing, Ke; He, Jie; Stanley, H. Eugene

    2016-10-01

    An assembly supply chain network (ASCN) is composed of manufacturers located in different geographical regions. To analyze the robustness of this ASCN when it suffers from catastrophe disruption events, we construct a cascading failure model of risk propagation. In our model, different disruption scenarios s are considered and the probability equation of all disruption scenarios is developed. Using production capability loss as the robustness index (RI) of an ASCN, we conduct a numerical simulation to assess its robustness. Through simulation, we compare the network robustness at different values of linking intensity and node threshold and find that weak linking intensity or high node threshold increases the robustness of the ASCN. We also compare network robustness levels under different disruption scenarios.

  5. Topological and Historical Considerations for Infectious Disease Transmission among Injecting Drug Users in Bushwick, Brooklyn (USA)

    PubMed Central

    Dombrowski, Kirk; Curtis, Richard; Friedman, Samuel; Khan, Bilal

    2014-01-01

    Recent interest by physicists in social networks and disease transmission factors has prompted debate over the topology of degree distributions in sexual networks. Social network researchers have been critical of “scale-free” Barabasi-Albert approaches, and largely rejected the preferential attachment, “rich-get-richer” assumptions that underlie that model. Instead, research on sexual networks has pointed to the importance of homophily and local sexual norms in dictating degree distributions, and thus disease transmission thresholds. Injecting Drug User (IDU) network topologies may differ from the emerging models of sexual networks, however. Degree distribution analysis of a Brooklyn, NY, IDU network indicates a different topology than the spanning tree configurations discussed for sexual networks, instead featuring comparatively short cycles and high concurrency. Our findings suggest that IDU networks do in some ways conform to a “scale-free” topology, and thus may represent “reservoirs” of potential infection despite seemingly low transmission thresholds. PMID:24672745

  6. Framework for cascade size calculations on random networks

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  7. Network analysis of a financial market based on genuine correlation and threshold method

    NASA Astrophysics Data System (ADS)

    Namaki, A.; Shirazi, A. H.; Raei, R.; Jafari, G. R.

    2011-10-01

    A financial market is an example of an adaptive complex network consisting of many interacting units. This network reflects market’s behavior. In this paper, we use Random Matrix Theory (RMT) notion for specifying the largest eigenvector of correlation matrix as the market mode of stock network. For a better risk management, we clean the correlation matrix by removing the market mode from data and then construct this matrix based on the residuals. We show that this technique has an important effect on correlation coefficient distribution by applying it for Dow Jones Industrial Average (DJIA). To study the topological structure of a network we apply the removing market mode technique and the threshold method to Tehran Stock Exchange (TSE) as an example. We show that this network follows a power-law model in certain intervals. We also show the behavior of clustering coefficients and component numbers of this network for different thresholds. These outputs are useful for both theoretical and practical purposes such as asset allocation and risk management.

  8. Price of anarchy is maximized at the percolation threshold.

    PubMed

    Skinner, Brian

    2015-05-01

    When many independent users try to route traffic through a network, the flow can easily become suboptimal as a consequence of congestion of the most efficient paths. The degree of this suboptimality is quantified by the so-called price of anarchy (POA), but so far there are no general rules for when to expect a large POA in a random network. Here I address this question by introducing a simple model of flow through a network with randomly placed congestible and incongestible links. I show that the POA is maximized precisely when the fraction of congestible links matches the percolation threshold of the lattice. Both the POA and the total cost demonstrate critical scaling near the percolation threshold.

  9. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    PubMed

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  10. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  11. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  12. Structural diversity effects of multilayer networks on the threshold of interacting epidemics

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang

    2016-02-01

    Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.

  13. Analysis of the Spatial Organization of Pastures as a Contact Network, Implications for Potential Disease Spread and Biosecurity in Livestock, France, 2010.

    PubMed

    Palisson, Aurore; Courcoul, Aurélie; Durand, Benoit

    2017-01-01

    The use of pastures is part of common herd management practices for livestock animals, but contagion between animals located on neighbouring pastures is one of the major modes of infectious disease transmission between herds. At the population level, this transmission is strongly constrained by the spatial organization of pastures. The aim of this study was to answer two questions: (i) is the spatial configuration of pastures favourable to the spread of infectious diseases in France? (ii) would biosecurity measures allow decreasing this vulnerability? Based on GIS data, the spatial organization of pastures was represented using networks. Nodes were the 3,159,787 pastures reported in 2010 by the French breeders to claim the Common Agricultural Policy subsidies. Links connected pastures when the distance between them was below a predefined threshold. Premises networks were obtained by aggregating into a single node all the pastures under the same ownership. Although the pastures network was very fragmented when the distance threshold was short (1.5 meters, relevant for a directly-transmitted disease), it was not the case when the distance threshold was larger (500 m, relevant for a vector-borne disease: 97% of the nodes in the largest connected component). The premises network was highly connected as the largest connected component always included more than 83% of the nodes, whatever the distance threshold. Percolation analyses were performed to model the population-level efficacy of biosecurity measures. Percolation thresholds varied according to the modelled biosecurity measures and to the distance threshold. They were globally high (e.g. >17% of nodes had to be removed, mimicking the confinement of animals inside farm buildings, to obtain the disappearance of the large connected component). The network of pastures thus appeared vulnerable to the spread of diseases in France. Only a large acceptance of biosecurity measures by breeders would allow reducing this structural risk.

  14. Analysis of the Spatial Organization of Pastures as a Contact Network, Implications for Potential Disease Spread and Biosecurity in Livestock, France, 2010

    PubMed Central

    Palisson, Aurore; Courcoul, Aurélie; Durand, Benoit

    2017-01-01

    The use of pastures is part of common herd management practices for livestock animals, but contagion between animals located on neighbouring pastures is one of the major modes of infectious disease transmission between herds. At the population level, this transmission is strongly constrained by the spatial organization of pastures. The aim of this study was to answer two questions: (i) is the spatial configuration of pastures favourable to the spread of infectious diseases in France? (ii) would biosecurity measures allow decreasing this vulnerability? Based on GIS data, the spatial organization of pastures was represented using networks. Nodes were the 3,159,787 pastures reported in 2010 by the French breeders to claim the Common Agricultural Policy subsidies. Links connected pastures when the distance between them was below a predefined threshold. Premises networks were obtained by aggregating into a single node all the pastures under the same ownership. Although the pastures network was very fragmented when the distance threshold was short (1.5 meters, relevant for a directly-transmitted disease), it was not the case when the distance threshold was larger (500 m, relevant for a vector-borne disease: 97% of the nodes in the largest connected component). The premises network was highly connected as the largest connected component always included more than 83% of the nodes, whatever the distance threshold. Percolation analyses were performed to model the population-level efficacy of biosecurity measures. Percolation thresholds varied according to the modelled biosecurity measures and to the distance threshold. They were globally high (e.g. >17% of nodes had to be removed, mimicking the confinement of animals inside farm buildings, to obtain the disappearance of the large connected component). The network of pastures thus appeared vulnerable to the spread of diseases in France. Only a large acceptance of biosecurity measures by breeders would allow reducing this structural risk. PMID:28060913

  15. A novel gene network inference algorithm using predictive minimum description length approach.

    PubMed

    Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

    2010-05-28

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the PMDL principle is effective in determining the MI threshold and the developed algorithm improves precision of gene regulatory network inference. Based on the sensitivity analysis of all tested cases, an optimal CMI threshold value has been identified. Finally it was observed that the performance of the algorithms saturates at a certain threshold of data size.

  16. Effects of global financial crisis on network structure in a local stock market

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2014-08-01

    This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.

  17. Modular analysis of the probabilistic genetic interaction network.

    PubMed

    Hou, Lin; Wang, Lin; Qian, Minping; Li, Dong; Tang, Chao; Zhu, Yunping; Deng, Minghua; Li, Fangting

    2011-03-15

    Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules.

  18. Neural computation of arithmetic functions

    NASA Technical Reports Server (NTRS)

    Siu, Kai-Yeung; Bruck, Jehoshua

    1990-01-01

    An area of application of neural networks is considered. A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n-bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions.

  19. Effect of resource constraints on intersimilar coupled networks.

    PubMed

    Shai, S; Dobson, S

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  20. Effect of resource constraints on intersimilar coupled networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2012-12-01

    Most real-world networks do not live in isolation but are often coupled together within a larger system. Recent studies have shown that intersimilarity between coupled networks increases the connectivity of the overall system. However, unlike connected nodes in a single network, coupled nodes often share resources, like time, energy, and memory, which can impede flow processes through contention when intersimilarly coupled. We study a model of a constrained susceptible-infected-recovered (SIR) process on a system consisting of two random networks sharing the same set of nodes, where nodes are limited to interact with (and therefore infect) a maximum number of neighbors at each epidemic time step. We obtain that, in agreement with previous studies, when no limit exists (regular SIR model), positively correlated (intersimilar) coupling results in a lower epidemic threshold than negatively correlated (interdissimilar) coupling. However, in the case of the constrained SIR model, the obtained epidemic threshold is lower with negatively correlated coupling. The latter finding differentiates our work from previous studies and provides another step towards revealing the qualitative differences between single and coupled networks.

  1. Geographical Influences of an Emerging Network of Gang Rivalries

    DTIC Science & Technology

    2011-03-17

    Hollenbeck in the N × M environment grid. The semi-permeable boundaries encoded in the model are displayed in the center image. The shades of gray of...intensity. Light shades of gray correspond to high density values near one and dark shades correspond to low densities near zero. The boundary crossing...Threshold Graphs ( GTG ) For comparison to the networks produced by our simulations, we constructed an instance of a Geograph- ical Threshold Graph ( GTG

  2. Comparison between global financial crisis and local stock disaster on top of Chinese stock network

    NASA Astrophysics Data System (ADS)

    Xia, Lisi; You, Daming; Jiang, Xin; Guo, Quantong

    2018-01-01

    The science of complex network theory can be usefully applied in many important fields, one of which is the finance. In these practical cases, a massive dataset can be represented as a very large network with certain attributes associated with its nodes and edges. As one of the most important components of financial market, stock market has been attracting more and more attention. In this paper, we propose a threshold model to build Chinese stock market networks and study the topological properties of these networks. To be specific, we compare the effects of different crises, namely the 2008 global crisis and the stock market disaster in 2015, on the threshold networks. Prices of the stocks belonging to the Shanghai and Shenzhen 300 index are considered for three periods: the global crisis, common period and the stock market disaster. We find the probability distribution of the cross-correlations of the stocks during the stock market disaster is fatter than that of others. Besides, the thresholds of cross-correlations are assigned to obtain the threshold networks and the power-law of degree distribution in these networks are observed in a certain range of threshold values. The networks during the stock market disaster also appear to have larger mean degree and modularity, which reveals the strong correlations among these stock prices. Our findings to some extent crosscheck the liquidity shortage reason which is believed to result in the outbreak of the stock market disaster. Moreover, we hope that this paper could give us a deeper understanding of the market's behavior and also lead to interesting future research about the problems of modern finance theory.

  3. Epidemic spreading on preferred degree adaptive networks.

    PubMed

    Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P

    2012-01-01

    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = <κ>/<κ2> and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.

  4. Complex contagions with timers

    NASA Astrophysics Data System (ADS)

    Oh, Se-Wook; Porter, Mason A.

    2018-03-01

    There has been a great deal of effort to try to model social influence—including the spread of behavior, norms, and ideas—on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays adoptions—i.e., changes of state—by the agents, which in turn delays the adoptions of their neighbors. With a homogeneously-distributed timer, in which all nodes have the same amount of delay, the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to the timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation for the Watts threshold model, and we find good agreement with numerical simulations. We also examine our new timer model on networks constructed from empirical data.

  5. At the Threshold of a Library Network.

    ERIC Educational Resources Information Center

    Khalid, Farooq A.

    1996-01-01

    Highlights both the benefits and the problems associated with networking in libraries and discusses circumstances that are forcing information centers in the Arabian Gulf region to begin thinking about library networking. Topics include governing models, resource sharing, timeliness, cost effectiveness, currency, reliability, and a union catalog…

  6. Sampling Based Influence Maximization on Linear Threshold Model

    NASA Astrophysics Data System (ADS)

    Jia, Su; Chen, Ling

    2018-04-01

    A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.

  7. Knowledge diffusion in complex networks by considering time-varying information channels

    NASA Astrophysics Data System (ADS)

    Zhu, He; Ma, Jing

    2018-03-01

    In this article, based on a model of epidemic spreading, we explore the knowledge diffusion process with an innovative mechanism for complex networks by considering time-varying information channels. To cover the knowledge diffusion process in homogeneous and heterogeneous networks, two types of networks (the BA network and the ER network) are investigated. The mean-field theory is used to theoretically draw the knowledge diffusion threshold. Numerical simulation demonstrates that the knowledge diffusion threshold is almost linearly correlated with the mean of the activity rate. In addition, under the influence of the activity rate and distinct from the classic Susceptible-Infected-Susceptible (SIS) model, the density of knowers almost linearly grows with the spreading rate. Finally, in consideration of the ubiquitous mechanism of innovation, we further study the evolution of knowledge in our proposed model. The results suggest that compared with the effect of the spreading rate, the average knowledge version of the population is affected more by the innovation parameter and the mean of the activity rate. Furthermore, in the BA network, the average knowledge version of individuals with higher degree is always newer than those with lower degree.

  8. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    PubMed

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  9. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    PubMed

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach. Findings from this proof-of-concept study suggest that our approach has a great potential in providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment. The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as cell growth rate.

  10. The impact of vaccine success and awareness on epidemic dynamics

    NASA Astrophysics Data System (ADS)

    Juang, Jonq; Liang, Yu-Hao

    2016-11-01

    The role of vaccine success is introduced into an epidemic spreading model consisting of three states: susceptible, infectious, and vaccinated. Moreover, the effect of three types, namely, contact, local, and global, of infection awareness and immunization awareness is also taken into consideration. The model generalizes those considered in Pastor-Satorras and Vespignani [Phys. Rev. E 63, 066117 (2001)], Pastor-Satorras and Vespignani [Phys. Rev. E 65, 036104 (2002)], Moreno et al. [Eur. Phys. J. B 26, 521-529 (2002)], Wu et al. [Chaos 22, 013101 (2012)], and Wu et al. [Chaos 24, 023108 (2014)]. Our main results contain the following. First, the epidemic threshold is explicitly obtained. In particular, we show that, for any initial conditions, the epidemic eventually dies out regardless of what other factors are whenever some type of immunization awareness is considered, and vaccination has a perfect success. Moreover, the threshold is independent of the global type of awareness. Second, we compare the effect of contact and local types of awareness on the epidemic thresholds between heterogeneous networks and homogeneous networks. Specifically, we find that the epidemic threshold for the homogeneous network can be lower than that of the heterogeneous network in an intermediate regime for intensity of contact infection awareness while it is higher otherwise. In summary, our results highlight the important and crucial roles of both vaccine success and contact infection awareness on epidemic dynamics.

  11. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  13. Implications of climate change on winter road networks in Ontario's Far North and northern Manitoba, Canada, based on climate model projections

    NASA Astrophysics Data System (ADS)

    Hori, Y.; Cheng, V. Y. S.; Gough, W. A.

    2017-12-01

    A network of winter roads in northern Canada connects a number of remote First Nations communities to all-season roads and rails. The extent of the winter road networks depends on the geographic features, socio-economic activities, and the numbers of remote First Nations so that it differs among the provinces. The most extensive winter road networks below the 60th parallel south are located in Ontario and Manitoba, serving 32 and 18 communities respectively. In recent years, a warmer climate has resulted in a shorter winter road season and an increase in unreliable road conditions; thus, limiting access among remote communities. This study focused on examining the future freezing degree-days (FDDs) accumulations during the winter road season at selected locations throughout Ontario's Far North and northern Manitoba using recent climate model projections from the multi-model ensembles of General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) scenarios. First, the non-parametric Mann-Kendall correlation test and the Theil-Sen method were used to identify any statistically significant trends between FDDs and time for the base period (1981-2010). Second, future climate scenarios are developed for the study areas using statistical downscaling methods. This study also examined the lowest threshold of FDDs during the winter road construction in a future period. Our previous study established the lowest threshold of 380 FDDs, which derived from the relationship between the FDDs and the opening dates of James Bay Winter Road near the Hudson-James Bay coast. Thus, this study applied the threshold measure as a conservative estimate of the minimum threshold of FDDs to examine the effects of climate change on the winter road construction period.

  14. Phase transition of Boolean networks with partially nested canalizing functions

    NASA Astrophysics Data System (ADS)

    Jansen, Kayse; Matache, Mihaela Teodora

    2013-07-01

    We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of the complementary function. In some of those studies conflicting results were found with regard to the presence of chaotic behavior. Moreover, those studies focus mostly on ergodic networks in which initial states are assumed equally likely. We relax that assumption and find the critical condition for the sensitivity of the network under a non-ergodic scenario. We use the proposed mathematical model to determine parameter values for which phase transitions from order to chaos occur. We generate Derrida plots to show that the mathematical model matches the actual network dynamics. The phase transition diagrams indicate that both order and chaos can occur, and that certain parameters induce a larger range of values leading to order versus chaos. The edge-of-chaos curves are identified analytically and numerically. It is shown that the depth of canalization does not cause major dynamical changes once certain thresholds are reached; these thresholds are fairly small in comparison to the connectivity of the nodes.

  15. Synchronous neural networks of nonlinear threshold elements with hysteresis.

    PubMed

    Wang, L; Ross, J

    1990-02-01

    We use Hoffmann's suggestion [Hoffmann, G. W. (1986) J. Theor. Biol. 122, 33-67] of hysteresis in a single neuron level and determine its consequences in a synchronous network made of such neurons. We show that the overall retrieval ability in the presence of noise and the memory capacity of the network in the present model are better than in conventional models without such hysteresis. Second-order interaction further improves the retrieval ability of the network and causes hysteresis in the retrieval-noise curve for any arbitrary width of the bistable region. The convergence rate is increased by the hysteresis at high noise levels but is reduced by the hysteresis at low noise levels. Explicit formulae are given for calculations of average final convergence and noise threshold as functions of the width of the bistable region. There is neurophysiological evidence for hysteresis in single neurons, and we propose optical implementations of the present model by using ZnSe interference filters to test the predictions of the theory.

  16. Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water.

    PubMed

    Fan, Shu-Kai S; Kuan, Wen-Hui; Fan, Chihhao; Chen, Chiu-Yang

    2016-12-01

      This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated.

  17. microRNA as a Potential Vector for the Propagation of Robustness in Protein Expression and Oscillatory Dynamics within a ceRNA Network

    PubMed Central

    Gérard, Claude; Novák, Béla

    2013-01-01

    microRNAs (miRNAs) are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF) for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs) network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a “Goodwin-like” oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks. PMID:24376695

  18. Adaptive threshold determination for efficient channel sensing in cognitive radio network using mobile sensors

    NASA Astrophysics Data System (ADS)

    Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.

    2017-03-01

    Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.

  19. Rumor diffusion model with spatio-temporal diffusion and uncertainty of behavior decision in complex social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Wang, Youguo

    2018-07-01

    In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.

  20. Epidemic spreading on dual-structure networks with mobile agents

    NASA Astrophysics Data System (ADS)

    Yao, Yiyang; Zhou, Yinzuo

    2017-02-01

    The rapid development of modern society continually transforms the social structure which leads to an increasingly distinct dual structure of higher population density in urban areas and lower density in rural areas. Such structure may induce distinctive spreading behavior of epidemics which does not happen in a single type structure. In this paper, we study the epidemic spreading of mobile agents on dual structure networks based on SIRS model. First, beyond the well known epidemic threshold for generic epidemic model that when the infection rate is below the threshold a pertinent infectious disease will die out, we find the other epidemic threshold which appears when the infection rate of a disease is relatively high. This feature of two thresholds for the SIRS model may lead to the elimination of infectious disease when social network has either high population density or low population density. Interestingly, however, we find that when a high density area is connected to a low density may cause persistent spreading of the infectious disease, even though the same disease will die out when it spreads in each single area. This phenomenon indicates the critical role of the connection between the two areas which could radically change the behavior of spreading dynamics. Our findings, therefore, provide new understanding of epidemiology pertinent to the characteristic modern social structure and have potential to develop controlling strategies accordingly.

  1. Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks.

    PubMed

    Hasegawa, Takehisa; Nemoto, Koji

    2017-08-01

    This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.

  2. Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takehisa; Nemoto, Koji

    2017-08-01

    This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.

  3. Finite size effects in epidemic spreading: the problem of overpopulated systems

    NASA Astrophysics Data System (ADS)

    Ganczarek, Wojciech

    2013-12-01

    In this paper we analyze the impact of network size on the dynamics of epidemic spreading. In particular, we investigate the pace of infection in overpopulated systems. In order to do that, we design a model for epidemic spreading on a finite complex network with a restriction to at most one contamination per time step, which can serve as a model for sexually transmitted diseases spreading in some student communes. Because of the highly discrete character of the process, the analysis cannot use the continuous approximation widely exploited for most models. Using a discrete approach, we investigate the epidemic threshold and the quasi-stationary distribution. The main results are two theorems about the mixing time for the process: it scales like the logarithm of the network size and it is proportional to the inverse of the distance from the epidemic threshold.

  4. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  5. Epidemic thresholds for bipartite networks

    NASA Astrophysics Data System (ADS)

    Hernández, D. G.; Risau-Gusman, S.

    2013-11-01

    It is well known that sexually transmitted diseases (STD) spread across a network of human sexual contacts. This network is most often bipartite, as most STD are transmitted between men and women. Even though network models in epidemiology have quite a long history now, there are few general results about bipartite networks. One of them is the simple dependence, predicted using the mean field approximation, between the epidemic threshold and the average and variance of the degree distribution of the network. Here we show that going beyond this approximation can lead to qualitatively different results that are supported by numerical simulations. One of the new features, that can be relevant for applications, is the existence of a critical value for the infectivity of each population, below which no epidemics can arise, regardless of the value of the infectivity of the other population.

  6. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.

    PubMed

    Feltus, F Alex; Ficklin, Stephen P; Gibson, Scott M; Smith, Melissa C

    2013-06-05

    In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired.

  7. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study

    PubMed Central

    2013-01-01

    Background In genomics, highly relevant gene interaction (co-expression) networks have been constructed by finding significant pair-wise correlations between genes in expression datasets. These networks are then mined to elucidate biological function at the polygenic level. In some cases networks may be constructed from input samples that measure gene expression under a variety of different conditions, such as for different genotypes, environments, disease states and tissues. When large sets of samples are obtained from public repositories it is often unmanageable to associate samples into condition-specific groups, and combining samples from various conditions has a negative effect on network size. A fixed significance threshold is often applied also limiting the size of the final network. Therefore, we propose pre-clustering of input expression samples to approximate condition-specific grouping of samples and individual network construction of each group as a means for dynamic significance thresholding. The net effect is increase sensitivity thus maximizing the total co-expression relationships in the final co-expression network compendium. Results A total of 86 Arabidopsis thaliana co-expression networks were constructed after k-means partitioning of 7,105 publicly available ATH1 Affymetrix microarray samples. We term each pre-sorted network a Gene Interaction Layer (GIL). Random Matrix Theory (RMT), an un-supervised thresholding method, was used to threshold each of the 86 networks independently, effectively providing a dynamic (non-global) threshold for the network. The overall gene count across all GILs reached 19,588 genes (94.7% measured gene coverage) and 558,022 unique co-expression relationships. In comparison, network construction without pre-sorting of input samples yielded only 3,297 genes (15.9%) and 129,134 relationships. in the global network. Conclusions Here we show that pre-clustering of microarray samples helps approximate condition-specific networks and allows for dynamic thresholding using un-supervised methods. Because RMT ensures only highly significant interactions are kept, the GIL compendium consists of 558,022 unique high quality A. thaliana co-expression relationships across almost all of the measurable genes on the ATH1 array. For A. thaliana, these networks represent the largest compendium to date of significant gene co-expression relationships, and are a means to explore complex pathway, polygenic, and pleiotropic relationships for this focal model plant. The networks can be explored at sysbio.genome.clemson.edu. Finally, this method is applicable to any large expression profile collection for any organism and is best suited where a knowledge-independent network construction method is desired. PMID:23738693

  8. A novel growth mode of Physarum polycephalum during starvation

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Oettmeier, Christina; Döbereiner, Hans-Günther

    2018-06-01

    Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed ‘satellites’ are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.

  9. Equity venture capital platform model based on complex network

    NASA Astrophysics Data System (ADS)

    Guo, Dongwei; Zhang, Lanshu; Liu, Miao

    2018-05-01

    This paper uses the small-world network and the random-network to simulate the relationship among the investors, construct the network model of the equity venture capital platform to explore the impact of the fraud rate and the bankruptcy rate on the robustness of the network model while observing the impact of the average path length and the average agglomeration coefficient of the investor relationship network on the income of the network model. The study found that the fraud rate and bankruptcy rate exceeded a certain threshold will lead to network collapse; The bankruptcy rate has a great influence on the income of the platform; The risk premium exists, and the average return is better under a certain range of bankruptcy risk; The structure of the investor relationship network has no effect on the income of the investment model.

  10. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  11. Localization and Spreading of Diseases in Complex Networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Dorogovtsev, S. N.; Oliveira, J. G.; Mendes, J. F. F.

    2012-09-01

    Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a finite number of vertices, where hubs and edges with large weights are centers of localization. Our results follow from the analysis of standard models of networks and empirical data for real-world networks.

  12. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Van Mieghem, Piet

    2018-02-01

    Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1 /ln(λ1+1 ) , where λ1 is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1 /ln(λ1+1 ) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.

  13. A null model for Pearson coexpression networks.

    PubMed

    Gobbi, Andrea; Jurman, Giuseppe

    2015-01-01

    Gene coexpression networks inferred by correlation from high-throughput profiling such as microarray data represent simple but effective structures for discovering and interpreting linear gene relationships. In recent years, several approaches have been proposed to tackle the problem of deciding when the resulting correlation values are statistically significant. This is most crucial when the number of samples is small, yielding a non-negligible chance that even high correlation values are due to random effects. Here we introduce a novel hard thresholding solution based on the assumption that a coexpression network inferred by randomly generated data is expected to be empty. The threshold is theoretically derived by means of an analytic approach and, as a deterministic independent null model, it depends only on the dimensions of the starting data matrix, with assumptions on the skewness of the data distribution compatible with the structure of gene expression levels data. We show, on synthetic and array datasets, that the proposed threshold is effective in eliminating all false positive links, with an offsetting cost in terms of false negative detected edges.

  14. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    PubMed

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Propensity and stickiness in the naming game: Tipping fractions of minorities

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew M.; Szymanski, Boleslaw K.; Lim, Chjan C.

    2014-10-01

    Agent-based models of the binary naming game are generalized here to represent a family of models parameterized by the introduction of two continuous parameters. These parameters define varying listener-speaker interactions on the individual level with one parameter controlling the speaker and the other controlling the listener of each interaction. The major finding presented here is that the generalized naming game preserves the existence of critical thresholds for the size of committed minorities. Above such threshold, a committed minority causes a fast (in time logarithmic in size of the network) convergence to consensus, even when there are other parameters influencing the system. Below such threshold, reaching consensus requires time exponential in the size of the network. Moreover, the two introduced parameters cause bifurcations in the stabilities of the system's fixed points and may lead to changes in the system's consensus.

  16. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  17. Networks of conforming or nonconforming individuals tend to reach satisfactory decisions.

    PubMed

    Ramazi, Pouria; Riehl, James; Cao, Ming

    2016-11-15

    Binary decisions of agents coupled in networks can often be classified into two types: "coordination," where an agent takes an action if enough neighbors are using that action, as in the spread of social norms, innovations, and viral epidemics, and "anticoordination," where too many neighbors taking a particular action causes an agent to take the opposite action, as in traffic congestion, crowd dispersion, and division of labor. Both of these cases can be modeled using linear-threshold-based dynamics, and a fundamental question is whether the individuals in such networks are likely to reach decisions with which they are satisfied. We show that, in the coordination case, and perhaps more surprisingly, also in the anticoordination case, the agents will indeed always tend to reach satisfactory decisions, that is, the network will almost surely reach an equilibrium state. This holds for every network topology and every distribution of thresholds, for both asynchronous and partially synchronous decision-making updates. These results reveal that irregular network topology, population heterogeneity, and partial synchrony are not sufficient to cause cycles or nonconvergence in linear-threshold dynamics; rather, other factors such as imitation or the coexistence of coordinating and anticoordinating agents must play a role.

  18. NETWORK SYNTHESIS OF CASCADED THRESHOLD ELEMENTS.

    DTIC Science & Technology

    A threshold function is a switching function which can be stimulated by a single, simplified, idealized neuron, or threshold element. In this report... threshold functions are examined in the context of abstract set theory and linear algebra for the purpose of obtaining practical synthesis procedures...for networks of threshold elements. A procedure is described by which, for any given switching function, a cascade network of these elements can be

  19. Percolation of spatially constrained Erdős-Rényi networks with degree correlations.

    PubMed

    Schmeltzer, C; Soriano, J; Sokolov, I M; Rüdiger, S

    2014-01-01

    Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity. However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first spatially segregated depending on their degree and afterwards connected with a distance-dependent probability. In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally, when the network is constructed in a disassortative way, we observe that this property has little effect on the percolation transition.

  20. An individual-based approach to SIR epidemics in contact networks.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2011-08-21

    Many approaches have recently been proposed to model the spread of epidemics on networks. For instance, the Susceptible/Infected/Recovered (SIR) compartmental model has successfully been applied to different types of diseases that spread out among humans and animals. When this model is applied on a contact network, the centrality characteristics of the network plays an important role in the spreading process. However, current approaches only consider an aggregate representation of the network structure, which can result in inaccurate analysis. In this paper, we propose a new individual-based SIR approach, which considers the whole description of the network structure. The individual-based approach is built on a continuous time Markov chain, and it is capable of evaluating the state probability for every individual in the network. Through mathematical analysis, we rigorously confirm the existence of an epidemic threshold below which an epidemic does not propagate in the network. We also show that the epidemic threshold is inversely proportional to the maximum eigenvalue of the network. Additionally, we study the role of the whole spectrum of the network, and determine the relationship between the maximum number of infected individuals and the set of eigenvalues and eigenvectors. To validate our approach, we analytically study the deviation with respect to the continuous time Markov chain model, and we show that the new approach is accurate for a large range of infection strength. Furthermore, we compare the new approach with the well-known heterogeneous mean field approach in the literature. Ultimately, we support our theoretical results through extensive numerical evaluations and Monte Carlo simulations. Published by Elsevier Ltd.

  1. Local immunization program for susceptible-infected-recovered network epidemic model

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Lou, Yijun

    2016-02-01

    The immunization strategies through contact tracing on the susceptible-infected-recovered framework in social networks are modelled to evaluate the cost-effectiveness of information-based vaccination programs with particular focus on the scenario where individuals belonging to a specific set can get vaccinated due to the vaccine shortages and other economic or humanity constraints. By using the block heterogeneous mean-field approach, a series of discrete-time dynamical models is formulated and the condition for epidemic outbreaks can be established which is shown to be not only dependent on the network structure but also closely related to the immunization control parameters. Results show that increasing the immunization strength can effectively raise the epidemic threshold, which is different from the predictions obtained through the susceptible-infected-susceptible network framework, where epidemic threshold is independent of the vaccination strength. Furthermore, a significant decrease of vaccine use to control the infectious disease is observed for the local vaccination strategy, which shows the promising applications of the local immunization programs to disease control while calls for accurate local information during the process of disease outbreak.

  2. LOGIC NETS, THEIR CHARACTERIZATION, RELIABILITY, AND EFFICIENT SYNTHESIS.

    DTIC Science & Technology

    The report consists of two parts. The first discusses a problem in the dual-support approach to network synthesis using threshold gates, gives new...asymptotic results on the number of threshold gates and the size of threshold gate networks, and summarizes the work in threshold logic supported by...this contract, including programs to facilitate experimentation in the design of networks of threshold gates. The second summarizes CDL1 - Computer

  3. Competitive epidemic spreading over arbitrary multilayer networks.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina

    2014-06-01

    This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI_{1}SI_{2}S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.

  4. The mutation-drift balance in spatially structured populations.

    PubMed

    Schneider, David M; Martins, Ayana B; de Aguiar, Marcus A M

    2016-08-07

    In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populations the mutation threshold is μc=1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining kc as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that kc grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dynamic analysis of a stochastic rumor propagation model

    NASA Astrophysics Data System (ADS)

    Jia, Fangju; Lv, Guangying

    2018-01-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. In this paper, we are concerned with a stochastic rumor propagation model. Sufficient conditions for extinction and persistence in the mean of the rumor are established. The threshold between persistence in the mean and extinction of the rumor is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system.

  6. On the thresholds in modeling of high flows via artificial neural networks - A bootstrapping analysis

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Trichakis, I.

    2012-04-01

    Considering the growing interest in simulating hydrological phenomena with artificial neural networks (ANNs), it is useful to figure out the potential and limits of these models. In this study, the main objective is to examine how to improve the ability of an ANN model to simulate extreme values of flow utilizing a priori knowledge of threshold values. A three-layer feedforward ANN was trained by using the back propagation algorithm and the logistic function as activation function. By using the thresholds, the flow was partitioned in low (x < μ), medium (μ ≤ x ≤ μ + 2σ) and high (x > μ + 2σ) values. The employed ANN model was trained for high flow partition and all flow data too. The developed methodology was implemented over a mountainous river catchment (the Mesochora catchment in northwestern Greece). The ANN model received as inputs pseudo-precipitation (rain plus melt) and previous observed flow data. After the training was completed the bootstrapping methodology was applied to calculate the ANN confidence intervals (CIs) for a 95% nominal coverage. The calculated CIs included only the uncertainty, which comes from the calibration procedure. The results showed that an ANN model trained specifically for high flows, with a priori knowledge of the thresholds, can simulate these extreme values much better (RMSE is 31.4% less) than an ANN model trained with all data of the available time series and using a posteriori threshold values. On the other hand the width of CIs increases by 54.9% with a simultaneous increase by 64.4% of the actual coverage for the high flows (a priori partition). The narrower CIs of the high flows trained with all data may be attributed to the smoothing effect produced from the use of the full data sets. Overall, the results suggest that an ANN model trained with a priori knowledge of the threshold values has an increased ability in simulating extreme values compared with an ANN model trained with all the data and a posteriori knowledge of the thresholds.

  7. Contrasting effects of strong ties on SIR and SIS processes in temporal networks

    NASA Astrophysics Data System (ADS)

    Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2015-12-01

    Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks.

  8. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  9. NetMOD Version 2.0 Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This document describes the parameters that are used to configure the NetMOD tool and the input and output parameters that make up the simulation definitions.« less

  10. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  11. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation

    PubMed Central

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms. PMID:29670508

  12. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation.

    PubMed

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO 2 ) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms.

  13. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the clustering coefficient of the network and...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  14. Effect of memory in non-Markovian Boolean networks illustrated with a case study: A cell cycling process

    NASA Astrophysics Data System (ADS)

    Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.

    2016-11-01

    The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.

  15. NetMOD Version 2.0 Mathematical Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less

  16. NetMOD version 1.0 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion John

    2014-01-01

    NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed atmore » each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.« less

  17. Effects of awareness diffusion and self-initiated awareness behavior on epidemic spreading - An approach based on multiplex networks

    NASA Astrophysics Data System (ADS)

    Kan, Jia-Qian; Zhang, Hai-Feng

    2017-03-01

    In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.

  18. Prediction of hearing loss among the noise-exposed workers in a steel factory using artificial intelligence approach.

    PubMed

    Aliabadi, Mohsen; Farhadian, Maryam; Darvishi, Ebrahim

    2015-08-01

    Prediction of hearing loss in noisy workplaces is considered to be an important aspect of hearing conservation program. Artificial intelligence, as a new approach, can be used to predict the complex phenomenon such as hearing loss. Using artificial neural networks, this study aims to present an empirical model for the prediction of the hearing loss threshold among noise-exposed workers. Two hundred and ten workers employed in a steel factory were chosen, and their occupational exposure histories were collected. To determine the hearing loss threshold, the audiometric test was carried out using a calibrated audiometer. The personal noise exposure was also measured using a noise dosimeter in the workstations of workers. Finally, data obtained five variables, which can influence the hearing loss, were used for the development of the prediction model. Multilayer feed-forward neural networks with different structures were developed using MATLAB software. Neural network structures had one hidden layer with the number of neurons being approximately between 5 and 15 neurons. The best developed neural networks with one hidden layer and ten neurons could accurately predict the hearing loss threshold with RMSE = 2.6 dB and R(2) = 0.89. The results also confirmed that neural networks could provide more accurate predictions than multiple regressions. Since occupational hearing loss is frequently non-curable, results of accurate prediction can be used by occupational health experts to modify and improve noise exposure conditions.

  19. Threshold network of a financial market using the P-value of correlation coefficients

    NASA Astrophysics Data System (ADS)

    Ha, Gyeong-Gyun; Lee, Jae Woo; Nobi, Ashadun

    2015-06-01

    Threshold methods in financial networks are important tools for obtaining important information about the financial state of a market. Previously, absolute thresholds of correlation coefficients have been used; however, they have no relation to the length of time. We assign a threshold value depending on the size of the time window by using the P-value concept of statistics. We construct a threshold network (TN) at the same threshold value for two different time window sizes in the Korean Composite Stock Price Index (KOSPI). We measure network properties, such as the edge density, clustering coefficient, assortativity coefficient, and modularity. We determine that a significant difference exists between the network properties of the two time windows at the same threshold, especially during crises. This implies that the market information depends on the length of the time window when constructing the TN. We apply the same technique to Standard and Poor's 500 (S&P500) and observe similar results.

  20. Continuous Seismic Threshold Monitoring

    DTIC Science & Technology

    1992-05-31

    Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic

  1. Model and simulation of Krause model in dynamic open network

    NASA Astrophysics Data System (ADS)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  2. The topology and dynamics of complex networks

    NASA Astrophysics Data System (ADS)

    Dezso, Zoltan

    We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.

  3. Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons.

    PubMed

    Destexhe, Alain

    2009-12-01

    Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electrophysiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displays Up and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.

  4. Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network.

    PubMed

    Erbe, C

    2000-07-01

    This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.

  5. Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks.

    PubMed

    Podobnik, Boris; Lipic, Tomislav; Horvatic, Davor; Majdandzic, Antonio; Bishop, Steven R; Eugene Stanley, H

    2015-09-21

    Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.

  6. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  7. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    PubMed

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  8. Properties of highly clustered networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E.

    2003-08-01

    We propose and solve exactly a model of a network that has both a tunable degree distribution and a tunable clustering coefficient. Among other things, our results indicate that increased clustering leads to a decrease in the size of the giant component of the network. We also study susceptible/infective/recovered type epidemic processes within the model and find that clustering decreases the size of epidemics, but also decreases the epidemic threshold, making it easier for diseases to spread. In addition, clustering causes epidemics to saturate sooner, meaning that they infect a near-maximal fraction of the network for quite low transmission rates.

  9. The analysis of HIV/AIDS drug-resistant on networks

    NASA Astrophysics Data System (ADS)

    Liu, Maoxing

    2014-01-01

    In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.

  10. Optimizing interconnections to maximize the spectral radius of interdependent networks

    NASA Astrophysics Data System (ADS)

    Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian

    2017-03-01

    The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.

  11. Effects of threshold on the topology of gene co-expression networks.

    PubMed

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  12. Transition to subthreshold activity with the use of phase shifting in a model thalamic network

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth; Grisar, Thierry

    1997-05-01

    Absence epilepsy involves a state of low frequency synchronous oscillations by the involved neuronal networks. These oscillations may be either above or subthreshold. In this investigation, we studied the methods which could be utilized to transform the threshold activity of neurons in the network to a subthreshold state. A model thalamic network was constructed using the Hodgkin Huxley framework. Subthreshold activity was achieved by the application of stimuli to the network which caused phase shifts in the oscillatory activity of selected neurons in the network. In some instances the stimulus was a periodic pulse train of low frequency to the reticular thalamic neurons of the network while in others, it was a constant hyperpolarizing current applied to the thalamocortical neurons.

  13. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  14. Influence of trust in the spreading of information

    NASA Astrophysics Data System (ADS)

    Wu, Hongrun; Arenas, Alex; Gómez, Sergio

    2017-01-01

    The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.

  15. Evolution of cooperation under social pressure in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  16. Evolution of cooperation under social pressure in multiplex networks.

    PubMed

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  17. Geographical influences of an emerging network of gang rivalries

    NASA Astrophysics Data System (ADS)

    Hegemann, Rachel A.; Smith, Laura M.; Barbaro, Alethea B. T.; Bertozzi, Andrea L.; Reid, Shannon E.; Tita, George E.

    2011-10-01

    We propose an agent-based model to simulate the creation of street gang rivalries. The movement dynamics of agents are coupled to an evolving network of gang rivalries, which is determined by previous interactions among agents in the system. Basic gang data, geographic information, and behavioral dynamics suggested by the criminology literature are integrated into the model. The major highways, rivers, and the locations of gangs’ centers of activity influence the agents’ motion. We use a policing division of the Los Angeles Police Department as a case study to test our model. We apply common metrics from graph theory to analyze our model, comparing networks produced by our simulations and an instance of a Geographical Threshold Graph to the existing network from the criminology literature.

  18. Epidemic spreading in time-varying community networks.

    PubMed

    Ren, Guangming; Wang, Xingyuan

    2014-06-01

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q < qc. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.

  19. Noise-Driven Manifestation of Learning in Mature Neural Networks

    NASA Astrophysics Data System (ADS)

    Monterola, Christopher; Saloma, Caesar

    2002-10-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise-their ability to benefit from its presence and their robustness against noisy strong disturbances.

  20. Conductivity fluctuations in polymer's networks

    NASA Astrophysics Data System (ADS)

    Samukhin, A. N.; Prigodin, V. N.; Jastrabík, L.

    1998-01-01

    A Polymer network is treated as an anisotropic fractal with fractional dimensionality D = 1 + ε close to one. Percolation model on such a fractal is studied. Using real space renormalization group approach of Migdal and Kadanoff, we find the threshold value and all the critical exponents in the percolation model to be strongly nonanalytic functions of ε, e.g. the critical exponent of the conductivity was obtained to be ε-2 exp (-1 - 1/ε). The main part of the finite-size conductivities distribution function at the threshold was found to be universal if expressed in terms of the fluctuating variable which is proportional to a large power of the conductivity, but with ε-dependent low-conductivity cut-off. Its reduced central momenta are of the order of e -1/ε up to a very high order.

  1. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    PubMed

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-03

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.

  2. Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons.

    PubMed

    Yang, Xujun; Li, Chuandong; Song, Qiankun; Chen, Jiyang; Huang, Junjian

    2018-05-04

    This paper talks about the stability and synchronization problems of fractional-order quaternion-valued neural networks (FQVNNs) with linear threshold neurons. On account of the non-commutativity of quaternion multiplication resulting from Hamilton rules, the FQVNN models are separated into four real-valued neural network (RVNN) models. Consequently, the dynamic analysis of FQVNNs can be realized by investigating the real-valued ones. Based on the method of M-matrix, the existence and uniqueness of the equilibrium point of the FQVNNs are obtained without detailed proof. Afterwards, several sufficient criteria ensuring the global Mittag-Leffler stability for the unique equilibrium point of the FQVNNs are derived by applying the Lyapunov direct method, the theory of fractional differential equation, the theory of matrix eigenvalue, and some inequality techniques. In the meanwhile, global Mittag-Leffler synchronization for the drive-response models of the addressed FQVNNs are investigated explicitly. Finally, simulation examples are designed to verify the feasibility and availability of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming

    2018-04-01

    Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.

  4. Maximizing algebraic connectivity in interconnected networks.

    PubMed

    Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina

    2016-03-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.

  5. Threshold behaviors of social dynamics and financial outcomes of Ponzi scheme diffusion in complex networks

    NASA Astrophysics Data System (ADS)

    Fu, Peihua; Zhu, Anding; Ni, He; Zhao, Xin; Li, Xiulin

    2018-01-01

    Ponzi schemes always lead to mass disasters after collapse. It is important to study the critical behaviors of both social dynamics and financial outcomes for Ponzi scheme diffusion in complex networks. We develop the potential-investor-divestor-investor (PIDI) model by considering the individual behavior of direct reinvestment. We find that only the spreading rate relates to the epidemic outbreak while the reinvestment rate relates to the zero and non-zero final states for social dynamics of both homo- and inhomogeneous networks. Financially, we find that there is a critical spreading threshold, above which the scheme needs not to use its own initial capital for taking off, i.e. the starting cost is covered by the rapidly inflowing funds. However, the higher the cost per recruit, the larger the critical spreading threshold and the worse the financial outcomes. Theoretical and simulation results also reveal that schemes are easier to take off in inhomogeneous networks. The reinvestment rate does not affect the starting. However, it improves the financial outcome in the early stages and postpones the outbreak of financial collapse. Some policy suggestions for the regulator from the perspective of social physics are proposed in the end of the paper.

  6. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.

    PubMed

    Kazantsev, V B; Asatryan, S Yu

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  7. Improving ontology matching with propagation strategy and user feedback

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Cui, Zhiming; Zhao, Pengpeng; Wu, Jian; Xin, Jie; He, Tianxu

    2015-07-01

    Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. The existing approach requires a threshold to produce matching candidates and use a small set of constraints acting as filter to select the final alignments. We introduce novel match propagation strategy to model the influences between potential entity mappings across ontologies, which can help to identify the correct correspondences and produce missed correspondences. The estimation of appropriate threshold is a difficult task. We propose an interactive method for threshold selection through which we obtain an additional measurable improvement. Running experiments on a public dataset has demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  8. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  9. Deffuant model of opinion formation in one-dimensional multiplex networks

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-10-01

    Complex systems in the real world often operate through multiple kinds of links connecting their constituents. In this paper we propose an opinion formation model under bounded confidence over multiplex networks, consisting of edges at different topological and temporal scales. We determine rigorously the critical confidence threshold by exploiting probability theory and network science when the nodes are arranged on the integers, {{Z}}, evolving in continuous time. It is found that the existence of ‘multiplexity’ impedes the convergence, and that working with the aggregated or summarized simplex network is inaccurate since it misses vital information. Analytical calculations are confirmed by extensive numerical simulations.

  10. Statistical Physics of Cascading Failures in Complex Networks

    NASA Astrophysics Data System (ADS)

    Panduranga, Nagendra Kumar

    Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.

  11. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  12. Effect of the interconnected network structure on the epidemic threshold.

    PubMed

    Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H Eugene; Van Mieghem, Piet

    2013-08-01

    Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ(1)(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ(1)(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ(1)(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ(1)(A+αB) using numerical simulations, and determine how component network features affect λ(1)(A+αB). We note that, given two isolated networks G(1) and G(2) with principal eigenvectors x and y, respectively, λ(1)(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product x(i)y(j) are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.

  13. Effect of the interconnected network structure on the epidemic threshold

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H. Eugene; Van Mieghem, Piet

    2013-08-01

    Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ1(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ1(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ1(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ1(A+αB) using numerical simulations, and determine how component network features affect λ1(A+αB). We note that, given two isolated networks G1 and G2 with principal eigenvectors x and y, respectively, λ1(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product xiyj are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.

  14. Analysis of continuous-time switching networks

    NASA Astrophysics Data System (ADS)

    Edwards, R.

    2000-11-01

    Models of a number of biological systems, including gene regulation and neural networks, can be formulated as switching networks, in which the interactions between the variables depend strongly on thresholds. An idealized class of such networks in which the switching takes the form of Heaviside step functions but variables still change continuously in time has been proposed as a useful simplification to gain analytic insight. These networks, called here Glass networks after their originator, are simple enough mathematically to allow significant analysis without restricting the range of dynamics found in analogous smooth systems. A number of results have been obtained before, particularly regarding existence and stability of periodic orbits in such networks, but important cases were not considered. Here we present a coherent method of analysis that summarizes previous work and fills in some of the gaps as well as including some new results. Furthermore, we apply this analysis to a number of examples, including surprising long and complex limit cycles involving sequences of hundreds of threshold transitions. Finally, we show how the above methods can be extended to investigate aperiodic behaviour in specific networks, though a complete analysis will have to await new results in matrix theory and symbolic dynamics.

  15. Epidemic spreading in time-varying community networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com

    2014-06-15

    The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel onmore » the epidemic spreading in complex networks with community structure.« less

  16. Cascades in the Threshold Model for varying system sizes

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy

    2015-03-01

    A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.

  17. Predictive minimum description length principle approach to inferring gene regulatory networks.

    PubMed

    Chaitankar, Vijender; Zhang, Chaoyang; Ghosh, Preetam; Gong, Ping; Perkins, Edward J; Deng, Youping

    2011-01-01

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold that defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we propose a new inference algorithm that incorporates mutual information (MI), conditional mutual information (CMI), and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm is evaluated using both synthetic time series data sets and a biological time series data set (Saccharomyces cerevisiae). The results show that the proposed algorithm produced fewer false edges and significantly improved the precision when compared to existing MDL algorithm.

  18. Small Worldness in Dense and Weighted Connectomes

    NASA Astrophysics Data System (ADS)

    Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas

    2016-05-01

    The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.

  19. Generalized model for k -core percolation and interdependent networks

    NASA Astrophysics Data System (ADS)

    Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo

    2017-09-01

    Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.

  20. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  1. Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.

    PubMed

    Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam

    2017-01-01

    The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.

  2. A Complex Network Perspective on Clinical Science

    PubMed Central

    Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.

    2016-01-01

    Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457

  3. Disease spreading in real-life networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros; Argyrakis, Panos

    2002-08-01

    In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.

  4. Percolation and epidemics in a two-dimensional small world

    NASA Astrophysics Data System (ADS)

    Newman, M. E.; Jensen, I.; Ziff, R. M.

    2002-02-01

    Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of ``shortcuts'' in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.

  5. SIR rumor spreading model considering the effect of difference in nodes’ identification capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qi; Wang, Jing

    In this paper, we study the effect of difference in network nodes’ identification capabilities on rumor propagation. A novel susceptible-infected-removed (SIR) model is proposed, based on the mean-field theory, to investigate the dynamical behaviors of such model on homogeneous networks and inhomogeneous networks, respectively. Theoretical analysis and simulation results demonstrate that when we consider the influence of difference in nodes’ identification capabilities, the critical thresholds obviously increase, but the final rumor sizes are apparently reduced. We also find that the difference in nodes’ identification capabilities prolongs the time of rumor propagation reaching a steady state, and decreases the number of nodes that finally accept rumors. Additionally, under the influence of difference of nodes’ identification capabilities, compared with the homogeneous networks, the rumor transmission rate on the inhomogeneous networks is relatively large.

  6. Rumor spreading model with noise interference in complex social networks

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Wang, Youguo

    2017-03-01

    In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.

  7. Unipolar Terminal-Attractor Based Neural Associative Memory with Adaptive Threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1996-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner-product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  8. Unipolar terminal-attractor based neural associative memory with adaptive threshold

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Barhen, Jacob (Inventor); Farhat, Nabil H. (Inventor); Wu, Chwan-Hwa (Inventor)

    1993-01-01

    A unipolar terminal-attractor based neural associative memory (TABAM) system with adaptive threshold for perfect convergence is presented. By adaptively setting the threshold values for the dynamic iteration for the unipolar binary neuron states with terminal-attractors for the purpose of reducing the spurious states in a Hopfield neural network for associative memory and using the inner product approach, perfect convergence and correct retrieval is achieved. Simulation is completed with a small number of stored states (M) and a small number of neurons (N) but a large M/N ratio. An experiment with optical exclusive-OR logic operation using LCTV SLMs shows the feasibility of optoelectronic implementation of the models. A complete inner-product TABAM is implemented using a PC for calculation of adaptive threshold values to achieve a unipolar TABAM (UIT) in the case where there is no crosstalk, and a crosstalk model (CRIT) in the case where crosstalk corrupts the desired state.

  9. Effect of threshold disorder on the quorum percolation model

    NASA Astrophysics Data System (ADS)

    Monceau, Pascal; Renault, Renaud; Métens, Stéphane; Bottani, Samuel

    2016-07-01

    We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities.

  10. Mapping and discrimination of networks in the complexity-entropy plane

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.

  11. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  12. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  13. Identifying a Probabilistic Boolean Threshold Network From Samples.

    PubMed

    Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya

    2018-04-01

    This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.

  14. Modeling Epidemics with Dynamic Small-World Networks

    NASA Astrophysics Data System (ADS)

    Kaski, Kimmo; Saramäki, Jari

    2005-06-01

    In this presentation a minimal model for describing the spreading of an infectious disease, such as influenza, is discussed. Here it is assumed that spreading takes place on a dynamic small-world network comprising short- and long-range infection events. Approximate equations for the epidemic threshold as well as the spreading dynamics are derived and they agree well with numerical discrete time-step simulations. Also the dependence of the epidemic saturation time on the initial conditions is analysed and a comparison with real-world data is made.

  15. Information spreading dynamics in hypernetworks

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  16. SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun

    2017-02-01

    Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.

  17. Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks

    PubMed Central

    Luccioli, Stefano; Ben-Jacob, Eshel; Barzilai, Ari; Bonifazi, Paolo; Torcini, Alessandro

    2014-01-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. PMID:25255443

  18. Inferring Weighted Directed Association Network from Multivariate Time Series with a Synthetic Method of Partial Symbolic Transfer Entropy Spectrum and Granger Causality

    PubMed Central

    Hu, Yanzhu; Ai, Xinbo

    2016-01-01

    Complex network methodology is very useful for complex system explorer. However, the relationships among variables in complex system are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a synthetic method, named small-shuffle partial symbolic transfer entropy spectrum (SSPSTES), for inferring association network from multivariate time series. The method synthesizes surrogate data, partial symbolic transfer entropy (PSTE) and Granger causality. A proper threshold selection is crucial for common correlation identification methods and it is not easy for users. The proposed method can not only identify the strong correlation without selecting a threshold but also has the ability of correlation quantification, direction identification and temporal relation identification. The method can be divided into three layers, i.e. data layer, model layer and network layer. In the model layer, the method identifies all the possible pair-wise correlation. In the network layer, we introduce a filter algorithm to remove the indirect weak correlation and retain strong correlation. Finally, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pair-wise variables, and then get the weighted directed association network. Two numerical simulated data from linear system and nonlinear system are illustrated to show the steps and performance of the proposed approach. The ability of the proposed method is approved by an application finally. PMID:27832153

  19. How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Ma, Jing

    2017-03-01

    We explore the impact of punishment of governments and sensitivity of individuals on the rumor spreading in this paper. Considering the facts that some rumors that relate to the hot events could be disseminated repeatedly, however, some other rumors will never be disseminated after they have been popular for some time. Therefore, we investigate two types (SIS and SIR) of rumor spreading models in which the punishment of government and sensitivity of individuals are considered. Based on the mean-field method, we have calculated the spreading threshold of SIS and SIR model, respectively. Furthermore, we perform the rumor spreading process in the Facebook and POK social networks, and achieve that there is an excellent agreement between the theoretical and numerical results of spreading threshold. The results indicate that improving the punishment of government and increasing the sensitivity of individuals could control the spreading of rumor effectively.

  20. A generalized voter model with time-decaying memory on a multilayer network

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Shi, Yong-Dong; Wang, Li-Liang

    2016-09-01

    By incorporating a multilayer network and time-decaying memory into the original voter model, we investigate the coupled effects of spatial and temporal accumulation of peer pressure on the consensus. Heterogeneity in peer pressure and the time-decaying mechanism are both shown to be detrimental to the consensus. We find the transition points below which a consensus can always be reached and above which two opposed opinions are more likely to coexist. Our mean-field analysis indicates that the phase transitions in the present model are governed by the cumulative influence of peer pressure and the updating threshold. We find a functional relation between the consensus threshold and the decay rate of the influence of peer is found. As to the pressure. The time required to reach a consensus is governed by the coupling of the memory length and the decay rate. An intermediate decay rate may greatly reduce the time required to reach a consensus.

  1. A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.

    PubMed

    Mihalaş, Stefan; Niebur, Ernst

    2009-03-01

    For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model's rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation.

  2. Opinion evolution in different social acquaintance networks.

    PubMed

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  3. Opinion evolution in different social acquaintance networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This finding is of great significance for predicting opinion evolution under different acquaintance networks and formulating reasonable policies based on cultural characteristics to guide public opinion.

  4. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  5. Epidemiological modeling of Phytophthora ramorum: network properties of susceptible plant genera movements in the nursery sector of England and Wales

    Treesearch

    Marco Pautasso; Tom Harwood; Mike Shaw; Xiangming Xu; Mike Jeger

    2008-01-01

    Since the first finding of Phytophthora ramorum in the U.K. (on Viburnum tinus, 2002), the pathogen has been reported throughout the country on a variety of susceptible species both in the horticultural sector and in woodlands and historic gardens. The nursery network may have properties which affect the epidemic threshold for...

  6. Opinion dynamics in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Han, Dun; Ma, Jing; Sun, Mei; Tian, Lixin; Khouw, Timothy; Stanley, H. Eugene

    2017-10-01

    Social interaction between individuals constantly affects the development of their personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause (HK) model have assumed that individuals only update their opinions after interacting with neighbors whose opinions are similar to their own. However, people are capable of communicating widely with all of their neighbors to gather their ideas and opinions, even if they encounter a number of opposing attitudes. We propose a model in which agents listen to the opinions of all their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-updating speed, and activity rate affect the evolution of opinion. We find that when the initial fraction of positive opinion is small, all opinions become negative by the end of the simulation. As the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is found to lead to a more varied final opinion distribution. We also find that if the negative opinion has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals, the greater the fluctuation range of their opinions.

  7. A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors

    PubMed Central

    Mihalaş, Ştefan; Niebur, Ernst

    2010-01-01

    For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model’s rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation. PMID:18928368

  8. Perception Evolution Network Based on Cognition Deepening Model--Adapting to the Emergence of New Sensory Receptor.

    PubMed

    Xing, Youlu; Shen, Furao; Zhao, Jinxi

    2016-03-01

    The proposed perception evolution network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an incremental way, and it does not require the predefined prototype number or the predefined similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. In the experiment, artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.

  9. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl

    2014-06-01

    Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.

  10. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  11. Potts-model formulation of the random resistor network

    NASA Astrophysics Data System (ADS)

    Harris, A. B.; Lubensky, T. C.

    1987-05-01

    The randomly diluted resistor network is formulated in terms of an n-replicated s-state Potts model with a spin-spin coupling constant J in the limit when first n, then s, and finally 1/J go to zero. This limit is discussed and to leading order in 1/J the generalized susceptibility is shown to reproduce the results of the accompanying paper where the resistor network is treated using the xy model. This Potts Hamiltonian is converted into a field theory by the usual Hubbard-Stratonovich transformation and thereby a renormalization-group treatment is developed to obtain the corrections to the critical exponents to first order in ɛ=6-d, where d is the spatial dimensionality. The recursion relations are shown to be the same as for the xy model. Their detailed analysis (given in the accompanying paper) gives the resistance crossover exponent as φ1=1+ɛ/42, and determines the critical exponent, t for the conductivity of the randomly diluted resistor network at concentrations, p, just above the percolation threshold: t=(d-2)ν+φ1, where ν is the critical exponent for the correlation length at the percolation threshold. These results correct previously accepted results giving φ=1 to all orders in ɛ. The new result for φ1 removes the paradox associated with the numerical result that t>1 for d=2, and also shows that the Alexander-Orbach conjecture, while numerically quite accurate, is not exact, since it disagrees with the ɛ expansion.

  12. Inhibiting diffusion of complex contagions in social networks: theoretical and experimental results

    PubMed Central

    Anil Kumar, V.S.; Marathe, Madhav V.; Ravi, S.S.; Rosenkrantz, Daniel J.

    2014-01-01

    We consider the problem of inhibiting undesirable contagions (e.g. rumors, spread of mob behavior) in social networks. Much of the work in this context has been carried out under the 1-threshold model, where diffusion occurs when a node has just one neighbor with the contagion. We study the problem of inhibiting more complex contagions in social networks where nodes may have thresholds larger than 1. The goal is to minimize the propagation of the contagion by removing a small number of nodes (called critical nodes) from the network. We study several versions of this problem and prove that, in general, they cannot even be efficiently approximated to within any factor ρ ≥ 1, unless P = NP. We develop efficient and practical heuristics for these problems and carry out an experimental study of their performance on three well known social networks, namely epinions, wikipedia and slashdot. Our results show that these heuristics perform significantly better than five other known methods. We also establish an efficiently computable upper bound on the number of nodes to which a contagion can spread and evaluate this bound on many real and synthetic networks. PMID:25750583

  13. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  14. Permitted and forbidden sets in symmetric threshold-linear networks.

    PubMed

    Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques

    2003-03-01

    The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.

  15. LOGIC OF CONTROLLED THRESHOLD DEVICES.

    DTIC Science & Technology

    The synthesis of threshold logic circuits from several points of view is presented. The first approach is applicable to resistor-transistor networks...in which the outputs are tied to a common collector resistor. In general, fewer threshold logic gates than NOR gates connected to a common collector...network to realize a specified function such that the failure of any but the output gate can be compensated for by a change in the threshold level (and

  16. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    NASA Astrophysics Data System (ADS)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  17. A neural network model of memory and higher cognitive functions.

    PubMed

    Vogel, David D

    2005-01-01

    I first describe a neural network model of associative memory in a small region of the brain. The model depends, unconventionally, on disinhibition of inhibitory links between excitatory neurons rather than long-term potentiation (LTP) of excitatory projections. The model may be shown to have advantages over traditional neural network models both in terms of information storage capacity and biological plausibility. The learning and recall algorithms are independent of network architecture, and require no thresholds or finely graded synaptic strengths. Several copies of this local network are then connected by means of many, weak, reciprocal, excitatory projections that allow one region to control the recall of information in another to produce behaviors analogous to serial memory, classical and operant conditioning, secondary reinforcement, refabrication of memory, and fabrication of possible future events. The network distinguishes between perceived and recalled events, and can predicate its response on the absence as well as the presence of particular stimuli. Some of these behaviors are achieved in ways that seem to provide instances of self-awareness and imagination, suggesting that consciousness may emerge as an epiphenomenon in simple brains.

  18. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  19. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  20. Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network

    NASA Astrophysics Data System (ADS)

    Martinović, Karlo; Gavin, Kenneth; Reale, Cormac; Mangan, Cathal

    2018-04-01

    Rainfall thresholds express the minimum levels of rainfall that need to be reached or exceeded in order for landslides to occur in a particular area. They are a common tool in expressing the temporal portion of landslide hazard analysis. Numerous rainfall thresholds have been developed for different areas worldwide, however none of these are focused on landslides occurring on the engineered slopes on transport infrastructure networks. This paper uses empirical method to develop the rainfall thresholds for landslides on the Irish Rail network earthworks. For comparison, rainfall thresholds are also developed for natural terrain in Ireland. The results show that particular thresholds involving relatively low rainfall intensities are applicable for Ireland, owing to the specific climate. Furthermore, the comparison shows that rainfall thresholds for engineered slopes are lower than those for landslides occurring on the natural terrain. This has severe implications as it indicates that there is a significant risk involved when using generic weather alerts (developed largely for natural terrain) for infrastructure management, and showcases the need for developing railway and road specific rainfall thresholds for landslides.

  1. Susceptible-infected-recovered epidemics in random networks with population awareness

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Chen, Shufang

    2017-10-01

    The influence of epidemic information-based awareness on the spread of infectious diseases on networks cannot be ignored. Within the effective degree modeling framework, we discuss the susceptible-infected-recovered model in complex networks with general awareness and general degree distribution. By performing the linear stability analysis, the conditions of epidemic outbreak can be deduced and the results of the previous research can be further expanded. Results show that the local awareness can suppress significantly the epidemic spreading on complex networks via raising the epidemic threshold and such effects are closely related to the formulation of awareness functions. In addition, our results suggest that the recovered information-based awareness has no effect on the critical condition of epidemic outbreak.

  2. Timing to Block Scanning Malwares by Using Combinatorics Proliferation Model

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Shimoyama, Takeshi; Torii, Satoru

    One of the worst threats present in an enterprise network is the propagation of "scanning malware" (e.g., scanning worms and bots). It is important to prevent such scanning malware from spreading within an enterprise network. It is especially important to suppress scanning malware infection to less than a few infected hosts. We estimated the timing of containment software to block "scanning malware" in a homogeneous enterprise network. The "combinatorics proliferation model", based on discrete mathematics, developed in this study derives a threshold that gives the number of the packets sent by a victim that must not be exceeded in order to suppress the number of infected hosts to less than a few. This model can appropriately express the early state under which an infection started. The result from our model fits very well to the result of computer simulation using a typical existing scanning malware and an actual network.

  3. NetMOD Version 2.0 User?s Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.

    2015-10-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes ofmore » signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.« less

  4. Effects of individual popularity on information spreading in complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin

    2018-01-01

    In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.

  5. Five challenges for spatial epidemic models

    PubMed Central

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-01-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  6. Clustering determines the dynamics of complex contagions in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  7. Dissociation of spontaneous seizures and brainstem seizure thresholds in mice exposed to eight flurothyl-induced generalized seizures.

    PubMed

    Kadiyala, Sridhar B; Ferland, Russell J

    2017-03-01

    C57BL/6J mice exposed to eight flurothyl-induced generalized clonic seizures exhibit a change in seizure phenotype following a 28-day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure-sensitive DBA/2J mice. The underlying mechanism(s) was the focus of these studies. DBA2/J mice were exposed to eight flurothyl-induced seizures (1/day) followed by 24-hour video-electroencephalographic recordings for 28-days. Forebrain and brainstem seizure thresholds were determined in C57BL/6J and DBA/2J mice following one or eight flurothyl-induced seizures, or after eight flurothyl-induced seizures, a 28-day incubation period, and final flurothyl rechallenge. Similar to C57BL/6J mice, DBA2/J mice expressed spontaneous seizures. However, unlike C57BL/6J mice, DBA2/J mice continued to have spontaneous seizures without remission. Because DBA2/J mice do not express forebrain→brainstem seizures following flurothyl rechallenge after a 28-day incubation period, this indicated that spontaneous seizures were not sufficient for the evolution of forebrain→brainstem seizures. Therefore, we determined whether brainstem seizure thresholds were changing during this repeated-flurothyl model and whether this could account for the expression of forebrain→brainstem seizures. Brainstem seizure thresholds were not different between C57BL/6J and DBA/2J mice on day one or on the last induction seizure trial (day eight). However, brainstem seizure thresholds did differ significantly on flurothyl rechallenge (day 28) with DBA/2J mice showing no lowering of their brainstem seizure thresholds. These results demonstrated that DBA/2J mice exposed to the repeated-flurothyl model develop spontaneous seizures without evidence of seizure remission and provide a new model of epileptogenesis. Moreover, these findings indicated that the transition of forebrain ictal discharge into the brainstem seizure network occurs due to changes in brainstem seizure thresholds that are independent of spontaneous seizure expression.

  8. An improved network model for railway traffic

    NASA Astrophysics Data System (ADS)

    Li, Keping; Ma, Xin; Shao, Fubo

    In railway traffic, safety analysis is a key issue for controlling train operation. Here, the identification and order of key factors are very important. In this paper, a new network model is constructed for analyzing the railway safety, in which nodes are regarded as causation factors and links represent possible relationships among those factors. Our aim is to give all these nodes an importance order, and to find the in-depth relationship among these nodes including how failures spread among them. Based on the constructed network model, we propose a control method to ensure the safe state by setting each node a threshold. As the results, by protecting the Hub node of the constructed network, the spreading of railway accident can be controlled well. The efficiency of such a method is further tested with the help of numerical example.

  9. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  10. Household food waste collection: Building service networks through neighborhood expansion.

    PubMed

    Armington, William R; Chen, Roger B

    2018-04-17

    In this paper we develop a residential food waste collection analysis and modeling framework that captures transportation costs faced by service providers in their initial stages of service provision. With this framework and model, we gain insights into network transportation costs and investigate possible service expansion scenarios faced by these organizations. We solve a vehicle routing problem (VRP) formulated for the residential neighborhood context using a heuristic approach developed. The scenarios considered follow a narrative where service providers start with an initial neighborhood or community and expands to incorporate other communities and their households. The results indicate that increasing household participation, decreases the travel time and cost per household, up to a critical threshold, beyond which we see marginal time and cost improvements. Additionally, the results indicate different outcomes in expansion scenarios depending on the household density of incorporated neighborhoods. As household participation and density increases, the travel time per household in the network decreases. However, at approximately 10-20 households per km 2 , the decrease in travel time per household is marginal, suggesting a lowerbound household density threshold. Finally, we show in food waste collection, networks share common scaling effects with respect to travel time and costs, regardless of the number of nodes and links. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Non-consensus Opinion Models on Complex Networks

    NASA Astrophysics Data System (ADS)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not only within single networks but also between networks, and because the rules of opinion formation within a network may differ from those between networks, we study here the opinion dynamics in coupled networks. Each network represents a social group or community and the interdependent links joining individuals from different networks may be social ties that are unusually strong, e.g., married couples. We apply the non-consensus opinion (NCO) rule on each individual network and the global majority rule on interdependent pairs such that two interdependent agents with different opinions will, due to the influence of mass media, follow the majority opinion of the entire population. The opinion interactions within each network and the interdependent links across networks interlace periodically until a steady state is reached. We find that the interdependent links effectively force the system from a second order phase transition, which is characteristic of the NCO model on a single network, to a hybrid phase transition, i.e., a mix of second-order and abrupt jump-like transitions that ultimately becomes, as we increase the percentage of interdependent agents, a pure abrupt transition. We conclude that for the NCO model on coupled networks, interactions through interdependent links could push the non-consensus opinion model to a consensus opinion model, which mimics the reality that increased mass communication causes people to hold opinions that are increasingly similar. We also find that the effect of interdependent links is more pronounced in interdependent scale free networks than in interdependent Erdős Rényi networks.

  12. Load Balancing in Stochastic Networks: Algorithms, Analysis, and Game Theory

    DTIC Science & Technology

    2014-04-16

    SECURITY CLASSIFICATION OF: The classic randomized load balancing model is the so-called supermarket model, which describes a system in which...P.O. Box 12211 Research Triangle Park, NC 27709-2211 mean-field limits, supermarket model, thresholds, game, randomized load balancing REPORT...balancing model is the so-called supermarket model, which describes a system in which customers arrive to a service center with n parallel servers according

  13. Forecasting the probability of future groundwater levels declining below specified low thresholds in the conterminous U.S.

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.; Dickinson, Jesse

    2017-01-01

    We present a logistic regression approach for forecasting the probability of future groundwater levels declining or maintaining below specific groundwater-level thresholds. We tested our approach on 102 groundwater wells in different climatic regions and aquifers of the United States that are part of the U.S. Geological Survey Groundwater Climate Response Network. We evaluated the importance of current groundwater levels, precipitation, streamflow, seasonal variability, Palmer Drought Severity Index, and atmosphere/ocean indices for developing the logistic regression equations. Several diagnostics of model fit were used to evaluate the regression equations, including testing of autocorrelation of residuals, goodness-of-fit metrics, and bootstrap validation testing. The probabilistic predictions were most successful at wells with high persistence (low month-to-month variability) in their groundwater records and at wells where the groundwater level remained below the defined low threshold for sustained periods (generally three months or longer). The model fit was weakest at wells with strong seasonal variability in levels and with shorter duration low-threshold events. We identified challenges in deriving probabilistic-forecasting models and possible approaches for addressing those challenges.

  14. Simple Model for Identifying Critical Regions in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.

    2015-01-01

    Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.

  15. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  16. Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.

    PubMed

    Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid

    2014-09-30

    Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.

  17. Evaluating time dynamics of topographic threshold relations for gully initiation

    NASA Astrophysics Data System (ADS)

    Hayas, Antonio; Vanwalleghem, Tom; Poesen, Jean

    2016-04-01

    Gully erosion is one of the most important soil degradation processes at global scale. However, modelling of gully erosion is still difficult. Despite advances in the modelling of gully headcut rates and incision rates, it remains difficult to predict the location of gully initiation points and trajectories. In different studies it has been demonstrated that a good method of predicting gully initiation is by using a slope (S) - area (A) threshold. Such an S-A relation is a simple way of estimating the critical discharges needed to generate a critical shear stress that can incise a particular soil and initiate a gully. As such, the simple S-A threshold will vary if the rainfall-runoff behaviour of the soil changes or if the soil's erodibility changes. Over the past decades, important agronomic changes have produced significant changes in the soil use and soil management in SW Spain. It is the objective of this research to evaluate how S-A relations for gully initiation have changed over time and for two different land uses, cereal and olive. Data was collected for a gully network in the Cordoba Province, SW Spain. From photo-interpretation of historical air photos between 1956 and 2013, the gully network and initiation points were derived. In total 10 different time steps are available (1956; 1977; 1984; 1998; 2001; 2004; 2006; 2008; 2010; 2013). Topographical thresholds were extracted by combining the digitized gully network with the DEM. Due to small differences in the alignment of ortophotos and DEM, an optimization technique was developed in GIS to extract the correct S-A value for each point. With the S-A values for each year, their dynamics was evaluated as a function of land use (olive or cereal) and in function of the following variables in each of the periods considered: • soil management • soil cover by weeds, where weed growth was modeled from the daily soil water balance • rainfall intensity • root cohesion, , where root growth was modeled from the daily soil water balance We found important differences between cereal and olive and significant changes in the S-A relation over time.

  18. Dynamic Sensor Tasking for Space Situational Awareness via Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Linares, R.; Furfaro, R.

    2016-09-01

    This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning (RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy which is random over actions and given by a parametric probability density function (pdf). The critic evaluates the policy by calculating the estimated total reward or the value function for the problem. The parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both the critic and the actor are modeled using deep neural networks (multi-layer neural networks). The policy neural network takes the current state as input and outputs probabilities for each possible action. This policy is random, and can be evaluated by sampling random actions using the probabilities determined by the policy neural network's outputs. The critic approximates the total reward using a neural network. The estimated total reward is used to approximate the gradient of the policy network with respect to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the uncertainty threshold. This work provides the RL method with a negative reward as long as any SO has a total position error above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains the policy in simulation by letting it task a single sensor to "learn" from its performance. The proposed approach for the SM problem is tested in simulation and good performance is found using the actor-critic policy gradient method.

  19. Epidemic extinction paths in complex networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  20. Epidemic extinction paths in complex networks.

    PubMed

    Hindes, Jason; Schwartz, Ira B

    2017-05-01

    We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo simulations on several networks, including synthetic weighted and degree-distributed networks with degree correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic threshold, in networks with heterogeneous eigenvector centrality and degree distributions.

  1. Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

    PubMed

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

  2. Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization

    PubMed Central

    Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui

    2014-01-01

    The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345

  3. The epidemic threshold theorem with social and contact heterogeneity

    NASA Astrophysics Data System (ADS)

    Hincapié Palacio, Doracelly; Ospina Giraldo, Juan; Gómez Arias, Rubén Darío

    2008-03-01

    The threshold theorem of an epidemic SIR model was compared when infectious and susceptible individuals have homogeneous mixing and heterogeneous social status and when individuals of random networks have contact heterogeneity. Particularly the effect of vaccination in such models is considered when: individuals or nodes are exposed to impoverished, vaccination and loss of immunity. An equilibrium analysis and local stability of small perturbations about the equilibrium values were implemented using computer algebra. Numerical simulations were executed in order to describe the dynamic of transmission of diseases and changes of the basic reproductive rate. The implications of these results are examined around the threats to the global public health security.

  4. [Network of plastic neurons capable of forming conditioned reflexes ("membrane" model of learning)].

    PubMed

    Litvinov, E G; Frolov, A A

    1978-01-01

    Simple net neuronal model was suggested which was able to form the conditioning due to changes of the neuron excitability. The model was based on the following main concepts: (a) the conditioning formation should result in reduction of the firing threshold in the same neurons where the conditioning and reinforcement stimuli were converged, (b) neuron threshold may have only two possible states: initial and final ones, these were identical for all cells, the threshold may be changed only once from the initial value to the final one, (c) isomorphous relation may be introduced between some pair of arbitrary stimuli and some subset of the net neurons; any two pairs differing at least in one stimulus have unlike subsets of the convergent neurons. Stochastically organized neuronal net was used for analysis of the model. Considerable information capacity of the net gives the opportunity to consider that the conditioning formation is possible on the basis of the nervous cells. The efficienty of the model turn out to be comparable with the well known models where the conditioning formation was due to the modification of the synapses.

  5. Percolation in insect nest networks: Evidence for optimal wiring

    NASA Astrophysics Data System (ADS)

    Valverde, Sergi; Corominas-Murtra, Bernat; Perna, Andrea; Kuntz, Pascale; Theraulaz, Guy; Solé, Ricard V.

    2009-06-01

    Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.

  6. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions.

    PubMed

    Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low--dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an "energy" variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed "neuron-energy" unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as non-invasive brain stimulation for stroke patients.

  7. Analysis of a general SIS model with infective vectors on the complex networks

    NASA Astrophysics Data System (ADS)

    Juang, Jonq; Liang, Yu-Hao

    2015-11-01

    A general SIS model with infective vectors on complex networks is studied in this paper. In particular, the model considers the linear combination of three possible routes of disease propagation between infected and susceptible individuals as well as two possible transmission types which describe how the susceptible vectors attack the infected individuals. A new technique based on the basic reproduction matrix is introduced to obtain the following results. First, necessary and sufficient conditions are obtained for the global stability of the model through a unified approach. As a result, we are able to produce the exact basic reproduction number and the precise epidemic thresholds with respect to three spreading strengths, the curing strength or the immunization strength all at once. Second, the monotonicity of the basic reproduction number and the above mentioned epidemic thresholds with respect to all other parameters can be rigorously characterized. Finally, we are able to compare the effectiveness of various immunization strategies under the assumption that the number of persons getting vaccinated is the same for all strategies. In particular, we prove that in the scale-free networks, both targeted and acquaintance immunizations are more effective than uniform and active immunizations and that active immunization is the least effective strategy among those four. We are also able to determine how the vaccine should be used at minimum to control the outbreak of the disease.

  8. Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks

    PubMed Central

    Lyamzin, Dmitry R.; Barnes, Samuel J.; Donato, Roberta; Garcia-Lazaro, Jose A.; Keck, Tara

    2015-01-01

    Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks. PMID:26019325

  9. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities

    NASA Astrophysics Data System (ADS)

    Tsigkri-DeSmedt, Nefeli Dimitra; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp; Provata, Astero

    2017-07-01

    The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.

  10. Relations that affect the probability and prediction of nitrate concentration in private wells in the glacial aquifer system in the United States

    USGS Publications Warehouse

    Warner, Kelly L.; Arnold, Terri L.

    2010-01-01

    Nitrate in private wells in the glacial aquifer system is a concern for an estimated 17 million people using private wells because of the proximity of many private wells to nitrogen sources. Yet, less than 5 percent of private wells sampled in this study contained nitrate in concentrations that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L (milligrams per liter) as N (nitrogen). However, this small group with nitrate concentrations above the USEPA MCL includes some of the highest nitrate concentrations detected in groundwater from private wells (77 mg/L). Median nitrate concentration measured in groundwater from private wells in the glacial aquifer system (0.11 mg/L as N) is lower than that in water from other unconsolidated aquifers and is not strongly related to surface sources of nitrate. Background concentration of nitrate is less than 1 mg/L as N. Although overall nitrate concentration in private wells was low relative to the MCL, concentrations were highly variable over short distances and at various depths below land surface. Groundwater from wells in the glacial aquifer system at all depths was a mixture of old and young water. Oxidation and reduction potential changes with depth and groundwater age were important influences on nitrate concentrations in private wells. A series of 10 logistic regression models was developed to estimate the probability of nitrate concentration above various thresholds. The threshold concentration (1 to 10 mg/L) affected the number of variables in the model. Fewer explanatory variables are needed to predict nitrate at higher threshold concentrations. The variables that were identified as significant predictors for nitrate concentration above 4 mg/L as N included well characteristics such as open-interval diameter, open-interval length, and depth to top of open interval. Environmental variables in the models were mean percent silt in soil, soil type, and mean depth to saturated soil. The 10-year mean (1992-2001) application rate of nitrogen fertilizer applied to farms was included as the potential source variable. A linear regression model also was developed to predict mean nitrate concentrations in well networks. The model is based on network averages because nitrate concentrations are highly variable over short distances. Using values for each of the predictor variables averaged by network (network mean value) from the logistic regression models, the linear regression model developed in this study predicted the mean nitrate concentration in well networks with a 95 percent confidence in predictions.

  11. Electronic bidirectional valve circuit prevents crossover distortion and threshold effect

    NASA Technical Reports Server (NTRS)

    Kernick, A.

    1966-01-01

    Four-terminal network forms a bidirectional valve which will switch or alternate an ac signal without crossover distortion or threshold effect. In this network, an isolated control signal is sufficient for circuit turn-on.

  12. Competitive diffusion in online social networks with heterogeneous users

    NASA Astrophysics Data System (ADS)

    Li, Pei; He, Su; Wang, Hui; Zhang, Xin

    2014-06-01

    Online social networks have attracted increasing attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. However, most research on diffusion dynamics in epidemiology cannot be applied directly to characterize online social networks, where users are heterogeneous and may act differently according to their standpoints. In this paper, we propose models to characterize the competitive diffusion in online social networks with heterogeneous users. We classify messages into two types (i.e., positive and negative) and users into three types (i.e., positive, negative and neutral). We estimate the positive (negative) influence for a user generating a given type message, which is the number of times that positive (negative) messages are processed (i.e., read) incurred by this action. We then consider the diffusion threshold, above which the corresponding influence will approach infinity, and the effect threshold, above which the unexpected influence of generating a message will exceed the expected one. We verify all these results by simulations, which show the analysis results are perfectly consistent with the simulation results. These results are of importance in understanding the diffusion dynamics in online social networks, and also critical for advertisers in viral marketing where there are fans, haters and neutrals.

  13. Congestion control for a fair packet delivery in WSN: from a complex system perspective.

    PubMed

    Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael

    2014-01-01

    In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.

  14. Percolation in three-dimensional fracture networks for arbitrary size and shape distributions

    NASA Astrophysics Data System (ADS)

    Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.

    2017-04-01

    The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.

  15. A Topological Criterion for Filtering Information in Complex Brain Networks

    PubMed Central

    Latora, Vito; Chavez, Mario

    2017-01-01

    In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353

  16. Enhancing robustness and immunization in geographical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Liang; Department of Physics, Lanzhou University, Lanzhou 730000; Yang Kongqing

    2007-03-15

    We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q{sub c} for networks containing arbitrary order cycles. For three-cycles, the dependence of q{sub c} on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.

  17. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  18. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus

    PubMed Central

    Itskov, Vladimir; Curto, Carina; Pastalkova, Eva; Buzsáki, György

    2011-01-01

    Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 sec) during wheel running with a precision of 0.5sec. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts. PMID:21414904

  19. Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.

    2018-02-01

    We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.

  20. Emergence of robustness in networks of networks

    NASA Astrophysics Data System (ADS)

    Roth, Kevin; Morone, Flaviano; Min, Byungjoon; Makse, Hernán A.

    2017-06-01

    A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017), 10.1073/pnas.1620808114] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.

  1. Two-dimensional plasmons in the random impedance network model of disordered thin film nanocomposites

    NASA Astrophysics Data System (ADS)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric nanocomposites. Two-dimensional networks are applied when considering thin films despite the fact that such networks correspond to the two-dimensional electrodynamics [Clerc et al., J. Phys. A 29, 4781 (1996), 10.1088/0305-4470/29/16/006]. In the present work, we propose a model of two-dimensional systems with the three-dimensional Coulomb interaction and show that this model is equivalent to the planar network with long-range capacitive links between distant sites. In the case of a metallic film, we obtain the well-known dispersion of two-dimensional plasmons ω ∝√{k } . We study the evolution of resonances with a decrease in the metal filling factor within the framework of the proposed model. In the subcritical region with the metal filling p lower than the percolation threshold pc, we observe a gap with Lifshitz tails in the spectral density of states (DOS). In the supercritical region p >pc , the DOS demonstrates a crossover between plane-wave two-dimensional plasmons and resonances of finite clusters.

  2. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification.

    PubMed

    Li, Weikai; Wang, Zhengxia; Zhang, Limei; Qiao, Lishan; Shen, Dinggang

    2017-01-01

    Functional brain network (FBN) has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC) is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy) connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L 1 -norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods.

  3. Exact coupling threshold for structural transition reveals diversified behaviors in interconnected networks.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Van Mieghem, Piet

    2015-10-01

    An interconnected network features a structural transition between two regimes [F. Radicchi and A. Arenas, Nat. Phys. 9, 717 (2013)]: one where the network components are structurally distinguishable and one where the interconnected network functions as a whole. Our exact solution for the coupling threshold uncovers network topologies with unexpected behaviors. Specifically, we show conditions that superdiffusion, introduced by Gómez et al. [Phys. Rev. Lett. 110, 028701 (2013)], can occur despite the network components functioning distinctly. Moreover, we find that components of certain interconnected network topologies are indistinguishable despite very weak coupling between them.

  4. Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks

    NASA Astrophysics Data System (ADS)

    Van Mieghem, P.; van de Bovenkamp, R.

    2013-03-01

    Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential infection time (while still assuming an exponential curing time) on the epidemic threshold by considering Weibullean infection times with the same mean, but different power exponent α. For three basic classes of graphs, the Erdős-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the epidemic threshold significantly increases with the power exponents α. Hence, real epidemics that violate the exponential or Markovian assumption can behave seriously differently than anticipated based on Markov theory.

  5. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs)

    PubMed Central

    Dimitriadis, Stavros I.; Salis, Christos; Tarnanas, Ioannis; Linden, David E.

    2017-01-01

    The human brain is a large-scale system of functionally connected brain regions. This system can be modeled as a network, or graph, by dividing the brain into a set of regions, or “nodes,” and quantifying the strength of the connections between nodes, or “edges,” as the temporal correlation in their patterns of activity. Network analysis, a part of graph theory, provides a set of summary statistics that can be used to describe complex brain networks in a meaningful way. The large-scale organization of the brain has features of complex networks that can be quantified using network measures from graph theory. The adaptation of both bivariate (mutual information) and multivariate (Granger causality) connectivity estimators to quantify the synchronization between multichannel recordings yields a fully connected, weighted, (a)symmetric functional connectivity graph (FCG), representing the associations among all brain areas. The aforementioned procedure leads to an extremely dense network of tens up to a few hundreds of weights. Therefore, this FCG must be filtered out so that the “true” connectivity pattern can emerge. Here, we compared a large number of well-known topological thresholding techniques with the novel proposed data-driven scheme based on orthogonal minimal spanning trees (OMSTs). OMSTs filter brain connectivity networks based on the optimization between the global efficiency of the network and the cost preserving its wiring. We demonstrated the proposed method in a large EEG database (N = 101 subjects) with eyes-open (EO) and eyes-closed (EC) tasks by adopting a time-varying approach with the main goal to extract features that can totally distinguish each subject from the rest of the set. Additionally, the reliability of the proposed scheme was estimated in a second case study of fMRI resting-state activity with multiple scans. Our results demonstrated clearly that the proposed thresholding scheme outperformed a large list of thresholding schemes based on the recognition accuracy of each subject compared to the rest of the cohort (EEG). Additionally, the reliability of the network metrics based on the fMRI static networks was improved based on the proposed topological filtering scheme. Overall, the proposed algorithm could be used across neuroimaging and multimodal studies as a common computationally efficient standardized tool for a great number of neuroscientists and physicists working on numerous of projects. PMID:28491032

  6. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    PubMed

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only slowly as sigma increases, until a critical value is reached at which the mean infection level suddenly increases. Similar results are obtained when the parameters of the model are also randomized across the population. We conclude with a discussion and a description of a diffusion approximation for a model in which stochasticity arises through random contacts rather than fluctuation in ambient virion levels.

  7. Variable percolation threshold of composites with fiber fillers under compression

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Wang, Hongtao; Yang, Wei

    2010-07-01

    The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.

  8. Coexistence of stable stationary behavior and partial synchrony in an all-to-all coupled spiking neural network

    NASA Astrophysics Data System (ADS)

    de Smet, Filip; Aeyels, Dirk

    2010-12-01

    We consider the stationary and the partially synchronous regimes in an all-to-all coupled neural network consisting of an infinite number of leaky integrate-and-fire neurons. Using analytical tools as well as simulation results, we show that two threshold values for the coupling strength may be distinguished. Below the lower threshold, no synchronization is possible; above the upper threshold, the stationary regime is unstable and partial synchrony prevails. In between there is a range of values for the coupling strength where both regimes may be observed. The assumption of an infinite number of neurons is crucial: simulations with a finite number of neurons indicate that above the lower threshold partial synchrony always prevails—but with a transient time that may be unbounded with increasing system size. For values of the coupling strength in a neighborhood of the lower threshold, the finite model repeatedly builds up toward synchronous behavior, followed by a sudden breakdown, after which the synchronization is slowly built up again. The “transient” time needed to build up synchronization again increases with increasing system size, and in the limit of an infinite number of neurons we retrieve stationary behavior. Similarly, within some range for the coupling strength in this neighborhood, a stable synchronous solution may exist for an infinite number of neurons.

  9. Optimizing Environmental Monitoring Networks with Direction-Dependent Distance Thresholds.

    ERIC Educational Resources Information Center

    Hudak, Paul F.

    1993-01-01

    In the direction-dependent approach to location modeling developed herein, the distance within which a point of demand can find service from a facility depends on direction of measurement. The utility of the approach is illustrated through an application to groundwater remediation. (Author/MDH)

  10. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks

    NASA Astrophysics Data System (ADS)

    Kang, Huiyan; Fu, Xinchu

    2015-10-01

    In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.

  11. Rumor diffusion in heterogeneous networks by considering the individuals' subjective judgment and diverse characteristics

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Zhu, He

    2018-06-01

    In this study, we propose a novel rumor spreading model in consideration of the individuals' subjective judgment and diverse characteristics. To reflect the diversity of the individuals' characteristics, we introduce two probability distribution functions, which could be chosen arbitrarily or given by empirical data, to characterize individuals' mastering degree of knowledge with respect to the domain of a specific rumor and individuals' rationality degree. Different from existing models, no two persons in our model are identical, and each individual can judge the authenticity of the information, e.g., rumors, with his distinctive characteristics. In addition, by means of the mean-field method, we establish the expression of the dynamics of the rumor propagation in the complex heterogeneous networks and derive the rumor spreading threshold. Through the theoretical analysis, we find that the threshold is independent of the forms of the two introduced functions. Furthermore, we prove the stability of the rumor-free equilibrium set E0. That is if and only if R0 < 1, the rumor-free equilibrium set E0 is globally asymptotically stable. Finally, we conduct a series of numerical simulations to verify the theoretical results and comprehensively illustrate the evolution of the model. The simulation results show that because of the diversity of individuals' characteristics, it becomes more difficult for the rumor to disseminate in the networks and the higher the mean of knowledge and the mean of rationality are, the more time it will take for the model to evolve to the steady state.

  12. Concurrent Transmission Based on Channel Quality in Ad Hoc Networks: A Game Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Gao, Xinbo; Li, Xiaoji; Pei, Qingqi

    In this paper, a decentralized concurrent transmission strategy in shared channel in Ad Hoc networks is proposed based on game theory. Firstly, a static concurrent transmissions game is used to determine the candidates for transmitting by channel quality threshold and to maximize the overall throughput with consideration of channel quality variation. To achieve NES (Nash Equilibrium Solution), the selfish behaviors of node to attempt to improve the channel gain unilaterally are evaluated. Therefore, this game allows each node to be distributed and to decide whether to transmit concurrently with others or not depending on NES. Secondly, as there are always some nodes with lower channel gain than NES, which are defined as hunger nodes in this paper, a hunger suppression scheme is proposed by adjusting the price function with interferences reservation and forward relay, to fairly give hunger nodes transmission opportunities. Finally, inspired by stock trading, a dynamic concurrent transmission threshold determination scheme is implemented to make the static game practical. Numerical results show that the proposed scheme is feasible to increase concurrent transmission opportunities for active nodes, and at the same time, the number of hunger nodes is greatly reduced with the least increase of threshold by interferences reservation. Also, the good performance on network goodput of the proposed model can be seen from the results.

  13. Stability of an SAIRS alcoholism model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Xiang, Hong; Liu, Ying-Ping; Huo, Hai-Feng

    2017-05-01

    A new SAIRS alcoholism model with birth and death on complex heterogeneous networks is proposed. The total population of our model is partitioned into four compartments: the susceptible individual, the light problem alcoholic, the heavy problem alcoholic and the recovered individual. The spread of alcoholism threshold R0 is calculated by the next generation matrix method. When R0 < 1, the alcohol free equilibrium is globally asymptotically stable, then the alcoholics will disappear. When R0 > 1, the alcoholism equilibrium is global attractivity, then the number of alcoholics will remain stable and alcoholism will become endemic. Furthermore, the modified SAIRS alcoholism model on weighted contact network is introduced. Dynamical behavior of the modified model is also studied. Numerical simulations are also presented to verify and extend theoretical results. Our results show that it is very important to treat alcoholics to control the spread of the alcoholism.

  14. Metastable Features of Economic Networks and Responses to Exogenous Shocks

    PubMed Central

    Hosseiny, Ali; Bahrami, Mohammad; Palestrini, Antonio; Gallegati, Mauro

    2016-01-01

    It is well known that a network structure plays an important role in addressing a collective behavior. In this paper we study a network of firms and corporations for addressing metastable features in an Ising based model. In our model we observe that if in a recession the government imposes a demand shock to stimulate the network, metastable features shape its response. Actually we find that there exists a minimum bound where any demand shock with a size below it is unable to trigger the market out of recession. We then investigate the impact of network characteristics on this minimum bound. We surprisingly observe that in a Watts-Strogatz network, although the minimum bound depends on the average of the degrees, when translated into the language of economics, such a bound is independent of the average degrees. This bound is about 0.44ΔGDP, where ΔGDP is the gap of GDP between recession and expansion. We examine our suggestions for the cases of the United States and the European Union in the recent recession, and compare them with the imposed stimulations. While the stimulation in the US has been above our threshold, in the EU it has been far below our threshold. Beside providing a minimum bound for a successful stimulation, our study on the metastable features suggests that in the time of crisis there is a “golden time passage” in which the minimum bound for successful stimulation can be much lower. Hence, our study strongly suggests stimulations to arise within this time passage. PMID:27706166

  15. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  16. Spike threshold dynamics in spinal motoneurons during scratching and swimming.

    PubMed

    Grigonis, Ramunas; Alaburda, Aidas

    2017-09-01

    Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. EEG-based functional networks evoked by acupuncture at ST 36: A data-driven thresholding study

    NASA Astrophysics Data System (ADS)

    Li, Huiyan; Wang, Jiang; Yi, Guosheng; Deng, Bin; Zhou, Hexi

    2017-10-01

    This paper investigates how acupuncture at ST 36 modulates the brain functional network. 20 channel EEG signals from 15 healthy subjects are respectively recorded before, during and after acupuncture. The correlation between two EEG channels is calculated by using Pearson’s coefficient. A data-driven approach is applied to determine the threshold, which is performed by considering the connected set, connected edge and network connectivity. Based on such thresholding approach, the functional network in each acupuncture period is built with graph theory, and the associated functional connectivity is determined. We show that acupuncturing at ST 36 increases the connectivity of the EEG-based functional network, especially for the long distance ones between two hemispheres. The properties of the functional network in five EEG sub-bands are also characterized. It is found that the delta and gamma bands are affected more obviously by acupuncture than the other sub-bands. These findings highlight the modulatory effects of acupuncture on the EEG-based functional connectivity, which is helpful for us to understand how it participates in the cortical or subcortical activities. Further, the data-driven threshold provides an alternative approach to infer the functional connectivity under other physiological conditions.

  18. Five challenges for spatial epidemic models.

    PubMed

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-03-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Massive-scale gene co-expression network construction and robustness testing using random matrix theory.

    PubMed

    Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.

  20. Synchronization on Erdös-Rényi networks.

    PubMed

    Gong, Baihua; Yang, Lei; Yang, Kongqing

    2005-09-01

    In this Brief Report, by analyzing the spectral properties of the Laplacian matrix of Erdös-Rényi networks, we obtained the critical coupling strength of the complete synchronization analytically. In particular, for any size of the networks, when the average degree is greater than a threshold and the coupling strength is large enough, the networks can synchronize. Here, the threshold is determined by the value of the maximal Lyapunov exponent of each dynamical unit.

  1. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  2. Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home

    PubMed Central

    Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid

    2014-01-01

    Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565

  3. Methods for inferring health-related social networks among coworkers from online communication patterns.

    PubMed

    Matthews, Luke J; DeWan, Peter; Rula, Elizabeth Y

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network.

  4. Methods for Inferring Health-Related Social Networks among Coworkers from Online Communication Patterns

    PubMed Central

    Matthews, Luke J.; DeWan, Peter; Rula, Elizabeth Y.

    2013-01-01

    Studies of social networks, mapped using self-reported contacts, have demonstrated the strong influence of social connections on the propensity for individuals to adopt or maintain healthy behaviors and on their likelihood to adopt health risks such as obesity. Social network analysis may prove useful for businesses and organizations that wish to improve the health of their populations by identifying key network positions. Health traits have been shown to correlate across friendship ties, but evaluating network effects in large coworker populations presents the challenge of obtaining sufficiently comprehensive network data. The purpose of this study was to evaluate methods for using online communication data to generate comprehensive network maps that reproduce the health-associated properties of an offline social network. In this study, we examined three techniques for inferring social relationships from email traffic data in an employee population using thresholds based on: (1) the absolute number of emails exchanged, (2) logistic regression probability of an offline relationship, and (3) the highest ranked email exchange partners. As a model of the offline social network in the same population, a network map was created using social ties reported in a survey instrument. The email networks were evaluated based on the proportion of survey ties captured, comparisons of common network metrics, and autocorrelation of body mass index (BMI) across social ties. Results demonstrated that logistic regression predicted the greatest proportion of offline social ties, thresholding on number of emails exchanged produced the best match to offline network metrics, and ranked email partners demonstrated the strongest autocorrelation of BMI. Since each method had unique strengths, researchers should choose a method based on the aspects of offline behavior of interest. Ranked email partners may be particularly useful for purposes related to health traits in a social network. PMID:23418436

  5. Epidemic dynamics on a risk-based evolving social network

    NASA Astrophysics Data System (ADS)

    Antwi, Shadrack; Shaw, Leah

    2013-03-01

    Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.

  6. Factors influencing message dissemination through social media

    NASA Astrophysics Data System (ADS)

    Zheng, Zeyu; Yang, Huancheng; Fu, Yang; Fu, Dianzheng; Podobnik, Boris; Stanley, H. Eugene

    2018-06-01

    Online social networks strongly impact our daily lives. An internet user (a "Netizen") wants messages to be efficiently disseminated. The susceptible-infected-recovered (SIR) dissemination model is the traditional tool for exploring the spreading mechanism of information diffusion. We here test our SIR-based dissemination model on open and real-world data collected from Twitter. We locate and identify phase transitions in the message dissemination process. We find that message content is a stronger factor than the popularity of the sender. We also find that the probability that a message will be forwarded has a threshold that affects its ability to spread, and when the probability is above the threshold the message quickly achieves mass dissemination.

  7. Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2011-01-01

    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time. PMID:21415911

  8. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

    PubMed

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C

    2011-01-01

    The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

  9. Improving Earth/Prediction Models to Improve Network Processing

    NASA Astrophysics Data System (ADS)

    Wagner, G. S.

    2017-12-01

    The United States Atomic Energy Detection System (USAEDS) primaryseismic network consists of a relatively small number of arrays andthree-component stations. The relatively small number of stationsin the USAEDS primary network make it both necessary and feasibleto optimize both station and network processing.Station processing improvements include detector tuning effortsthat use Receiver Operator Characteristic (ROC) curves to helpjudiciously set acceptable Type 1 (false) vs. Type 2 (miss) errorrates. Other station processing improvements include the use ofempirical/historical observations and continuous background noisemeasurements to compute time-varying, maximum likelihood probabilityof detection thresholds.The USAEDS network processing software makes extensive use of theazimuth and slowness information provided by frequency-wavenumberanalysis at array sites, and polarization analysis at three-componentsites. Most of the improvements in USAEDS network processing aredue to improvements in the models used to predict azimuth, slowness,and probability of detection. Kriged travel-time, azimuth andslowness corrections-and associated uncertainties-are computedusing a ground truth database. Improvements in station processingand the use of improved models for azimuth, slowness, and probabilityof detection have led to significant improvements in USADES networkprocessing.

  10. Epidemics in interconnected small-world networks.

    PubMed

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  11. Metro passengers’ route choice model and its application considering perceived transfer threshold

    PubMed Central

    Jin, Fanglei; Zhang, Yongsheng; Liu, Shasha

    2017-01-01

    With the rapid development of the Metro network in China, the greatly increased route alternatives make passengers’ route choice behavior and passenger flow assignment more complicated, which presents challenges to the operation management. In this paper, a path sized logit model is adopted to analyze passengers’ route choice preferences considering such parameters as in-vehicle time, number of transfers, and transfer time. Moreover, the “perceived transfer threshold” is defined and included in the utility function to reflect the penalty difference caused by transfer time on passengers’ perceived utility under various numbers of transfers. Next, based on the revealed preference data collected in the Guangzhou Metro, the proposed model is calibrated. The appropriate perceived transfer threshold value and the route choice preferences are analyzed. Finally, the model is applied to a personalized route planning case to demonstrate the engineering practicability of route choice behavior analysis. The results show that the introduction of the perceived transfer threshold is helpful to improve the model’s explanatory abilities. In addition, personalized route planning based on route choice preferences can meet passengers’ diversified travel demands. PMID:28957376

  12. Constructing financial network based on PMFG and threshold method

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  13. Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Agliari, Elena; Cassi, Davide

    2015-10-01

    The best strategy to immunize a complex network is usually evaluated in terms of the percolation threshold, i.e. the number of vaccine doses which make the largest connected cluster (LCC) vanish. The strategy inducing the minimum percolation threshold represents the optimal way to immunize the network. Here we show that the efficacy of the immunization strategies can change during the immunization process. This means that, if the number of doses is limited, the best strategy is not necessarily the one leading to the smallest percolation threshold. This outcome should warn about the adoption of global measures in order to evaluate the best immunization strategy.

  14. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  15. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  16. Collective decision dynamics in the presence of external drivers

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Alderson, David L.; Carlson, Jean M.

    2012-09-01

    We develop a sequence of models describing information transmission and decision dynamics for a network of individual agents subject to multiple sources of influence. Our general framework is set in the context of an impending natural disaster, where individuals, represented by nodes on the network, must decide whether or not to evacuate. Sources of influence include a one-to-many externally driven global broadcast as well as pairwise interactions, across links in the network, in which agents transmit either continuous opinions or binary actions. We consider both uniform and variable threshold rules on the individual opinion as baseline models for decision making. Our results indicate that (1) social networks lead to clustering and cohesive action among individuals, (2) binary information introduces high temporal variability and stagnation, and (3) information transmission over the network can either facilitate or hinder action adoption, depending on the influence of the global broadcast relative to the social network. Our framework highlights the essential role of local interactions between agents in predicting collective behavior of the population as a whole.

  17. Measuring the value of accurate link prediction for network seeding.

    PubMed

    Wei, Yijin; Spencer, Gwen

    2017-01-01

    The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.

  18. Ultrahigh Error Threshold for Surface Codes with Biased Noise

    NASA Astrophysics Data System (ADS)

    Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.

    2018-02-01

    We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

  19. Asymmetrically interacting spreading dynamics on complex layered networks.

    PubMed

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-05-29

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

  20. Asymmetrically interacting spreading dynamics on complex layered networks

    PubMed Central

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-01-01

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics. PMID:24872257

  1. Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion

    USGS Publications Warehouse

    Ackleh, A.S.; Allen, L.J.S.; Carter, J.

    2007-01-01

    We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded. ?? 2007 Elsevier Inc. All rights reserved.

  2. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification

    PubMed Central

    Li, Weikai; Wang, Zhengxia; Zhang, Limei; Qiao, Lishan; Shen, Dinggang

    2017-01-01

    Functional brain network (FBN) has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC) is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy) connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L1-norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods. PMID:28912708

  3. Epidemics with pathogen mutation on small-world networks

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Tan, Zhi-Jie; Zou, Xian-Wu; Jin, Zhun-Zhi

    2006-05-01

    We study the dynamical behavior of the epidemiological model with pathogen mutation on small-world networks, and discuss the influence of the immunity duration τR, the cross-immunity threshold hthr, and system size N on epidemic dynamics. A decaying oscillation occurs because of the interplay between the immune response and the pathogen mutation. These results have implications for the interpretation of longitudinal epidemiological data on strain abundance, and they will be helpful to assess the threat of highly pathogenic and mutative viruses, such as avian influenza.

  4. Rare events in networks with internal and external noise

    NASA Astrophysics Data System (ADS)

    Hindes, J.; Schwartz, I. B.

    2017-12-01

    We study rare events in networks with both internal and external noise, and develop a general formalism for analyzing rare events that combines pair-quenched techniques and large-deviation theory. The probability distribution, shape, and time scale of rare events are considered in detail for extinction in the Susceptible-Infected-Susceptible model as an illustration. We find that when both types of noise are present, there is a crossover region as the network size is increased, where the probability exponent for large deviations no longer increases linearly with the network size. We demonstrate that the form of the crossover depends on whether the endemic state is localized near the epidemic threshold or not.

  5. Scale-Free Distribution of Avian Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  6. Recruitment dynamics in adaptive social networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim; Shaw, Leah; Schwartz, Ira

    2011-03-01

    We model recruitment in social networks in the presence of birth and death processes. The recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. The recruiting nodes may adapt their connections in order to improve recruitment capabilities, thus changing the network structure. We develop a mean-field theory describing the system dynamics. Using mean-field theory we characterize the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment dynamics, as well as on network topology. The theoretical predictions are confirmed by the direct simulations of the full system.

  7. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation

    PubMed Central

    Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.

    2013-01-01

    Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479

  8. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation.

    PubMed

    Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A

    2013-10-22

    Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.

  9. Impact of Information based Classification on Network Epidemics

    PubMed Central

    Mishra, Bimal Kumar; Haldar, Kaushik; Sinha, Durgesh Nandini

    2016-01-01

    Formulating mathematical models for accurate approximation of malicious propagation in a network is a difficult process because of our inherent lack of understanding of several underlying physical processes that intrinsically characterize the broader picture. The aim of this paper is to understand the impact of available information in the control of malicious network epidemics. A 1-n-n-1 type differential epidemic model is proposed, where the differentiality allows a symptom based classification. This is the first such attempt to add such a classification into the existing epidemic framework. The model is incorporated into a five class system called the DifEpGoss architecture. Analysis reveals an epidemic threshold, based on which the long-term behavior of the system is analyzed. In this work three real network datasets with 22002, 22469 and 22607 undirected edges respectively, are used. The datasets show that classification based prevention given in the model can have a good role in containing network epidemics. Further simulation based experiments are used with a three category classification of attack and defense strengths, which allows us to consider 27 different possibilities. These experiments further corroborate the utility of the proposed model. The paper concludes with several interesting results. PMID:27329348

  10. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  11. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  12. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  13. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    PubMed Central

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  14. Reverse-feeding effect of epidemic by propagators in two-layered networks

    NASA Astrophysics Data System (ADS)

    Dayu, Wu; Yanping, Zhao; Muhua, Zheng; Jie, Zhou; Zonghua, Liu

    2016-02-01

    Epidemic spreading has been studied for a long time and is currently focused on the spreading of multiple pathogens, especially in multiplex networks. However, little attention has been paid to the case where the mutual influence between different pathogens comes from a fraction of epidemic propagators, such as bisexual people in two separated groups of heterosexual and homosexual people. We here study this topic by presenting a network model of two layers connected by impulsive links, in contrast to the persistent links in each layer. We let each layer have a distinct pathogen and their interactive infection is implemented by a fraction of propagators jumping between the corresponding pairs of nodes in the two layers. By this model we show that (i) the propagators take the key role to transmit pathogens from one layer to the other, which significantly influences the stabilized epidemics; (ii) the epidemic thresholds will be changed by the propagators; and (iii) a reverse-feeding effect can be expected when the infective rate is smaller than its threshold of isolated spreading. A theoretical analysis is presented to explain the numerical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001, 11375066, and 11405059) and the National Basic Key Program of China (Grant No. 2013CB834100).

  15. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  16. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  17. Layer-switching cost and optimality in information spreading on multiplex networks

    PubMed Central

    Min, Byungjoon; Gwak, Sang-Hwan; Lee, Nanoom; Goh, K. -I.

    2016-01-01

    We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs. offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers. PMID:26887527

  18. Cascades on a class of clustered random networks

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Melnik, Sergey; Gleeson, James P.

    2011-05-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J. Newman, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.103.058701103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement with numerical simulations.

  19. Hybrid discrete-time neural networks.

    PubMed

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  20. Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-03-01

    This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.

  1. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  2. A simple model of global cascades on random networks

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  3. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    PubMed Central

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  4. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs

    PubMed Central

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten

    2017-01-01

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience. PMID:28186182

  5. Social contagions on correlated multiplex networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  6. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs.

    PubMed

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C; Hütt, Marc-Thorsten

    2017-02-10

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.

  7. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten

    2017-02-01

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.

  8. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  9. Kinetics of Social Contagion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Iñiguez, Gerardo; Karsai, Márton; Kertész, János

    2015-11-01

    Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a number of conditions, including the structure of the underlying social network, the sensitivity to peer pressure and the influence of media. Here we study analytically and by simulations a general model that incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of "immune" nodes who never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is approached shows rich behavior. In particular, we find that, as a function of the immune node density, there is a transition from fast to slow spreading governed by entirely different mechanisms. This transition happens below the percolation threshold of network fragmentation, and has its origin in the competition between cascading behavior induced by adopters and blocking due to immune nodes. This change is accompanied by a percolation transition of the induced clusters.

  10. Dynamics of an epidemic model with quarantine on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kang, Huiyan; Liu, Kaihui; Fu, Xinchu

    2017-12-01

    Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined rate as a function of degree into the model, and quantify the basic reproduction number, which is shown to be dependent on some parameters, such as quarantined rate, infectivity and network structures. A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise the disease transmission risk while quarantine measure will contribute to the prevention of epidemic spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold value for the global stability of the disease-free and endemic equilibria and the uniform persistence of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical simulations are illustrated to perform and complement our analytical results.

  11. Changes of mind in an attractor network of decision-making.

    PubMed

    Albantakis, Larissa; Deco, Gustavo

    2011-06-01

    Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models.

  12. Electron percolation in realistic models of carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  13. Unwinding the hairball graph: Pruning algorithms for weighted complex networks

    NASA Astrophysics Data System (ADS)

    Dianati, Navid

    2016-01-01

    Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

  14. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  15. Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2002-01-01

    A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.

  16. Determination of Network Attributes from a High Resolution Terrain Data Base

    DTIC Science & Technology

    1987-09-01

    and existing models is in the method used to make decisions. All of ,he models- reviewed when developing the ALARM strategy depended either on threshold...problems with the methods currently accepted and used to *model the decision process. These methods are recognized because they have their uses...observation, detection, and lines of sight along a narrow strip of terrain relative to the overall size of the sectors of the two forces. Existing methods of

  17. Criterion for correct recalls in associative-memory neural networks

    NASA Astrophysics Data System (ADS)

    Ji, Han-Bing

    1992-12-01

    A novel weighted outer-product learning (WOPL) scheme for associative memory neural networks (AMNNs) is presented. In the scheme, each fundamental memory is allocated a learning weight to direct its correct recall. Both the Hopfield and multiple training models are instances of the WOPL model with certain sets of learning weights. A necessary condition of choosing learning weights for the convergence property of the WOPL model is obtained through neural dynamics. A criterion for choosing learning weights for correct associative recalls of the fundamental memories is proposed. In this paper, an important parameter called signal to noise ratio gain (SNRG) is devised, and it is found out empirically that SNRGs have their own threshold values which means that any fundamental memory can be correctly recalled when its corresponding SNRG is greater than or equal to its threshold value. Furthermore, a theorem is given and some theoretical results on the conditions of SNRGs and learning weights for good associative recall performance of the WOPL model are accordingly obtained. In principle, when all SNRGs or learning weights chosen satisfy the theoretically obtained conditions, the asymptotic storage capacity of the WOPL model will grow at the greatest rate under certain known stochastic meaning for AMNNs, and thus the WOPL model can achieve correct recalls for all fundamental memories. The representative computer simulations confirm the criterion and theoretical analysis.

  18. A vertical handoff decision algorithm based on ARMA prediction model

    NASA Astrophysics Data System (ADS)

    Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan

    2012-01-01

    With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.

  19. Dense modifiable interconnections utilizing photorefractive volume holograms

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Qiao, Yong

    1990-11-01

    This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.

  20. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  1. Critical exponents for diluted resistor networks

    NASA Astrophysics Data System (ADS)

    Stenull, O.; Janssen, H. K.; Oerding, K.

    1999-05-01

    An approach by Stephen [Phys. Rev. B 17, 4444 (1978)] is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky [Phys. Rev. B 35, 6964 (1987)]. By a decomposition of the principal Feynman diagrams, we obtain diagrams which again can be interpreted as resistor networks. This interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent φ up to second order in ɛ=6-d, where d is the spatial dimension. Our result φ=1+ɛ/42+4ɛ2/3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts-model formulation of the random resistor network.

  2. Epidemic outbreaks in complex heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.

    2002-04-01

    We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.

  3. GENERAL: Epidemic spreading on networks with vaccination

    NASA Astrophysics Data System (ADS)

    Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong

    2009-08-01

    In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.

  4. Epidemic spreading and immunization strategy in multiplex networks

    NASA Astrophysics Data System (ADS)

    Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.

    2015-09-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.

  5. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  6. From epidemics to information propagation: Striking differences in structurally similar adaptive network models

    NASA Astrophysics Data System (ADS)

    Trajanovski, Stojan; Guo, Dongchao; Van Mieghem, Piet

    2015-09-01

    The continuous-time adaptive susceptible-infected-susceptible (ASIS) epidemic model and the adaptive information diffusion (AID) model are two adaptive spreading processes on networks, in which a link in the network changes depending on the infectious state of its end nodes, but in opposite ways: (i) In the ASIS model a link is removed between two nodes if exactly one of the nodes is infected to suppress the epidemic, while a link is created in the AID model to speed up the information diffusion; (ii) a link is created between two susceptible nodes in the ASIS model to strengthen the healthy part of the network, while a link is broken in the AID model due to the lack of interest in informationless nodes. The ASIS and AID models may be considered as first-order models for cascades in real-world networks. While the ASIS model has been exploited in the literature, we show that the AID model is realistic by obtaining a good fit with Facebook data. Contrary to the common belief and intuition for such similar models, we show that the ASIS and AID models exhibit different but not opposite properties. Most remarkably, a unique metastable state always exists in the ASIS model, while there an hourglass-shaped region of instability in the AID model. Moreover, the epidemic threshold is a linear function in the effective link-breaking rate in the AID model, while it is almost constant but noisy in the AID model.

  7. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  8. Resilience of networks to environmental stress: From regular to random networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho

    2018-04-01

    Despite the huge interest in network resilience to stress, most of the studies have concentrated on internal stress damaging network structure (e.g., node removals). Here we study how networks respond to environmental stress deteriorating their external conditions. We show that, when regular networks gradually disintegrate as environmental stress increases, disordered networks can suddenly collapse at critical stress with hysteresis and vulnerability to perturbations. We demonstrate that this difference results from a trade-off between node resilience and network resilience to environmental stress. The nodes in the disordered networks can suppress their collapses due to the small-world topology of the networks but eventually collapse all together in return. Our findings indicate that some real networks can be highly resilient against environmental stress to a threshold yet extremely vulnerable to the stress above the threshold because of their small-world topology.

  9. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.

  10. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  11. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  12. Reverse engineering the gap gene network of Drosophila melanogaster.

    PubMed

    Perkins, Theodore J; Jaeger, Johannes; Reinitz, John; Glass, Leon

    2006-05-01

    A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based on expression data. We describe a new strategy for solving this problem and apply it to recently published data on early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and the role of autoactivation. Based on our modeling results and validation against the experimental literature, we propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene expression during wild-type development.

  13. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    NASA Astrophysics Data System (ADS)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  14. When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering

    PubMed Central

    Boekel, Wouter; Tucker, Adrienne M.; Turner, Brandon M.; Heathcote, Andrew; Forstmann, Birte U.

    2014-01-01

    Mind wandering is an ubiquitous phenomenon in everyday life. In the cognitive neurosciences, mind wandering has been associated with several distinct neural processes, most notably increased activity in the default mode network (DMN), suppressed activity within the anti-correlated (task-positive) network (ACN), and changes in neuromodulation. By using an integrative multimodal approach combining machine-learning techniques with modeling of latent cognitive processes, we show that mind wandering in humans is characterized by inefficiencies in executive control (task-monitoring) processes. This failure is predicted by a single-trial signature of (co)activations in the DMN, ACN, and neuromodulation, and accompanied by a decreased rate of evidence accumulation and response thresholds in the cognitive model. PMID:25471568

  15. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks

    PubMed Central

    Taylor, Dane; Caceres, Rajmonda S.; Mucha, Peter J.

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős–Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K*. When layers are aggregated via a summation, we obtain K∗∝O(NL/T), where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L, then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than 𝒪(L−1/2). Moreover, we find that thresholding the summation can, in some cases, cause K* to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold. PMID:29445565

  16. Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks.

    PubMed

    Taylor, Dane; Caceres, Rajmonda S; Mucha, Peter J

    2017-01-01

    Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities in multilayer networks, we study the effects of layer aggregation by developing random-matrix theory for modularity matrices associated with layer-aggregated networks with N nodes and L layers, which are drawn from an ensemble of Erdős-Rényi networks with communities planted in subsets of layers. We study phase transitions in which eigenvectors localize onto communities (allowing their detection) and which occur for a given community provided its size surpasses a detectability limit K * . When layers are aggregated via a summation, we obtain [Formula: see text], where T is the number of layers across which the community persists. Interestingly, if T is allowed to vary with L , then summation-based layer aggregation enhances small-community detection even if the community persists across a vanishing fraction of layers, provided that T/L decays more slowly than ( L -1/2 ). Moreover, we find that thresholding the summation can, in some cases, cause K * to decay exponentially, decreasing by orders of magnitude in a phenomenon we call super-resolution community detection. In other words, layer aggregation with thresholding is a nonlinear data filter enabling detection of communities that are otherwise too small to detect. Importantly, different thresholds generally enhance the detectability of communities having different properties, illustrating that community detection can be obscured if one analyzes network data using a single threshold.

  17. Emergence of hysteresis loop in social contagions on complex networks.

    PubMed

    Su, Zhen; Wang, Wei; Li, Lixiang; Xiao, Jinghua; Stanley, H Eugene

    2017-07-21

    Understanding the spreading mechanisms of social contagions in complex network systems has attracted much attention in the physics community. Here we propose a generalized threshold model to describe social contagions. Using extensive numerical simulations and theoretical analyses, we find that a hysteresis loop emerges in the system. Specifically, the steady state of the system is sensitive to the initial conditions of the dynamics of the system. In the steady state, the adoption size increases discontinuously with the transmission probability of information about social contagions, and trial size exhibits a non-monotonic pattern, i.e., it first increases discontinuously then decreases continuously. Finally we study social contagions on heterogeneous networks and find that network topology does not qualitatively affect our results.

  18. Adversarial Threshold Neural Computer for Molecular de Novo Design.

    PubMed

    Putin, Evgeny; Asadulaev, Arip; Vanhaelen, Quentin; Ivanenkov, Yan; Aladinskaya, Anastasia V; Aliper, Alex; Zhavoronkov, Alex

    2018-03-30

    In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp 3 -rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds.

  19. A Continuum Model of Actin Waves in Dictyostelium discoideum

    PubMed Central

    Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.

    2013-01-01

    Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312

  20. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times

    NASA Astrophysics Data System (ADS)

    Velásquez-Rojas, Fátima; Vazquez, Federico

    2017-05-01

    Opinion formation and disease spreading are among the most studied dynamical processes on complex networks. In real societies, it is expected that these two processes depend on and affect each other. However, little is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that of the contact process for disease spreading, in a population of agents that interact via two types of connections, social and contact. These two interacting dynamics take place on two layers of networks, coupled through a fraction q of links present in both networks. The probability that an agent updates its state depends on both the opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading. Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value. Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that varies nonmonotonically with q in a large range of the model's parameters. A mean-field approach reveals that the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.

  1. Altering the threshold of an excitable signal transduction network changes cell migratory modes.

    PubMed

    Miao, Yuchuan; Bhattacharya, Sayak; Edwards, Marc; Cai, Huaqing; Inoue, Takanari; Iglesias, Pablo A; Devreotes, Peter N

    2017-04-01

    The diverse migratory modes displayed by different cell types are generally believed to be idiosyncratic. Here we show that the migratory behaviour of Dictyostelium was switched from amoeboid to keratocyte-like and oscillatory modes by synthetically decreasing phosphatidylinositol-4,5-bisphosphate levels or increasing Ras/Rap-related activities. The perturbations at these key nodes of an excitable signal transduction network initiated a causal chain of events: the threshold for network activation was lowered, the speed and range of propagating waves of signal transduction activity increased, actin-driven cellular protrusions expanded and, consequently, the cell migratory mode transitions ensued. Conversely, innately keratocyte-like and oscillatory cells were promptly converted to amoeboid by inhibition of Ras effectors with restoration of directed migration. We use computational analysis to explain how thresholds control cell migration and discuss the architecture of the signal transduction network that gives rise to excitability.

  2. Sub-Volumetric Classification and Visualization of Emphysema Using a Multi-Threshold Method and Neural Network

    NASA Astrophysics Data System (ADS)

    Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki

    Chronic Obstructive Pulmonary Disease is a disease in which the airways and tiny air sacs (alveoli) inside the lung are partially obstructed or destroyed. Emphysema is what occurs as more and more of the walls between air sacs get destroyed. The goal of this paper is to produce a more practical emphysema-quantification algorithm that has higher correlation with the parameters of pulmonary function tests compared to classical methods. The use of the threshold range from approximately -900 Hounsfield Unit to -990 Hounsfield Unit for extracting emphysema from CT has been reported in many papers. From our experiments, we realize that a threshold which is optimal for a particular CT data set might not be optimal for other CT data sets due to the subtle radiographic variations in the CT images. Consequently, we propose a multi-threshold method that utilizes ten thresholds between and including -900 Hounsfield Unit and -990 Hounsfield Unit for identifying the different potential emphysematous regions in the lung. Subsequently, we divide the lung into eight sub-volumes. From each sub-volume, we calculate the ratio of the voxels with the intensity below a certain threshold. The respective ratios of the voxels below the ten thresholds are employed as the features for classifying the sub-volumes into four emphysema severity classes. Neural network is used as the classifier. The neural network is trained using 80 training sub-volumes. The performance of the classifier is assessed by classifying 248 test sub-volumes of the lung obtained from 31 subjects. Actual diagnoses of the sub-volumes are hand-annotated and consensus-classified by radiologists. The four-class classification accuracy of the proposed method is 89.82%. The sub-volumetric classification results produced in this study encompass not only the information of emphysema severity but also the distribution of emphysema severity from the top to the bottom of the lung. We hypothesize that besides emphysema severity, the distribution of emphysema severity in the lung also plays an important role in the assessment of the overall functionality of the lung. We confirm our hypothesis by showing that the proposed sub-volumetric classification results correlate with the parameters of pulmonary function tests better than classical methods. We also visualize emphysema using a technique called the transparent lung model.

  3. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  4. Competing for Attention in Social Media under Information Overload Conditions.

    PubMed

    Feng, Ling; Hu, Yanqing; Li, Baowen; Stanley, H Eugene; Havlin, Shlomo; Braunstein, Lidia A

    2015-01-01

    Modern social media are becoming overloaded with information because of the rapidly-expanding number of information feeds. We analyze the user-generated content in Sina Weibo, and find evidence that the spread of popular messages often follow a mechanism that differs from the spread of disease, in contrast to common belief. In this mechanism, an individual with more friends needs more repeated exposures to spread further the information. Moreover, our data suggest that for certain messages the chance of an individual to share the message is proportional to the fraction of its neighbours who shared it with him/her, which is a result of competition for attention. We model this process using a fractional susceptible infected recovered (FSIR) model, where the infection probability of a node is proportional to its fraction of infected neighbors. Our findings have dramatic implications for information contagion. For example, using the FSIR model we find that real-world social networks have a finite epidemic threshold in contrast to the zero threshold in disease epidemic models. This means that when individuals are overloaded with excess information feeds, the information either reaches out the population if it is above the critical epidemic threshold, or it would never be well received.

  5. Competing for Attention in Social Media under Information Overload Conditions

    PubMed Central

    Feng, Ling; Hu, Yanqing; Li, Baowen; Stanley, H. Eugene; Havlin, Shlomo; Braunstein, Lidia A.

    2015-01-01

    Modern social media are becoming overloaded with information because of the rapidly-expanding number of information feeds. We analyze the user-generated content in Sina Weibo, and find evidence that the spread of popular messages often follow a mechanism that differs from the spread of disease, in contrast to common belief. In this mechanism, an individual with more friends needs more repeated exposures to spread further the information. Moreover, our data suggest that for certain messages the chance of an individual to share the message is proportional to the fraction of its neighbours who shared it with him/her, which is a result of competition for attention. We model this process using a fractional susceptible infected recovered (FSIR) model, where the infection probability of a node is proportional to its fraction of infected neighbors. Our findings have dramatic implications for information contagion. For example, using the FSIR model we find that real-world social networks have a finite epidemic threshold in contrast to the zero threshold in disease epidemic models. This means that when individuals are overloaded with excess information feeds, the information either reaches out the population if it is above the critical epidemic threshold, or it would never be well received. PMID:26161956

  6. Dynamics of social contagions with memory of nonredundant information

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Tang, Ming; Zhang, Hai-Feng; Lai, Ying-Cheng

    2015-07-01

    A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.

  7. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  8. From theoretical fixed return period events to real flooding impacts: a new approach to set flooding scenarios, thresholds and alerts

    NASA Astrophysics Data System (ADS)

    Parravicini, Paola; Cislaghi, Matteo; Condemi, Leonardo

    2017-04-01

    ARPA Lombardia is the Environmental Protection Agency of Lombardy, a wide region in the North of Italy. ARPA is in charge of river monitoring either for Civil Protection or water balance purposes. It cooperates with the Civil Protection Agency of Lombardy (RL-PC) in flood forecasting and early warning. The early warning system is based on rainfall and discharge thresholds: when a threshold exceeding is expected, RL-PC disseminates an alert from yellow to red. The conventional threshold evaluation is based on events at a fixed return period. Anyway, the impacts of events with the same return period may be different along the river course due to the specific characteristics of the affected areas. A new approach is introduced. It defines different scenarios, corresponding to different flood impacts. A discharge threshold is then associated to each scenario and the return period of the scenario is computed backwards. Flood scenarios are defined in accordance with National Civil Protection guidelines, which describe the expected flood impact and associate a colour to the scenario from green (no relevant effects) to red (major floods). A range of discharges is associated with each scenario since they cause the same flood impact; the threshold is set as the discharge corresponding to the transition between two scenarios. A wide range of event-based information is used to estimate the thresholds. As first guess, the thresholds are estimated starting from hydraulic model outputs and the people or infrastructures flooded according to the simulations. Eventually the model estimates are validated with real event knowledge: local Civil Protection Emergency Plans usually contain very detailed local impact description at known river levels or discharges, RL-PC collects flooding information notified by the population, newspapers often report flood events on web, data from the river monitoring network provide evaluation of actually happened levels and discharges. The methodology allows to give a return period for each scenario. The return period may vary along the river course according to the discharges associated with the scenario. The values of return period may show the areas characterized by higher risk and can be an important basis for civil protection emergency planning and river monitoring. For example, considering the Lambro River, the red scenario (major flood) shows a return period of 50 years in the northern rural part of the catchment. When the river crosses the city of Milan, the return period drops to 4 years. Afterwards it goes up to more than 100 years when the river flows in the agricultural areas in the southern part of the catchment. In addition, the knowledge gained with event-based analysis allows evaluating the compliance of the monitoring network with early warning requirements and represents the starting point for further development of the network itself.

  9. Hodge Decomposition of Information Flow on Small-World Networks.

    PubMed

    Haruna, Taichi; Fujiki, Yuuya

    2016-01-01

    We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.

  10. Interplay between the local information based behavioral responses and the epidemic spreading in complex networks.

    PubMed

    Liu, Can; Xie, Jia-Rong; Chen, Han-Shuang; Zhang, Hai-Feng; Tang, Ming

    2015-10-01

    The spreading of an infectious disease can trigger human behavior responses to the disease, which in turn plays a crucial role on the spreading of epidemic. In this study, to illustrate the impacts of the human behavioral responses, a new class of individuals, S(F), is introduced to the classical susceptible-infected-recovered model. In the model, S(F) state represents that susceptible individuals who take self-initiate protective measures to lower the probability of being infected, and a susceptible individual may go to S(F) state with a response rate when contacting an infectious neighbor. Via the percolation method, the theoretical formulas for the epidemic threshold as well as the prevalence of epidemic are derived. Our finding indicates that, with the increasing of the response rate, the epidemic threshold is enhanced and the prevalence of epidemic is reduced. The analytical results are also verified by the numerical simulations. In addition, we demonstrate that, because the mean field method neglects the dynamic correlations, a wrong result based on the mean field method is obtained-the epidemic threshold is not related to the response rate, i.e., the additional S(F) state has no impact on the epidemic threshold.

  11. Retrieving infinite numbers of patterns in a spin-glass model of immune networks

    NASA Astrophysics Data System (ADS)

    Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.

    2017-01-01

    The similarity between neural and (adaptive) immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies in parallel. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, and described by graphs with finite connectivity. In this paper we use replica techniques to solve a statistical mechanical immune network model with “coordinator branches” (T-cells) and “effector branches” (B-cells), and show how the finite connectivity enables the coordinators to manage an extensive number of effectors simultaneously, even above the percolation threshold (where clonal cross-talk is not negligible). A consequence of its underlying topological sparsity is that the adaptive immune system exhibits only weak ergodicity breaking, so that also spontaneous switch-like effects as bi-stabilities are present: the latter may play a significant role in the maintenance of immune homeostasis.

  12. Modeling and Simulation of Bus Dispatching Policy for Timed Transfers on Signalized Networks

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lin, Guey-Shii

    2007-12-01

    The major work of this study is to formulate the system cost functions and to integrate the bus dispatching policy with signal control. The integrated model mainly includes the flow dispersion model for links, signal control model for nodes, and dispatching control model for transfer terminals. All such models are inter-related for transfer operations in one-center transit network. The integrated model that combines dispatching policies with flexible signal control modes can be applied to assess the effectiveness of transfer operations. It is found that, if bus arrival information is reliable, an early dispatching decision made at the mean bus arrival times is preferable. The costs for coordinated operations with slack times are relatively low at the optimal common headway when applying adaptive route control. Based on such findings, a threshold function of bus headway for justifying an adaptive signal route control under various time values of auto drivers is developed.

  13. Network theory and its applications in economic systems

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing

    This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.

  14. Cooperative epidemics on multiplex networks.

    PubMed

    Azimi-Tafreshi, N

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  15. Cooperative epidemics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  16. Integrated built-in-test false and missed alarms reduction based on forward infinite impulse response & recurrent finite impulse response dynamic neural networks

    NASA Astrophysics Data System (ADS)

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2017-11-01

    Built-in tests (BITs) are widely used in mechanical systems to perform state identification, whereas the BIT false and missed alarms cause trouble to the operators or beneficiaries to make correct judgments. Artificial neural networks (ANN) are previously used for false and missed alarms identification, which has the features such as self-organizing and self-study. However, these ANN models generally do not incorporate the temporal effect of the bottom-level threshold comparison outputs and the historical temporal features are not fully considered. To improve the situation, this paper proposes a new integrated BIT design methodology by incorporating a novel type of dynamic neural networks (DNN) model. The new DNN model is termed as Forward IIR & Recurrent FIR DNN (FIRF-DNN), where its component neurons, network structures, and input/output relationships are discussed. The condition monitoring false and missed alarms reduction implementation scheme based on FIRF-DNN model is also illustrated, which is composed of three stages including model training, false and missed alarms detection, and false and missed alarms suppression. Finally, the proposed methodology is demonstrated in the application study and the experimental results are analyzed.

  17. Limit cycles in piecewise-affine gene network models with multiple interaction loops

    NASA Astrophysics Data System (ADS)

    Farcot, Etienne; Gouzé, Jean-Luc

    2010-01-01

    In this article, we consider piecewise affine differential equations modelling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds, etc.). Our main result is an alternative theorem showing that if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases.

  18. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  19. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  20. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    NASA Astrophysics Data System (ADS)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.

  1. Simultaneous wavelength and format conversion in SDN/NFV for flexible optical network based on FWM in SOA

    NASA Astrophysics Data System (ADS)

    Zhan, Yueying; Wang, Danshi; Zhang, Min

    2018-04-01

    We propose an all-optical wavelength and format conversion model (CM) for a dynamic data center interconnect node and coherent passive optical network (PON) optical network unit (ONU) in software-defined networking and network function virtualization system based on four-wave mixing in a semiconductor optical amplifier. Five wavelength converted DQPSK signals and two format converted DPSK signals are generated; the performances of the generated signals for two strategies of setting CM in the data center interconnect node and coherent PON ONU, which are over 10 km fiber transmission, have been verified. All of the converted signals are with a power penalty less than 2.2 dB at FEC threshold of 3.8 × 10 - 3, and the optimum bias current of SOA is 300 mA.

  2. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  3. Goal-seeking neural net for recall and recognition

    NASA Astrophysics Data System (ADS)

    Omidvar, Omid M.

    1990-07-01

    Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.

  4. Cost-Effectiveness Analysis of Systemic Therapies in Advanced Pancreatic Cancer in the Canadian Health Care System.

    PubMed

    Coyle, Doug; Ko, Yoo-Joung; Coyle, Kathryn; Saluja, Ronak; Shah, Keya; Lien, Kelly; Lam, Henry; Chan, Kelvin K W

    2017-04-01

    To assess the cost-effectiveness of gemcitabine (G), G + 5-fluorouracil, G + capecitabine, G + cisplatin, G + oxaliplatin, G + erlotinib, G + nab-paclitaxel (GnP), and FOLFIRINOX in the treatment of advanced pancreatic cancer from a Canadian public health payer's perspective, using data from a recently published Bayesian network meta-analysis. Analysis was conducted through a three-state Markov model and used data on the progression of disease with treatment from the gemcitabine arms of randomized controlled trials combined with estimates from the network meta-analysis for the newer regimens. Estimates of health care costs were obtained from local providers, and utilities were derived from the literature. The model estimates the effect of treatment regimens on costs and quality-adjusted life-years (QALYs) discounted at 5% per annum. At a willingness-to-pay (WTP) threshold of greater than $30,666 per QALY, FOLFIRINOX would be the most optimal regimen. For a WTP threshold of $50,000 per QALY, the probability that FOLFIRINOX would be optimal was 57.8%. There was no price reduction for nab-paclitaxel when GnP was optimal. From a Canadian public health payer's perspective at the present time and drug prices, FOLFIRINOX is the optimal regimen on the basis of the cost-effectiveness criterion. GnP is not cost-effective regardless of the WTP threshold. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Percolation of fracture networks and stereology

    NASA Astrophysics Data System (ADS)

    Thovert, Jean-Francois; Mourzenko, Valeri; Adler, Pierre

    2017-04-01

    The overall properties of fractured porous media depend on the percolative character of the fracture network in a crucial way. The most important examples are permeability and transport. In a recent systematic study, a very wide range of regular, irregular and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. A simple and new model involving a dimensionless density and a new shape factor is proposed for the percolation threshold, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy to monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions. Moreover, and this is crucial for practical applications, the relevant quantities which are present in the expression of the percolation threshold can all be determined from trace maps. An exact and complete set of relations can be derived when the fractures are assumed to be Identical, Isotropically Oriented and Uniformly Distributed (I2OUD). Therefore, the dimensionless density of such networks can be derived directly from the trace maps and its percolating character can be a priori predicted. These relations involve the first five moments of the trace lengths. It is clear that the higher order moments are sensitive to truncation due to the boundaries of the sampling domain. However, it can be shown that the truncation effect can be fully taken into account and corrected, for any fracture shape, size and orientation distributions, if the fractures are spatially uniformly distributed. Systematic applications of these results are made to real fracture networks that we previously analyzed by other means and to numerically simulated networks. It is important to know if the stereological results and their applications can be extended to networks which are not I2OUD. In other words, for a given trace map, an equivalent I2OUD network is defined whose percolating character and permeability are readily deduced. The conditions under which these predicted properties are not too far from the real properties are under investigation.

  6. Extinction times of epidemic outbreaks in networks.

    PubMed

    Holme, Petter

    2013-01-01

    In the Susceptible-Infectious-Recovered (SIR) model of disease spreading, the time to extinction of the epidemics happens at an intermediate value of the per-contact transmission probability. Too contagious infections burn out fast in the population. Infections that are not contagious enough die out before they spread to a large fraction of people. We characterize how the maximal extinction time in SIR simulations on networks depend on the network structure. For example we find that the average distances in isolated components, weighted by the component size, is a good predictor of the maximal time to extinction. Furthermore, the transmission probability giving the longest outbreaks is larger than, but otherwise seemingly independent of, the epidemic threshold.

  7. Optimization of a hardware implementation for pulse coupled neural networks for image applications

    NASA Astrophysics Data System (ADS)

    Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal

    2010-04-01

    Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.

  8. Network Motif Basis of Threshold Responses

    EPA Science Inventory

    There has been a long-running debate over the existence of thresholds for adverse effects. The difficulty stems from two fundamental challenges: (i) statistical analysis by itself cannot prove the existence of a threshold, i.e., a dose below which there is no effect; and (ii) the...

  9. Matching algorithm of missile tail flame based on back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  10. Global terrestrial water storage connectivity revealed using complex climate network analyses

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  11. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    PubMed Central

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-01-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development. PMID:28145494

  12. The race to learn: spike timing and STDP can coordinate learning and recall in CA3.

    PubMed

    Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet

    2011-06-01

    The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.

  13. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  14. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  15. THRESHOLD ELEMENTS AND THE DESIGN OF SEQUENTIAL SWITCHING NETWORKS.

    DTIC Science & Technology

    The report covers research performed from March 1966 to March 1967. The major topics treated are: (1) methods for finding weight- threshold vectors...that realize a given switching function in multi- threshold linear logic; (2) synthesis of sequential machines by means of shift registers and simple

  16. Suppressing disease spreading by using information diffusion on multiplex networks.

    PubMed

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene

    2016-07-06

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.

  17. Opinion formation models in static and dynamic social networks

    NASA Astrophysics Data System (ADS)

    Singh, Pramesh

    We study models of opinion formation on static as well as dynamic networks where interaction among individuals is governed by widely accepted social theories. In particular, three models of competing opinions based on distinct interaction mechanisms are studied. A common feature in all of these models is the existence of a tipping point in terms of a model parameter beyond which a rapid consensus is reached. In the first model that we study on a static network, a node adopts a particular state (opinion) if a threshold fraction of its neighbors are already in that state. We introduce a few initiator nodes which are in state '1' in a population where every node is in state '0'. Thus, opinion '1' spreads through the population until no further influence is possible. Size of the spread is greatly affected by how these initiator nodes are selected. We find that there exists a critical fraction of initiators pc that is needed to trigger global cascades for a given threshold phi. We also study heuristic strategies for selecting a set of initiator nodes in order to maximize the cascade size. The structural properties of networks also play an important role in the spreading process. We study how the dynamics is affected by changing the clustering in a network. It turns out that local clustering is helpful in spreading. Next, we studied a model where the network is dynamic and interactions are homophilic. We find that homophily-driven rewiring impedes the reaching of consensus and in the absence of committed nodes (nodes that are not influenceable on their opinion), consensus time Tc diverges exponentially with network size N . As we introduce a fraction of committed nodes, beyond a critical value, the scaling of Tc becomes logarithmic in N. We also find that slight change in the interaction rule can produce strikingly different scaling behaviors of T c . However, introducing committed agents in the system drastically improves the scaling of the consensus time regardless of the interaction rules considered. Finally, a three-state (leftist, rightist, centrist) model that couples the dynamics of social balance with an external deradicalizing field is studied. The mean-field analysis shows that for a weak external field, the system exhibits a metastable fixed point and a saddle point in addition to a stable fixed point. However, if the strength of the external field is sufficiently large (larger than a critical value), there is only one (stable) fixed point which corresponds to an all-centrist consensus state (absorbing state). In the weak-field regime, the convergence time to the absorbing state is evaluated using the quasi-stationary(QS) distribution and is found to be in good agreement with the results obtained by numerical simulations.

  18. Weighted projected networks: mapping hypergraphs to networks.

    PubMed

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  19. Susceptible-infected-susceptible epidemics on networks with general infection and cure times.

    PubMed

    Cator, E; van de Bovenkamp, R; Van Mieghem, P

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  20. Susceptible-infected-susceptible epidemics on networks with general infection and cure times

    NASA Astrophysics Data System (ADS)

    Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  1. Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading

    NASA Astrophysics Data System (ADS)

    Karsai, Márton; Iñiguez, Gerardo; Kikas, Riivo; Kaski, Kimmo; Kertész, János

    2016-06-01

    Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world’s largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable adoptions—induced by a single adopting neighbour—appear to be important only locally, while spontaneous adopters arriving at a constant rate and the involvement of unconcerned individuals govern the global emergence of social spreading.

  2. Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading

    PubMed Central

    Karsai, Márton; Iñiguez, Gerardo; Kikas, Riivo; Kaski, Kimmo; Kertész, János

    2016-01-01

    Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world’s largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable adoptions—induced by a single adopting neighbour—appear to be important only locally, while spontaneous adopters arriving at a constant rate and the involvement of unconcerned individuals govern the global emergence of social spreading. PMID:27272744

  3. Link prediction in the network of global virtual water trade

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2016-04-01

    Through the international food-trade, water resources are 'virtually' transferred from the country of production to the country of consumption. The international food-trade, thus, implies a network of virtual water flows from exporting to importing countries (i.e., nodes). Given the dynamical behavior of the network, where food-trade relations (i.e., links) are created and dismissed every year, link prediction becomes a challenge. In this study, we propose a novel methodology for link prediction in the virtual water network. The model aims at identifying the main factors (among 17 different variables) driving the creation of a food-trade relation between any two countries, along the period between 1986 and 2011. Furthermore, the model can be exploited to investigate the network configuration in the future, under different possible (climatic and demographic) scenarios. The model grounds the existence of a link between any two nodes on the link weight (i.e., the virtual water flow): a link exists when the nodes exchange a minimum (fixed) volume of virtual water. Starting from a set of potential links between any two nodes, we fit the associated virtual water flows (both the real and the null ones) by means of multivariate linear regressions. Then, links with estimated flows higher than a minimum value (i.e., threshold) are considered active-links, while the others are non-active ones. The discrimination between active and non-active links through the threshold introduces an error (called link-prediction error) because some real links are lost (i.e., missed links) and some non-existing links (i.e., spurious links) are inevitably introduced in the network. The major drivers are those significantly minimizing the link-prediction error. Once the structure of the unweighted virtual water network is known, we apply, again, linear regressions to assess the major factors driving the fluxes traded along (modelled) active-links. Results indicate that, on the one hand, population and fertilizer use, together with link properties (such as the distance between nodes), are the major factors driving the links creation; on the other hand, population, distance, and gross domestic product are essential to model the flux entity. The results are promising since the model is able to correctly predict the 85% of the 16422 food-trade links (15% are missed), by spuriously adding to the real network only the 5% of non-existing links. The link-prediction error, evaluated as the sum of the percentage of missed and spurious links, is around 20% and it is constant over the study period. Only the 0.01% of the global virtual water flow is traded along missed links and an even lower flow is added by the spurious links (0.003%).

  4. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and along the coast will also be addressed. With the support of Member States and other countries and organizations it has been possible to significantly expand the sea level network thus reducing the amount of time it now takes to verify tsunamis.

  5. The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks

    PubMed Central

    Crunelli, Vincenzo; Errington, Adam C.; Hughes, Stuart W.; Tóth, Tibor I.

    2011-01-01

    During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located. PMID:21893530

  6. Well test mathematical model for fractures network in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  7. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.

    PubMed

    Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn; Ditlevsen, Susanne

    2011-11-01

    Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.

  8. On the continuous differentiability of inter-spike intervals of synaptically connected cortical spiking neurons in a neuronal network.

    PubMed

    Kumar, Gautam; Kothare, Mayuresh V

    2013-12-01

    We derive conditions for continuous differentiability of inter-spike intervals (ISIs) of spiking neurons with respect to parameters (decision variables) of an external stimulating input current that drives a recurrent network of synaptically connected neurons. The dynamical behavior of individual neurons is represented by a class of discontinuous single-neuron models. We report here that ISIs of neurons in the network are continuously differentiable with respect to decision variables if (1) a continuously differentiable trajectory of the membrane potential exists between consecutive action potentials with respect to time and decision variables and (2) the partial derivative of the membrane potential of spiking neurons with respect to time is not equal to the partial derivative of their firing threshold with respect to time at the time of action potentials. Our theoretical results are supported by showing fulfillment of these conditions for a class of known bidimensional spiking neuron models.

  9. Reachability bounds for chemical reaction networks and strand displacement systems.

    PubMed

    Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján

    2014-01-01

    Chemical reaction networks (CRNs) and DNA strand displacement systems (DSDs) are widely-studied and useful models of molecular programming. However, in order for some DSDs in the literature to behave in an expected manner, the initial number of copies of some reagents is required to be fixed. In this paper we show that, when multiple copies of all initial molecules are present, general types of CRNs and DSDs fail to work correctly if the length of the shortest sequence of reactions needed to produce any given molecule exceeds a threshold that grows polynomially with attributes of the system.

  10. Competition of simple and complex adoption on interdependent networks

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Toral, Raul; San Miguel, Maxi

    2016-12-01

    We consider the competition of two mechanisms for adoption processes: a so-called complex threshold dynamics and a simple susceptible-infected-susceptible (SIS) model. Separately, these mechanisms lead, respectively, to first-order and continuous transitions between nonadoption and adoption phases. We consider two interconnected layers. While all nodes on the first layer follow the complex adoption process, all nodes on the second layer follow the simple adoption process. Coupling between the two adoption processes occurs as a result of the inclusion of some additional interconnections between layers. We find that the transition points and also the nature of the transitions are modified in the coupled dynamics. In the complex adoption layer, the critical threshold required for extension of adoption increases with interlayer connectivity whereas in the case of an isolated single network it would decrease with average connectivity. In addition, the transition can become continuous depending on the detailed interlayer and intralayer connectivities. In the SIS layer, any interlayer connectivity leads to the extension of the adopter phase. Besides, a new transition appears as a sudden drop of the fraction of adopters in the SIS layer. The main numerical findings are described by a mean-field type analytical approach appropriately developed for the threshold-SIS coupled system.

  11. Confinement regulates complex biochemical networks: initiation of blood clotting by "diffusion acting".

    PubMed

    Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F

    2009-10-21

    This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.

  12. Correlation and network analysis of global financial indices

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Deo, Nivedita

    2012-08-01

    Random matrix theory (RMT) and network methods are applied to investigate the correlation and network properties of 20 financial indices. The results are compared before and during the financial crisis of 2008. In the RMT method, the components of eigenvectors corresponding to the second largest eigenvalue form two clusters of indices in the positive and negative directions. The components of these two clusters switch in opposite directions during the crisis. The network analysis uses the Fruchterman-Reingold layout to find clusters in the network of indices at different thresholds. At a threshold of 0.6, before the crisis, financial indices corresponding to the Americas, Europe, and Asia-Pacific form separate clusters. On the other hand, during the crisis at the same threshold, the American and European indices combine together to form a strongly linked cluster while the Asia-Pacific indices form a separate weakly linked cluster. If the value of the threshold is further increased to 0.9 then the European indices (France, Germany, and the United Kingdom) are found to be the most tightly linked indices. The structure of the minimum spanning tree of financial indices is more starlike before the crisis and it changes to become more chainlike during the crisis. The average linkage hierarchical clustering algorithm is used to find a clearer cluster structure in the network of financial indices. The cophenetic correlation coefficients are calculated and found to increase significantly, which indicates that the hierarchy increases during the financial crisis. These results show that there is substantial change in the structure of the organization of financial indices during a financial crisis.

  13. Correlation and network analysis of global financial indices.

    PubMed

    Kumar, Sunil; Deo, Nivedita

    2012-08-01

    Random matrix theory (RMT) and network methods are applied to investigate the correlation and network properties of 20 financial indices. The results are compared before and during the financial crisis of 2008. In the RMT method, the components of eigenvectors corresponding to the second largest eigenvalue form two clusters of indices in the positive and negative directions. The components of these two clusters switch in opposite directions during the crisis. The network analysis uses the Fruchterman-Reingold layout to find clusters in the network of indices at different thresholds. At a threshold of 0.6, before the crisis, financial indices corresponding to the Americas, Europe, and Asia-Pacific form separate clusters. On the other hand, during the crisis at the same threshold, the American and European indices combine together to form a strongly linked cluster while the Asia-Pacific indices form a separate weakly linked cluster. If the value of the threshold is further increased to 0.9 then the European indices (France, Germany, and the United Kingdom) are found to be the most tightly linked indices. The structure of the minimum spanning tree of financial indices is more starlike before the crisis and it changes to become more chainlike during the crisis. The average linkage hierarchical clustering algorithm is used to find a clearer cluster structure in the network of financial indices. The cophenetic correlation coefficients are calculated and found to increase significantly, which indicates that the hierarchy increases during the financial crisis. These results show that there is substantial change in the structure of the organization of financial indices during a financial crisis.

  14. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    PubMed

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  15. Spontaneous Symmetry Breaking in Interdependent Networked Game

    PubMed Central

    Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen

    2014-01-01

    Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method. PMID:24526076

  16. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  17. Extraversion and neuroticism relate to topological properties of resting-state brain networks.

    PubMed

    Gao, Qing; Xu, Qiang; Duan, Xujun; Liao, Wei; Ding, Jurong; Zhang, Zhiqiang; Li, Yuan; Lu, Guangming; Chen, Huafu

    2013-01-01

    With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here, we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e., betweenness centrality (BC), was positively associated with neuroticism scores in the right precentral gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG), indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  18. Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction.

    PubMed

    Pires, J C M; Souza, A; Pavão, H G; Martins, F G

    2014-09-01

    The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.

  19. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network

    NASA Astrophysics Data System (ADS)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.

    2018-04-01

    Headwater stream networks expand and contract in response to changes in stream discharge. The changes in the extent of the stream network are also controlled by geologic or geomorphic setting - some reaches go dry even under relatively wet conditions, other reaches remain flowing under relatively dry conditions. While such patterns are well recognized, we currently lack tools to predict the extent of the stream network and the times and locations where the network is dry within large river networks. Here, we develop a perceptual model of the river corridor in a headwater mountainous catchment, translate this into a reduced-complexity mechanistic model, and implement the model to examine connectivity and network extent over an entire water year. Our model agreed reasonably well with our observations, showing that the extent and connectivity of the river network was most sensitive to hydrologic forcing under the lowest discharges (Qgauge < 1 L s-1), that at intermediate discharges (1 L s-1 < Qgauge < 10 L s-1) the extent of the network changed dramatically with changes in discharge, and that under wet conditions (Qgauge > 10 L s-1) the extent of the network was relatively insensitive to hydrologic forcing and was instead determined by the network topology. We do not expect that the specific thresholds observed in this study would be transferable to other catchments with different geology, topology, or hydrologic forcing. However, we expect that the general pattern should be robust: the dominant controls will shift from hydrologic forcing to geologic setting as discharge increases. Furthermore, our method is readily transferable as the model can be applied with minimal data requirements (a single stream gauge, a digital terrain model, and estimates of hydrogeologic properties) to estimate flow duration or connectivity along the river corridor in unstudied catchments. As the available information increases, the model could be better calibrated to match site-specific observations of network extent, locations of dry reaches, or solute break through curves as demonstrated in this study. Based on the low initial data requirements and ability to later tune the model to a specific site, we suggest example applications of this parsimonious model that may prove useful to both researchers and managers.

  20. Improvement of the SEP protocol based on community structure of node degree

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  1. Spin switches for compact implementation of neuron and synapse

    NASA Astrophysics Data System (ADS)

    Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo

    2014-06-01

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.

  2. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    PubMed

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  3. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    PubMed Central

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  4. Modeling of knowledge transmission by considering the level of forgetfulness in complex networks

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Han, Shui-hua; Jin, Zhen

    2016-06-01

    In this study, we establish a general model by considering the level of forgetfulness during knowledge transmission in complex networks, where the level of forgetfulness depends mainly on the number in a crowd who possess knowledge, while the saturated incidence is also considered. In theory, we analyze the stability of the equilibrium points and the transmission threshold R0 is also given. If R0 > 1, then knowledge can ​be transmitted, but if not, it will become completely extinct. In addition, we performed some numerical simulations to verify the reasonability of the theoretical analysis. The results of the simulations also suggest ​that the proportion of the crowd with knowledge will be increased under a better cultural atmosphere.

  5. Modeling epidemic spread with awareness and heterogeneous transmission rates in networks.

    PubMed

    Shang, Yilun

    2013-06-01

    During an epidemic outbreak in a human population, susceptibility to infection can be reduced by raising awareness of the disease. In this paper, we investigate the effects of three forms of awareness (i.e., contact, local, and global) on the spread of a disease in a random network. Connectivity-correlated transmission rates are assumed. By using the mean-field theory and numerical simulation, we show that both local and contact awareness can raise the epidemic thresholds while the global awareness cannot, which mirrors the recent results of Wu et al. The obtained results point out that individual behaviors in the presence of an infectious disease has a great influence on the epidemic dynamics. Our method enriches mean-field analysis in epidemic models.

  6. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  7. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  8. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.

    PubMed

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-21

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  9. Epidemic spreading between two coupled subpopulations with inner structures

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Tang, Ming; Gu, Changgui; Xu, Jinshan

    2017-10-01

    The structure of underlying contact network and the mobility of agents are two decisive factors for epidemic spreading in reality. Here, we study a model consisting of two coupled subpopulations with intra-structures that emphasizes both the contact structure and the recurrent mobility pattern of individuals simultaneously. We show that the coupling of the two subpopulations (via interconnections between them and round trips of individuals) makes the epidemic threshold in each subnetwork to be the same. Moreover, we find that the interconnection probability between two subpopulations and the travel rate are important factors for spreading dynamics. In particular, as a function of interconnection probability, the epidemic threshold in each subpopulation decreases monotonously, which enhances the risks of an epidemic. While the epidemic threshold displays a non-monotonic variation as travel rate increases. Moreover, the asymptotic infected density as a function of travel rate in each subpopulation behaves differently depending on the interconnection probability.

  10. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    PubMed

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  11. Ponzi scheme diffusion in complex networks

    NASA Astrophysics Data System (ADS)

    Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue

    2017-08-01

    Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.

  12. The formation of continuous opinion dynamics based on a gambling mechanism and its sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yueying; Alexandre Wang, Qiuping; Li, Wei; Cai, Xu

    2017-09-01

    The formation of continuous opinion dynamics is investigated based on a virtual gambling mechanism where agents fight for a limited resource. We propose a model with agents holding opinions between -1 and 1. Agents are segregated into two cliques according to the sign of their opinions. Local communication happens only when the opinion distance between corresponding agents is no larger than a pre-defined confidence threshold. Theoretical analysis regarding special cases provides a deep understanding of the roles of both the resource allocation parameter and confidence threshold in the formation of opinion dynamics. For a sparse network, the evolution of opinion dynamics is negligible in the region of low confidence threshold when the mindless agents are absent. Numerical results also imply that, in the presence of economic agents, high confidence threshold is required for apparent clustering of agents in opinion. Moreover, a consensus state is generated only when the following three conditions are satisfied simultaneously: mindless agents are absent, the resource is concentrated in one clique, and confidence threshold tends to a critical value(=1.25+2/ka ; k_a>8/3 , the average number of friends of individual agents). For fixed a confidence threshold and resource allocation parameter, the most chaotic steady state of the dynamics happens when the fraction of mindless agents is about 0.7. It is also demonstrated that economic agents are more likely to win at gambling, compared to mindless ones. Finally, the importance of three involved parameters in establishing the uncertainty of model response is quantified in terms of Latin hypercube sampling-based sensitivity analysis.

  13. Electrical characteristics of silicon percolating nanonet-based field effect transistors in the presence of dispersion

    NASA Astrophysics Data System (ADS)

    Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.

    2018-05-01

    We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.

  14. The impact of vaccine failure rate on epidemic dynamics in responsive networks.

    PubMed

    Liang, Yu-Hao; Juang, Jonq

    2015-04-01

    An SIS model based on the microscopic Markov-chain approximation is considered in this paper. It is assumed that the individual vaccination behavior depends on the contact awareness, local and global information of an epidemic. To better simulate the real situation, the vaccine failure rate is also taken into consideration. Our main conclusions are given in the following. First, we show that if the vaccine failure rate α is zero, then the epidemic eventually dies out regardless of what the network structure is or how large the effective spreading rate and the immunization response rates of an epidemic are. Second, we show that for any positive α, there exists a positive epidemic threshold depending on an adjusted network structure, which is only determined by the structure of the original network, the positive vaccine failure rate and the immunization response rate for contact awareness. Moreover, the epidemic threshold increases with respect to the strength of the immunization response rate for contact awareness. Finally, if the vaccine failure rate and the immunization response rate for contact awareness are positive, then there exists a critical vaccine failure rate αc > 0 so that the disease free equilibrium (DFE) is stable (resp., unstable) if α < αc (resp., α > αc). Numerical simulations to see the effectiveness of our theoretical results are also provided.

  15. Neural Network Technique for Continous Transition from Ocean to Coastal Retrackers

    NASA Astrophysics Data System (ADS)

    Hazrina Idris, Nurul; Deng, Xiaoli; Hawani Idris, Nurul

    2017-04-01

    This paper presents the development of neural network for continuous transition of altimeter sea surface heights when switching from ocean to coastal waveform retrackers. In attempting to produce precise coastal sea level anomaly (SLA) via retracking waveforms, issue arose when employing multiple retracking algorithms (i.e. MLE-4, sub-waveform and threshold). The existence of relative offset between those retrackers creates 'jump' in the retracked SLA profiles. In this study, the offset between retrackers is minimized using multi-layer feed forward neural network technique. The technique reduces the offset values by modelling the complicated functions of those retracked SLAs. The technique is tested over the region of the Great Barrier Reef (GBR), Australia. The validation with Townsville and Bundaberg tide gauges shows that the threshold retracker achieves temporal correlations (r) of 0.84 and 0.75, respectively, and root mean square (RMS) error is 16 cm for both stations, indicating that the retracker produces more accurate SLAs than those of two retrackers. Meanwhile, values of r (RMS error) for MLE-4 is only 0.79 (18 cm) and 0.71 (16 cm), respectively, and for sub-waveform is 0.82 (16 cm) and 0.67 (16 cm), respectively. Therefore, with the neural network, retracked SLAs from MLE-4 and sub-waveform are aligned to those of the threshold retracker. The performance of neural network is compared with the normal procedure of offset removal, which is based on the mean of SLA differences (mean method). The performance is assessed by computing the standard deviation of difference (STD) between the SLAs above a referenced ellipsoid and the geoidal height, and the improvement of percentage (IMP). The results indicate that the neural network provides improvement in SLA precision in all 12 cases, while the mean method provides improvement in 10 out of 12 cases and deterioration is seen in two cases. In terms of STD and IMP, neural network reduces the offset better than those of the mean method. The IMPs with neural network reaches up to 67% for Jason-1 and 73% for Jason-2, meanwhile with mean method the IMPs only reaches up to 28% and 46%, respectively. In conclusion, the neural network technique is efficient to reduce the offset among retrackers by handling the linear and nonlinear relationship between retrackers, thus providing seamless transition from the open ocean to the coast, and vice versa. Studies in currently on-going are to consider other geophysical parameters, such as significant wave height that might be related to the variation of the offset, in the neural network.

  16. Complex network analysis of conventional and Islamic stock market in Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmadhani, Andri; Purqon, Acep; Kim, Sehyun; Kim, Soo Yong

    2015-09-01

    The rising popularity of Islamic financial products in Indonesia has become a new interesting topic to be analyzed recently. We introduce a complex network analysis to compare conventional and Islamic stock market in Indonesia. Additionally, Random Matrix Theory (RMT) has been added as a part of reference to expand the analysis of the result. Both of them are based on the cross correlation matrix of logarithmic price returns. Closing price data, which is taken from June 2011 to July 2012, is used to construct logarithmic price returns. We also introduce the threshold value using winner-take-all approach to obtain scale-free property of the network. This means that the nodes of the network that has a cross correlation coefficient below the threshold value should not be connected with an edge. As a result, we obtain 0.5 as the threshold value for all of the stock market. From the RMT analysis, we found that there is only market wide effect on both stock market and no clustering effect has been found yet. From the network analysis, both of stock market networks are dominated by the mining sector. The length of time series of closing price data must be expanded to get more valuable results, even different behaviors of the system.

  17. Robustness and Vulnerability of Networks with Dynamical Dependency Groups.

    PubMed

    Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi

    2016-11-28

    The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.

  18. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less

  19. Predicting the performance of local seismic networks using Matlab and Google Earth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul

    2009-11-01

    We have used Matlab and Google Earth to construct a prototype application for modeling the performance of local seismic networks for monitoring small, contained explosions. Published equations based on refraction experiments provide estimates of peak ground velocities as a function of event distance and charge weight. Matlab routines implement these relations to calculate the amplitudes across a network of stations from sources distributed over a geographic grid. The amplitudes are then compared to ambient noise levels at the stations, and scaled to determine the smallest yield that could be detected at each source location by a specified minimum number ofmore » stations. We use Google Earth as the primary user interface, both for positioning the stations of a hypothetical local network, and for displaying the resulting detection threshold contours.« less

  20. Worm epidemics in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Nekovee, Maziar

    2007-06-01

    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.

  1. The Impact of Heterogeneity on Threshold-Limited Social Contagion, and on Crowd Decision-Making

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis Dimitrios

    Recent global events and their poor predictability are often attributed to the complexity of the world event dynamics. A key factor generating the turbulence is human diversity. Here, we study the impact of heterogeneity of individuals on opinion formation and emergence of global biases. In the case of opinion formation, we focus on the heterogeneity of individuals' susceptibility to new ideas. In the case of global biases, we focus on the aggregated heterogeneity of individuals in a country. First, to capture the complex nature of social influencing we use a simple but classic model of contagion spreading in complex social systems, namely the threshold model. We investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We show that individuals' heterogeneity of susceptibility governs the dynamics, resulting in different sizes of initiators needed for consensus. Furthermore, given the impact of heterogeneity on the cascade dynamics, we investigate selection strategies for accelerating consensus. To this end, we introduce two new selection strategies for Influence Maximization. One of them focuses on finding the balance between targeting nodes which have high resistance to adoptions versus nodes positioned in central spots in networks. The second strategy focuses on the combination of nodes for reaching consensus, by targeting nodes which increase the group's influence. Our strategies outperform other existing strategies regardless of the susceptibility diversity and network degree assortativity. Finally, we study the aggregated biases of humans in a global setting. The emergence of technology and globalization gives raise to the debate on whether the world moves towards becoming flat, a world where preferential attachment does not govern economic growth. By studying the data from a global lending platform we discover that geographical proximity and cultural affinity are highly negatively correlated with levels of flatness of the world. Furthermore, we investigate the robustness of the flatness of the world against sudden catastrophic national events such as political disruptions, by removing countries (nodes) or connections (edges) between them.

  2. Financial states of world financial and commodities markets around sovereign debt crisis

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Lee, Jae Woo

    2017-11-01

    We applied a threshold method to construct a complex network from cross-correlations coefficients of 46 daily time series comprised of 23 global indices and 23 commodity futures from 2010 - 2014. We identify financial states of both global indices and commodity futures based on the change of the network structure. The trend of the average correlation is decreasing except sharp peak during crises during the study period. The threshold networks are generated at a threshold value of θ = 0.1 and the change of degrees of each node over time is used to identify the financial state for each index. We observe that commodity futures, such as EU CO2 emission, live cattle, natural gas as well as the financial indices of Jakarta and Indonesia stock exchange (JKSE) and Kuala Lumpur stock exchange (KLSE) change states frequently. By the average change in links we identify the indices which are more reactive to crises.

  3. Topological dimension tunes activity patterns in hierarchical modular networks

    NASA Astrophysics Data System (ADS)

    Safari, Ali; Moretti, Paolo; Muñoz, Miguel A.

    2017-11-01

    Connectivity patterns of relevance in neuroscience and systems biology can be encoded in hierarchical modular networks (HMNs). Recent studies highlight the role of hierarchical modular organization in shaping brain activity patterns, providing an excellent substrate to promote both segregation and integration of neural information. Here, we propose an extensive analysis of the critical spreading rate (or ‘epidemic’ threshold)—separating a phase with endemic persistent activity from one in which activity ceases—on diverse HMNs. By employing analytical and computational techniques we determine the nature of such a threshold and scrutinize how it depends on general structural features of the underlying HMN. We critically discuss the extent to which current graph-spectral methods can be applied to predict the onset of spreading in HMNs and, most importantly, we elucidate the role played by the network topological dimension as a relevant and unifying structural parameter, controlling the epidemic threshold.

  4. Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators

    PubMed Central

    Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei

    2016-01-01

    Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284

  5. An Interaction Library for the FcεRI Signaling Network

    DOE PAGES

    Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.; ...

    2014-04-15

    Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less

  6. An Interaction Library for the FcεRI Signaling Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.

    Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less

  7. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.

    PubMed

    Hahn, Philip J; McIntyre, Cameron C

    2010-06-01

    Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson's disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit in vivo recordings from parkinsonian monkeys, and evaluated its response to STN DBS. The network model was created with synaptically connected single compartment biophysical models of STN and pallidal neurons, and stochastically defined inputs driven by cortical beta rhythms. A least mean square error training algorithm was developed to parameterize network connections and minimize error when compared to experimental spike and burst rates in the parkinsonian condition. The output of the trained network was then compared to experimental data not used in the training process. We found that reducing the influence of the cortical beta input on the model generated activity that agreed well with recordings from normal monkeys. Further, during STN DBS in the parkinsonian condition the simulations reproduced the reduction in GPi bursting found in existing experimental data. The model also provided the opportunity to greatly expand analysis of GPi bursting activity, generating three major predictions. First, its reduction was proportional to the volume of STN activated by DBS. Second, GPi bursting decreased in a stimulation frequency dependent manner, saturating at values consistent with clinically therapeutic DBS. And third, ablating STN neurons, reported to generate similar therapeutic outcomes as STN DBS, also reduced GPi bursting. Our theoretical analysis of stimulation induced network activity suggests that regularization of GPi firing is dependent on the volume of STN tissue activated and a threshold level of burst reduction may be necessary for therapeutic effect.

  8. Modeling and analyzing cascading dynamics of the Internet based on local congestion information

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Nie, Jianlong; Zhu, Zhiliang; Yu, Hai; Xue, Yang

    2018-06-01

    Cascading failure has already become one of the vital issues in network science. By considering realistic network operational settings, we propose the congestion function to represent the congested extent of node and construct a local congestion-aware routing strategy with a tunable parameter. We investigate the cascading failures on the Internet triggered by deliberate attacks. Simulation results show that the tunable parameter has an optimal value that makes the network achieve a maximum level of robustness. The robustness of the network has a positive correlation with tolerance parameter, but it has a negative correlation with the packets generation rate. In addition, there exists a threshold of the attacking proportion of nodes that makes the network achieve the lowest robustness. Moreover, by introducing the concept of time delay for information transmission on the Internet, we found that an increase of the time delay will decrease the robustness of the network rapidly. The findings of the paper will be useful for enhancing the robustness of the Internet in the future.

  9. Effect of link oriented self-healing on resilience of networks

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2016-08-01

    Many real, complex systems, such as the human brain and skin with their biological networks or intelligent material systems consisting of composite functional liquids, exhibit a noticeable capability of self-healing. Here, we study a network model with arbitrary degree distributions possessing natural link oriented recovery mechanisms, whereby a failed link can be recovered if its two end nodes maintain a sufficient proportion of functional links. These mechanisms are pertinent for many spontaneous healing and manual repair phenomena, interpolating smoothly between complete healing and no healing scenarios. We show that the self-healing strategies have profound impact on resilience of homogeneous and heterogeneous networks employing a percolation threshold, fraction of giant cluster, and link robustness index. The self-healing effect induces distinct resilience characteristics for scale-free networks under random failures and intentional attacks, and a resilience crossover has been observed at certain level of self-healing. Our work highlights the significance of understanding the competition between healing and collapsing in the resilience of complex networks.

  10. Rainfall thresholds and susceptibility mapping for shallow landslides and debris flows in Scotland

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil

    2017-04-01

    Shallow translational slides and debris flows (hereafter 'landslides') pose a significant threat to life and cause significant annual economic impacts (e.g. by damage and disruption of infrastructure). The focus of this research is on the definition of objective rainfall thresholds using a weather radar system and landslide susceptibility mapping. In the study area Scotland, an inventory of 75 known landslides was used for the period 2003 to 2016. First, the effect of using different rain records (i.e. time series length) on two threshold selection techniques in receiver operating characteristic (ROC) analysis was evaluated. The results show that thresholds selected by 'Threat Score' (minimising false alarms) are sensitive to rain record length and which is not routinely considered, whereas thresholds selected using 'Optimal Point' (minimising failed alarms) are not; therefore these may be suited to establishing lower limit thresholds and be of interest to those developing early warning systems. Robust thresholds are found for combinations of normalised rain duration and accumulation at 1 and 12 day's antecedence respectively; these are normalised using the rainy-day normal and an equivalent measure for rain intensity. This research indicates that, in Scotland, rain accumulation provides a better indicator than rain intensity and that landslides may be generated by threshold conditions lower than previously thought. Second, a landslide susceptibility map is constructed using a cross-validated logistic regression model. A novel element of the approach is that landslide susceptibility is calculated for individual hillslope sections. The developed thresholds and susceptibility map are combined to assess potential hazards and impacts posed to the national highway network in Scotland.

  11. A network analysis of the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang

    2009-07-01

    In many practical important cases, a massive dataset can be represented as a very large network with certain attributes associated with its vertices and edges. Stock markets generate huge amounts of data, which can be use for constructing the network reflecting the market’s behavior. In this paper, we use a threshold method to construct China’s stock correlation network and then study the network’s structural properties and topological stability. We conduct a statistical analysis of this network and show that it follows a power-law model. We also detect components, cliques and independent sets in this network. These analyses allows one to apply a new data mining technique of classifying financial instruments based on stock price data, which provides a deeper insight into the internal structure of the stock market. Moreover, we test the topological stability of this network and find that it displays a topological robustness against random vertex failures, but it is also fragile to intentional attacks. Such a network stability property would be also useful for portfolio investment and risk management.

  12. Information spreading in complex networks with participation of independent spreaders

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Li, Weihua; Guo, Quantong; Zheng, Xiaoqi; Zheng, Zhiming; Gao, Chao; Tang, Shaoting

    2018-02-01

    Information diffusion dynamics in complex networks is often modeled as a contagion process among neighbors which is analogous to epidemic diffusion. The attention of previous literature is mainly focused on epidemic diffusion within one network, which, however neglects the possible interactions between nodes beyond the underlying network. The disease can be transmitted to other nodes by other means without following the links in the focal network. Here we account for this phenomenon by introducing the independent spreaders in a susceptible-infectious-recovered contagion process. We derive the critical epidemic thresholds on Erdős-Rényi and scale-free networks as a function of infectious rate, recovery rate and the activeness of independent spreaders. We also present simulation results on ER and SF networks, as well as on a real-world email network. The result shows that the extent to which a disease can infect might be more far-reaching, than we can explain in terms of link contagion only. Besides, these results also help to explain how activeness of independent spreaders can affect the diffusion process, which can be used to explore many other dynamical processes.

  13. Web malware spread modelling and optimal control strategies

    NASA Astrophysics Data System (ADS)

    Liu, Wanping; Zhong, Shouming

    2017-02-01

    The popularity of the Web improves the growth of web threats. Formulating mathematical models for accurate prediction of malicious propagation over networks is of great importance. The aim of this paper is to understand the propagation mechanisms of web malware and the impact of human intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a new differential epidemic model which extends the traditional SIR model by adding another delitescent compartment is proposed to address the spreading behavior of malicious links over networks. The spreading threshold of the model system is calculated, and the dynamics of the model is theoretically analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, aiming to keep the total economic loss of security investment and infection loss as low as possible. The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, numerical simulations show that the spread of malware links can be controlled effectively with proper control strategy of specific parameter choice.

  14. Web malware spread modelling and optimal control strategies.

    PubMed

    Liu, Wanping; Zhong, Shouming

    2017-02-10

    The popularity of the Web improves the growth of web threats. Formulating mathematical models for accurate prediction of malicious propagation over networks is of great importance. The aim of this paper is to understand the propagation mechanisms of web malware and the impact of human intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a new differential epidemic model which extends the traditional SIR model by adding another delitescent compartment is proposed to address the spreading behavior of malicious links over networks. The spreading threshold of the model system is calculated, and the dynamics of the model is theoretically analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, aiming to keep the total economic loss of security investment and infection loss as low as possible. The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, numerical simulations show that the spread of malware links can be controlled effectively with proper control strategy of specific parameter choice.

  15. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Belik, Vitaly; Geisel, Theo; Brockmann, Dirk

    2011-08-01

    We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.

  16. Web malware spread modelling and optimal control strategies

    PubMed Central

    Liu, Wanping; Zhong, Shouming

    2017-01-01

    The popularity of the Web improves the growth of web threats. Formulating mathematical models for accurate prediction of malicious propagation over networks is of great importance. The aim of this paper is to understand the propagation mechanisms of web malware and the impact of human intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a new differential epidemic model which extends the traditional SIR model by adding another delitescent compartment is proposed to address the spreading behavior of malicious links over networks. The spreading threshold of the model system is calculated, and the dynamics of the model is theoretically analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, aiming to keep the total economic loss of security investment and infection loss as low as possible. The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, numerical simulations show that the spread of malware links can be controlled effectively with proper control strategy of specific parameter choice. PMID:28186203

  17. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.

    PubMed

    Golas, Sara Bersche; Shibahara, Takuma; Agboola, Stephen; Otaki, Hiroko; Sato, Jumpei; Nakae, Tatsuya; Hisamitsu, Toru; Kojima, Go; Felsted, Jennifer; Kakarmath, Sujay; Kvedar, Joseph; Jethwani, Kamal

    2018-06-22

    Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission. We used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system. Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital. Deep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.

  18. Epidemic transmission on random mobile network with diverse infection periods

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun

    2015-05-01

    The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.

  19. Synchronization in complex oscillator networks and smart grids.

    PubMed

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-05

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  20. Hierarchical coefficient of a multifractal based network

    NASA Astrophysics Data System (ADS)

    Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto

    2014-02-01

    The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.

  1. Prediction of Ras-effector interactions using position energy matrices.

    PubMed

    Kiel, Christina; Serrano, Luis

    2007-09-01

    One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.

  2. On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading.

    PubMed

    Sahneh, Faryad Darabi; Chowdhury, Fahmida N; Scoglio, Caterina M

    2012-01-01

    The spontaneous behavioral responses of individuals to the progress of an epidemic are recognized to have a significant impact on how the infection spreads. One observation is that, even if the infection strength is larger than the classical epidemic threshold, the initially growing infection can diminish as the result of preventive behavioral patterns adopted by the individuals. In order to investigate such dynamics of the epidemic spreading, we use a simple behavioral model coupled with the individual-based SIS epidemic model where susceptible individuals adopt a preventive behavior when sensing infection. We show that, given any infection strength and contact topology, there exists a region in the behavior-related parameter space such that infection cannot survive in long run and is completely contained. Several simulation results, including a spreading scenario in a realistic contact network from a rural district in the State of Kansas, are presented to support our analytical arguments.

  3. The Threshold Shortest Path Interdiction Problem for Critical Infrastructure Resilience Analysis

    DTIC Science & Technology

    2017-09-01

    being pushed over the minimum designated threshold. 1.4 Motivation A simple setting to motivate this research is the “30 minutes or it’s free” guarantee...parallel network structure in Fig. 4.4 is simple in design , yet shows a relatively high resilience when compared to the other networks in general. The high...United States Naval Academy, 2002 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH

  4. Zealotry effects on opinion dynamics in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Klamser, Pascal P.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.

    2017-11-01

    The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that the spreading of the zealots' opinion in the adaptive voter model is strongly dependent on the link rewiring probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a complete dominance of the zealots' opinion, there are two possible strategies for the remaining nodes: adjusting the probability of rewiring and/or the number of connections with other nodes, respectively.

  5. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    PubMed Central

    Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567

  6. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    USGS Publications Warehouse

    Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  7. Unraveling the disease consequences and mechanisms of modular structure in animal social networks.

    PubMed

    Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta

    2017-04-18

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  8. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  9. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  10. Learning coefficient of generalization error in Bayesian estimation and vandermonde matrix-type singularity.

    PubMed

    Aoyagi, Miki; Nagata, Kenji

    2012-06-01

    The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.

  11. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  12. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.

    PubMed

    Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai

    2018-05-01

    Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A theory of cerebellar cortex and adaptive motor control based on two types of universal function approximation capability.

    PubMed

    Fujita, Masahiko

    2016-03-01

    Lesions of the cerebellum result in large errors in movements. The cerebellum adaptively controls the strength and timing of motor command signals depending on the internal and external environments of movements. The present theory describes how the cerebellar cortex can control signals for accurate and timed movements. A model network of the cerebellar Golgi and granule cells is shown to be equivalent to a multiple-input (from mossy fibers) hierarchical neural network with a single hidden layer of threshold units (granule cells) that receive a common recurrent inhibition (from a Golgi cell). The weighted sum of the hidden unit signals (Purkinje cell output) is theoretically analyzed regarding the capability of the network to perform two types of universal function approximation. The hidden units begin firing as the excitatory inputs exceed the recurrent inhibition. This simple threshold feature leads to the first approximation theory, and the network final output can be any continuous function of the multiple inputs. When the input is constant, this output becomes stationary. However, when the recurrent unit activity is triggered to decrease or the recurrent inhibition is triggered to increase through a certain mechanism (metabotropic modulation or extrasynaptic spillover), the network can generate any continuous signals for a prolonged period of change in the activity of recurrent signals, as the second approximation theory shows. By incorporating the cerebellar capability of two such types of approximations to a motor system, in which learning proceeds through repeated movement trials with accompanying corrections, accurate and timed responses for reaching the target can be adaptively acquired. Simple models of motor control can solve the motor error vs. sensory error problem, as well as the structural aspects of credit (or error) assignment problem. Two physiological experiments are proposed for examining the delay and trace conditioning of eyelid responses, as well as saccade adaptation, to investigate this novel idea of cerebellar processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Integrating cognitive and peripheral factors in predicting hearing-aid processing effectiveness

    PubMed Central

    Kates, James M.; Arehart, Kathryn H.; Souza, Pamela E.

    2013-01-01

    Individual factors beyond the audiogram, such as age and cognitive abilities, can influence speech intelligibility and speech quality judgments. This paper develops a neural network framework for combining multiple subject factors into a single model that predicts speech intelligibility and quality for a nonlinear hearing-aid processing strategy. The nonlinear processing approach used in the paper is frequency compression, which is intended to improve the audibility of high-frequency speech sounds by shifting them to lower frequency regions where listeners with high-frequency loss have better hearing thresholds. An ensemble averaging approach is used for the neural network to avoid the problems associated with overfitting. Models are developed for two subject groups, one having nearly normal hearing and the other mild-to-moderate sloping losses. PMID:25669257

  15. A tradeoff between the losses caused by computer viruses and the risk of the manpower shortage

    PubMed Central

    Bi, Jichao; Yang, Lu-Xing; Wu, Yingbo; Tang, Yuan Yan

    2018-01-01

    This article addresses the tradeoff between the losses caused by a new virus and the size of the team for developing an antivirus against the virus. First, an individual-level virus spreading model is proposed to capture the spreading process of the virus before the appearance of its natural enemy. On this basis, the tradeoff problem is modeled as a discrete optimization problem. Next, the influences of different factors, including the infection force, the infection function, the available manpower, the alarm threshold, the antivirus development effort and the network topology, on the optimal team size are examined through computer simulations. This work takes the first step toward the tradeoff problem, and the findings are instructive to the decision makers of network security companies. PMID:29370222

  16. A tradeoff between the losses caused by computer viruses and the risk of the manpower shortage.

    PubMed

    Bi, Jichao; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan

    2018-01-01

    This article addresses the tradeoff between the losses caused by a new virus and the size of the team for developing an antivirus against the virus. First, an individual-level virus spreading model is proposed to capture the spreading process of the virus before the appearance of its natural enemy. On this basis, the tradeoff problem is modeled as a discrete optimization problem. Next, the influences of different factors, including the infection force, the infection function, the available manpower, the alarm threshold, the antivirus development effort and the network topology, on the optimal team size are examined through computer simulations. This work takes the first step toward the tradeoff problem, and the findings are instructive to the decision makers of network security companies.

  17. Étude statistique et dynamique de la propagation d'épidémies dans un réseau de petit mondeStatistical and dynamical study of the epidemics propagation in a small world network

    NASA Astrophysics Data System (ADS)

    Zekri, Nouredine; Clerc, Jean Pierre

    We study numerically in this work the statistical and dynamical properties of the clusters in a one dimensional small world model. The parameters chosen correspond to a realistic network of children of school age where a disease like measles can propagate. Extensive results on the statistical behavior of the clusters around the percolation threshold, as well as the evoltion with time, are discussed. To cite this article: N. Zekri, J.P. Clerc, C. R. Physique 3 (2002) 741-747.

  18. Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Vilgis, Thomas A.

    2012-12-01

    Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel. Thus, in qualitative agreement with observations, we find a softening of the mechanical response at large deformations, which is enhanced by growing temperature. Several observables as the non-affinity parameter A and the network rearrangement parameter V indicate the existence of a (temperature-dependent) threshold degree of deformation beyond which the quasi-elastic response of the model system turns over into plastic (ductile) one. The critical stretching when the affinity of the deformation is lost can be clearly located in terms of A and V as well as by analysis of the energy density of the system. The observed stress-strain relationship matches that of known experimental systems.

  19. Characterization of HIRF Susceptibility Threshold for a Prototype Implementation of an Onboard Data Network

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    An experiment was conducted to characterize the effects of HIRF-induced upsets on a prototype onboard data network. The experiment was conducted at the NASA Langley Research Center s High Intensity Radiation Field Laboratory and used a generic distributed system prototyping platform to realize the data network. This report presents the results of the hardware susceptibility threshold characterization which examined the dependence of measured susceptibility on factors like the frequency and modulation of the radiation, layout of the physical nodes and position of the nodes in the test chamber. The report also includes lessons learned during the development and execution of the experiment.

  20. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  1. Assessment of cortical bone fracture resistance curves by fusing artificial neural networks and linear regression.

    PubMed

    Vukicevic, Arso M; Jovicic, Gordana R; Jovicic, Milos N; Milicevic, Vladimir L; Filipovic, Nenad D

    2018-02-01

    Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R 2 = 0.82 vs. R 2 = 0.76) and Toughness threshold with ageing (R 2 = 0.73 vs. R 2 = 0.66).

  2. Spiking Neurons for Analysis of Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological neurons). These features enable the neurons to adapt their responses to high-rate inputs from sensors, and to adapt their firing thresholds to mitigate noise or effects of potential sensor failure. The mathematical derivation of the SVM starts from a prior model, known in the art as the point soma model, which captures all of the salient properties of neuronal response while keeping the computational cost low. The point-soma latency time is modified to be an exponentially decaying function of the strength of the applied potential. Choosing computational efficiency over biological fidelity, the dendrites surrounding a neuron are represented by simplified compartmental submodels and there are no dendritic spines. Updates to the dendritic potential, calcium-ion concentrations and conductances, and potassium-ion conductances are done by use of equations similar to those of the point soma. Diffusion processes in dendrites are modeled by averaging among nearest-neighbor compartments. Inputs to each of the dendritic compartments come from sensors. Alternatively or in addition, when an affected neuron is part of a pool, inputs can come from other spiking neurons. At present, SVM neural networks are implemented by computational simulation, using algorithms that encode the SVM and its submodels. However, it should be possible to implement these neural networks in hardware: The differential equations for the dendritic and cellular processes in the SVM model of spiking neurons map to equivalent circuits that can be implemented directly in analog very-large-scale integrated (VLSI) circuits.

  3. Using deep recurrent neural network for direct beam solar irradiance cloud screening

    NASA Astrophysics Data System (ADS)

    Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei

    2017-09-01

    Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.

  4. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  5. Double Threshold Energy Detection Based Cooperative Spectrum Sensing for Cognitive Radio Networks with QoS Guarantee

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Yu, Hong; Zhang, Yongzhi

    2013-03-01

    Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.

  6. Rational modulation of neuronal processing with applied electric fields.

    PubMed

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  7. Intelligent model-based OPC

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Chih, M. H.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.

    2006-03-01

    Optical proximity correction is the technique of pre-distorting mask layouts so that the printed patterns are as close to the desired shapes as possible. For model-based optical proximity correction, a lithographic model to predict the edge position (contour) of patterns on the wafer after lithographic processing is needed. Generally, segmentation of edges is performed prior to the correction. Pattern edges are dissected into several small segments with corresponding target points. During the correction, the edges are moved back and forth from the initial drawn position, assisted by the lithographic model, to finally settle on the proper positions. When the correction converges, the intensity predicted by the model in every target points hits the model-specific threshold value. Several iterations are required to achieve the convergence and the computation time increases with the increase of the required iterations. An artificial neural network is an information-processing paradigm inspired by biological nervous systems, such as how the brain processes information. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. A neural network can be a powerful data-modeling tool that is able to capture and represent complex input/output relationships. The network can accurately predict the behavior of a system via the learning procedure. A radial basis function network, a variant of artificial neural network, is an efficient function approximator. In this paper, a radial basis function network was used to build a mapping from the segment characteristics to the edge shift from the drawn position. This network can provide a good initial guess for each segment that OPC has carried out. The good initial guess reduces the required iterations. Consequently, cycle time can be shortened effectively. The optimization of the radial basis function network for this system was practiced by genetic algorithm, which is an artificially intelligent optimization method with a high probability to obtain global optimization. From preliminary results, the required iterations were reduced from 5 to 2 for a simple dumbbell-shape layout.

  8. Extreme events and event size fluctuations in biased random walks on networks.

    PubMed

    Kishore, Vimal; Santhanam, M S; Amritkar, R E

    2012-05-01

    Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.

  9. How time delay and network design shape response patterns in biochemical negative feedback systems.

    PubMed

    Börsch, Anastasiya; Schaber, Jörg

    2016-08-24

    Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.

  10. Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity Alone

    PubMed Central

    Gerhard, Felipe; Kispersky, Tilman; Gutierrez, Gabrielle J.; Marder, Eve; Kramer, Mark; Eden, Uri

    2013-01-01

    Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually, these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work, we show that point process models of observed spike trains can guide inference of relative connectivity estimates that match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data. We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of neural populations. In general we show that advanced statistical models allow for the characterization of effective network structure, deciphering underlying network dynamics and estimating information-processing capabilities. PMID:23874181

  11. Image segmentation algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui

    2017-11-01

    A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.

  12. Boolean networks with veto functions

    NASA Astrophysics Data System (ADS)

    Ebadi, Haleh; Klemm, Konstantin

    2014-08-01

    Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., Proc. Natl. Acad. Sci. USA 105, 1913 (2008), 10.1073/pnas.0705088105], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Li et al., Proc. Natl. Acad. Sci. USA 101, 4781 (2004), 10.1073/pnas.0305937101; Davidich et al., PLoS ONE 3, e1672 (2008), 10.1371/journal.pone.0001672], no or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.

  13. Schemes for efficient transmission of encoded video streams on high-speed networks

    NASA Astrophysics Data System (ADS)

    Ramanathan, Srinivas; Vin, Harrick M.; Rangan, P. Venkat

    1994-04-01

    In this paper, we argue that significant performance benefits can accrue if integrated networks implement application-specific mechanisms that account for the diversities in media compression schemes. Towards this end, we propose a simple, yet effective, strategy called Frame Induced Packet Discarding (FIPD), in which, upon detection of loss of a threshold number (determined by an application's video encoding scheme) of packets belonging to a video frame, the network attempts to discard all the remaining packets of that frame. In order to analytically quantify the performance of FIPD so as to obtain fractional frame losses that can be guaranteed to video channels, we develop a finite state, discrete time markov chain model of the FIPD strategy. The fractional frame loss thus computed can serve as the criterion for admission control at the network. Performance evaluations demonstrate the utility of the FIPD strategy.

  14. Recruitment dynamics in adaptive social networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.

    2013-06-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).

  15. Recruitment dynamics in adaptive social networks.

    PubMed

    Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B

    2013-01-01

    We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).

  16. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons

    NASA Astrophysics Data System (ADS)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  17. Resolution of ranking hierarchies in directed networks.

    PubMed

    Letizia, Elisa; Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.

  18. Robust dynamics in minimal hybrid models of genetic networks

    PubMed Central

    Perkins, Theodore J.; Wilds, Roy; Glass, Leon

    2010-01-01

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast. PMID:20921006

  19. Resolution of ranking hierarchies in directed networks

    PubMed Central

    Barucca, Paolo; Lillo, Fabrizio

    2018-01-01

    Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278

  20. Robust dynamics in minimal hybrid models of genetic networks.

    PubMed

    Perkins, Theodore J; Wilds, Roy; Glass, Leon

    2010-11-13

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast.

Top