Face verification with balanced thresholds.
Yan, Shuicheng; Xu, Dong; Tang, Xiaoou
2007-01-01
The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.
Formulating face verification with semidefinite programming.
Yan, Shuicheng; Liu, Jianzhuang; Tang, Xiaoou; Huang, Thomas S
2007-11-01
This paper presents a unified solution to three unsolved problems existing in face verification with subspace learning techniques: selection of verification threshold, automatic determination of subspace dimension, and deducing feature fusing weights. In contrast to previous algorithms which search for the projection matrix directly, our new algorithm investigates a similarity metric matrix (SMM). With a certain verification threshold, this matrix is learned by a semidefinite programming approach, along with the constraints of the kindred pairs with similarity larger than the threshold, and inhomogeneous pairs with similarity smaller than the threshold. Then, the subspace dimension and the feature fusing weights are simultaneously inferred from the singular value decomposition of the derived SMM. In addition, the weighted and tensor extensions are proposed to further improve the algorithmic effectiveness and efficiency, respectively. Essentially, the verification is conducted within an affine subspace in this new algorithm and is, hence, called the affine subspace for verification (ASV). Extensive experiments show that the ASV can achieve encouraging face verification accuracy in comparison to other subspace algorithms, even without the need to explore any parameters.
Signature Verification Using N-tuple Learning Machine.
Maneechot, Thanin; Kitjaidure, Yuttana
2005-01-01
This research presents new algorithm for signature verification using N-tuple learning machine. The features are taken from handwritten signature on Digital Tablet (On-line). This research develops recognition algorithm using four features extraction, namely horizontal and vertical pen tip position(x-y position), pen tip pressure, and pen altitude angles. Verification uses N-tuple technique with Gaussian thresholding.
2016-10-01
comes when considering numerous scores and statistics during a preliminary evaluation of the applicability of the fuzzy- verification minimum coverage...The selection of thresholds with which to generate categorical-verification scores and statistics from the application of both traditional and...of statistically significant numbers of cases; the latter presents a challenge of limited application for assessment of the forecast models’ ability
A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events
NASA Astrophysics Data System (ADS)
Kholodovsky, V.
2017-12-01
Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Kiraz, Mehmet Sabir; Erdogan, Hakan; Savas, Erkay
2015-12-01
In this paper, we introduce a new biometric verification and template protection system which we call THRIVE. The system includes novel enrollment and authentication protocols based on threshold homomorphic encryption where a private key is shared between a user and a verifier. In the THRIVE system, only encrypted binary biometric templates are stored in a database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during authentication. Due to the underlying threshold homomorphic encryption scheme, a malicious database owner cannot perform full decryption on encrypted templates of the users in the database. In addition, security of the THRIVE system is enhanced using a two-factor authentication scheme involving user's private key and biometric data. Using simulation-based techniques, the proposed system is proven secure in the malicious model. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form, but needs to prove her identity by using biometrics. The system can be used with any biometric modality where a feature extraction method yields a fixed size binary template and a query template is verified when its Hamming distance to the database template is less than a threshold. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biometric templates on a desktop PC running with quad core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real-life applications.
Corrigan, Damion K; Salton, Neale A; Preston, Chris; Piletsky, Sergey
2010-09-01
Cleaning verification is a scientific and economic problem for the pharmaceutical industry. A large amount of potential manufacturing time is lost to the process of cleaning verification. This involves the analysis of residues on spoiled manufacturing equipment, with high-performance liquid chromatography (HPLC) being the predominantly employed analytical technique. The aim of this study was to develop a portable cleaning verification system for nelarabine using surface enhanced Raman spectroscopy (SERS). SERS was conducted using a portable Raman spectrometer and a commercially available SERS substrate to develop a rapid and portable cleaning verification system for nelarabine. Samples of standard solutions and swab extracts were deposited onto the SERS active surfaces, allowed to dry and then subjected to spectroscopic analysis. Nelarabine was amenable to analysis by SERS and the necessary levels of sensitivity were achievable. It is possible to use this technology for a semi-quantitative limits test. Replicate precision, however, was poor due to the heterogeneous drying pattern of nelarabine on the SERS active surface. Understanding and improving the drying process in order to produce a consistent SERS signal for quantitative analysis is desirable. This work shows the potential application of SERS for cleaning verification analysis. SERS may not replace HPLC as the definitive analytical technique, but it could be used in conjunction with HPLC so that swabbing is only carried out once the portable SERS equipment has demonstrated that the manufacturing equipment is below the threshold contamination level.
d'Errico, F; Chierici, A; Gattas-Sethi, M; Philippe, S; Goldston, R; Glaser, A
2018-04-25
In recent years, neutron detection with superheated emulsions has received renewed attention thanks to improved detector manufacturing and read-out techniques, and thanks to successful applications in warhead verification and special nuclear material (SNM) interdiction. Detectors are currently manufactured with methods allowing high uniformity of the drop sizes, which in turn allows the use of optical read-out techniques based on dynamic light scattering. Small detector cartridges arranged in 2D matrices are developed for the verification of a declared warhead without revealing its design. For this application, the enabling features of the emulsions are that bubbles formed at different times cannot be distinguished from each other, while the passive nature of the detectors avoids the susceptibility to electronic snooping and tampering. Large modules of emulsions are developed to detect the presence of shielded special nuclear materials hidden in cargo containers 'interrogated' with high energy X-rays. In this case, the enabling features of the emulsions are photon discrimination, a neutron detection threshold close to 3 MeV and a rate-insensitive read-out.
Aircraft electromagnetic compatibility
NASA Technical Reports Server (NTRS)
Clarke, Clifton A.; Larsen, William E.
1987-01-01
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.
Ullman, Karen L; Ning, Holly; Susil, Robert C; Ayele, Asna; Jocelyn, Lucresse; Havelos, Jan; Guion, Peter; Xie, Huchen; Li, Guang; Arora, Barbara C; Cannon, Angela; Miller, Robert W; Norman Coleman, C; Camphausen, Kevin; Ménard, Cynthia
2006-01-01
Background We sought to determine the intra- and inter-radiation therapist reproducibility of a previously established matching technique for daily verification and correction of isocenter position relative to intraprostatic fiducial markers (FM). Materials and methods With the patient in the treatment position, anterior-posterior and left lateral electronic images are acquired on an amorphous silicon flat panel electronic portal imaging device. After each portal image is acquired, the therapist manually translates and aligns the fiducial markers in the image to the marker contours on the digitally reconstructed radiograph. The distances between the planned and actual isocenter location is displayed. In order to determine the reproducibility of this technique, four therapists repeated and recorded this operation two separate times on 20 previously acquired portal image datasets from two patients. The data were analyzed to obtain the mean variability in the distances measured between and within observers. Results The mean and median intra-observer variability ranged from 0.4 to 0.7 mm and 0.3 to 0.6 mm respectively with a standard deviation of 0.4 to 1.0 mm. Inter-observer results were similar with a mean variability of 0.9 mm, a median of 0.6 mm, and a standard deviation of 0.7 mm. When using a 5 mm threshold, only 0.5% of treatments will undergo a table shift due to intra or inter-observer error, increasing to an error rate of 2.4% if this threshold were reduced to 3 mm. Conclusion We have found high reproducibility with a previously established method for daily verification and correction of isocenter position relative to prostatic fiducial markers using electronic portal imaging. PMID:16722575
NASA Astrophysics Data System (ADS)
Noufal, Manthala Padannayil; Abdullah, Kallikuzhiyil Kochunny; Niyas, Puzhakkal; Subha, Pallimanhayil Abdul Raheem
2017-12-01
Aim: This study evaluates the impacts of using different evaluation criteria on gamma pass rates in two commercially available QA methods employed for the verification of VMAT plans using different hypothetical planning target volumes (PTVs) and anatomical regions. Introduction: Volumetric modulated arc therapy (VMAT) is a widely accepted technique to deliver highly conformal treatment in a very efficient manner. As their level of complexity is high in comparison to intensity-modulated radiotherapy (IMRT), the implementation of stringent quality assurance (QA) before treatment delivery is of paramount importance. Material and Methods: Two sets of VMAT plans were generated using Eclipse planning systems, one with five different complex hypothetical three-dimensional PTVs and one including three anatomical regions. The verification of these plans was performed using a MatriXX ionization chamber array embedded inside a MultiCube phantom and a Varian EPID dosimetric system attached to a Clinac iX. The plans were evaluated based on the 3%/3 mm, 2%/2 mm, and 1%/1 mm global gamma criteria and with three low-dose threshold values (0%, 10%, and 20%). Results: The gamma pass rates were above 95% in all VMAT plans, when the 3%/3mm gamma criterion was used and no threshold was applied. In both systems, the pass rates decreased as the criteria become stricter. Higher pass rates were observed when no threshold was applied and they tended to decrease for 10% and 20% thresholds. Conclusion: The results confirm the suitability of the equipments used and the validity of the plans. The study also confirmed that the threshold settings greatly affect the gamma pass rates, especially for lower gamma criteria.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Thieberger, P.; Wegner, H. E.
1985-01-01
Single-Event Upset (SEU) response of a bipolar low-power Schottky-diode-clamped TTL static RAM has been observed using Br ions in the 100-240 MeV energy range and O ions in the 20-100 MeV range. These data complete the experimental verification of circuit-simulation SEU modeling for this device. The threshold for onset of SEU has been observed by the variation of energy, ion species and angle of incidence. The results obtained from the computer circuit-simulation modeling and experimental model verification demonstrate a viable methodology for modeling SEU in bipolar integrated circuits.
Detection capability of the IMS seismic network based on ambient seismic noise measurements
NASA Astrophysics Data System (ADS)
Gaebler, Peter J.; Ceranna, Lars
2016-04-01
All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.
Simulation verification techniques study
NASA Technical Reports Server (NTRS)
Schoonmaker, P. B.; Wenglinski, T. H.
1975-01-01
Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.
SU-F-J-32: Do We Need KV Imaging During CBCT Based Patient Set-Up for Lung Radiation Therapy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, A; Zhou, J; Prado, K
Purpose: To evaluate the role of 2D kilovoltage (kV) imaging to complement cone beam CT (CBCT) imaging in a shift threshold based image guided radiation therapy (IGRT) strategy for conventional lung radiotherapy. Methods: A retrospective study was conducted by analyzing IGRT couch shift trends for 15 patients that received lung radiation therapy to evaluate the benefit of performing orthogonal kV imaging prior to CBCT imaging. Herein, a shift threshold based IGRT protocol was applied, which would mandate additional CBCT verification if the applied patient shifts exceeded 3 mm to avoid intraobserver variability in CBCT registration and to confirm table shifts.more » For each patient, two IGRT strategies: kV + CBCT and CBCT alone, were compared and the recorded patient shifts were categorized into whether additional CBCT acquisition would have been mandated or not. The effectiveness of either strategy was gauged by the likelihood of needing additional CBCT imaging for accurate patient set-up. Results: The use of CBCT alone was 6 times more likely to require an additional CBCT than KV+CBCT, for a 3 mm shift threshold (88% vs 14%). The likelihood of additional CBCT verification generally increased with lower shift thresholds, and was significantly lower when kV+CBCT was used (7% with 5 mm shift threshold, 36% with 2 mm threshold), than with CBCT alone (61% with 5 mm shift threshold, 97% with 2 mm threshold). With CBCT alone, treatment time increased by 2.2 min and dose increased by 1.9 cGy per fraction on average due to additional CBCT with a 3mm shift threshold. Conclusion: The benefit of kV imaging to screen for gross misalignments led to more accurate CBCT based patient localization compared with using CBCT alone. The subsequently reduced need for additional CBCT verification will minimize treatment time and result in less overall patient imaging dose.« less
Property-driven functional verification technique for high-speed vision system-on-chip processor
NASA Astrophysics Data System (ADS)
Nshunguyimfura, Victor; Yang, Jie; Liu, Liyuan; Wu, Nanjian
2017-04-01
The implementation of functional verification in a fast, reliable, and effective manner is a challenging task in a vision chip verification process. The main reason for this challenge is the stepwise nature of existing functional verification techniques. This vision chip verification complexity is also related to the fact that in most vision chip design cycles, extensive efforts are focused on how to optimize chip metrics such as performance, power, and area. Design functional verification is not explicitly considered at an earlier stage at which the most sound decisions are made. In this paper, we propose a semi-automatic property-driven verification technique. The implementation of all verification components is based on design properties. We introduce a low-dimension property space between the specification space and the implementation space. The aim of this technique is to speed up the verification process for high-performance parallel processing vision chips. Our experimentation results show that the proposed technique can effectively improve the verification effort up to 20% for the complex vision chip design while reducing the simulation and debugging overheads.
NASA Astrophysics Data System (ADS)
Ament, F.; Weusthoff, T.; Arpagaus, M.; Rotach, M.
2009-04-01
The main aim of the WWRP Forecast Demonstration Project MAP D-PHASE is to demonstrate the performance of today's models to forecast heavy precipitation and flood events in the Alpine region. Therefore an end-to-end, real-time forecasting system was installed and operated during the D PHASE Operations Period from June to November 2007. Part of this system are 30 numerical weather prediction models (deterministic as well as ensemble systems) operated by weather services and research institutes, which issue alerts if predicted precipitation accumulations exceed critical thresholds. Additionally to the real-time alerts, all relevant model fields of these simulations are stored in a central data archive. This comprehensive data set allows a detailed assessment of today's quantitative precipitation forecast (QPF) performance in the Alpine region. We will present results of QPF verifications against Swiss radar and rain gauge data both from a qualitative point of view, in terms of alerts, as well as from a quantitative perspective, in terms of precipitation rate. Various influencing factors like lead time, accumulation time, selection of warning thresholds, or bias corrections will be discussed. Additional to traditional verifications of area average precipitation amounts, the performance of the models to predict the correct precipitation statistics without requiring a point-to-point match will be described by using modern Fuzzy verification techniques. Both analyses reveal significant advantages of deep convection resolving models compared to coarser models with parameterized convection. An intercomparison of the model forecasts themselves reveals a remarkably high variability between different models, and makes it worthwhile to evaluate the potential of a multi-model ensemble. Various multi-model ensemble strategies will be tested by combining D-PHASE models to virtual ensemble systems.
Wire Crimp Connectors Verification using Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2007-01-01
The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherpak, Amanda
Purpose: The Octavius 1000{sup SRS} detector was commissioned in December 2014 and is used routinely for verification of all SRS and SBRT plans. Results of verifications were analyzed to assess trends and limitations of the device and planning methods. Methods: Plans were delivered using a True Beam STx and results were evaluated using gamma analysis (95%, 3%/3mm) and absolute dose difference (5%). Verification results were analyzed based on several plan parameters including tumour volume, degree of modulation and prescribed dose. Results: During a 12 month period, a total of 124 patient plans were verified using the Octavius detector. Thirteen plansmore » failed the gamma criteria, while 7 plans failed based on the absolute dose difference. When binned according to degree of modulation, a significant correlation was found between MU/cGy and both mean dose difference (r=0.78, p<0.05) and gamma (r=−0.60, p<0.05). When data was binned according to tumour volume, the standard deviation of average gamma dropped from 2.2% – 3.7% for the volumes less than 30 cm{sup 3} to below 1% for volumes greater than 30 cm{sup 3}. Conclusions: The majority of plans and verification failures involved tumour volumes smaller than 30 cm{sup 3}. This was expected due to the nature of disease treated with SBRT and SRS techniques and did not increase rate of failure. Correlations found with MU/cGy indicate that as modulation increased, results deteriorated but not beyond the previously set thresholds.« less
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
NCEP Air Quality Forecast(AQF) Verification. NOAA/NWS/NCEP/EMC
average Select forecast four: Day 1 AOD skill for all thresholds Day 1 Time series for AOD GT 0 Day 2 AOD skill for all thresholds Day 2 Time series for AOD GT 0 Diurnal plots for AOD GT 0 Select statistic type
Verification of the databases EXFOR and ENDF
NASA Astrophysics Data System (ADS)
Berton, Gottfried; Damart, Guillaume; Cabellos, Oscar; Beauzamy, Bernard; Soppera, Nicolas; Bossant, Manuel
2017-09-01
The objective of this work is for the verification of large experimental (EXFOR) and evaluated nuclear reaction databases (JEFF, ENDF, JENDL, TENDL…). The work is applied to neutron reactions in EXFOR data, including threshold reactions, isomeric transitions, angular distributions and data in the resonance region of both isotopes and natural elements. Finally, a comparison of the resonance integrals compiled in EXFOR database with those derived from the evaluated libraries is also performed.
Monthly and seasonally verification of precipitation in Poland
NASA Astrophysics Data System (ADS)
Starosta, K.; Linkowska, J.
2009-04-01
The national meteorological service of Poland - the Institute of Meteorology and Water Management (IMWM) joined COSMO - The Consortium for Small Scale Modelling on July 2004. In Poland, the COSMO _PL model version 3.5 had run till June 2007. Since July 2007, the model version 4.0 has been running. The model runs in an operational mode at 14-km grid spacing, twice a day (00 UTC, 12 UTC). For scientific research also model with 7-km grid spacing is ran. Monthly and seasonally verification for the 24-hours (06 UTC - 06 UTC) accumulated precipitation is presented in this paper. The precipitation field of COSMO_LM had been verified against rain gauges network (308 points). The verification had been made for every month and all seasons from December 2007 to December 2008. The verification was made for three forecast days for selected thresholds: 0.5, 1, 2.5, 5, 10, 20, 25, 30 mm. Following indices from contingency table were calculated: FBI (bias), POD (probability of detection), PON (probability of detection of non event), FAR (False alarm rate), TSS (True sill statistic), HSS (Heidke skill score), ETS (Equitable skill score). Also percentile ranks and ROC-relative operating characteristic are presented. The ROC is a graph of the hit rate (Y-axis) against false alarm rate (X-axis) for different decision thresholds
Monthly and seasonally verification of precipitation in Poland
NASA Astrophysics Data System (ADS)
Starosta, K.; Linkowska, J.
2009-04-01
The national meteorological service of Poland - the Institute of Meteorology and Water Management (IMWM) joined COSMO - The Consortium for Small Scale Modelling on July 2004. In Poland, the COSMO _PL model version 3.5 had run till June 2007. Since July 2007, the model version 4.0 has been running. The model runs in an operational mode at 14-km grid spacing, twice a day (00 UTC, 12 UTC). For scientific research also model with 7-km grid spacing is ran. Monthly and seasonally verification for the 24-hours (06 UTC - 06 UTC) accumulated precipitation is presented in this paper. The precipitation field of COSMO_LM had been verified against rain gauges network (308 points). The verification had been made for every month and all seasons from December 2007 to December 2008. The verification was made for three forecast days for selected thresholds: 0.5, 1, 2.5, 5, 10, 20, 25, 30 mm. Following indices from contingency table were calculated: FBI (bias), POD (probability of detection), PON (probability of detection of non event), FAR (False alarm rate), TSS (True sill statistic), HSS (Heidke skill score), ETS (Equitable skill score). Also percentile ranks and ROC-relative operating characteristic are presented. The ROC is a graph of the hit rate (Y-axis) against false alarm rate (X-axis) for different decision thresholds.
Study of techniques for redundancy verification without disrupting systems, phases 1-3
NASA Technical Reports Server (NTRS)
1970-01-01
The problem of verifying the operational integrity of redundant equipment and the impact of a requirement for verification on such equipment are considered. Redundant circuits are examined and the characteristics which determine adaptability to verification are identified. Mutually exclusive and exhaustive categories for verification approaches are established. The range of applicability of these techniques is defined in terms of signal characteristics and redundancy features. Verification approaches are discussed and a methodology for the design of redundancy verification is developed. A case study is presented which involves the design of a verification system for a hypothetical communications system. Design criteria for redundant equipment are presented. Recommendations for the development of technological areas pertinent to the goal of increased verification capabilities are given.
The SeaHorn Verification Framework
NASA Technical Reports Server (NTRS)
Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.
2015-01-01
In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.
Adams, Elizabeth J.; Jordan, Thomas J.; Clark, Catharine H.; Nisbet, Andrew
2013-01-01
Quality assurance (QA) for intensity‐ and volumetric‐modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D‐ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D‐ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D‐ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D‐ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D‐ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions. PACS numbers: 87.55.Qr, 87.56.Fc PMID:24257288
Built-in-Test Verification Techniques
1987-02-01
report documents the results of the effort for the Rome Air Development Center Contract F30602-84-C-0021, BIT Verification Techniques. The work was...Richard Spillman of Sp.,llman Research Associates. The principal investigators were Mike Partridge and subsequently Jeffrey Albert. The contract was...two your effort to develop techniques for Built-In Test (BIT) verification. The objective of the contract was to develop specifications and technical
Dotan, Raffy
2012-06-01
The multisession maximal lactate steady-state (MLSS) test is the gold standard for anaerobic threshold (AnT) estimation. However, it is highly impractical, requires high fitness level, and suffers additional shortcomings. Existing single-session AnT-estimating tests are of compromised validity, reliability, and resolution. The presented reverse lactate threshold test (RLT) is a single-session, AnT-estimating test, aimed at avoiding the pitfalls of existing tests. It is based on the novel concept of identifying blood lactate's maximal appearance-disappearance equilibrium by approaching the AnT from higher, rather than from lower exercise intensities. Rowing, cycling, and running case data (4 recreational and competitive athletes, male and female, aged 17-39 y) are presented. Subjects performed the RLT test and, on a separate session, a single 30-min MLSS-type verification test at the RLT-determined intensity. The RLT and its MLSS verification exhibited exceptional agreement at 0.5% discrepancy or better. The RLT's training sensitivity was demonstrated by a case of 2.5-mo training regimen following which the RLT's 15-W improvement was fully MLSS-verified. The RLT's test-retest reliability was examined in 10 trained and untrained subjects. Test 2 differed from test 1 by only 0.3% with an intraclass correlation of 0.997. The data suggest RLT to accurately and reliably estimate AnT (as represented by MLSS verification) with high resolution and in distinctly different sports and to be sensitive to training adaptations. Compared with MLSS, the single-session RLT is highly practical and its lower fitness requirements make it applicable to athletes and untrained individuals alike. Further research is needed to establish RLT's validity and accuracy in larger samples.
NASA Astrophysics Data System (ADS)
Gaebler, P. J.; Ceranna, L.
2016-12-01
All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.
Regression Verification Using Impact Summaries
NASA Technical Reports Server (NTRS)
Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana
2013-01-01
Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program versions [19]. These techniques compare two programs with a large degree of syntactic similarity to prove that portions of one program version are equivalent to the other. Regression verification can be used for guaranteeing backward compatibility, and for showing behavioral equivalence in programs with syntactic differences, e.g., when a program is refactored to improve its performance, maintainability, or readability. Existing regression verification techniques leverage similarities between program versions by using abstraction and decomposition techniques to improve scalability of the analysis [10, 12, 19]. The abstractions and decomposition in the these techniques, e.g., summaries of unchanged code [12] or semantically equivalent methods [19], compute an over-approximation of the program behaviors. The equivalence checking results of these techniques are sound but not complete-they may characterize programs as not functionally equivalent when, in fact, they are equivalent. In this work we describe a novel approach that leverages the impact of the differences between two programs for scaling regression verification. We partition program behaviors of each version into (a) behaviors impacted by the changes and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted program behaviors are used during equivalence checking. We then prove that checking equivalence of the impacted program behaviors is equivalent to checking equivalence of all program behaviors for a given depth bound. In this work we use symbolic execution to generate the program behaviors and leverage control- and data-dependence information to facilitate the partitioning of program behaviors. The impacted program behaviors are termed as impact summaries. The dependence analyses that facilitate the generation of the impact summaries, we believe, could be used in conjunction with other abstraction and decomposition based approaches, [10, 12], as a complementary reduction technique. An evaluation of our regression verification technique shows that our approach is capable of leveraging similarities between program versions to reduce the size of the queries and the time required to check for logical equivalence. The main contributions of this work are: - A regression verification technique to generate impact summaries that can be checked for functional equivalence using an off-the-shelf decision procedure. - A proof that our approach is sound and complete with respect to the depth bound of symbolic execution. - An implementation of our technique using the LLVMcompiler infrastructure, the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo Theory (SMT) solvers, e.g., STP [7] and Z3 [6]. - An empirical evaluation on a set of C artifacts which shows that the use of impact summaries can reduce the cost of regression verification.
Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data
NASA Astrophysics Data System (ADS)
Molan, Yusuf Eshqi; Refahi, Davood; Tarashti, Ali Hoseinmardi
2014-04-01
This study applies matched filtering on the HyMap airborne hyperspectral data to obtain the distribution map of alteration minerals in the Maherabad area and uses virtual verification to verify the results. This paper also introduces "moving threshold" which tries to find an appropriate threshold value to convert gray scale images, produced by mapping methods, to target and background pixels. The Maherabad area, located in the eastern part of the Lut block, is a Cu-Au porphyry system in which quartz-sericite-pyrite, argillic and propylitic alteration are most common. Minimum noise fraction transform coupled with a pixel purity index was applied on the HyMap images to extract the endmembers of the alteration minerals, including kaolinite, montmorillonite, sericite (muscovite/illite), calcite, chlorite, epidote, and goethite. Since there was no access to any portable spectrometer and/or lab spectral measurements for the verification of the remote sensing imagery results, virtual verification achieved using the USGS spectral library and showed an agreement of 83.19%. The comparison between the results of the matched filtering and X-ray diffraction (XRD) analyses also showed an agreement of 56.13%.
STS-1 operational flight profile. Volume 5: Descent, cycle 3
NASA Technical Reports Server (NTRS)
Moore, R.; Baker, A.; Hite, R.; Hochstein, A.; Lyons, J.; Strong, K.
1980-01-01
The trajectory data presented are to be used for orbiter systems and subsystems evalation, flight and mission control center software verification, flight techniques and timeline development, crew training, and evaluation of operational mission suitability. The entry profile is very similar to cycle 2, however, elevon and body flap temperature margins have increased and the elevon schedule was changed. The terminal area energy management (TAEM) profile was completely reshaped to conform with new angle of attack constraints and left hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance induced angle of attack transients across the interface. The approach and landing phase was reshaped for a 20 deg glideslope and reduced velocity at touchdown. The definition of the runway threshold was standardized for all landing sites. This results in a shift at Edwards Air Force Base in aim points and touchdown relative to the threshold of 1000 feet. The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown.
Cleaning and Cleanliness Verification Techniques for Mars Returned Sample Handling
NASA Technical Reports Server (NTRS)
Mickelson, E. T.; Lindstrom, D. J.; Allton, J. H.; Hittle, J. D.
2002-01-01
Precision cleaning and cleanliness verification techniques are examined as a subset of a comprehensive contamination control strategy for a Mars sample return mission. Additional information is contained in the original extended abstract.
Wire Crimp Termination Verification Using Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.
2007-01-01
The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.
NASA Astrophysics Data System (ADS)
Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan
2018-05-01
A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.
Sign language spotting with a threshold model based on conditional random fields.
Yang, Hee-Deok; Sclaroff, Stan; Lee, Seong-Whan
2009-07-01
Sign language spotting is the task of detecting and recognizing signs in a signed utterance, in a set vocabulary. The difficulty of sign language spotting is that instances of signs vary in both motion and appearance. Moreover, signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and nonsign patterns (which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing threshold models in a conditional random field (CRF) model is proposed which performs an adaptive threshold for distinguishing between signs in a vocabulary and nonsign patterns. A short-sign detector, a hand appearance-based sign verification method, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experiments demonstrate that our system can spot signs from continuous data with an 87.0 percent spotting rate and can recognize signs from isolated data with a 93.5 percent recognition rate versus 73.5 percent and 85.4 percent, respectively, for CRFs without a threshold model, short-sign detection, subsign reasoning, and hand appearance-based sign verification. Our system can also achieve a 15.0 percent sign error rate (SER) from continuous data and a 6.4 percent SER from isolated data versus 76.2 percent and 14.5 percent, respectively, for conventional CRFs.
Selecting a software development methodology. [of digital flight control systems
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.
Investigation of high-strength bolt-tightening verification techniques.
DOT National Transportation Integrated Search
2016-03-01
The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time : consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be some...
Reachability analysis of real-time systems using time Petri nets.
Wang, J; Deng, Y; Xu, G
2000-01-01
Time Petri nets (TPNs) are a popular Petri net model for specification and verification of real-time systems. A fundamental and most widely applied method for analyzing Petri nets is reachability analysis. The existing technique for reachability analysis of TPNs, however, is not suitable for timing property verification because one cannot derive end-to-end delay in task execution, an important issue for time-critical systems, from the reachability tree constructed using the technique. In this paper, we present a new reachability based analysis technique for TPNs for timing property analysis and verification that effectively addresses the problem. Our technique is based on a concept called clock-stamped state class (CS-class). With the reachability tree generated based on CS-classes, we can directly compute the end-to-end time delay in task execution. Moreover, a CS-class can be uniquely mapped to a traditional state class based on which the conventional reachability tree is constructed. Therefore, our CS-class-based analysis technique is more general than the existing technique. We show how to apply this technique to timing property verification of the TPN model of a command and control (C2) system.
NASA Astrophysics Data System (ADS)
Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang
2013-11-01
Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid registration significantly improved the reconstructed image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm provides a remedy for solving the problem of non-coplanar CBCT reconstruction from limited angle of projections by combining the PICCS technique and rigid image registration in an iterative framework. In this proof of concept study, non-coplanar beams with couch rotations of 45° can be effectively verified with the CBCT technique.
Fractal Approach to Erosion Threshold of Bentonites
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Li, X. Y.
Bentonite has been considered as a candidate buffer material for the disposal of high-level radioactive waste (HLW) because of its low permeability, high sorption capacity, self-sealing characteristics and durability in a natural environment. Bentonite erosion caused by groundwater flow may take place at the interface of the compacted bentonite and fractured granite. Surface erosion of bentonite flocs is represented typically as an erosion threshold. Predicting the erosion threshold of bentonite flocs requires taking into account cohesion, which results from interactions between clay particles. Beyond the usual dependence on grain size, a significant correlation between erosion threshold and porosity measurements is confirmed for bentonite flocs. A fractal model for erosion threshold of bentonite flocs is proposed. Cohesion forces, the long-range van der Waals interaction between two clay particles are taken as the resource of the erosion threshold. The model verification is conducted by the comparison with experiments published in the literature. The results show that the proposed model for erosion threshold is in good agreement with the experimental data.
Investigation of high-strength bolt-tightening verification techniques : tech transfer summary.
DOT National Transportation Integrated Search
2016-03-01
The primary objective of this project was to explore the current state-of-practice and the state-of-the-art techniques for high-strength bolt tightening and verification in structural steel connections. This project was completed so that insight coul...
Verification of component mode techniques for flexible multibody systems
NASA Technical Reports Server (NTRS)
Wiens, Gloria J.
1990-01-01
Investigations were conducted in the modeling aspects of flexible multibodies undergoing large angular displacements. Models were to be generated and analyzed through application of computer simulation packages employing the 'component mode synthesis' techniques. Multibody Modeling, Verification and Control Laboratory (MMVC) plan was implemented, which includes running experimental tests on flexible multibody test articles. From these tests, data was to be collected for later correlation and verification of the theoretical results predicted by the modeling and simulation process.
Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors
NASA Technical Reports Server (NTRS)
Barringer, Howard; Falcone, Ylies; Havelund, Klaus; Reger, Giles; Rydeheard, David
2012-01-01
Runtime verification is the process of checking a property on a trace of events produced by the execution of a computational system. Runtime verification techniques have recently focused on parametric specifications where events take data values as parameters. These techniques exist on a spectrum inhabited by both efficient and expressive techniques. These characteristics are usually shown to be conflicting - in state-of-the-art solutions, efficiency is obtained at the cost of loss of expressiveness and vice-versa. To seek a solution to this conflict we explore a new point on the spectrum by defining an alternative runtime verification approach.We introduce a new formalism for concisely capturing expressive specifications with parameters. Our technique is more expressive than the currently most efficient techniques while at the same time allowing for optimizations.
Method for secure electronic voting system: face recognition based approach
NASA Astrophysics Data System (ADS)
Alim, M. Affan; Baig, Misbah M.; Mehboob, Shahzain; Naseem, Imran
2017-06-01
In this paper, we propose a framework for low cost secure electronic voting system based on face recognition. Essentially Local Binary Pattern (LBP) is used for face feature characterization in texture format followed by chi-square distribution is used for image classification. Two parallel systems are developed based on smart phone and web applications for face learning and verification modules. The proposed system has two tire security levels by using person ID followed by face verification. Essentially class specific threshold is associated for controlling the security level of face verification. Our system is evaluated three standard databases and one real home based database and achieve the satisfactory recognition accuracies. Consequently our propose system provides secure, hassle free voting system and less intrusive compare with other biometrics.
Viswanathan, P; Krishna, P Venkata
2014-05-01
Teleradiology allows transmission of medical images for clinical data interpretation to provide improved e-health care access, delivery, and standards. The remote transmission raises various ethical and legal issues like image retention, fraud, privacy, malpractice liability, etc. A joint FED watermarking system means a joint fingerprint/encryption/dual watermarking system is proposed for addressing these issues. The system combines a region based substitution dual watermarking algorithm using spatial fusion, stream cipher algorithm using symmetric key, and fingerprint verification algorithm using invariants. This paper aims to give access to the outcomes of medical images with confidentiality, availability, integrity, and its origin. The watermarking, encryption, and fingerprint enrollment are conducted jointly in protection stage such that the extraction, decryption, and verification can be applied independently. The dual watermarking system, introducing two different embedding schemes, one used for patient data and other for fingerprint features, reduces the difficulty in maintenance of multiple documents like authentication data, personnel and diagnosis data, and medical images. The spatial fusion algorithm, which determines the region of embedding using threshold from the image to embed the encrypted patient data, follows the exact rules of fusion resulting in better quality than other fusion techniques. The four step stream cipher algorithm using symmetric key for encrypting the patient data with fingerprint verification system using algebraic invariants improves the robustness of the medical information. The experiment result of proposed scheme is evaluated for security and quality analysis in DICOM medical images resulted well in terms of attacks, quality index, and imperceptibility.
Frame synchronization for the Galileo code
NASA Technical Reports Server (NTRS)
Arnold, S.; Swanson, L.
1991-01-01
Results are reported on the performance of the Deep Space Network's frame synchronizer for the (15,1/4) convolutional code after Viterbi decoding. The threshold is found that optimizes the probability of acquiring true sync within four frames using a strategy that requires next frame verification.
Deductive Verification of Cryptographic Software
NASA Technical Reports Server (NTRS)
Almeida, Jose Barcelar; Barbosa, Manuel; Pinto, Jorge Sousa; Vieira, Barbara
2009-01-01
We report on the application of an off-the-shelf verification platform to the RC4 stream cipher cryptographic software implementation (as available in the openSSL library), and introduce a deductive verification technique based on self-composition for proving the absence of error propagation.
Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks
NASA Technical Reports Server (NTRS)
Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris
2015-01-01
Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.
On marker-based parentage verification via non-linear optimization.
Boerner, Vinzent
2017-06-15
Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage using genomic marker data with a size as low as 50 SNPs.
Security Verification Techniques Applied to PatchLink COTS Software
NASA Technical Reports Server (NTRS)
Gilliam, David P.; Powell, John D.; Bishop, Matt; Andrew, Chris; Jog, Sameer
2006-01-01
Verification of the security of software artifacts is a challenging task. An integrated approach that combines verification techniques can increase the confidence in the security of software artifacts. Such an approach has been developed by the Jet Propulsion Laboratory (JPL) and the University of California at Davis (UC Davis). Two security verification instruments were developed and then piloted on PatchLink's UNIX Agent, a Commercial-Off-The-Shelf (COTS) software product, to assess the value of the instruments and the approach. The two instruments are the Flexible Modeling Framework (FMF) -- a model-based verification instrument (JPL), and a Property-Based Tester (UC Davis). Security properties were formally specified for the COTS artifact and then verified using these instruments. The results were then reviewed to determine the effectiveness of the approach and the security of the COTS product.
Verification of Java Programs using Symbolic Execution and Invariant Generation
NASA Technical Reports Server (NTRS)
Pasareanu, Corina; Visser, Willem
2004-01-01
Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.
Hussein, Mohammad; Clementel, Enrico; Eaton, David J; Greer, Peter B; Haworth, Annette; Ishikura, Satoshi; Kry, Stephen F; Lehmann, Joerg; Lye, Jessica; Monti, Angelo F; Nakamura, Mitsuhiro; Hurkmans, Coen; Clark, Catharine H
2017-12-01
Quality assurance (QA) for clinical trials is important. Lack of compliance can affect trial outcome. Clinical trial QA groups have different methods of dose distribution verification and analysis, all with the ultimate aim of ensuring trial compliance. The aim of this study was to gain a better understanding of different processes to inform future dosimetry audit reciprocity. Six clinical trial QA groups participated. Intensity modulated treatment plans were generated for three different cases. A range of 17 virtual 'measurements' were generated by introducing a variety of simulated perturbations (such as MLC position deviations, dose differences, gantry rotation errors, Gaussian noise) to three different treatment plan cases. Participants were blinded to the 'measured' data details. Each group analysed the datasets using their own gamma index (γ) technique and using standardised parameters for passing criteria, lower dose threshold, γ normalisation and global γ. For the same virtual 'measured' datasets, different results were observed using local techniques. For the standardised γ, differences in the percentage of points passing with γ < 1 were also found, however these differences were less pronounced than for each clinical trial QA group's analysis. These variations may be due to different software implementations of γ. This virtual dosimetry audit has been an informative step in understanding differences in the verification of measured dose distributions between different clinical trial QA groups. This work lays the foundations for audit reciprocity between groups, particularly with more clinical trials being open to international recruitment. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... factors in the selection decision. (iii) Orders exceeding $5 million. For task or delivery orders in... procedures in 5.705. (11) When using the Governmentwide commercial purchase card as a method of payment, orders at or below the micro-purchase threshold are exempt from verification in the Central Contractor...
Asessment of adequacy of the monitoring method in the activity of a verification laboratory
NASA Astrophysics Data System (ADS)
Ivanov, R. N.; Grinevich, V. A.; Popov, A. A.; Shalay, V. V.; Malaja, L. D.
2018-04-01
Questions of assessing adequacy of a risk monitoring technique for a verification laboratory operation concerning the conformity to the accreditation criteria, and aimed at decision-making on advisability of a verification laboratory activities in the declared area of accreditation are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latty, Drew, E-mail: drew.latty@health.nsw.gov.au; Stuart, Kirsty E; Westmead Breast Cancer Institute, Sydney, New South Wales
Radiation treatment to the left breast is associated with increased cardiac morbidity and mortality. The deep inspiration breath-hold technique (DIBH) can decrease radiation dose delivered to the heart and this may facilitate the treatment of the internal mammary chain nodes. The aim of this review is to critically analyse the literature available in relation to breath-hold methods, implementation, utilisation, patient compliance, planning methods and treatment verification of the DIBH technique. Despite variation in the literature regarding the DIBH delivery method, patient coaching, visual feedback mechanisms and treatment verification, all methods of DIBH delivery reduce radiation dose to the heart. Furthermore » research is required to determine optimum protocols for patient training and treatment verification to ensure the technique is delivered successfully.« less
Verification Challenges at Low Numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.
2013-07-16
This paper will explore the difficulties of deep reductions by examining the technical verification challenges. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 (Pifer 2010). Further reductions will include stepping stones at 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, themore » issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national lab complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.« less
Systematic study of source mask optimization and verification flows
NASA Astrophysics Data System (ADS)
Ben, Yu; Latypov, Azat; Chua, Gek Soon; Zou, Yi
2012-06-01
Source mask optimization (SMO) emerged as powerful resolution enhancement technique (RET) for advanced technology nodes. However, there is a plethora of flow and verification metrics in the field, confounding the end user of the technique. Systemic study of different flows and the possible unification thereof is missing. This contribution is intended to reveal the pros and cons of different SMO approaches and verification metrics, understand the commonality and difference, and provide a generic guideline for RET selection via SMO. The paper discusses 3 different type of variations commonly arise in SMO, namely pattern preparation & selection, availability of relevant OPC recipe for freeform source and finally the metrics used in source verification. Several pattern selection algorithms are compared and advantages of systematic pattern selection algorithms are discussed. In the absence of a full resist model for SMO, alternative SMO flow without full resist model is reviewed. Preferred verification flow with quality metrics of DOF and MEEF is examined.
Glove-based approach to online signature verification.
Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A
2008-06-01
Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Cramer, K. E.; Perey, Daniel F.; Yost, William t.
2010-01-01
The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.
The Learner Verification of Series r: The New Macmillan Reading Program; Highlights.
ERIC Educational Resources Information Center
National Evaluation Systems, Inc., Amherst, MA.
National Evaluation Systems, Inc., has developed curriculum evaluation techniques, in terms of learner verification, which may be used to help the curriculum-development efforts of publishing companies, state education departments, and universities. This document includes a summary of the learner-verification approach, with data collected about a…
Alternative Nonvolatile Residue Analysis with Contaminant Identification Project
NASA Technical Reports Server (NTRS)
Loftin, Kathleen (Compiler); Summerfield, Burton (Compiler); Thompson, Karen (Compiler); Mullenix, Pamela (Compiler); Zeitlin, Nancy (Compiler)
2015-01-01
Cleanliness verification is required in numerous industries including spaceflight ground support, electronics, medical and aerospace. Currently at KSC requirement for cleanliness verification use solvents that environmentally unfriendly. This goal of this project is to produce an alternative cleanliness verification technique that is both environmentally friendly and more cost effective.
Using Small-Step Refinement for Algorithm Verification in Computer Science Education
ERIC Educational Resources Information Center
Simic, Danijela
2015-01-01
Stepwise program refinement techniques can be used to simplify program verification. Programs are better understood since their main properties are clearly stated, and verification of rather complex algorithms is reduced to proving simple statements connecting successive program specifications. Additionally, it is easy to analyse similar…
Evaluation of Mesoscale Model Phenomenological Verification Techniques
NASA Technical Reports Server (NTRS)
Lambert, Winifred
2006-01-01
Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques involve an objective point-by-point comparison of model output and observations valid at the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective verification can provide a more valid representation of model performance, but is time-consuming and prone to personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human would in a subjective evaluation, would likely produce a more realistic assessment of model performance. Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify phenomenological verification techniques being developed, determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready techniques into the Advanced Weather Information Processing System (AWIPS). The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model verification techniques and found 10 different techniques in various stages of development. Six of the techniques were developed to verify precipitation forecasts, one to verify sea breeze forecasts, and three were capable of verifying several phenomena. The AMU also determined the feasibility of transitioning each technique into operations and rated the operational capability of each technique on a subjective 1-10 scale: (1) 1 indicates that the technique is only in the initial stages of development, (2) 2-5 indicates that the technique is still undergoing modifications and is not ready for operations, (3) 6-8 indicates a higher probability of integrating the technique into AWIPS with code modifications, and (4) 9-10 indicates that the technique was created for AWIPS and is ready for implementation. Eight of the techniques were assigned a rating of 5 or below. The other two received ratings of 6 and 7, and none of the techniques a rating of 9-10. At the current time, there are no phenomenological model verification techniques ready for operational use. However, several of the techniques described in this report may become viable techniques in the future and should be monitored for updates in the literature. The desire to use a phenomenological verification technique is widespread in the modeling community, and it is likely that other techniques besides those described herein are being developed, but the work has not yet been published. Therefore, the AMIU recommends that the literature continue to be monitored for updates to the techniques described in this report and for new techniques being developed whose results have not yet been published. 111
NASA Astrophysics Data System (ADS)
Zhafirah Muhammad, Nurul; Harun, A.; Hambali, N. A. M. A.; Murad, S. A. Z.; Mohyar, S. N.; Isa, M. N.; Jambek, AB
2017-11-01
Increased demand in internet of thing (IOT) application based has inadvertently forced the move towards higher complexity of integrated circuit supporting SoC. Such spontaneous increased in complexity poses unequivocal complicated validation strategies. Hence, the complexity allows researchers to come out with various exceptional methodologies in order to overcome this problem. This in essence brings about the discovery of dynamic verification, formal verification and hybrid techniques. In reserve, it is very important to discover bugs at infancy of verification process in (SoC) in order to reduce time consuming and fast time to market for the system. Ergo, in this paper we are focusing on the methodology of verification that can be done at Register Transfer Level of SoC based on the AMBA bus design. On top of that, the discovery of others verification method called Open Verification Methodology (OVM) brings out an easier way in RTL validation methodology neither as the replacement for the traditional method yet as an effort for fast time to market for the system. Thus, the method called OVM is proposed in this paper as the verification method for larger design to avert the disclosure of the bottleneck in validation platform.
An Approach to Biometric Verification Based on Human Body Communication in Wearable Devices
Li, Jingzhen; Liu, Yuhang; Nie, Zedong; Qin, Wenjian; Pang, Zengyao; Wang, Lei
2017-01-01
In this paper, an approach to biometric verification based on human body communication (HBC) is presented for wearable devices. For this purpose, the transmission gain S21 of volunteer’s forearm is measured by vector network analyzer (VNA). Specifically, in order to determine the chosen frequency for biometric verification, 1800 groups of data are acquired from 10 volunteers in the frequency range 0.3 MHz to 1500 MHz, and each group includes 1601 sample data. In addition, to achieve the rapid verification, 30 groups of data for each volunteer are acquired at the chosen frequency, and each group contains only 21 sample data. Furthermore, a threshold-adaptive template matching (TATM) algorithm based on weighted Euclidean distance is proposed for rapid verification in this work. The results indicate that the chosen frequency for biometric verification is from 650 MHz to 750 MHz. The false acceptance rate (FAR) and false rejection rate (FRR) based on TATM are approximately 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were 4.17% and 37.5%, 3.37% and 33.33%, and 3.80% and 34.17% using K-nearest neighbor (KNN) classification, support vector machines (SVM), and naive Bayesian method (NBM) classification, respectively. In addition, the running time of TATM is 0.019 s, whereas the running times of KNN, SVM and NBM are 0.310 s, 0.0385 s, and 0.168 s, respectively. Therefore, TATM is suggested to be appropriate for rapid verification use in wearable devices. PMID:28075375
An Approach to Biometric Verification Based on Human Body Communication in Wearable Devices.
Li, Jingzhen; Liu, Yuhang; Nie, Zedong; Qin, Wenjian; Pang, Zengyao; Wang, Lei
2017-01-10
In this paper, an approach to biometric verification based on human body communication (HBC) is presented for wearable devices. For this purpose, the transmission gain S21 of volunteer's forearm is measured by vector network analyzer (VNA). Specifically, in order to determine the chosen frequency for biometric verification, 1800 groups of data are acquired from 10 volunteers in the frequency range 0.3 MHz to 1500 MHz, and each group includes 1601 sample data. In addition, to achieve the rapid verification, 30 groups of data for each volunteer are acquired at the chosen frequency, and each group contains only 21 sample data. Furthermore, a threshold-adaptive template matching (TATM) algorithm based on weighted Euclidean distance is proposed for rapid verification in this work. The results indicate that the chosen frequency for biometric verification is from 650 MHz to 750 MHz. The false acceptance rate (FAR) and false rejection rate (FRR) based on TATM are approximately 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were 4.17% and 37.5%, 3.37% and 33.33%, and 3.80% and 34.17% using K-nearest neighbor (KNN) classification, support vector machines (SVM), and naive Bayesian method (NBM) classification, respectively. In addition, the running time of TATM is 0.019 s, whereas the running times of KNN, SVM and NBM are 0.310 s, 0.0385 s, and 0.168 s, respectively. Therefore, TATM is suggested to be appropriate for rapid verification use in wearable devices.
2016-01-14
hyperproperty and a liveness hyperproperty. A verification technique for safety hyperproperties is given and is shown to generalize prior tech- niques for...liveness properties are affiliated with specific verification methods. An analogous theory for security policies would be appealing. The fact that security...verified by using invariance arguments. Our verification methodology generalizes prior work on using invariance arguments to verify information-flow
Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruszyna, Marta
This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.
Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.
NASA Astrophysics Data System (ADS)
Weiss, Mitchell; Smith, Eric A.
1987-06-01
A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.
On verifying a high-level design. [cost and error analysis
NASA Technical Reports Server (NTRS)
Mathew, Ben; Wehbeh, Jalal A.; Saab, Daniel G.
1993-01-01
An overview of design verification techniques is presented, and some of the current research in high-level design verification is described. Formal hardware description languages that are capable of adequately expressing the design specifications have been developed, but some time will be required before they can have the expressive power needed to be used in real applications. Simulation-based approaches are more useful in finding errors in designs than they are in proving the correctness of a certain design. Hybrid approaches that combine simulation with other formal design verification techniques are argued to be the most promising over the short term.
An elementary tutorial on formal specification and verification using PVS
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
1993-01-01
A tutorial on the development of a formal specification and its verification using the Prototype Verification System (PVS) is presented. The tutorial presents the formal specification and verification techniques by way of specific example - an airline reservation system. The airline reservation system is modeled as a simple state machine with two basic operations. These operations are shown to preserve a state invariant using the theorem proving capabilities of PVS. The technique of validating a specification via 'putative theorem proving' is also discussed and illustrated in detail. This paper is intended for the novice and assumes only some of the basic concepts of logic. A complete description of user inputs and the PVS output is provided and thus it can be effectively used while one is sitting at a computer terminal.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.
A new technique for measuring listening and reading literacy in developing countries
NASA Astrophysics Data System (ADS)
Greene, Barbara A.; Royer, James M.; Anzalone, Stephen
1990-03-01
One problem in evaluating educational interventions in developing countries is the absence of tests that adequately reflect the culture and curriculum. The Sentence Verification Technique is a new procedure for measuring reading and listening comprehension that allows for the development of tests based on materials indigenous to a given culture. The validity of using the Sentence Verification Technique to measure reading comprehension in Grenada was evaluated in the present study. The study involved 786 students at standards 3, 4 and 5. The tests for each standard consisted of passages that varied in difficulty. The students identified as high ability students in all three standards performed better than those identified as low ability. All students performed better with easier passages. Additionally, students in higher standards performed bettter than students in lower standards on a given passage. These results supported the claim that the Sentence Verification Technique is a valid measure of reading comprehension in Grenada.
Interpreter composition issues in the formal verification of a processor-memory module
NASA Technical Reports Server (NTRS)
Fura, David A.; Cohen, Gerald C.
1994-01-01
This report describes interpreter composition techniques suitable for the formal specification and verification of a processor-memory module using the HOL theorem proving system. The processor-memory module is a multichip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. Modeling and verification methods were developed that permit provably secure composition at the transaction-level of specification, significantly reducing the complexity of the hierarchical verification of the system.
Theoretical detection threshold of the proton-acoustic range verification technique.
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-10-01
Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10(6) protons/pulse and beam current.
Theoretical detection threshold of the proton-acoustic range verification technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu
2015-10-15
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method.more » Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.« less
Theoretical detection threshold of the proton-acoustic range verification technique
Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei
2015-01-01
Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 106 protons/pulse and beam current. PMID:26429247
Verification of Autonomous Systems for Space Applications
NASA Technical Reports Server (NTRS)
Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.
2006-01-01
Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.
AdaBoost-based on-line signature verifier
NASA Astrophysics Data System (ADS)
Hongo, Yasunori; Muramatsu, Daigo; Matsumoto, Takashi
2005-03-01
Authentication of individuals is rapidly becoming an important issue. The authors previously proposed a Pen-input online signature verification algorithm. The algorithm considers a writer"s signature as a trajectory of pen position, pen pressure, pen azimuth, and pen altitude that evolve over time, so that it is dynamic and biometric. Many algorithms have been proposed and reported to achieve accuracy for on-line signature verification, but setting the threshold value for these algorithms is a problem. In this paper, we introduce a user-generic model generated by AdaBoost, which resolves this problem. When user- specific models (one model for each user) are used for signature verification problems, we need to generate the models using only genuine signatures. Forged signatures are not available because imposters do not give forged signatures for training in advance. However, we can make use of another's forged signature in addition to the genuine signatures for learning by introducing a user generic model. And Adaboost is a well-known classification algorithm, making final decisions depending on the sign of the output value. Therefore, it is not necessary to set the threshold value. A preliminary experiment is performed on a database consisting of data from 50 individuals. This set consists of western-alphabet-based signatures provide by a European research group. In this experiment, our algorithm gives an FRR of 1.88% and an FAR of 1.60%. Since no fine-tuning was done, this preliminary result looks very promising.
A study of FM threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1972-01-01
The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.
NASA Technical Reports Server (NTRS)
1995-01-01
The Formal Methods Specification and Verification Guidebook for Software and Computer Systems describes a set of techniques called Formal Methods (FM), and outlines their use in the specification and verification of computer systems and software. Development of increasingly complex systems has created a need for improved specification and verification techniques. NASA's Safety and Mission Quality Office has supported the investigation of techniques such as FM, which are now an accepted method for enhancing the quality of aerospace applications. The guidebook provides information for managers and practitioners who are interested in integrating FM into an existing systems development process. Information includes technical and administrative considerations that must be addressed when establishing the use of FM on a specific project. The guidebook is intended to aid decision makers in the successful application of FM to the development of high-quality systems at reasonable cost. This is the first volume of a planned two-volume set. The current volume focuses on administrative and planning considerations for the successful application of FM.
Assume-Guarantee Verification of Source Code with Design-Level Assumptions
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.
2004-01-01
Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.
Continuous-variable quantum homomorphic signature
NASA Astrophysics Data System (ADS)
Li, Ke; Shang, Tao; Liu, Jian-wei
2017-10-01
Quantum cryptography is believed to be unconditionally secure because its security is ensured by physical laws rather than computational complexity. According to spectrum characteristic, quantum information can be classified into two categories, namely discrete variables and continuous variables. Continuous-variable quantum protocols have gained much attention for their ability to transmit more information with lower cost. To verify the identities of different data sources in a quantum network, we propose a continuous-variable quantum homomorphic signature scheme. It is based on continuous-variable entanglement swapping and provides additive and subtractive homomorphism. Security analysis shows the proposed scheme is secure against replay, forgery and repudiation. Even under nonideal conditions, it supports effective verification within a certain verification threshold.
NASA Technical Reports Server (NTRS)
1975-01-01
The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.
Verification, Validation and Sensitivity Studies in Computational Biomechanics
Anderson, Andrew E.; Ellis, Benjamin J.; Weiss, Jeffrey A.
2012-01-01
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation. The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of verification and validation principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques. PMID:17558646
Expert system verification and validation study. Delivery 3A and 3B: Trip summaries
NASA Technical Reports Server (NTRS)
French, Scott
1991-01-01
Key results are documented from attending the 4th workshop on verification, validation, and testing. The most interesting part of the workshop was when representatives from the U.S., Japan, and Europe presented surveys of VV&T within their respective regions. Another interesting part focused on current efforts to define industry standards for artificial intelligence and how that might affect approaches to VV&T of expert systems. The next part of the workshop focused on VV&T methods of applying mathematical techniques to verification of rule bases and techniques for capturing information relating to the process of developing software. The final part focused on software tools. A summary is also presented of the EPRI conference on 'Methodologies, Tools, and Standards for Cost Effective Reliable Software Verification and Validation. The conference was divided into discussion sessions on the following issues: development process, automated tools, software reliability, methods, standards, and cost/benefit considerations.
Compositional Verification of a Communication Protocol for a Remotely Operated Vehicle
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn E.; Munoz, Cesar A.
2009-01-01
This paper presents the specification and verification in the Prototype Verification System (PVS) of a protocol intended to facilitate communication in an experimental remotely operated vehicle used by NASA researchers. The protocol is defined as a stack-layered com- position of simpler protocols. It can be seen as the vertical composition of protocol layers, where each layer performs input and output message processing, and the horizontal composition of different processes concurrently inhabiting the same layer, where each process satisfies a distinct requirement. It is formally proven that the protocol components satisfy certain delivery guarantees. Compositional techniques are used to prove these guarantees also hold in the composed system. Although the protocol itself is not novel, the methodology employed in its verification extends existing techniques by automating the tedious and usually cumbersome part of the proof, thereby making the iterative design process of protocols feasible.
Formal Verification for a Next-Generation Space Shuttle
NASA Technical Reports Server (NTRS)
Nelson, Stacy D.; Pecheur, Charles; Koga, Dennis (Technical Monitor)
2002-01-01
This paper discusses the verification and validation (V&2) of advanced software used for integrated vehicle health monitoring (IVHM), in the context of NASA's next-generation space shuttle. We survey the current VBCV practice and standards used in selected NASA projects, review applicable formal verification techniques, and discuss their integration info existing development practice and standards. We also describe two verification tools, JMPL2SMV and Livingstone PathFinder, that can be used to thoroughly verify diagnosis applications that use model-based reasoning, such as the Livingstone system.
Hydrologic data-verification management program plan
Alexander, C.W.
1982-01-01
Data verification refers to the performance of quality control on hydrologic data that have been retrieved from the field and are being prepared for dissemination to water-data users. Water-data users now have access to computerized data files containing unpublished, unverified hydrologic data. Therefore, it is necessary to develop techniques and systems whereby the computer can perform some data-verification functions before the data are stored in user-accessible files. Computerized data-verification routines can be developed for this purpose. A single, unified concept describing master data-verification program using multiple special-purpose subroutines, and a screen file containing verification criteria, can probably be adapted to any type and size of computer-processing system. Some traditional manual-verification procedures can be adapted for computerized verification, but new procedures can also be developed that would take advantage of the powerful statistical tools and data-handling procedures available to the computer. Prototype data-verification systems should be developed for all three data-processing environments as soon as possible. The WATSTORE system probably affords the greatest opportunity for long-range research and testing of new verification subroutines. (USGS)
NASA Astrophysics Data System (ADS)
Kuseler, Torben; Lami, Ihsan; Jassim, Sabah; Sellahewa, Harin
2010-04-01
The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system.
Pella, A; Riboldi, M; Tagaste, B; Bianculli, D; Desplanques, M; Fontana, G; Cerveri, P; Seregni, M; Fattori, G; Orecchia, R; Baroni, G
2014-08-01
In an increasing number of clinical indications, radiotherapy with accelerated particles shows relevant advantages when compared with high energy X-ray irradiation. However, due to the finite range of ions, particle therapy can be severely compromised by setup errors and geometric uncertainties. The purpose of this work is to describe the commissioning and the design of the quality assurance procedures for patient positioning and setup verification systems at the Italian National Center for Oncological Hadrontherapy (CNAO). The accuracy of systems installed in CNAO and devoted to patient positioning and setup verification have been assessed using a laser tracking device. The accuracy in calibration and image based setup verification relying on in room X-ray imaging system was also quantified. Quality assurance tests to check the integration among all patient setup systems were designed, and records of daily QA tests since the start of clinical operation (2011) are presented. The overall accuracy of the patient positioning system and the patient verification system motion was proved to be below 0.5 mm under all the examined conditions, with median values below the 0.3 mm threshold. Image based registration in phantom studies exhibited sub-millimetric accuracy in setup verification at both cranial and extra-cranial sites. The calibration residuals of the OTS were found consistent with the expectations, with peak values below 0.3 mm. Quality assurance tests, daily performed before clinical operation, confirm adequate integration and sub-millimetric setup accuracy. Robotic patient positioning was successfully integrated with optical tracking and stereoscopic X-ray verification for patient setup in particle therapy. Sub-millimetric setup accuracy was achieved and consistently verified in daily clinical operation.
Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification
NASA Technical Reports Server (NTRS)
Melton, D. M.
1998-01-01
Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.
QPF verification using different radar-based analyses: a case study
NASA Astrophysics Data System (ADS)
Moré, J.; Sairouni, A.; Rigo, T.; Bravo, M.; Mercader, J.
2009-09-01
Verification of QPF in NWP models has been always challenging not only for knowing what scores are better to quantify a particular skill of a model but also for choosing the more appropriate methodology when comparing forecasts with observations. On the one hand, an objective verification technique can provide conclusions that are not in agreement with those ones obtained by the "eyeball" method. Consequently, QPF can provide valuable information to forecasters in spite of having poor scores. On the other hand, there are difficulties in knowing the "truth" so different results can be achieved depending on the procedures used to obtain the precipitation analysis. The aim of this study is to show the importance of combining different precipitation analyses and verification methodologies to obtain a better knowledge of the skills of a forecasting system. In particular, a short range precipitation forecasting system based on MM5 at 12 km coupled with LAPS is studied in a local convective precipitation event that took place in NE Iberian Peninsula on October 3rd 2008. For this purpose, a variety of verification methods (dichotomous, recalibration and object oriented methods) are used to verify this case study. At the same time, different precipitation analyses are used in the verification process obtained by interpolating radar data using different techniques.
Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H
2008-02-01
Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.
High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
David L. Chichester; James T. Johnson; Edward H. Seabury
2012-07-01
Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials.more » The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.« less
Ultrasonically triggered ignition at liquid surfaces.
Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael
2015-01-01
Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimization of a matched-filter receiver for frequency hopping code acquisition in jamming
NASA Astrophysics Data System (ADS)
Pawlowski, P. R.; Polydoros, A.
A matched-filter receiver for frequency hopping (FH) code acquisition is optimized when either partial-band tone jamming or partial-band Gaussian noise jamming is present. The receiver is matched to a segment of the FH code sequence, sums hard per-channel decisions to form a test, and uses multiple tests to verify acquisition. The length of the matched filter and the number of verification tests are fixed. Optimization is then choosing thresholds to maximize performance based upon the receiver's degree of knowledge about the jammer ('side-information'). Four levels of side-information are considered, ranging from none to complete. The latter level results in a constant-false-alarm-rate (CFAR) design. At each level, performance sensitivity to threshold choice is analyzed. Robust thresholds are chosen to maximize performance as the jammer varies its power distribution, resulting in simple design rules which aid threshold selection. Performance results, which show that optimum distributions for the jammer power over the total FH bandwidth exist, are presented.
Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)
NASA Astrophysics Data System (ADS)
Zerbo, L.
2013-12-01
The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered into force. In order to achieve a credible and trustworthy Verification System, increased focus is being put on the development of OSI operational capabilities while operating and sustaining the existing monitoring system, increasing the data availability and quality, and completing the remaining facilities of the IMS. Furthermore, as mandated by the Treaty, the CTBTO also seeks to continuously improve its technologies and methods through interaction with the scientific community. Workshops and scientific conferences such as the CTBT Science and Technology Conference series provide venues for exchanging ideas, and mechanisms have been developed for sharing IMS data with researchers who are developing and testing new and innovative methods pertinent to the verification regime. While progress is steady on building up the verification regime, there is also progress in gaining entry into force of the Treaty, which requires the signatures and ratifications of the DPRK, India and Pakistan; it also requires the ratifications of China, Egypt, Iran, Israel and the United States. Thirty-six other States, whose signatures and ratifications are needed for entry into force have already done so.
Formal specification and verification of Ada software
NASA Technical Reports Server (NTRS)
Hird, Geoffrey R.
1991-01-01
The use of formal methods in software development achieves levels of quality assurance unobtainable by other means. The Larch approach to specification is described, and the specification of avionics software designed to implement the logic of a flight control system is given as an example. Penelope is described which is an Ada-verification environment. The Penelope user inputs mathematical definitions, Larch-style specifications and Ada code and performs machine-assisted proofs that the code obeys its specifications. As an example, the verification of a binary search function is considered. Emphasis is given to techniques assisting the reuse of a verification effort on modified code.
Verification of Triple Modular Redundancy Insertion for Reliable and Trusted Systems
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth
2016-01-01
If a system is required to be protected using triple modular redundancy (TMR), improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process and the complexity of digital designs, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems.
NASA Astrophysics Data System (ADS)
Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.
Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.
Verification of Triple Modular Redundancy (TMR) Insertion for Reliable and Trusted Systems
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth A.
2016-01-01
We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems. If a system is expected to be protected using TMR, improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. This manuscript addresses the challenge of confirming that TMR has been inserted without corruption of functionality and with correct application of the expected TMR topology. The proposed verification method combines the usage of existing formal analysis tools with a novel search-detect-and-verify tool. Field programmable gate array (FPGA),Triple Modular Redundancy (TMR),Verification, Trust, Reliability,
NASA Astrophysics Data System (ADS)
Lai, A.
2018-01-01
PASTA is the 64 channel front-end chip, designed in a 110 nm CMOS technology to read out the strip sensors of the Micro Vertex Detector (MVD) of the PANDA experiment. This chip provides high resolution timestamp and deposited charge information by means of the time-over-threshold technique. Its working principle is based on a predecessor, the TOFPET ASIC, that was designed for medical applications. A general restructuring of the architecture was needed, in order to meet the specific requirements imposed by the physics programme of PANDA, especially in terms of radiation tolerance, spatial constraints, and readout in absence of a first level hardware trigger. The first revision of PASTA is currently under evaluation at the Forschungszentrum Jülich, where a data acquisition system dedicated to the MVD prototypes has been developed. This paper describes the main aspect of the chip design, gives an overview of the data acquisition system used for the verification, and shows the first results regarding the performance of PASTA.
Improved Detection Technique for Solvent Rinse Cleanliness Verification
NASA Technical Reports Server (NTRS)
Hornung, S. D.; Beeson, H. D.
2001-01-01
The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.
2010-03-01
is to develop a novel clinical useful delivered-dose verification protocol for modern prostate VMAT using Electronic Portal Imaging Device (EPID...technique. A number of important milestones have been accomplished, which include (i) calibrated CBCT HU vs. electron density curve; (ii...prostate VMAT using Electronic Portal Imaging Device (EPID) and onboard Cone beam Computed Tomography (CBCT). The specific aims of this project
77 FR 64596 - Proposed Information Collection (Income Verification) Activity: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0518] Proposed Information Collection (Income... to income- dependent benefits. DATES: Written comments and recommendations on the proposed collection... techniques or the use of other forms of information technology. Title: Income Verification, VA Form 21-0161a...
Multi-centre audit of VMAT planning and pre-treatment verification.
Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria
2017-08-01
We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.
Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean
2009-01-01
Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.
Test load verification through strain data analysis
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1995-01-01
A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.
Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K, Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.
Formal Methods for Life-Critical Software
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Johnson, Sally C.
1993-01-01
The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.
Cluster man/system design requirements and verification. [for Skylab program
NASA Technical Reports Server (NTRS)
Watters, H. H.
1974-01-01
Discussion of the procedures employed for determining the man/system requirements that guided Skylab design, and review of the techniques used for implementing the man/system design verification. The foremost lesson learned from the design need anticipation and design verification experience is the necessity to allow for human capabilities of in-flight maintenance and repair. It is now known that the entire program was salvaged by a series of unplanned maintenance and repair events which were implemented in spite of poor design provisions for maintenance.
Verifiable Secret Redistribution
2001-10-01
but they are not trusted with secret. Thus, we require a protocol for redistribution without reconstruction of the secret . We also require...verification that the new shareholders have valid shares (ones that can be used to reconstruct the secret ). We present a new protocol to perform non...secret to shareholders in Shamir’s (m,n) threshold scheme (one in which we require m of n shares to reconstruct the secret ), and wish to redistribute the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Kadoya, N; Shimizu, E
2015-06-15
Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator shapes. The purpose of this research is to construct routine QA protocol which focuses on VMAT delivery technique and to obtain a baseline including dose error, fluence distribution and mechanical accuracy during VMAT. Methods: The mock prostate, head and neck (HN) cases supplied from AAPM were used in this study. A VMAT plans were generated in Monaco TPS according to TG-119 protocol. Plans were created using 6 MV and 10 MV photon beams for each case. The phantom based measurement, fluence measurement andmore » log files analysis were performed. The dose measurement was performed using 0.6 cc ion chamber, which located at isocenter. The fluence distribution were acquired using the MapCHECK2 mounted in the MapPHAN. The trajectory log files recorded inner 20 leaf pairs and gantry angle positions at every 0.25 sec interval were exported to in-house software developed by MATLAB and determined those RMS values. Results: The dose difference is expressed as a ratio of the difference between measured and planned doses. The dose difference for 6 MV was 0.91%, for 10 MV was 0.67%. In turn, the fluence distribution using gamma criteria of 2%/2 mm with a 50% minimum dose threshold for 6 MV was 98.8%, for 10 MV was 97.5%, respectively. The RMS values of MLC for 6 MV and 10 MV were 0.32 mm and 0.37 mm, of gantry were 0.33 degree and 0.31 degree. Conclusion: In this study, QA protocol to assess VMAT delivery accuracy is constructed and results acquired in this study are used as a baseline of VMAT delivery performance verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swart, Peter K.; Dixon, Tim
2014-09-30
A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less
The use of positron emission tomography in pion radiotherapy.
Goodman, G B; Lam, G K; Harrison, R W; Bergstrom, M; Martin, W R; Pate, B D
1986-10-01
The radioactive debris produced by pion radiotherapy can be imaged by the technique of Positron Emission Tomography (PET) as a method of non-invasive in situ verification of the pion treatment. This paper presents the first visualization of the pion stopping distribution within a tumor in a human brain using PET. Together with the tissue functional information provided by the standard PET scans using radiopharmaceuticals, the combination of pion with PET technique can provide a much better form of radiotherapy than the use of conventional radiation in both treatment planning and verification.
A High-Level Language for Modeling Algorithms and Their Properties
NASA Astrophysics Data System (ADS)
Akhtar, Sabina; Merz, Stephan; Quinson, Martin
Designers of concurrent and distributed algorithms usually express them using pseudo-code. In contrast, most verification techniques are based on more mathematically-oriented formalisms such as state transition systems. This conceptual gap contributes to hinder the use of formal verification techniques. Leslie Lamport introduced PlusCal, a high-level algorithmic language that has the "look and feel" of pseudo-code, but is equipped with a precise semantics and includes a high-level expression language based on set theory. PlusCal models can be compiled to TLA + and verified using the model checker tlc.
Peer Review of a Formal Verification/Design Proof Methodology
NASA Technical Reports Server (NTRS)
1983-01-01
The role of formal verification techniques in system validation was examined. The value and the state of the art of performance proving for fault-tolerant compuers were assessed. The investigation, development, and evaluation of performance proving tools were reviewed. The technical issues related to proof methodologies are examined. The technical issues discussed are summarized.
Fuzzy Logic Controller Stability Analysis Using a Satisfiability Modulo Theories Approach
NASA Technical Reports Server (NTRS)
Arnett, Timothy; Cook, Brandon; Clark, Matthew A.; Rattan, Kuldip
2017-01-01
While many widely accepted methods and techniques exist for validation and verification of traditional controllers, at this time no solutions have been accepted for Fuzzy Logic Controllers (FLCs). Due to the highly nonlinear nature of such systems, and the fact that developing a valid FLC does not require a mathematical model of the system, it is quite difficult to use conventional techniques to prove controller stability. Since safety-critical systems must be tested and verified to work as expected for all possible circumstances, the fact that FLC controllers cannot be tested to achieve such requirements poses limitations on the applications for such technology. Therefore, alternative methods for verification and validation of FLCs needs to be explored. In this study, a novel approach using formal verification methods to ensure the stability of a FLC is proposed. Main research challenges include specification of requirements for a complex system, conversion of a traditional FLC to a piecewise polynomial representation, and using a formal verification tool in a nonlinear solution space. Using the proposed architecture, the Fuzzy Logic Controller was found to always generate negative feedback, but inconclusive for Lyapunov stability.
Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop
NASA Technical Reports Server (NTRS)
Rozier, Kristin Yvonne (Editor)
2008-01-01
Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
Neutron spectrometry for UF 6 enrichment verification in storage cylinders
Mengesha, Wondwosen; Kiff, Scott D.
2015-01-29
Verification of declared UF 6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF 6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF 6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra weremore » analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF 6 enrichment in storage cylinders. Thus the results from the present study also showed that difficulties associated with the UF 6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less
NASA Astrophysics Data System (ADS)
Prasad, M. N.; Brown, M. S.; Ahmad, S.; Abtin, F.; Allen, J.; da Costa, I.; Kim, H. J.; McNitt-Gray, M. F.; Goldin, J. G.
2008-03-01
Segmentation of lungs in the setting of scleroderma is a major challenge in medical image analysis. Threshold based techniques tend to leave out lung regions that have increased attenuation, for example in the presence of interstitial lung disease or in noisy low dose CT scans. The purpose of this work is to perform segmentation of the lungs using a technique that selects an optimal threshold for a given scleroderma patient by comparing the curvature of the lung boundary to that of the ribs. Our approach is based on adaptive thresholding and it tries to exploit the fact that the curvature of the ribs and the curvature of the lung boundary are closely matched. At first, the ribs are segmented and a polynomial is used to represent the ribs' curvature. A threshold value to segment the lungs is selected iteratively such that the deviation of the lung boundary from the polynomial is minimized. A Naive Bayes classifier is used to build the model for selection of the best fitting lung boundary. The performance of the new technique was compared against a standard approach using a simple fixed threshold of -400HU followed by regiongrowing. The two techniques were evaluated against manual reference segmentations using a volumetric overlap fraction (VOF) and the adaptive threshold technique was found to be significantly better than the fixed threshold technique.
Authoring and verification of clinical guidelines: a model driven approach.
Pérez, Beatriz; Porres, Ivan
2010-08-01
The goal of this research is to provide a framework to enable authoring and verification of clinical guidelines. The framework is part of a larger research project aimed at improving the representation, quality and application of clinical guidelines in daily clinical practice. The verification process of a guideline is based on (1) model checking techniques to verify guidelines against semantic errors and inconsistencies in their definition, (2) combined with Model Driven Development (MDD) techniques, which enable us to automatically process manually created guideline specifications and temporal-logic statements to be checked and verified regarding these specifications, making the verification process faster and cost-effective. Particularly, we use UML statecharts to represent the dynamics of guidelines and, based on this manually defined guideline specifications, we use a MDD-based tool chain to automatically process them to generate the input model of a model checker. The model checker takes the resulted model together with the specific guideline requirements, and verifies whether the guideline fulfils such properties. The overall framework has been implemented as an Eclipse plug-in named GBDSSGenerator which, particularly, starting from the UML statechart representing a guideline, allows the verification of the guideline against specific requirements. Additionally, we have established a pattern-based approach for defining commonly occurring types of requirements in guidelines. We have successfully validated our overall approach by verifying properties in different clinical guidelines resulting in the detection of some inconsistencies in their definition. The proposed framework allows (1) the authoring and (2) the verification of clinical guidelines against specific requirements defined based on a set of property specification patterns, enabling non-experts to easily write formal specifications and thus easing the verification process. Copyright 2010 Elsevier Inc. All rights reserved.
Simulation verification techniques study: Simulation self test hardware design and techniques report
NASA Technical Reports Server (NTRS)
1974-01-01
The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.
NASA Astrophysics Data System (ADS)
Karam, Walid; Mokbel, Chafic; Greige, Hanna; Chollet, Gerard
2006-05-01
A GMM based audio visual speaker verification system is described and an Active Appearance Model with a linear speaker transformation system is used to evaluate the robustness of the verification. An Active Appearance Model (AAM) is used to automatically locate and track a speaker's face in a video recording. A Gaussian Mixture Model (GMM) based classifier (BECARS) is used for face verification. GMM training and testing is accomplished on DCT based extracted features of the detected faces. On the audio side, speech features are extracted and used for speaker verification with the GMM based classifier. Fusion of both audio and video modalities for audio visual speaker verification is compared with face verification and speaker verification systems. To improve the robustness of the multimodal biometric identity verification system, an audio visual imposture system is envisioned. It consists of an automatic voice transformation technique that an impostor may use to assume the identity of an authorized client. Features of the transformed voice are then combined with the corresponding appearance features and fed into the GMM based system BECARS for training. An attempt is made to increase the acceptance rate of the impostor and to analyzing the robustness of the verification system. Experiments are being conducted on the BANCA database, with a prospect of experimenting on the newly developed PDAtabase developed within the scope of the SecurePhone project.
2012-05-01
noise (AGN) [1] and [11]. We focus on threshold communication systems due to the underwater environment, noncoherent communication techniques are...the threshold level. In the context of the underwater communications, where noncoherent communication techniques are affected both by noise and
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1994-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.
NASA Technical Reports Server (NTRS)
Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.
1995-01-01
NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).
Sabet, Mahsheed; O'Connor, Daryl J.; Greer, Peter B.
2011-01-01
There have been several manual, semi‐automatic and fully‐automatic methods proposed for verification of the position of mechanical isocenter as part of comprehensive quality assurance programs required for linear accelerator‐based stereotactic radiosurgery/radiotherapy (SRS/SRT) treatments. In this paper, a systematic review has been carried out to discuss the present methods for isocenter verification and compare their characteristics, to help physicists in making a decision on selection of their quality assurance routine. PACS numbers: 87.53.Ly, 87.56.Fc, 87.56.‐v PMID:22089022
Experimental preparation and verification of quantum money
NASA Astrophysics Data System (ADS)
Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei
2018-03-01
A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.
Formal verification of automated teller machine systems using SPIN
NASA Astrophysics Data System (ADS)
Iqbal, Ikhwan Mohammad; Adzkiya, Dieky; Mukhlash, Imam
2017-08-01
Formal verification is a technique for ensuring the correctness of systems. This work focuses on verifying a model of the Automated Teller Machine (ATM) system against some specifications. We construct the model as a state transition diagram that is suitable for verification. The specifications are expressed as Linear Temporal Logic (LTL) formulas. We use Simple Promela Interpreter (SPIN) model checker to check whether the model satisfies the formula. This model checker accepts models written in Process Meta Language (PROMELA), and its specifications are specified in LTL formulas.
Static and Dynamic Verification of Critical Software for Space Applications
NASA Astrophysics Data System (ADS)
Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.
Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA, and the Xception tool for fault-injection. Keywords: Verification &Validation, RAMS, Onboard software, SFMEA, STA, Fault-injection 1 This work is being performed under the project STADY Applied Static And Dynamic Verification Of Critical Software, ESA/ESTEC Contract Nr. 15751/02/NL/LvH.
Verification of Space Weather Forecasts using Terrestrial Weather Approaches
NASA Astrophysics Data System (ADS)
Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.
2015-12-01
The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help MOSWOC forecasters view verification results in near real-time; plans to objectively assess flare forecasts under the EU Horizon 2020 FLARECAST project; and summarise ISES efforts to achieve consensus on verification.
Verifiable Secret Redistribution for Threshold Sharing Schemes
2002-02-01
complete verification in our protocol, old shareholders broadcast a commitment to the secret to the new shareholders. We prove that the new...of an m − 1 degree polynomial from m of n points yields a constant term in 1 the polynomial that corresponds to the secret . In Blakley’s scheme [Bla79...the intersection of m of n vector spaces yields a one-dimensional vector that corresponds to the secret . Desmedt surveys other sharing schemes
Hailstorms over Switzerland: Verification of Crowd-sourced Data
NASA Astrophysics Data System (ADS)
Noti, Pascal-Andreas; Martynov, Andrey; Hering, Alessandro; Martius, Olivia
2016-04-01
The reports of smartphone users, witnessing hailstorms, can be used as source of independent, ground-based observation data on ground-reaching hailstorms with high temporal and spatial resolution. The presented work focuses on the verification of crowd-sourced data collected over Switzerland with the help of a smartphone application recently developed by MeteoSwiss. The precise location, time of hail precipitation and the hailstone size are included in the crowd-sourced data, assessed on the basis of the weather radar data of MeteoSwiss. Two radar-based hail detection algorithms, POH (Probability of Hail) and MESHS (Maximum Expected Severe Hail Size), in use at MeteoSwiss are confronted with the crowd-sourced data. The available data and investigation time period last from June to August 2015. Filter criteria have been applied in order to remove false reports from the crowd-sourced data. Neighborhood methods have been introduced to reduce the uncertainties which result from spatial and temporal biases. The crowd-sourced and radar data are converted into binary sequences according to previously set thresholds, allowing for using a categorical verification. Verification scores (e.g. hit rate) are then calculated from a 2x2 contingency table. The hail reporting activity and patterns corresponding to "hail" and "no hail" reports, sent from smartphones, have been analyzed. The relationship between the reported hailstone sizes and both radar-based hail detection algorithms have been investigated.
Bortolan, Giovanni
2015-01-01
Traditional means for identity validation (PIN codes, passwords), and physiological and behavioral biometric characteristics (fingerprint, iris, and speech) are susceptible to hacker attacks and/or falsification. This paper presents a method for person verification/identification based on correlation of present-to-previous limb ECG leads: I (r I), II (r II), calculated from them first principal ECG component (r PCA), linear and nonlinear combinations between r I, r II, and r PCA. For the verification task, the one-to-one scenario is applied and threshold values for r I, r II, and r PCA and their combinations are derived. The identification task supposes one-to-many scenario and the tested subject is identified according to the maximal correlation with a previously recorded ECG in a database. The population based ECG-ILSA database of 540 patients (147 healthy subjects, 175 patients with cardiac diseases, and 218 with hypertension) has been considered. In addition a common reference PTB dataset (14 healthy individuals) with short time interval between the two acquisitions has been taken into account. The results on ECG-ILSA database were satisfactory with healthy people, and there was not a significant decrease in nonhealthy patients, demonstrating the robustness of the proposed method. With PTB database, the method provides an identification accuracy of 92.9% and a verification sensitivity and specificity of 100% and 89.9%. PMID:26568954
Verification Challenges at Low Numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.
2013-06-01
Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered ofmore » the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.« less
Jekova, Irena; Bortolan, Giovanni
2015-01-01
Traditional means for identity validation (PIN codes, passwords), and physiological and behavioral biometric characteristics (fingerprint, iris, and speech) are susceptible to hacker attacks and/or falsification. This paper presents a method for person verification/identification based on correlation of present-to-previous limb ECG leads: I (r I), II (r II), calculated from them first principal ECG component (r PCA), linear and nonlinear combinations between r I, r II, and r PCA. For the verification task, the one-to-one scenario is applied and threshold values for r I, r II, and r PCA and their combinations are derived. The identification task supposes one-to-many scenario and the tested subject is identified according to the maximal correlation with a previously recorded ECG in a database. The population based ECG-ILSA database of 540 patients (147 healthy subjects, 175 patients with cardiac diseases, and 218 with hypertension) has been considered. In addition a common reference PTB dataset (14 healthy individuals) with short time interval between the two acquisitions has been taken into account. The results on ECG-ILSA database were satisfactory with healthy people, and there was not a significant decrease in nonhealthy patients, demonstrating the robustness of the proposed method. With PTB database, the method provides an identification accuracy of 92.9% and a verification sensitivity and specificity of 100% and 89.9%.
Using ICT techniques for improving mechatronic systems' dependability
NASA Astrophysics Data System (ADS)
Miron, Emanuel; Silva, João P. M. A.; Machado, José; Olaru, Dumitru; Prisacaru, Gheorghe
2013-10-01
The use of analysis techniques for industrial controller's analysis, such as Simulation and Formal Verification, is complex on industrial context. This complexity is due to the fact that such techniques require sometimes high investment in specific skilled human resources that have sufficient theoretical knowledge in those domains. This paper aims, mainly, to show that it is possible to obtain a timed automata model for formal verification purposes, considering the CAD model of a mechanical component. This systematic approach can be used, by companies, for the analysis of industrial controllers programs. For this purpose, it is discussed, in the paper, the best way to systematize these procedures, and this paper describes, only, the first step of a complex process and promotes a discussion of the main difficulties that can be found and a possibility for handle those difficulties. A library for formal verification purposes is obtained from original 3D CAD models using Software as a Service platform (SaaS) that, nowadays, has become a common deliverable model for many applications, because SaaS is typically accessed by users via internet access.
Automated Analysis of Stateflow Models
NASA Technical Reports Server (NTRS)
Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier
2017-01-01
Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.
Foo Kune, Denis [Saint Paul, MN; Mahadevan, Karthikeyan [Mountain View, CA
2011-01-25
A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.
Cluster-based analysis improves predictive validity of spike-triggered receptive field estimates
Malone, Brian J.
2017-01-01
Spectrotemporal receptive field (STRF) characterization is a central goal of auditory physiology. STRFs are often approximated by the spike-triggered average (STA), which reflects the average stimulus preceding a spike. In many cases, the raw STA is subjected to a threshold defined by gain values expected by chance. However, such correction methods have not been universally adopted, and the consequences of specific gain-thresholding approaches have not been investigated systematically. Here, we evaluate two classes of statistical correction techniques, using the resulting STRF estimates to predict responses to a novel validation stimulus. The first, more traditional technique eliminated STRF pixels (time-frequency bins) with gain values expected by chance. This correction method yielded significant increases in prediction accuracy, including when the threshold setting was optimized for each unit. The second technique was a two-step thresholding procedure wherein clusters of contiguous pixels surviving an initial gain threshold were then subjected to a cluster mass threshold based on summed pixel values. This approach significantly improved upon even the best gain-thresholding techniques. Additional analyses suggested that allowing threshold settings to vary independently for excitatory and inhibitory subfields of the STRF resulted in only marginal additional gains, at best. In summary, augmenting reverse correlation techniques with principled statistical correction choices increased prediction accuracy by over 80% for multi-unit STRFs and by over 40% for single-unit STRFs, furthering the interpretational relevance of the recovered spectrotemporal filters for auditory systems analysis. PMID:28877194
A comparative analysis of frequency modulation threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1970-01-01
FM threshold extension for system performance improvement, comparing impulse noise elimination, correlation detection and delta modulation signal processing techniques implemented at demodulator output
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.
2008-03-01
Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.
Severe diarrhea-dehydration in infancy permanently alters auditory function.
Todd, N Wendell
2012-02-01
Of the myriad etiologies of sensorineural hearing impairment, metabolic stress is rarely considered. I posit that severe dehydration in conjunction with hypoxia, at least during infancy, prompts permanent changes in the cochlea. In a population-based prospective study of otitis media, children without otitis were found to have at age 4-8 years, worse auditory thresholds if as an infant had been hospitalized for diarrhea-dehydration. What is more, stapedius reflex thresholds tended to be lower in children who had been hospitalized for diarrhea-dehydration: that is, less acoustic energy for arousal or to be frightening. The hypothesis that the transient metabolic stress of dehydration with hypoxia prompts permanent sensorineural hearing impairment with reduced uncomfortable loudness thresholds, is both (1) consistent in an evolutionary sense with a subsequent survival advantage, and (2) subject to verification both by descriptive studies of children undergoing ECMO (ExtraCorporeal Membrane Oxygenation) or care for congenital diaphragmatic hernia, and by animal studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of automated optical verification technologies for control systems
NASA Astrophysics Data System (ADS)
Volegov, Peter L.; Podgornov, Vladimir A.
1999-08-01
The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.
Koyama, Kazuya; Mitsumoto, Takuya; Shiraishi, Takahiro; Tsuda, Keisuke; Nishiyama, Atsushi; Inoue, Kazumasa; Yoshikawa, Kyosan; Hatano, Kazuo; Kubota, Kazuo; Fukushi, Masahiro
2017-09-01
We aimed to determine the difference in tumor volume associated with the reconstruction model in positron-emission tomography (PET). To reduce the influence of the reconstruction model, we suggested a method to measure the tumor volume using the relative threshold method with a fixed threshold based on peak standardized uptake value (SUV peak ). The efficacy of our method was verified using 18 F-2-fluoro-2-deoxy-D-glucose PET/computed tomography images of 20 patients with lung cancer. The tumor volume was determined using the relative threshold method with a fixed threshold based on the SUV peak . The PET data were reconstructed using the ordered-subset expectation maximization (OSEM) model, the OSEM + time-of-flight (TOF) model, and the OSEM + TOF + point-spread function (PSF) model. The volume differences associated with the reconstruction algorithm (%VD) were compared. For comparison, the tumor volume was measured using the relative threshold method based on the maximum SUV (SUV max ). For the OSEM and TOF models, the mean %VD values were -0.06 ± 8.07 and -2.04 ± 4.23% for the fixed 40% threshold according to the SUV max and the SUV peak, respectively. The effect of our method in this case seemed to be minor. For the OSEM and PSF models, the mean %VD values were -20.41 ± 14.47 and -13.87 ± 6.59% for the fixed 40% threshold according to the SUV max and SUV peak , respectively. Our new method enabled the measurement of tumor volume with a fixed threshold and reduced the influence of the changes in tumor volume associated with the reconstruction model.
Automatic Methods and Tools for the Verification of Real Time Systems
1997-11-30
We developed formal methods and tools for the verification of real - time systems . This was accomplished by extending techniques, based on automata...embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous... real - time systems , and we identified the exact boundary between decidability and undecidability of real-time reasoning.
Applying Formal Verification Techniques to Ambient Assisted Living Systems
NASA Astrophysics Data System (ADS)
Benghazi, Kawtar; Visitación Hurtado, María; Rodríguez, María Luisa; Noguera, Manuel
This paper presents a verification approach based on timed traces semantics and MEDISTAM-RT [1] to check the fulfillment of non-functional requirements, such as timeliness and safety, and assure the correct functioning of the Ambient Assisted Living (AAL) systems. We validate this approach by its application to an Emergency Assistance System for monitoring people suffering from cardiac alteration with syncope.
Formal verification of AI software
NASA Technical Reports Server (NTRS)
Rushby, John; Whitehurst, R. Alan
1989-01-01
The application of formal verification techniques to Artificial Intelligence (AI) software, particularly expert systems, is investigated. Constraint satisfaction and model inversion are identified as two formal specification paradigms for different classes of expert systems. A formal definition of consistency is developed, and the notion of approximate semantics is introduced. Examples are given of how these ideas can be applied in both declarative and imperative forms.
Action-based verification of RTCP-nets with CADP
NASA Astrophysics Data System (ADS)
Biernacki, Jerzy; Biernacka, Agnieszka; Szpyrka, Marcin
2015-12-01
The paper presents an RTCP-nets' (real-time coloured Petri nets) coverability graphs into Aldebaran format translation algorithm. The approach provides the possibility of automatic RTCP-nets verification using model checking techniques provided by the CADP toolbox. An actual fire alarm control panel system has been modelled and several of its crucial properties have been verified to demonstrate the usability of the approach.
Avila, Agustín Brau; Mazo, Jorge Santolaria; Martín, Juan José Aguilar
2014-01-01
During the last years, the use of Portable Coordinate Measuring Machines (PCMMs) in industry has increased considerably, mostly due to their flexibility for accomplishing in-line measuring tasks as well as their reduced costs and operational advantages as compared to traditional coordinate measuring machines (CMMs). However, their operation has a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification procedures. In this work the mechanical design of an indexed metrology platform (IMP) is presented. The aim of the IMP is to increase the final accuracy and to radically simplify the calibration, identification and verification of geometrical parameter procedures of PCMMs. The IMP allows us to fix the calibrated gauge object and move the measuring instrument in such a way that it is possible to cover most of the instrument working volume, reducing the time and operator fatigue to carry out these types of procedures. PMID:24451458
Avila, Agustín Brau; Mazo, Jorge Santolaria; Martín, Juan José Aguilar
2014-01-02
During the last years, the use of Portable Coordinate Measuring Machines (PCMMs) in industry has increased considerably, mostly due to their flexibility for accomplishing in-line measuring tasks as well as their reduced costs and operational advantages as compared to traditional coordinate measuring machines (CMMs). However, their operation has a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification procedures. In this work the mechanical design of an indexed metrology platform (IMP) is presented. The aim of the IMP is to increase the final accuracy and to radically simplify the calibration, identification and verification of geometrical parameter procedures of PCMMs. The IMP allows us to fix the calibrated gauge object and move the measuring instrument in such a way that it is possible to cover most of the instrument working volume, reducing the time and operator fatigue to carry out these types of procedures.
NASA Technical Reports Server (NTRS)
Kashangaki, Thomas A. L.
1992-01-01
This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.
Signature Verification Based on Handwritten Text Recognition
NASA Astrophysics Data System (ADS)
Viriri, Serestina; Tapamo, Jules-R.
Signatures continue to be an important biometric trait because it remains widely used primarily for authenticating the identity of human beings. This paper presents an efficient text-based directional signature recognition algorithm which verifies signatures, even when they are composed of special unconstrained cursive characters which are superimposed and embellished. This algorithm extends the character-based signature verification technique. The experiments carried out on the GPDS signature database and an additional database created from signatures captured using the ePadInk tablet, show that the approach is effective and efficient, with a positive verification rate of 94.95%.
Walorczyk, Stanisław; Drożdżyński, Dariusz; Kowalska, Jolanta; Remlein-Starosta, Dorota; Ziółkowski, Andrzej; Przewoźniak, Monika; Gnusowski, Bogusław
2013-08-15
A sensitive, accurate and reliable multiresidue method based on the application of gas chromatography-tandem quadrupole mass spectrometry (GC-QqQ-MS/MS) has been established for screening, identification and quantification of a large number of pesticide residues in produce. The method was accredited in compliance with PN-EN ISO/IEC 17025:2005 standard and it was operated under flexible scope as PB-11 method. The flexible scope of accreditation allowed for minor modifications and extension of the analytical scope while using the same analytical technique. During the years 2007-2010, the method was used for the purpose of verification of organic crop production by multiresidue analysis for the presence of pesticides. A total of 528 samples of differing matrices such as fruits, vegetables, cereals, plant leaves and other green parts were analysed, of which 4.4% samples contained pesticide residues above the threshold value of 0.01 mg/kg. A total of 20 different pesticide residues were determined in the samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
An analytical model of SAGD process considering the effect of threshold pressure gradient
NASA Astrophysics Data System (ADS)
Morozov, P.; Abdullin, A.; Khairullin, M.
2018-05-01
An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.
Thresher: an improved algorithm for peak height thresholding of microbial community profiles.
Starke, Verena; Steele, Andrew
2014-11-15
This article presents Thresher, an improved technique for finding peak height thresholds for automated rRNA intergenic spacer analysis (ARISA) profiles. We argue that thresholds must be sample dependent, taking community richness into account. In most previous fragment analyses, a common threshold is applied to all samples simultaneously, ignoring richness variations among samples and thereby compromising cross-sample comparison. Our technique solves this problem, and at the same time provides a robust method for outlier rejection, selecting for removal any replicate pairs that are not valid replicates. Thresholds are calculated individually for each replicate in a pair, and separately for each sample. The thresholds are selected to be the ones that minimize the dissimilarity between the replicates after thresholding. If a choice of threshold results in the two replicates in a pair failing a quantitative test of similarity, either that threshold or that sample must be rejected. We compare thresholded ARISA results with sequencing results, and demonstrate that the Thresher algorithm outperforms conventional thresholding techniques. The software is implemented in R, and the code is available at http://verenastarke.wordpress.com or by contacting the author. vstarke@ciw.edu or http://verenastarke.wordpress.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Verification-based Analysis of Reliable Multicast Protocol
NASA Technical Reports Server (NTRS)
Wu, Yunqing
1996-01-01
Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP Multicasting. In this paper, we develop formal models for R.W using existing automatic verification systems, and perform verification-based analysis on the formal RMP specifications. We also use the formal models of RW specifications to generate a test suite for conformance testing of the RMP implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress between the implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula
NASA Astrophysics Data System (ADS)
Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol
2017-08-01
The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.
Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji
2016-04-01
Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors' facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. The results of this study demonstrate that the authors' range check system is capable of quick and easy range verification with sufficient accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator blockmore » and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.« less
Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.
Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar
2018-04-17
This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.
NASA Astrophysics Data System (ADS)
Vielhauer, Claus; Croce Ferri, Lucilla
2003-06-01
Our paper addresses two issues of a biometric authentication algorithm for ID cardholders previously presented namely the security of the embedded reference data and the aging process of the biometric data. We describe a protocol that allows two levels of verification, combining a biometric hash technique based on handwritten signature and hologram watermarks with cryptographic signatures in a verification infrastructure. This infrastructure consists of a Trusted Central Public Authority (TCPA), which serves numerous Enrollment Stations (ES) in a secure environment. Each individual performs an enrollment at an ES, which provides the TCPA with the full biometric reference data and a document hash. The TCPA then calculates the authentication record (AR) with the biometric hash, a validity timestamp, and a document hash provided by the ES. The AR is then signed with a cryptographic signature function, initialized with the TCPA's private key and embedded in the ID card as a watermark. Authentication is performed at Verification Stations (VS), where the ID card will be scanned and the signed AR is retrieved from the watermark. Due to the timestamp mechanism and a two level biometric verification technique based on offline and online features, the AR can deal with the aging process of the biometric feature by forcing a re-enrollment of the user after expiry, making use of the ES infrastructure. We describe some attack scenarios and we illustrate the watermarking embedding, retrieval and dispute protocols, analyzing their requisites, advantages and disadvantages in relation to security requirements.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
...The Bureau of Industry and Security (BIS) is seeking public comments on the impact of amending the Chemical Weapons Convention Regulations (CWCR) to reduce the concentration level below which the CWCR exempt certain mixtures containing a Schedule 2A chemical from the declaration requirements that apply to Schedule 2A chemical production, processing, and consumption under the Chemical Weapons Convention (CWC). To make these declaration requirements consistent with the international agreement adopted by the Organization for the Prohibition of Chemical Weapons (OPCW), BIS is considering amending the CWCR to replace the current low concentration exemption (a concentration of ``less than 30%'' by volume or weight) with a two-tiered low concentration exemption that is based, in part, on whether the total amount of a Schedule 2A chemical produced, processed, or consumed at one or more plants on a plant site during a calendar year is less than the applicable verification threshold in the CWCR. Under this two- tiered approach, the declaration and reporting requirements in the CWCR would not apply to a chemical mixture containing a Schedule 2A chemical if: The concentration of the Schedule 2A chemical in the mixture is ``1% or less,'' or the concentration of the Schedule 2A chemical in the mixture is ``more than 1%, but less than or equal to 10%,'' and the annual amount of the Schedule 2A chemical produced, processed, or consumed is less than the relevant verification threshold. Legislative amendment of the Chemical Weapons Convention Implementation Act (CWCIA) is required in order to implement this proposed amendment to the CWCR. In addition, at U.S. national discretion, BIS is considering amending the CWCR to require declarations/reports for exports and imports of any mixtures that contain ``more than 10%'' of a Schedule 2A chemical by volume or weight (whichever method yields the lesser percentage), if the total quantity of the Schedule 2A chemical exported or imported during a calendar year exceeds the applicable CWCR declaration threshold.
A methodology for producing reliable software, volume 1
NASA Technical Reports Server (NTRS)
Stucki, L. G.; Moranda, P. B.; Foshee, G.; Kirchoff, M.; Omre, R.
1976-01-01
An investigation into the areas having an impact on producing reliable software including automated verification tools, software modeling, testing techniques, structured programming, and management techniques is presented. This final report contains the results of this investigation, analysis of each technique, and the definition of a methodology for producing reliable software.
NASA Astrophysics Data System (ADS)
Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.
2015-09-01
In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.
Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering
NASA Astrophysics Data System (ADS)
Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.
2004-05-01
Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.
High-speed autoverifying technology for printed wiring boards
NASA Astrophysics Data System (ADS)
Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi
1996-10-01
We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).
Simulation and Real-Time Verification of Video Algorithms on the TI C6400 Using Simulink
2004-08-20
SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...plot estimates over time (scrolling data) Adjust detection threshold (click mouse on graph) Monitor video capture Input video frames Captured frames 12 ...Video App: Surveillance Recording 1 2 7 3 4 9 5 6 11 SL for video Explanation of GUI 12 Target Options8 Build Process 10 13 14 15 16 M-code snippet
Behavioral biometrics for verification and recognition of malicious software agents
NASA Astrophysics Data System (ADS)
Yampolskiy, Roman V.; Govindaraju, Venu
2008-04-01
Homeland security requires technologies capable of positive and reliable identification of humans for law enforcement, government, and commercial applications. As artificially intelligent agents improve in their abilities and become a part of our everyday life, the possibility of using such programs for undermining homeland security increases. Virtual assistants, shopping bots, and game playing programs are used daily by millions of people. We propose applying statistical behavior modeling techniques developed by us for recognition of humans to the identification and verification of intelligent and potentially malicious software agents. Our experimental results demonstrate feasibility of such methods for both artificial agent verification and even for recognition purposes.
Patel, Ravi G.; Desjardins, Olivier; Kong, Bo; ...
2017-09-01
Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less
Safeguardability of the vitrification option for disposal of plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillay, K.K.S.
1996-05-01
Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron andmore » those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ravi G.; Desjardins, Olivier; Kong, Bo
Here, we present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two-fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster-induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posingmore » fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter-independent Eulerian statistics remains a challenge for all methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Brubaker, Erik; Deland, Sharon M.
This report summarizes the discussion and conclusions reached during a table top exercise held at Sandia National Laboratories, Albuquerque on September 3, 2014 regarding a recently described approach for nuclear warhead verification based on the cryptographic concept of a zero-knowledge protocol (ZKP) presented in a recent paper authored by Glaser, Barak, and Goldston. A panel of Sandia National Laboratories researchers, whose expertise includes radiation instrumentation design and development, cryptography, and arms control verification implementation, jointly reviewed the paper and identified specific challenges to implementing the approach as well as some opportunities. It was noted that ZKP as used in cryptographymore » is a useful model for the arms control verification problem, but the direct analogy to arms control breaks down quickly. The ZKP methodology for warhead verification fits within the general class of template-based verification techniques, where a reference measurement is used to confirm that a given object is like another object that has already been accepted as a warhead by some other means. This can be a powerful verification approach, but requires independent means to trust the authenticity of the reference warhead - a standard that may be difficult to achieve, which the ZKP authors do not directly address. Despite some technical challenges, the concept of last-minute selection of the pre-loads and equipment could be a valuable component of a verification regime.« less
Survey of Verification and Validation Techniques for Small Satellite Software Development
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
2015-01-01
The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.
Ellingson, Roger M.; Gallun, Frederick J.; Bock, Guillaume
2015-01-01
It can be problematic to measure stationary acoustic sound pressure level in any environment when the target level approaches or lies below the minimum measureable sound pressure level of the measurement system itself. This minimum measureable level, referred to as the inherent measurement system noise floor, is generally established by noise emission characteristics of measurement system components such as microphones, preamplifiers, and other system circuitry. In this paper, methods are presented and shown accurate measuring stationary levels within 20 dB above and below this system noise floor. Methodology includes (1) measuring inherent measurement system noise, (2) subtractive energy based, inherent noise adjustment of levels affected by system noise floor, and (3) verifying accuracy of inherent noise adjustment technique. While generalizable to other purposes, the techniques presented here were specifically developed to quantify ambient noise levels in very quiet rooms used to evaluate free-field human hearing thresholds. Results obtained applying the methods to objectively measure and verify the ambient noise level in an extremely quiet room, using various measurement system noise floors and analysis bandwidths, are presented and discussed. The verified results demonstrate the adjustment method can accurately extend measurement range to 20 dB below the measurement system noise floor, and how measurement system frequency bandwidth can affect accuracy of reported noise levels. PMID:25786932
Recent literature on structural modeling, identification, and analysis
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1990-01-01
The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.
Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir
2018-05-01
In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.
Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker
Aguilar, Juan José
2014-01-01
This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744
Barlow, Andrew L; Macleod, Alasdair; Noppen, Samuel; Sanderson, Jeremy; Guérin, Christopher J
2010-12-01
One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
An Optimized Online Verification Imaging Procedure for External Beam Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, David J., E-mail: David.Willis@petermac.or; Royal Melbourne Institute of Technology University, Melbourne, Victoria; Kron, Tomas
2011-07-01
The purpose of this study was to evaluate the capabilities of a kilovoltage (kV) on-board imager (OBI)-equipped linear accelerator in the setting of on-line verification imaging for external-beam partial breast irradiation. Available imaging techniques were optimized and assessed for image quality using a modified anthropomorphic phantom. Imaging dose was also assessed. Imaging techniques were assessed for physical clearance between patient and treatment machine using a volunteer. Nonorthogonal kV image pairs were identified as optimal in terms of image quality, clearance, and dose. After institutional review board approval, this approach was used for 17 patients receiving accelerated partial breast irradiation. Imagingmore » was performed before every fraction verification with online correction of setup deviations >5 mm (total image sessions = 170). Treatment staff rated risk of collision and visibility of tumor bed surgical clips where present. Image session duration and detected setup deviations were recorded. For all cases, both image projections (n = 34) had low collision risk. Surgical clips were rated as well as visualized in all cases where they were present (n = 5). The average imaging session time was 6 min, 16 sec, and a reduction in duration was observed as staff became familiar with the technique. Setup deviations of up to 1.3 cm were detected before treatment and subsequently confirmed offline. Nonorthogonal kV image pairs allowed effective and efficient online verification for partial breast irradiation. It has yet to be tested in a multicenter study to determine whether it is dependent on skilled treatment staff.« less
Holzhauser, Thomas; Kleiner, Kornelia; Janise, Annabella; Röder, Martin
2014-11-15
A novel method to quantify species or DNA on the basis of a competitive quantitative real-time polymerase chain reaction (cqPCR) was developed. Potentially allergenic peanut in food served as one example. Based on an internal competitive DNA sequence for normalisation of DNA extraction and amplification, the cqPCR was threshold-calibrated against 100mg/kg incurred peanut in milk chocolate. No external standards were necessary. The competitive molecule successfully served as calibrator for quantification, matrix normalisation, and inhibition control. Although designed for verification of a virtual threshold of 100mg/kg, the method allowed quantification of 10-1,000 mg/kg peanut incurred in various food matrices and without further matrix adaption: On the basis of four PCR replicates per sample, mean recovery of 10-1,000 mg/kg peanut in chocolate, vanilla ice cream, cookie dough, cookie, and muesli was 87% (range: 39-147%) in comparison to 199% (range: 114-237%) by three commercial ELISA kits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
Forecast Verification: Identification of small changes in weather forecasting skill
NASA Astrophysics Data System (ADS)
Weatherhead, E. C.; Jensen, T. L.
2017-12-01
Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.
Hylemetry versus Biometry: a new method to certificate the lithography authenticity
NASA Astrophysics Data System (ADS)
Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla
2011-06-01
When we buy an artwork object a certificate of authenticity contain specific details about the artwork. Unfortunately, these certificates are often exchanged between similar artworks: the same document is supplied by the seller to certificate the originality. In this way the buyer will have a copy of an original certificate to attest that the "not original artwork" is an original one. A solution for this problem would be to insert a system that links together the certificate and a specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this paper we propose a new lithography certification based on the color spots distribution, which compose the lithography itself. Due to the high resolution acquisition media available today, it is possible using analysis method typical of speckle metrology. In particular, in verification phase it is only necessary acquiring the same portion of lithography, extracting the verification information, using the private key to obtain the same information from the certificate and confronting the two information using a comparison threshold. Due to the possible rotation and translation it is applied image correlation solutions, used in speckle metrology, to determine translation and rotation error and correct allow to verifying extracted and acquired images in the best situation, for granting correct originality verification.
NASA Astrophysics Data System (ADS)
Nunnallee, Edmund Pierce, Jr.
1980-03-01
This dissertation consists of an investigation into the empirical scaling of a digital echo integrator for assessment of a population of juvenile sockeye salmon in Cultus Lake, British Columbia, Canada. The scaling technique was developed over the last ten years for use with totally uncalibrated but stabilized data collection and analysis equipment, and has been applied to populations of fish over a wide geographical range. This is the first investigation into the sources of bias and the accuracy of the technique, however, and constitutes a verification of the method. The initial section of the investigation describes hydroacoustic data analysis methods for estimation of effective sampling volume which is necessary for estimation of fish density. The second section consists of a computer simulation of effective sample volume estimation by this empirical method and is used to investigate the degree of bias introduced by electronic and physical parameters such as boat speed -fish depth interaction effects, electronic thresholding and saturation, transducer beam angle, fish depth stratification by size and spread of the target strength distribution of the fish. Comparisons of simulation predictions of sample volume estimation bias to actual survey results are given at the end of this section. A verification of the scaling method is then presented by comparison of a hydroacoustically derived estimation of the Cultus Lake smolt population to an independent and concurrent estimate made by counting the migrant fish as they passed through a weir in the outlet stream of the lake. Finally, the effect on conduct and accuracy of hydroacoustic assessment of juvenile sockeye salmon due to several behavioral traits are discussed. These traits include movements of presmolt fish in a lake just prior to their outmigration, daily vertical migrations and the emergence and dispersal of sockeye fry in Cultus Lake. In addition, a comparison of the summer depth preferences of the fish over their entire geographical distribution on the west coast of the U.S. and Canada are discussed in terms of hydroacoustic accessibility.
Design and verification of distributed logic controllers with application of Petri nets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał
2015-12-31
The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.
Formal Techniques for Synchronized Fault-Tolerant Systems
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Butler, Ricky W.
1992-01-01
We present the formal verification of synchronizing aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization is based on an extended state machine model incorporating snapshots of local processors clocks.
Automatic Methods and Tools for the Verification of Real Time Systems
1997-07-31
real - time systems . This was accomplished by extending techniques, based on automata theory and temporal logic, that have been successful for the verification of time-independent reactive systems. As system specification lanmaage for embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous environment variables. As requirements specification languages, we introduced temporal logics with clock variables for expressing timing constraints.
NASA Technical Reports Server (NTRS)
1974-01-01
Shuttle simulation software modules in the environment, crew station, vehicle configuration and vehicle dynamics categories are discussed. For each software module covered, a description of the module functions and operational modes, its interfaces with other modules, its stored data, inputs, performance parameters and critical performance parameters is given. Reference data sources which provide standards of performance are identified for each module. Performance verification methods are also discussed briefly.
NASA Technical Reports Server (NTRS)
1991-01-01
The second phase of a task is described which has the ultimate purpose of ensuring that adequate Expert Systems (ESs) Verification and Validation (V and V) tools and techniques are available for Space Station Freedom Program Knowledge Based Systems development. The purpose of this phase is to recommend modifications to current software V and V requirements which will extend the applicability of the requirements to NASA ESs.
Dynamic analysis for shuttle design verification
NASA Technical Reports Server (NTRS)
Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.
1972-01-01
Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.
Secure Image Hash Comparison for Warhead Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul J.; Jarman, Kenneth D.; Robinson, Sean M.
2014-06-06
The effort to inspect and verify warheads in the context of possible future arms control treaties is rife with security and implementation issues. In this paper we review prior work on perceptual image hashing for template-based warhead verification. Furthermore, we formalize the notion of perceptual hashes and demonstrate that large classes of such functions are likely not cryptographically secure. We close with a brief discussion of fully homomorphic encryption as an alternative technique.
Design and verification of distributed logic controllers with application of Petri nets
NASA Astrophysics Data System (ADS)
Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał; Wiśniewska, Monika
2015-12-01
The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.
Tan, Chee-Heng; Teh, Ying-Wah
2013-08-01
The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.
A Methodology for Evaluating Artifacts Produced by a Formal Verification Process
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Miner, Paul S.; Person, Suzette
2011-01-01
The goal of this study is to produce a methodology for evaluating the claims and arguments employed in, and the evidence produced by formal verification activities. To illustrate the process, we conduct a full assessment of a representative case study for the Enabling Technology Development and Demonstration (ETDD) program. We assess the model checking and satisfiabilty solving techniques as applied to a suite of abstract models of fault tolerant algorithms which were selected to be deployed in Orion, namely the TTEthernet startup services specified and verified in the Symbolic Analysis Laboratory (SAL) by TTTech. To this end, we introduce the Modeling and Verification Evaluation Score (MVES), a metric that is intended to estimate the amount of trust that can be placed on the evidence that is obtained. The results of the evaluation process and the MVES can then be used by non-experts and evaluators in assessing the credibility of the verification results.
NASA Astrophysics Data System (ADS)
Katzensteiner, H.; Bell, R.; Petschko, H.; Glade, T.
2012-04-01
The prediction and forecast of widespread landsliding for a given triggering event is an open research question. Numerous studies tried to link spatial rainfall and landslide distributions. This study focuses on analysing the relationship between intensive precipitation and rainfall-triggered shallow landslides in the year 2009 in Lower Austria. Landslide distributions were gained from the building ground register, which is maintained by the Geological Survey of Lower Austria. It contains detailed information of landslides, which were registered due to damage reports. Spatially distributed rainfall estimates were extracted from INCA (Integrated Nowcasting through Comprehensive Analysis) precipitation analysis, which is a combination of station data interpolation and radar data in a spatial resolution of 1km developed by the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria. The importance of the data source is shown by comparing rainfall data based on reference gauges, spatial interpolation and INCA-analysis for a certain storm period. INCA precipitation data can detect precipitating cells that do not hit a station but might trigger a landslide, which is an advantage over the application of reference stations for the definition of rainfall thresholds. Empirical thresholds at regional scale were determined based on rainfall-intensity and duration in the year 2009 and landslide information. These thresholds are dependent on the criteria which separate the landslide triggering and non-triggering precipitation events from each other. Different approaches for defining thresholds alter the shape of the threshold as well. A temporarily threshold I=8,8263*D^(-0.672) for extreme rainfall events in summer in Lower Austria was defined. A verification of the threshold with similar events of other years as well as following analyses based on a larger landslide database are in progress.
Finneran, James J; Houser, Dorian S
2006-05-01
Traditional behavioral techniques for hearing assessment in marine mammals are limited by the time and access required to train subjects. Electrophysiological methods, where passive electrodes are used to measure auditory evoked potentials (AEPs), are attractive alternatives to behavioral techniques; however, there have been few attempts to compare AEP and behavioral results for the same subject. In this study, behavioral and AEP hearing thresholds were compared in four bottlenose dolphins. AEP thresholds were measured in-air using a piezoelectric sound projector embedded in a suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Evoked potentials were recorded noninvasively using surface electrodes. Adaptive procedures allowed AEP hearing thresholds to be estimated from 10 to 150 kHz in a single ear in about 45 min. Behavioral thresholds were measured in a quiet pool and in San Diego Bay. AEP and behavioral threshold estimates agreed closely as to the upper cutoff frequency beyond which thresholds increased sharply. AEP thresholds were strongly correlated with pool behavioral thresholds across the range of hearing; differences between AEP and pool behavioral thresholds increased with threshold magnitude and ranged from 0 to + 18 dB.
Dobruch-Sobczak, Katarzyna
2013-03-01
Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and sonoelastography. From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Skłodowska-Curie, 375 breast ultrasound examinations were conducted. The examined group included patients who in B-mode examinations presented indications for pathological verification. They were 80 women aged between 17 and 83 (mean age was 50) with 99 solid focal lesions in the breasts. All patients underwent: the interview, physical examination, B-mode ultrasound examination and elastography of the mammary glands and axillary fossae. The visualized lesions were evaluated according to BIRADS-US classification and Tsukuba score as well as FLR ratio was calculated. In all cases, the histopathological and/or cytological verification of the tested lesions was obtained. In the group of 80 patients, the examination revealed 39 malignant neoplastic lesions and 60 benign ones. The mean age of women with malignant neoplasms was 55.07 (SD = 10.54), and with benign lesions - 46.9 (SD = 15.47). In order to identify threshold values that distinguish benign lesions from malignant ones, a comparative analysis of statistical models based on BIRADS-US classification and Tsukuba score was conducted and the cut-off value for FLR was assumed. The sensitivity and specificity values for BIRADS-US 4/5 were 76.92% and 96.67% and for Tsukuba 3/4 - 64.1% and 98.33% respectively. The assumed FLR threshold value to differentiate between benign and malignant lesions in the breasts equaled 3.13. The combined application of both classifications (with the threshold value of BIRADS-US 4/Tsukuba 3) improved the total value of sensitivity and specificity of character differentiation of focal lesions (87.2% and 95% respectively). In the case of problematic focal lesions, i.e. BIRADS-US 3, the study revealed that obtaining Tsukuba score of 1 and 2 for lesions classified as BIRADS-US 3 confirms their benign character. This allows to avoid the cytological verification.
A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams
NASA Technical Reports Server (NTRS)
Tejada, Arturo
2009-01-01
An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.
Verification of intravenous catheter placement by auscultation--a simple, noninvasive technique.
Lehavi, Amit; Rudich, Utay; Schechtman, Moshe; Katz, Yeshayahu Shai
2014-01-01
Verification of proper placement of an intravenous catheter may not always be simple. We evaluated the auscultation technique for this purpose. Twenty healthy volunteers were randomized for 18G catheter inserted intravenously either in the right (12) or left arm (8), and subcutaneously in the opposite arm. A standard stethoscope was placed over an area approximately 3 cm proximal to the tip of the catheter in the presumed direction of the vein to grade on a 0-6 scale the murmur heard by rapidly injecting 2 mL of NaCl 0.9% solution. The auscultation was evaluated by a blinded staff anesthesiologist. All 20 intravenous injection were evaluated as flow murmurs, and were graded an average 5.65 (±0.98), whereas all 20 subcutaneous injections were evaluated as either crackles or no sound, and were graded an average 2.00 (±1.38), without negative results. Sensitivity was calculated as 95%. Specificity and Kappa could not be calculated due to an empty false-positive group. Being simple, handy and noninvasive, we recommend to use the auscultation technique for verification of the proper placement of an intravenous catheter when uncertain of its position. Data obtained in our limited sample of healthy subjects need to be confirmed in the clinical setting.
Technical review of SRT-CMA-930058 revalidation studies of Mark 16 experiments: J70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.L.
1993-10-25
This study is a reperformance of a set of MGBS-TGAL criticality safety code validation calculations previously reported by Clark. The reperformance was needed because the records of the previous calculations could not be located in current APG files and records. As noted by the author, preliminary attempts to reproduce the Clark results by direct modeling in MGBS and TGAL were unsuccessful. Consultation with Clark indicated that the MGBS-TGAL (EXPT) option within the KOKO system should be used to set up the MGBS and TGAL input data records. The results of the study indicate that the technique used by Clark hasmore » been established and that the technique is now documented for future use. File records of the calculations have also been established in APG files. The review was performed per QAP 11--14 of 1Q34. Since the reviewer was involved in developing the procedural technique used for this study, this review can not be considered a fully independent review, but should be considered a verification that the document contains adequate information to allow a new user to perform similar calculations, a verification of the procedure by performing several calculations independently with identical results to the reported results, and a verification of the readability of the report.« less
Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Lee, Heeje
2012-05-01
The purpose of this retrospective study was to assess if there was a difference in the likelihood of achieving passive fit when an implant-supported full-arch prosthesis framework is fabricated with or without the aid of a verification jig. This investigation was approved by the University of Rochester Research Subject Review Board (protocol #RSRB00038482). Thirty edentulous patients, 49 to 73 years old (mean 61 years old), rehabilitated with a nonsegmented fixed implant-supported complete denture were included in the study. During the restorative process, final impressions were made using the pickup impression technique and elastomeric impression materials. For 16 patients, a verification jig was made (group J), while for the remaining 14 patients, a verification jig was not used (group NJ) and the framework was fabricated directly on the master cast. During the framework try-in appointment, the fit was assessed by clinical (Sheffield test) and radiographic inspection and recorded as passive or nonpassive. When a verification jig was used (group J, n = 16), all frameworks exhibited clinically passive fit, while when a verification jig was not used (group NJ, n = 14), only two frameworks fit. This difference was statistically significant (p < .001). Within the limitations of this retrospective study, the fabrication of a verification jig ensured clinically passive fit of metal frameworks in nonsegmented fixed implant-supported complete denture. © 2011 Wiley Periodicals, Inc.
A fuzzy optimal threshold technique for medical images
NASA Astrophysics Data System (ADS)
Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.
2012-01-01
A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.
Survey of statistical techniques used in validation studies of air pollution prediction models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornstein, R D; Anderson, S F
1979-03-01
Statistical techniques used by meteorologists to validate predictions made by air pollution models are surveyed. Techniques are divided into the following three groups: graphical, tabular, and summary statistics. Some of the practical problems associated with verification are also discussed. Characteristics desired in any validation program are listed and a suggested combination of techniques that possesses many of these characteristics is presented.
Optical/digital identification/verification system based on digital watermarking technology
NASA Astrophysics Data System (ADS)
Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.
2000-06-01
This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.
Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, Stephen Joseph; Dasari, Venkateswara Rao; Trellue, Holly Renee
This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.
TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.
Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant for Accuray planning service.« less
Advanced Software V&V for Civil Aviation and Autonomy
NASA Technical Reports Server (NTRS)
Brat, Guillaume P.
2017-01-01
With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.
Category V Compliant Container for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin; Sanok, Joseph; Sevilla, Donald; Bement, Laurence J.
2000-01-01
A novel containerization technique that satisfies Planetary Protection (PP) Category V requirements has been developed and demonstrated on the mock-up of the Mars Sample Return Container. The proposed approach uses explosive welding with a sacrificial layer and cut-through-the-seam techniques. The technology produces a container that is free from Martian contaminants on an atomic level. The containerization technique can be used on any celestial body that may support life. A major advantage of the proposed technology is the possibility of very fast (less than an hour) verification of both containment and cleanliness with typical metallurgical laboratory equipment. No separate biological verification is required. In addition to Category V requirements, the proposed container presents a surface that is clean from any, even nonviable organisms, and any molecular fragments of biological origin that are unique to Mars or any other celestial body other than Earth.
Dosimetric changes with computed tomography automatic tube-current modulation techniques.
Spampinato, Sofia; Gueli, Anna Maria; Milone, Pietro; Raffaele, Luigi Angelo
2018-04-06
The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic ® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.
An Integrated Environment for Efficient Formal Design and Verification
NASA Technical Reports Server (NTRS)
1998-01-01
The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Yin, F; Ren, L
Purpose: To develop an adaptive prior knowledge based image estimation method to reduce the scan angle needed in the LIVE system to reconstruct 4D-CBCT for intrafraction verification. Methods: The LIVE system has been previously proposed to reconstructs 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. This system uses limited-angle beam’s eye view (BEV) MV cine images acquired from the treatment beam together with the orthogonally acquired limited-angle kV projections to reconstruct 4D-CBCT images for target verification during treatment. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to furthermore » reduce the scanning angle needed to reconstruct the CBCT images. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on projections acquired in limited angle (orthogonal 6°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of patient motion.The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of this technique with LIVE system. A lung patient was simulated with different scenario, including baseline drifts, amplitude change and phase shift. Limited-angle orthogonal kV and beam’s eye view (BEV) MV projections were generated for each scenario. The CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate the reconstruction accuracy. Results: Using orthogonal-view of 6° kV and BEV- MV projections, the VPD/COMS values were 12.7±4.0%/0.7±0.5 mm, 13.0±5.1%/0.8±0.5 mm, and 11.4±5.4%/0.5±0.3 mm for the three scenarios, respectively. Conclusion: The technique enables LIVE to accurately reconstruct 4D-CBCT images using only orthogonal 6° angle, which greatly improves the efficiency and reduces dose of LIVE for intrafraction verification.« less
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
Optical detection of random features for high security applications
NASA Astrophysics Data System (ADS)
Haist, T.; Tiziani, H. J.
1998-02-01
Optical detection of random features in combination with digital signatures based on public key codes in order to recognize counterfeit objects will be discussed. Without applying expensive production techniques objects are protected against counterfeiting. Verification is done off-line by optical means without a central authority. The method is applied for protecting banknotes. Experimental results for this application are presented. The method is also applicable for identity verification of a credit- or chip-card holder.
Abstract Model of the SATS Concept of Operations: Initial Results and Recommendations
NASA Technical Reports Server (NTRS)
Dowek, Gilles; Munoz, Cesar; Carreno, Victor A.
2004-01-01
An abstract mathematical model of the concept of operations for the Small Aircraft Transportation System (SATS) is presented. The Concept of Operations consist of several procedures that describe nominal operations for SATS, Several safety properties of the system are proven using formal techniques. The final goal of the verification effort is to show that under nominal operations, aircraft are safely separated. The abstract model was written and formally verified in the Prototype Verification System (PVS).
Restricted access processor - An application of computer security technology
NASA Technical Reports Server (NTRS)
Mcmahon, E. M.
1985-01-01
This paper describes a security guard device that is currently being developed by Computer Sciences Corporation (CSC). The methods used to provide assurance that the system meets its security requirements include the system architecture, a system security evaluation, and the application of formal and informal verification techniques. The combination of state-of-the-art technology and the incorporation of new verification procedures results in a demonstration of the feasibility of computer security technology for operational applications.
Formal Verification at System Level
NASA Astrophysics Data System (ADS)
Mazzini, S.; Puri, S.; Mari, F.; Melatti, I.; Tronci, E.
2009-05-01
System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.
The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without themore » use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Chris C.; Flaska, Marek; Pozzi, Sara A.
2016-08-14
Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrixmore » condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.« less
NASA Astrophysics Data System (ADS)
Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.
2016-08-01
Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.
Efficient and Scalable Graph Similarity Joins in MapReduce
Chen, Yifan; Zhang, Weiming; Tang, Jiuyang
2014-01-01
Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results. PMID:25121135
Efficient and scalable graph similarity joins in MapReduce.
Chen, Yifan; Zhao, Xiang; Xiao, Chuan; Zhang, Weiming; Tang, Jiuyang
2014-01-01
Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results.
Detection of hail signatures from single-polarization C-band radar reflectivity
NASA Astrophysics Data System (ADS)
Kunz, Michael; Kugel, Petra I. S.
2015-02-01
Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.
Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft
NASA Technical Reports Server (NTRS)
Hogge, Edward F.; Bole, Brian M.; Vazquez, Sixto L.; Celaya, Jose R.; Strom, Thomas H.; Hill, Boyd L.; Smalling, Kyle M.; Quach, Cuong C.
2015-01-01
This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.
Tan, Robin; Perkowski, Marek
2017-01-01
Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems. PMID:28230745
Tan, Robin; Perkowski, Marek
2017-02-20
Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.
Yassin, Ali A
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.
Yassin, Ali A.
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051
NASA Technical Reports Server (NTRS)
Pierzga, M. J.
1981-01-01
The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.
Authentication Based on Pole-zero Models of Signature Velocity
Rashidi, Saeid; Fallah, Ali; Towhidkhah, Farzad
2013-01-01
With the increase of communication and financial transaction through internet, on-line signature verification is an accepted biometric technology for access control and plays a significant role in authenticity and authorization in modernized society. Therefore, fast and precise algorithms for the signature verification are very attractive. The goal of this paper is modeling of velocity signal that pattern and properties is stable for persons. With using pole-zero models based on discrete cosine transform, precise method is proposed for modeling and then features is founded from strokes. With using linear, parzen window and support vector machine classifiers, the signature verification technique was tested with a large number of authentic and forgery signatures and has demonstrated the good potential of this technique. The signatures are collected from three different database include a proprietary database, the SVC2004 and the Sabanci University signature database benchmark databases. Experimental results based on Persian, SVC2004 and SUSIG databases show that our method achieves an equal error rate of 5.91%, 5.62% and 3.91% in the skilled forgeries, respectively. PMID:24696797
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E
2016-06-15
Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less
Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A
2018-04-01
Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions. © 2018 American Association of Physicists in Medicine.
Simulation-based MDP verification for leading-edge masks
NASA Astrophysics Data System (ADS)
Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki
2017-07-01
For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.
SU-E-T-49: A Multi-Institutional Study of Independent Dose Verification for IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, H; Tachibana, H; Kamima, T
2015-06-15
Purpose: AAPM TG114 does not cover the independent verification for IMRT. We conducted a study of independent dose verification for IMRT in seven institutes to show the feasibility. Methods: 384 IMRT plans in the sites of prostate and head and neck (HN) were collected from the institutes, where the planning was performed using Eclipse and Pinnacle3 with the two techniques of step and shoot (S&S) and sliding window (SW). All of the institutes used a same independent dose verification software program (Simple MU Analysis: SMU, Triangle Product, Ishikawa, JP), which is Clarkson-based and CT images were used to compute radiologicalmore » path length. An ion-chamber measurement in a water-equivalent slab phantom was performed to compare the doses computed using the TPS and an independent dose verification program. Additionally, the agreement in dose computed in patient CT images between using the TPS and using the SMU was assessed. The dose of the composite beams in the plan was evaluated. Results: The agreement between the measurement and the SMU were −2.3±1.9 % and −5.6±3.6 % for prostate and HN sites, respectively. The agreement between the TPSs and the SMU were −2.1±1.9 % and −3.0±3.7 for prostate and HN sites, respectively. There was a negative systematic difference with similar standard deviation and the difference was larger in the HN site. The S&S technique showed a statistically significant difference between the SW. Because the Clarkson-based method in the independent program underestimated (cannot consider) the dose under the MLC. Conclusion: The accuracy would be improved when the Clarkson-based algorithm should be modified for IMRT and the tolerance level would be within 5%.« less
NASA Astrophysics Data System (ADS)
Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih
2017-08-01
In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.
Apprendre a apprendre: L'autocorrection (Learning to Learn: Self-Correction).
ERIC Educational Resources Information Center
Noir, Pascal
1996-01-01
A technique used in an advanced French writing class to encourage student self-correction is described. The technique focused on correction of verbs and their tenses; reduction of repetition; appropriate use of "on" and "nous;" and verification of possessive adjectives, negatives, personal pronouns, spelling, and punctuation.…
Inexpensive Eddy-Current Standard
NASA Technical Reports Server (NTRS)
Berry, Robert F., Jr.
1985-01-01
Radial crack replicas serve as evaluation standards. Technique entails intimately joining two pieces of appropriate aluminum alloy stock and centering drilled hole through and along interface. Bore surface of hole presents two vertical stock interface lines 180 degrees apart. These lines serve as radial crack defect replicas during eddy-current technique setup and verification.
Structural Margins Assessment Approach
NASA Technical Reports Server (NTRS)
Ryan, Robert S.
1988-01-01
A general approach to the structural design and verification used to determine the structural margins of the space vehicle elements under Marshall Space Flight Center (MSFC) management is described. The Space Shuttle results and organization will be used as illustrations for techniques discussed. Given also are: (1) the system analyses performed or to be performed by, and (2) element analyses performed by MSFC and its contractors. Analysis approaches and their verification will be addressed. The Shuttle procedures are general in nature and apply to other than Shuttle space vehicles.
Knowledge-based system verification and validation
NASA Technical Reports Server (NTRS)
Johnson, Sally C.
1990-01-01
The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.
Assessing Requirements Quality through Requirements Coverage
NASA Technical Reports Server (NTRS)
Rajan, Ajitha; Heimdahl, Mats; Woodham, Kurt
2008-01-01
In model-based development, the development effort is centered around a formal description of the proposed software system the model. This model is derived from some high-level requirements describing the expected behavior of the software. For validation and verification purposes, this model can then be subjected to various types of analysis, for example, completeness and consistency analysis [6], model checking [3], theorem proving [1], and test-case generation [4, 7]. This development paradigm is making rapid inroads in certain industries, e.g., automotive, avionics, space applications, and medical technology. This shift towards model-based development naturally leads to changes in the verification and validation (V&V) process. The model validation problem determining that the model accurately captures the customer's high-level requirements has received little attention and the sufficiency of the validation activities has been largely determined through ad-hoc methods. Since the model serves as the central artifact, its correctness with respect to the users needs is absolutely crucial. In our investigation, we attempt to answer the following two questions with respect to validation (1) Are the requirements sufficiently defined for the system? and (2) How well does the model implement the behaviors specified by the requirements? The second question can be addressed using formal verification. Nevertheless, the size and complexity of many industrial systems make formal verification infeasible even if we have a formal model and formalized requirements. Thus, presently, there is no objective way of answering these two questions. To this end, we propose an approach based on testing that, when given a set of formal requirements, explores the relationship between requirements-based structural test-adequacy coverage and model-based structural test-adequacy coverage. The proposed technique uses requirements coverage metrics defined in [9] on formal high-level software requirements and existing model coverage metrics such as the Modified Condition and Decision Coverage (MC/DC) used when testing highly critical software in the avionics industry [8]. Our work is related to Chockler et al. [2], but we base our work on traditional testing techniques as opposed to verification techniques.
Activity Detection and Retrieval for Image and Video Data with Limited Training
2015-06-10
applications. Here we propose two techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a... automata . For our second approach to segmentation, we employ a region based segmentation technique that is capable of handling intensity inhomogeneity...techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a mixture of Gaussian is fitted to the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onizuka, R; Araki, F; Ohno, T
2016-06-15
Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less
La Belle, Jeffrey T; Fairchild, Aaron; Demirok, Ugur K; Verma, Aman
2013-05-15
There is a critical need for more accurate, highly sensitive and specific assay for disease diagnosis and management. A novel, multiplexed, single sensor using rapid and label free electrochemical impedance spectroscopy tuning method has been developed. The key challenges while monitoring multiple targets is frequency overlap. Here we describe the methods to circumvent the overlap, tune by use of nanoparticle (NP) and discuss the various fabrication and characterization methods to develop this technique. First sensors were fabricated using printed circuit board (PCB) technology and nickel and gold layers were electrodeposited onto the PCB sensors. An off-chip conjugation of gold NP's to molecular recognition elements (with verification technique) is described as well. A standard covalent immobilization of the molecular recognition elements is also discussed with quality control techniques. Finally use and verification of sensitivity and specificity is also presented. By use of gold NP's of various sizes, we have demonstrated the possibility and shown little loss of sensitivity and specificity in the molecular recognition of inflammatory markers as "model" targets for our tuning system. By selection of other sized NP's or NP's of various materials, the tuning effect can be further exploited. The novel platform technology developed could be utilized in critical care, clinical management and at home health and disease management. Copyright © 2013 Elsevier Inc. All rights reserved.
Formal verification of an avionics microprocessor
NASA Technical Reports Server (NTRS)
Srivas, Mandayam, K.; Miller, Steven P.
1995-01-01
Formal specification combined with mechanical verification is a promising approach for achieving the extremely high levels of assurance required of safety-critical digital systems. However, many questions remain regarding their use in practice: Can these techniques scale up to industrial systems, where are they likely to be useful, and how should industry go about incorporating them into practice? This report discusses a project undertaken to answer some of these questions, the formal verification of the AAMPS microprocessor. This project consisted of formally specifying in the PVS language a rockwell proprietary microprocessor at both the instruction-set and register-transfer levels and using the PVS theorem prover to show that the microcode correctly implemented the instruction-level specification for a representative subset of instructions. Notable aspects of this project include the use of a formal specification language by practicing hardware and software engineers, the integration of traditional inspections with formal specifications, and the use of a mechanical theorem prover to verify a portion of a commercial, pipelined microprocessor that was not explicitly designed for formal verification.
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
A new verification film system for routine quality control of radiation fields: Kodak EC-L.
Hermann, A; Bratengeier, K; Priske, A; Flentje, M
2000-06-01
The use of modern irradiation techniques requires better verification films for determining set-up deviations and patient movements during the course of radiation treatment. This is an investigation of the image quality and time requirement of a new verification film system compared to a conventional portal film system. For conventional verifications we used Agfa Curix HT 1000 films which were compared to the new Kodak EC-L film system. 344 Agfa Curix HT 1000 and 381 Kodak EC-L portal films of different tumor sites (prostate, rectum, head and neck) were visually judged on a light box by 2 experienced physicians. Subjective judgement of image quality, masking of films and time requirement were checked. In this investigation 68% of 175 Kodak EC-L ap/pa-films were judged "good", only 18% were classified "moderate" or "poor" 14%, but only 22% of 173 conventional ap/pa verification films (Agfa Curix HT 1000) were judged to be "good". The image quality, detail perception and time required for film inspection of the new Kodak EC-L film system was significantly improved when compared with standard portal films. They could be read more accurately and the detection of set-up deviation was facilitated.
Linear models to perform treaty verification tasks for enhanced information security
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; ...
2016-11-12
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
NASA Astrophysics Data System (ADS)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; Hilton, Nathan R.; Marleau, Peter A.
2017-02-01
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.
Dynamics of social contagions with memory of nonredundant information
NASA Astrophysics Data System (ADS)
Wang, Wei; Tang, Ming; Zhang, Hai-Feng; Lai, Ying-Cheng
2015-07-01
A key ingredient in social contagion dynamics is reinforcement, as adopting a certain social behavior requires verification of its credibility and legitimacy. Memory of nonredundant information plays an important role in reinforcement, which so far has eluded theoretical analysis. We first propose a general social contagion model with reinforcement derived from nonredundant information memory. Then, we develop a unified edge-based compartmental theory to analyze this model, and a remarkable agreement with numerics is obtained on some specific models. We use a spreading threshold model as a specific example to understand the memory effect, in which each individual adopts a social behavior only when the cumulative pieces of information that the individual received from his or her neighbors exceeds an adoption threshold. Through analysis and numerical simulations, we find that the memory characteristic markedly affects the dynamics as quantified by the final adoption size. Strikingly, we uncover a transition phenomenon in which the dependence of the final adoption size on some key parameters, such as the transmission probability, can change from being discontinuous to being continuous. The transition can be triggered by proper parameters and structural perturbations to the system, such as decreasing individuals' adoption threshold, increasing initial seed size, or enhancing the network heterogeneity.
Verification of the NWP models operated at ICM, Poland
NASA Astrophysics Data System (ADS)
Melonek, Malgorzata
2010-05-01
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (ICM) started its activity in the field of NWP in May 1997. Since this time the numerical weather forecasts covering Central Europe have been routinely published on our publicly available website. First NWP model used in ICM was hydrostatic Unified Model developed by the UK Meteorological Office. It was a mesoscale version with horizontal resolution of 17 km and 31 levels in vertical. At present two NWP non-hydrostatic models are running in quasi-operational regime. The main new UM model with 4 km horizontal resolution, 38 levels in vertical and forecats range of 48 hours is running four times a day. Second, the COAMPS model (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by the US Naval Research Laboratory, configured with the three nested grids (with coresponding resolutions of 39km, 13km and 4.3km, 30 vertical levels) are running twice a day (for 00 and 12 UTC). The second grid covers Central Europe and has forecast range of 84 hours. Results of the both NWP models, ie. COAMPS computed on 13km mesh resolution and UM, are verified against observations from the Polish synoptic stations. Verification uses surface observations and nearest grid point forcasts. Following meteorological elements are verified: air temperature at 2m, mean sea level pressure, wind speed and wind direction at 10 m and 12 hours accumulated precipitation. There are presented different statistical indices. For continous variables Mean Error(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) in 6 hours intervals are computed. In case of precipitation the contingency tables for different thresholds are computed and some of the verification scores such as FBI, ETS, POD, FAR are graphically presented. The verification sample covers nearly one year.
Richardson, Michael L; Petscavage, Jonelle M
2011-11-01
The sensitivity and specificity of magnetic resonance imaging (MRI) for diagnosis of meniscal tears has been studied extensively, with tears usually verified by surgery. However, surgically unverified cases are often not considered in these studies, leading to verification bias, which can falsely increase the sensitivity and decrease the specificity estimates. Our study suggests that such bias may be very common in the meniscal MRI literature, and illustrates techniques to detect and correct for such bias. PubMed was searched for articles estimating sensitivity and specificity of MRI for meniscal tears. These were assessed for verification bias, deemed potentially present if a study included any patients whose MRI findings were not surgically verified. Retrospective global sensitivity analysis (GSA) was performed when possible. Thirty-nine of the 314 studies retrieved from PubMed specifically dealt with meniscal tears. All 39 included unverified patients, and hence, potential verification bias. Only seven articles included sufficient information to perform GSA. Of these, one showed definite verification bias, two showed no bias, and four others showed bias within certain ranges of disease prevalence. Only 9 of 39 acknowledged the possibility of verification bias. Verification bias is underrecognized and potentially common in published estimates of the sensitivity and specificity of MRI for the diagnosis of meniscal tears. When possible, it should be avoided by proper study design. If unavoidable, it should be acknowledged. Investigators should tabulate unverified as well as verified data. Finally, verification bias should be estimated; if present, corrected estimates of sensitivity and specificity should be used. Our online web-based calculator makes this process relatively easy. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Compressive sensing using optimized sensing matrix for face verification
NASA Astrophysics Data System (ADS)
Oey, Endra; Jeffry; Wongso, Kelvin; Tommy
2017-12-01
Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.
NASA Technical Reports Server (NTRS)
Sung, Q. C.; Miller, L. D.
1977-01-01
Three methods were tested for collection of the training sets needed to establish the spectral signatures of the land uses/land covers sought due to the difficulties of retrospective collection of representative ground control data. Computer preprocessing techniques applied to the digital images to improve the final classification results were geometric corrections, spectral band or image ratioing and statistical cleaning of the representative training sets. A minimal level of statistical verification was made based upon the comparisons between the airphoto estimates and the classification results. The verifications provided a further support to the selection of MSS band 5 and 7. It also indicated that the maximum likelihood ratioing technique can achieve more agreeable classification results with the airphoto estimates than the stepwise discriminant analysis.
Expert system verification and validation study: ES V/V Workshop
NASA Technical Reports Server (NTRS)
French, Scott; Hamilton, David
1992-01-01
The primary purpose of this document is to build a foundation for applying principles of verification and validation (V&V) of expert systems. To achieve this, some V&V as applied to conventionally implemented software is required. Part one will discuss the background of V&V from the perspective of (1) what is V&V of software and (2) V&V's role in developing software. Part one will also overview some common analysis techniques that are applied when performing V&V of software. All of these materials will be presented based on the assumption that the reader has little or no background in V&V or in developing procedural software. The primary purpose of part two is to explain the major techniques that have been developed for V&V of expert systems.
Kaur, Taranjit; Saini, Barjinder Singh; Gupta, Savita
2018-03-01
In the present paper, a hybrid multilevel thresholding technique that combines intuitionistic fuzzy sets and tsallis entropy has been proposed for the automatic delineation of the tumor from magnetic resonance images having vague boundaries and poor contrast. This novel technique takes into account both the image histogram and the uncertainty information for the computation of multiple thresholds. The benefit of the methodology is that it provides fast and improved segmentation for the complex tumorous images with imprecise gray levels. To further boost the computational speed, the mutation based particle swarm optimization is used that selects the most optimal threshold combination. The accuracy of the proposed segmentation approach has been validated on simulated, real low-grade glioma tumor volumes taken from MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and the clinical tumor images, so as to corroborate its generality and novelty. The designed technique achieves an average Dice overlap equal to 0.82010, 0.78610 and 0.94170 for three datasets. Further, a comparative analysis has also been made between the eight existing multilevel thresholding implementations so as to show the superiority of the designed technique. In comparison, the results indicate a mean improvement in Dice by an amount equal to 4.00% (p < 0.005), 9.60% (p < 0.005) and 3.58% (p < 0.005), respectively in contrast to the fuzzy tsallis approach.
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
A Survey of Architectural Techniques for Near-Threshold Computing
Mittal, Sparsh
2015-12-28
Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlightmore » their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.« less
A Survey of Architectural Techniques for Near-Threshold Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlightmore » their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.« less
Liu, Zhihua; Yang, Jian; He, Hong S.
2013-01-01
The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247
CORRELATIONS IN LIGHT FROM A LASER AT THRESHOLD,
Temporal correlations in the electromagnetic field radiated by a laser in the threshold region of oscillation (from one tenth of threshold intensity...to ten times threshold ) were measured by photoelectron counting techniques. The experimental results were compared with theoretical predictions based...shows that the intensity fluctuations at about one tenth threshold are nearly those of a Gaussian field and continuously approach those of a constant amplitude field as the intensity is increased. (Author)
A process improvement model for software verification and validation
NASA Technical Reports Server (NTRS)
Callahan, John; Sabolish, George
1994-01-01
We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.
A process improvement model for software verification and validation
NASA Technical Reports Server (NTRS)
Callahan, John; Sabolish, George
1994-01-01
We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and Space Station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2013-12-01
ADR equation describes many physical phenomena of interest in the field of water quality in natural streams and groundwater. In many cases such as: density driven flow, multiphase reactive transport, and sediment transport, either one or a number of terms in the ADR equation may become nonlinear. For that reason, numerical tools are the only practical choice to solve these PDEs. All numerical solvers developed for transport equation need to undergo code verification procedure before they are put in to practice. Code verification is a mathematical activity to uncover failures and check for rigorous discretization of PDEs and implementation of initial/boundary conditions. In the context computational PDE verification is not a well-defined procedure on a clear path. Thus, verification tests should be designed and implemented with in-depth knowledge of numerical algorithms and physics of the phenomena as well as mathematical behavior of the solution. Even test results need to be mathematically analyzed to distinguish between an inherent limitation of algorithm and a coding error. Therefore, it is well known that code verification is a state of the art, in which innovative methods and case-based tricks are very common. This study presents full verification of a general transport code. To that end, a complete test suite is designed to probe the ADR solver comprehensively and discover all possible imperfections. In this study we convey our experiences in finding several errors which were not detectable with routine verification techniques. We developed a test suit including hundreds of unit tests and system tests. The test package has gradual increment in complexity such that tests start from simple and increase to the most sophisticated level. Appropriate verification metrics are defined for the required capabilities of the solver as follows: mass conservation, convergence order, capabilities in handling stiff problems, nonnegative concentration, shape preservation, and spurious wiggles. Thereby, we provide objective, quantitative values as opposed to subjective qualitative descriptions as 'weak' or 'satisfactory' agreement with those metrics. We start testing from a simple case of unidirectional advection, then bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. For all of the mentioned cases we conduct mesh convergence tests. These tests compare the results' order of accuracy versus the formal order of accuracy of discretization. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available we utilize Symmetry, Complete Richardson Extrapolation and Method of False Injection to uncover bugs. Detailed discussions of capabilities of the mentioned code verification techniques are given. Auxiliary subroutines for automation of the test suit and report generation are designed. All in all, the test package is not only a robust tool for code verification but also it provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport.
NASA Astrophysics Data System (ADS)
Petric, Martin Peter
This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this new dosimetric verification system indicates excellent dose response and spatial linearity, high spatial resolution, and good signal uniformity and reproducibility. Dosimetric results from square fields, dynamic wedged fields, and a 7-field head and neck IMRT treatment plan indicate good agreement with film dosimetry distributions. Efficiency analysis of the system reveals a 50% reduction in time requirements for field-by-field verification of a 7-field IMRT treatment plan compared to film dosimetry.
Fog dispersion. [charged particle technique
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1980-01-01
The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.
Optical security verification for blurred fingerprints
NASA Astrophysics Data System (ADS)
Soon, Boon Y.; Karim, Mohammad A.; Alam, Mohammad S.
1998-12-01
Optical fingerprint security verification is gaining popularity, as it has the potential to perform correlation at the speed of light. With advancement in optical security verification techniques, authentication process can be almost foolproof and reliable for financial transaction, banking, etc. In law enforcement, when a fingerprint is obtained from a crime scene, it may be blurred and can be an unhealthy candidate for correlation purposes. Therefore, the blurred fingerprint needs to be clarified before it is used for the correlation process. There are a several different types of blur, such as linear motion blur and defocus blur, induced by aberration of imaging system. In addition, we may or may not know the blur function. In this paper, we propose the non-singularity inverse filtering in frequency/power domain for deblurring known motion-induced blur in fingerprints. This filtering process will be incorporated with the pow spectrum subtraction technique, uniqueness comparison scheme, and the separated target and references planes method in the joint transform correlator. The proposed hardware implementation is a hybrid electronic-optical correlator system. The performance of the proposed system would be verified with computer simulation for both cases: with and without additive random noise corruption.
Modelling the regulatory system for diabetes mellitus with a threshold window
NASA Astrophysics Data System (ADS)
Yang, Jin; Tang, Sanyi; Cheke, Robert A.
2015-05-01
Piecewise (or non-smooth) glucose-insulin models with threshold windows for type 1 and type 2 diabetes mellitus are proposed and analyzed with a view to improving understanding of the glucose-insulin regulatory system. For glucose-insulin models with a single threshold, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between regular equilibria and a pseudo-equilibrium are studied. Furthermore, the sufficient and necessary conditions for the global stability of regular equilibria and the pseudo-equilibrium are provided by using qualitative analysis techniques of non-smooth Filippov dynamic systems. Sliding bifurcations related to boundary node bifurcations were investigated with theoretical and numerical techniques, and insulin clinical therapies are discussed. For glucose-insulin models with a threshold window, the effects of glucose thresholds or the widths of threshold windows on the durations of insulin therapy and glucose infusion were addressed. The duration of the effects of an insulin injection is sensitive to the variation of thresholds. Our results indicate that blood glucose level can be maintained within a normal range using piecewise glucose-insulin models with a single threshold or a threshold window. Moreover, our findings suggest that it is critical to individualise insulin therapy for each patient separately, based on initial blood glucose levels.
The role of acceptable knowledge in transuranic waste disposal operations - 11117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John; Nelson, Roger
2010-11-08
The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less
Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems
NASA Technical Reports Server (NTRS)
Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen
2010-01-01
Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior
Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction
NASA Astrophysics Data System (ADS)
Aarts, Fides; Jonsson, Bengt; Uijen, Johan
In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with the protocol simulator ns-2, and generated a model of the SIP component as implemented in ns-2.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang- Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang-Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
Image Hashes as Templates for Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.
2012-07-17
Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images,more » and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the information contained in the hashed image data (available out-of-IB) cannot be used to extract sensitive information about the imaged object is of primary concern. Thus the techniques are characterized by high unpredictability to guarantee security. We will present an assessment of the performance of our techniques with respect to security, sensitivity and robustness on the basis of a methodical and mathematically precise framework.« less
Bleeker, H J; Lewin, P A
2000-01-01
A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.
Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R
To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Glass, John O.; Reddick, Wilburn E.; Reeves, Cara; Pui, Ching-Hon
2004-05-01
Reliably quantifying therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its varying MR properties and similarity to normal tissues and imaging artifacts. T1, T2, PD, and FLAIR images were analyzed for a subset of 15 children from an institutional protocol for the treatment of acute lymphoblastic leukemia. Three different analysis techniques were compared to examine improvements in the segmentation accuracy of leukoencephalopathy versus manual tracings by two expert observers. The first technique utilized no apriori information and a white matter mask based on the segmentation of the first serial examination of each patient. MR images were then segmented with a Kohonen Self-Organizing Map. The other two techniques combine apriori maps from the ICBM atlas spatially normalized to each patient and resliced using SPM99 software. The apriori maps were included as input and a gradient magnitude threshold calculated on the FLAIR images was also utilized. The second technique used a 2-dimensional threshold, while the third algorithm utilized a 3-dimensional threshold. Kappa values were compared for the three techniques to each observer, and improvements were seen with each addition to the original algorithm (Observer 1: 0.651, 0.653, 0.744; Observer 2: 0.603, 0.615, 0.699).
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
Model-based engineering for medical-device software.
Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi
2010-01-01
This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.
Defining the IEEE-854 floating-point standard in PVS
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
A significant portion of the ANSI/IEEE-854 Standard for Radix-Independent Floating-Point Arithmetic is defined in PVS (Prototype Verification System). Since IEEE-854 is a generalization of the ANSI/IEEE-754 Standard for Binary Floating-Point Arithmetic, the definition of IEEE-854 in PVS also formally defines much of IEEE-754. This collection of PVS theories provides a basis for machine checked verification of floating-point systems. This formal definition illustrates that formal specification techniques are sufficiently advanced that is is reasonable to consider their use in the development of future standards.
A formal approach to validation and verification for knowledge-based control systems
NASA Technical Reports Server (NTRS)
Castore, Glen
1987-01-01
As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented.
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K. Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
Active Interrogation for Spent Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Dougan, Arden
2015-11-05
The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.
Continuous Seismic Threshold Monitoring
1992-05-31
Continuous threshold monitoring is a technique for using a seismic network to monitor a geographical area continuously in time. The method provides...area. Two approaches are presented. Site-specific monitoring: By focusing a seismic network on a specific target site, continuous threshold monitoring...recorded events at the site. We define the threshold trace for the network as the continuous time trace of computed upper magnitude limits of seismic
Abstraction Techniques for Parameterized Verification
2006-11-01
approach for applying model checking to unbounded systems is to extract finite state models from them using conservative abstraction techniques. Prop...36 2.5.1 Multiple Reference Processes . . . . . . . . . . . . . . . . . . . 36 2.5.2 Adding Monitor Processes...model checking to complex pieces of code like device drivers depends on the use of abstraction methods. An abstraction method extracts a small finite
Ultrasound functional imaging in an ex vivo beating porcine heart platform
NASA Astrophysics Data System (ADS)
Petterson, Niels J.; Fixsen, Louis S.; Rutten, Marcel C. M.; Pijls, Nico H. J.; van de Vosse, Frans N.; Lopata, Richard G. P.
2017-12-01
In recent years, novel ultrasound functional imaging (UFI) techniques have been introduced to assess cardiac function by measuring, e.g. cardiac output (CO) and/or myocardial strain. Verification and reproducibility assessment in a realistic setting remain major issues. Simulations and phantoms are often unrealistic, whereas in vivo measurements often lack crucial hemodynamic parameters or ground truth data, or suffer from the large physiological and clinical variation between patients when attempting clinical validation. Controlled validation in certain pathologies is cumbersome and often requires the use of lab animals. In this study, an isolated beating pig heart setup was adapted and used for performance assessment of UFI techniques such as volume assessment and ultrasound strain imaging. The potential of performing verification and reproducibility studies was demonstrated. For proof-of-principle, validation of UFI in pathological hearts was examined. Ex vivo porcine hearts (n = 6, slaughterhouse waste) were resuscitated and attached to a mock circulatory system. Radio frequency ultrasound data of the left ventricle were acquired in five short axis views and one long axis view. Based on these slices, the CO was measured, where verification was performed using flow sensor measurements in the aorta. Strain imaging was performed providing radial, circumferential and longitudinal strain to assess reproducibility and inter-subject variability under steady conditions. Finally, strains in healthy hearts were compared to a heart with an implanted left ventricular assist device, simulating a failing, supported heart. Good agreement between ultrasound and flow sensor based CO measurements was found. Strains were highly reproducible (intraclass correlation coefficients >0.8). Differences were found due to biological variation and condition of the hearts. Strain magnitude and patterns in the assisted heart were available for different pump action, revealing large changes compared to the normal condition. The setup provides a valuable benchmarking platform for UFI techniques. Future studies will include work on different pathologies and other means of measurement verification.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; d'Errico, Francesco
2016-01-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications. PMID:27649477
A physical zero-knowledge object-comparison system for nuclear warhead verification.
Philippe, Sébastien; Goldston, Robert J; Glaser, Alexander; d'Errico, Francesco
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
NASA Astrophysics Data System (ADS)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; D'Errico, Francesco
2016-09-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; ...
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
A physical zero-knowledge object-comparison system for nuclear warhead verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
Analysis of historical delta values for IAEA/LANL NDA training courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, William; Santi, Peter; Swinhoe, Martyn
2009-01-01
The Los Alamos National Laboratory (LANL) supports the International Atomic Energy Agency (IAEA) by providing training for IAEA inspectors in neutron and gamma-ray Nondestructive Assay (NDA) of nuclear material. Since 1980, all new IAEA inspectors attend this two week course at LANL gaining hands-on experience in the application of NDA techniques, procedures and analysis to measure plutonium and uranium nuclear material standards with well known pedigrees. As part of the course the inspectors conduct an inventory verification exercise. This exercise provides inspectors the opportunity to test their abilities in performing verification measurements using the various NDA techniques. For an inspector,more » the verification of an item is nominally based on whether the measured assay value agrees with the declared value to within three times the historical delta value. The historical delta value represents the average difference between measured and declared values from previous measurements taken on similar material with the same measurement technology. If the measurement falls outside a limit of three times the historical delta value, the declaration is not verified. This paper uses measurement data from five years of IAEA courses to calculate a historical delta for five non-destructive assay methods: Gamma-ray Enrichment, Gamma-ray Plutonium Isotopics, Passive Neutron Coincidence Counting, Active Neutron Coincidence Counting and the Neutron Coincidence Collar. These historical deltas provide information as to the precision and accuracy of these measurement techniques under realistic conditions.« less
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
Abstraction and Assume-Guarantee Reasoning for Automated Software Verification
NASA Technical Reports Server (NTRS)
Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.
2004-01-01
Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.
Towards the Verification of Human-Robot Teams
NASA Technical Reports Server (NTRS)
Fisher, Michael; Pearce, Edward; Wooldridge, Mike; Sierhuis, Maarten; Visser, Willem; Bordini, Rafael H.
2005-01-01
Human-Agent collaboration is increasingly important. Not only do high-profile activities such as NASA missions to Mars intend to employ such teams, but our everyday activities involving interaction with computational devices falls into this category. In many of these scenarios, we are expected to trust that the agents will do what we expect and that the agents and humans will work together as expected. But how can we be sure? In this paper, we bring together previous work on the verification of multi-agent systems with work on the modelling of human-agent teamwork. Specifically, we target human-robot teamwork. This paper provides an outline of the way we are using formal verification techniques in order to analyse such collaborative activities. A particular application is the analysis of human-robot teams intended for use in future space exploration.
Top down, bottom up structured programming and program structuring
NASA Technical Reports Server (NTRS)
Hamilton, M.; Zeldin, S.
1972-01-01
New design and programming techniques for shuttle software. Based on previous Apollo experience, recommendations are made to apply top-down structured programming techniques to shuttle software. New software verification techniques for large software systems are recommended. HAL, the higher order language selected for the shuttle flight code, is discussed and found to be adequate for implementing these techniques. Recommendations are made to apply the workable combination of top-down, bottom-up methods in the management of shuttle software. Program structuring is discussed relevant to both programming and management techniques.
Development of a technique for inflight jet noise simulation. I, II
NASA Technical Reports Server (NTRS)
Clapper, W. S.; Stringas, E. J.; Mani, R.; Banerian, G.
1976-01-01
Several possible noise simulation techniques were evaluated, including closed circuit wind tunnels, free jets, rocket sleds and high speed trains. The free jet technique was selected for demonstration and verification. The first paper describes the selection and development of the technique and presents results for simulation and in-flight tests of the Learjet, F106, and Bertin Aerotrain. The second presents a theoretical study relating the two sets of noise signatures. It is concluded that the free jet simulation technique provides a satisfactory assessment of in-flight noise.
Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection
NASA Astrophysics Data System (ADS)
Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei
Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.
SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamano, H; Yamakawa, T; Hayashi, N
Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiationmore » was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.« less
Yu, Tzu-Ying; Jacobs, Robert J.; Anstice, Nicola S.; Paudel, Nabin; Harding, Jane E.; Thompson, Benjamin
2013-01-01
Purpose. We developed and validated a technique for measuring global motion perception in 2-year-old children, and assessed the relationship between global motion perception and other measures of visual function. Methods. Random dot kinematogram (RDK) stimuli were used to measure motion coherence thresholds in 366 children at risk of neurodevelopmental problems at 24 ± 1 months of age. RDKs of variable coherence were presented and eye movements were analyzed offline to grade the direction of the optokinetic reflex (OKR) for each trial. Motion coherence thresholds were calculated by fitting psychometric functions to the resulting datasets. Test–retest reliability was assessed in 15 children, and motion coherence thresholds were measured in a group of 10 adults using OKR and behavioral responses. Standard age-appropriate optometric tests also were performed. Results. Motion coherence thresholds were measured successfully in 336 (91.8%) children using the OKR technique, but only 31 (8.5%) using behavioral responses. The mean threshold was 41.7 ± 13.5% for 2-year-old children and 3.3 ± 1.2% for adults. Within-assessor reliability and test–retest reliability were high in children. Children's motion coherence thresholds were significantly correlated with stereoacuity (LANG I & II test, ρ = 0.29, P < 0.001; Frisby, ρ = 0.17, P = 0.022), but not with binocular visual acuity (ρ = 0.11, P = 0.07). In adults OKR and behavioral motion coherence thresholds were highly correlated (intraclass correlation = 0.81, P = 0.001). Conclusions. Global motion perception can be measured in 2-year-old children using the OKR. This technique is reliable and data from adults suggest that motion coherence thresholds based on the OKR are related to motion perception. Global motion perception was related to stereoacuity in children. PMID:24282224
Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei
2017-05-07
The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4 ± 0.1 mm/5.5 ± 2.2%, 0.6 ± 0.3 mm/7.2 ± 2.8%, 0.5 ± 0.2 mm/7.1 ± 2.6%, 0.6 ± 0.2 mm/8.3 ± 2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation, respectively. In the CIRS phantom study, this technique achieved an average tumor COMS/VPD of 0.7 ± 0.1 mm/7.5 ± 1.3% for a 3 cm lesion and 0.6 ± 0.2 mm/11.4 ± 1.5% for a 2 cm lesion in the baseline drift case. The average tumor COMS/VPD were 0.5 ± 0.2 mm/10.8 ± 1.4%, 0.4 ± 0.3 mm/7.3 ± 2.9%, 0.4 ± 0.2 mm/7.4 ± 2.5%, 0.4 ± 0.2 mm/7.3 ± 2.8% for the four real patient breathing signals, respectively. Results demonstrated that the adaptive prior knowledge guided image estimation technique with LIVE system is robust against scanning angle, lesion size, location and scanning direction. It can estimate on-board images accurately with as little as 6 projections in orthogonal-view 3° angle. In conclusion, adaptive prior knowledge guided image reconstruction technique accurately estimates 4D-CBCT images using extremely-limited angle and projections. This technique greatly improves the efficiency and accuracy of LIVE system for ultrafast 4D intrafraction verification of lung SBRT treatments.
Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, Sukesh K.; Blattnig, Steve R.; Norbury, John W.; Singleterry, Robert C., Jr.
2008-01-01
Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment.
Shadow-Based Vehicle Detection in Urban Traffic
Ibarra-Arenado, Manuel; Tjahjadi, Tardi; Pérez-Oria, Juan; Robla-Gómez, Sandra; Jiménez-Avello, Agustín
2017-01-01
Vehicle detection is a fundamental task in Forward Collision Avoiding Systems (FACS). Generally, vision-based vehicle detection methods consist of two stages: hypotheses generation and hypotheses verification. In this paper, we focus on the former, presenting a feature-based method for on-road vehicle detection in urban traffic. Hypotheses for vehicle candidates are generated according to the shadow under the vehicles by comparing pixel properties across the vertical intensity gradients caused by shadows on the road, and followed by intensity thresholding and morphological discrimination. Unlike methods that identify the shadow under a vehicle as a road region with intensity smaller than a coarse lower bound of the intensity for road, the thresholding strategy we propose determines a coarse upper bound of the intensity for shadow which reduces false positives rates. The experimental results are promising in terms of detection performance and robustness in day time under different weather conditions and cluttered scenarios to enable validation for the first stage of a complete FACS. PMID:28448465
Employment of adaptive learning techniques for the discrimination of acoustic emissions
NASA Astrophysics Data System (ADS)
Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.
1983-11-01
The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-01-01
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform. PMID:27869722
NASA Technical Reports Server (NTRS)
Hughes, David W.; Hedgeland, Randy J.
1994-01-01
A mechanical simulator of the Hubble Space Telescope (HST) Aft Shroud was built to perform verification testing of the Servicing Mission Scientific Instruments (SI's) and to provide a facility for astronaut training. All assembly, integration, and test activities occurred under the guidance of a contamination control plan, and all work was reviewed by a contamination engineer prior to implementation. An integrated approach was followed in which materials selection, manufacturing, assembly, subsystem integration, and end product use were considered and controlled to ensure that the use of the High Fidelity Mechanical Simulator (HFMS) as a verification tool would not contaminate mission critical hardware. Surfaces were cleaned throughout manufacturing, assembly, and integration, and reverification was performed following major activities. Direct surface sampling was the preferred method of verification, but access and material constraints led to the use of indirect methods as well. Although surface geometries and coatings often made contamination verification difficult, final contamination sampling and monitoring demonstrated the ability to maintain a class M5.5 environment with surface levels less than 400B inside the HFMS.
NASA Astrophysics Data System (ADS)
Heyer, H.-V.; Föckersperger, S.; Lattner, K.; Moldenhauer, W.; Schmolke, J.; Turk, M.; Willemsen, P.; Schlicker, M.; Westerdorff, K.
2008-08-01
The technology verification satellite TET (Technologie ErprobungsTräger) is the core element of the German On-Orbit-Verification (OOV) program of new technologies and techniques. The goal of this program is the support of the German space industry and research facilities for on-orbit verification of satellite technologies. The TET satellite is a small satellite developed and built in Germany under leadership of Kayser-Threde. The satellite bus is based on the successfully operated satellite BIRD and the newly developed payload platform with the new payload handling system called NVS (Nutzlastversorgungs-system). The NVS can be detailed in three major parts: the power supply the processor boards and the I/O-interfaces. The NVS is realized via several PCBs in Europe format which are connected to each other via an integrated backplane. The payloads are connected by front connectors to the NVS. This paper describes the concept, architecture, and the hard-/software of the NVS. Phase B of this project was successfully finished last year.
Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos
2016-11-18
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.
Cognitive Bias in the Verification and Validation of Space Flight Systems
NASA Technical Reports Server (NTRS)
Larson, Steve
2012-01-01
Cognitive bias is generally recognized as playing a significant role in virtually all domains of human decision making. Insight into this role is informally built into many of the system engineering practices employed in the aerospace industry. The review process, for example, typically has features that help to counteract the effect of bias. This paper presents a discussion of how commonly recognized biases may affect the verification and validation process. Verifying and validating a system is arguably more challenging than development, both technically and cognitively. Whereas there may be a relatively limited number of options available for the design of a particular aspect of a system, there is a virtually unlimited number of potential verification scenarios that may be explored. The probability of any particular scenario occurring in operations is typically very difficult to estimate, which increases reliance on judgment that may be affected by bias. Implementing a verification activity often presents technical challenges that, if they can be overcome at all, often result in a departure from actual flight conditions (e.g., 1-g testing, simulation, time compression, artificial fault injection) that may raise additional questions about the meaningfulness of the results, and create opportunities for the introduction of additional biases. In addition to mitigating the biases it can introduce directly, the verification and validation process must also overcome the cumulative effect of biases introduced during all previous stages of development. A variety of cognitive biases will be described, with research results for illustration. A handful of case studies will be presented that show how cognitive bias may have affected the verification and validation process on recent JPL flight projects, identify areas of strength and weakness, and identify potential changes or additions to commonly used techniques that could provide a more robust verification and validation of future systems.
Development of a thresholding algorithm for calcium classification at multiple CT energies
NASA Astrophysics Data System (ADS)
Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.
2017-05-01
The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Roeder, William P.
2010-01-01
The expected peak wind speed for the day is an important element in the daily morning forecast for ground and space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron (45 WS) must issue forecast advisories for KSC/CCAFS when they expect peak gusts for >= 25, >= 35, and >= 50 kt thresholds at any level from the surface to 300 ft. In Phase I of this task, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a cool-season (October - April) tool to help forecast the non-convective peak wind from the surface to 300 ft at KSC/CCAFS. During the warm season, these wind speeds are rarely exceeded except during convective winds or under the influence of tropical cyclones, for which other techniques are already in use. The tool used single and multiple linear regression equations to predict the peak wind from the morning sounding. The forecaster manually entered several observed sounding parameters into a Microsoft Excel graphical user interface (GUI), and then the tool displayed the forecast peak wind speed, average wind speed at the time of the peak wind, the timing of the peak wind and the probability the peak wind will meet or exceed 35, 50 and 60 kt. The 45 WS customers later dropped the requirement for >= 60 kt wind warnings. During Phase II of this task, the AMU expanded the period of record (POR) by six years to increase the number of observations used to create the forecast equations. A large number of possible predictors were evaluated from archived soundings, including inversion depth and strength, low-level wind shear, mixing height, temperature lapse rate and winds from the surface to 3000 ft. Each day in the POR was stratified in a number of ways, such as by low-level wind direction, synoptic weather pattern, precipitation and Bulk Richardson number. The most accurate Phase II equations were then selected for an independent verification. The Phase I and II forecast methods were compared using an independent verification data set. The two methods were compared to climatology, wind warnings and advisories issued by the 45 WS, and North American Mesoscale (NAM) model (MesoNAM) forecast winds. The performance of the Phase I and II methods were similar with respect to mean absolute error. Since the Phase I data were not stratified by precipitation, this method's peak wind forecasts had a large negative bias on days with precipitation and a small positive bias on days with no precipitation. Overall, the climatology methods performed the worst while the MesoNAM performed the best. Since the MesoNAM winds were the most accurate in the comparison, the final version of the tool was based on the MesoNAM winds. The probability the peak wind will meet or exceed the warning thresholds were based on the one standard deviation error bars from the linear regression. For example, the linear regression might forecast the most likely peak speed to be 35 kt and the error bars used to calculate that the probability of >= 25 kt = 76%, the probability of >= 35 kt = 50%, and the probability of >= 50 kt = 19%. The authors have not seen this application of linear regression error bars in any other meteorological applications. Although probability forecast tools should usually be developed with logistic regression, this technique could be easily generalized to any linear regression forecast tool to estimate the probability of exceeding any desired threshold . This could be useful for previously developed linear regression forecast tools or new forecast applications where statistical analysis software to perform logistic regression is not available. The tool was delivered in two formats - a Microsoft Excel GUI and a Tool Command Language/Tool Kit (Tcl/Tk) GUI in the Meteorological Interactive Data Display System (MIDDS). The Microsoft Excel GUI reads a MesoNAM text file containing hourly forecasts from 0 to 84 hours, from one model run (00 or 12 UTC). The GUI then displays e peak wind speed, average wind speed, and the probability the peak wind will meet or exceed the 25-, 35- and 50-kt thresholds. The user can display the Day-1 through Day-3 peak wind forecasts, and separate forecasts are made for precipitation and non-precipitation days. The MIDDS GUI uses data from the NAM and Global Forecast System (GFS), instead of the MesoNAM. It can display Day-1 and Day-2 forecasts using NAM data, and Day-1 through Day-5 forecasts using GFS data. The timing of the peak wind is not displayed, since the independent verification showed that none of the forecast methods performed significantly better than climatology. The forecaster should use the climatological timing of the peak wind (2248 UTC) as a first guess and then adjust it based on the movement of weather features.
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Barnes, J. C.; Rango, A.
1981-01-01
The purpose of the handbook is to update the various snowcover interpretation techniques, document the snow mapping techniques used in the various ASVT study areas, and describe the ways snowcover data have been applied to runoff prediction. Through documentation in handbook form, the methodology developed in the Snow Mapping ASVT can be applied to other areas.
Banach, Marzena; Wasilewska, Agnieszka; Dlugosz, Rafal; Pauk, Jolanta
2018-05-18
Due to the problem of aging societies, there is a need for smart buildings to monitor and support people with various disabilities, including rheumatoid arthritis. The aim of this paper is to elaborate on novel techniques for wireless motion capture systems for the monitoring and rehabilitation of disabled people for application in smart buildings. The proposed techniques are based on cross-verification of distance measurements between markers and transponders in an environment with highly variable parameters. To their verification, algorithms that enable comprehensive investigation of a system with different numbers of transponders and varying ambient parameters (temperature and noise) were developed. In the estimation of the real positions of markers, various linear and nonlinear filters were used. Several thousand tests were carried out for various system parameters and different marker locations. The results show that localization error may be reduced by as much as 90%. It was observed that repetition of measurement reduces localization error by as much as one order of magnitude. The proposed system, based on wireless techniques, offers a high commercial potential. However, it requires extensive cooperation between teams, including hardware and software design, system modelling, and architectural design.
An Automated Directed Spectral Search Methodology for Small Target Detection
NASA Astrophysics Data System (ADS)
Grossman, Stanley I.
Much of the current efforts in remote sensing tackle macro-level problems such as determining the extent of wheat in a field, the general health of vegetation or the extent of mineral deposits in an area. However, for many of the remaining remote sensing challenges being studied currently, such as border protection, drug smuggling, treaty verification, and the war on terror, most targets are very small in nature - a vehicle or even a person. While in typical macro-level problems the objective vegetation is in the scene, for small target detection problems it is not usually known if the desired small target even exists in the scene, never mind finding it in abundance. The ability to find specific small targets, such as vehicles, typifies this problem. Complicating the analyst's life, the growing number of available sensors is generating mountains of imagery outstripping the analysts' ability to visually peruse them. This work presents the important factors influencing spectral exploitation using multispectral data and suggests a different approach to small target detection. The methodology of directed search is presented, including the use of scene-modeled spectral libraries, various search algorithms, and traditional statistical and ROC curve analysis. The work suggests a new metric to calibrate analysis labeled the analytic sweet spot as well as an estimation method for identifying the sweet spot threshold for an image. It also suggests a new visualization aid for highlighting the target in its entirety called nearest neighbor inflation (NNI). It brings these all together to propose that these additions to the target detection arena allow for the construction of a fully automated target detection scheme. This dissertation next details experiments to support the hypothesis that the optimum detection threshold is the analytic sweet spot and that the estimation method adequately predicts it. Experimental results and analysis are presented for the proposed directed search techniques of spectral image based small target detection. It offers evidence of the functionality of the NNI visualization and also provides evidence that the increased spectral dimensionality of the 8-band Worldview-2 datasets provides noteworthy improvement in results over traditional 4-band multispectral datasets. The final experiment presents the results from a prototype fully automated target detection scheme in support of the overarching premise. This work establishes the analytic sweet spot as the optimum threshold defined as the point where error detection rate curves -- false detections vs. missing detections -- cross. At this point the errors are minimized while the detection rate is maximized. It then demonstrates that taking the first moment statistic of the histogram of calculated target detection values from a detection search with test threshold set arbitrarily high will estimate the analytic sweet spot for that image. It also demonstrates that directed search techniques -- when utilized with appropriate scene-specific modeled signatures and atmospheric compensations -- perform at least as well as in-scene search techniques 88% of the time and grossly under-performing only 11% of the time; the in-scene only performs as well or better 50% of the time. It further demonstrates the clear advantage increased multispectral dimensionality brings to detection searches improving performance in 50% of the cases while performing at least as well 72% of the time. Lastly, it presents evidence that a fully automated prototype performs as anticipated laying the groundwork for further research into fully automated processes for small target detection.
Allen, Robert C; John, Mallory G; Rutan, Sarah C; Filgueira, Marcelo R; Carr, Peter W
2012-09-07
A singular value decomposition-based background correction (SVD-BC) technique is proposed for the reduction of background contributions in online comprehensive two-dimensional liquid chromatography (LC×LC) data. The SVD-BC technique was compared to simply subtracting a blank chromatogram from a sample chromatogram and to a previously reported background correction technique for one dimensional chromatography, which uses an asymmetric weighted least squares (AWLS) approach. AWLS was the only background correction technique to completely remove the background artifacts from the samples as evaluated by visual inspection. However, the SVD-BC technique greatly reduced or eliminated the background artifacts as well and preserved the peak intensity better than AWLS. The loss in peak intensity by AWLS resulted in lower peak counts at the detection thresholds established using standards samples. However, the SVD-BC technique was found to introduce noise which led to detection of false peaks at the lower detection thresholds. As a result, the AWLS technique gave more precise peak counts than the SVD-BC technique, particularly at the lower detection thresholds. While the AWLS technique resulted in more consistent percent residual standard deviation values, a statistical improvement in peak quantification after background correction was not found regardless of the background correction technique used. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, D; Testa, M; Park, Y
Purpose: In-vivo dose and beam range verification in proton therapy could play significant roles in proton treatment validation and improvements. Invivo beam range verification, in particular, could enable new treatment techniques one of which, for example, could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. We have developed and commissioned an integrated system with hardware, software and workflow protocols, to provide a complete solution, simultaneously for both in-vivo dosimetry and range verification for proton therapy. Methods: The system uses a matrix of diodes, up to 12 in total, but separablemore » into three groups for flexibility in application. A special amplifier was developed to capture extremely small signals from very low proton beam current. The software was developed within iMagX, a general platform for image processing in radiation therapy applications. The range determination exploits the inherent relationship between the internal range modulation clock of the proton therapy system and the radiological depth at the point of measurement. The commissioning of the system, for in-vivo dosimetry and for range verification was separately conducted using anthropomorphic phantom. EBT films and TLDs were used for dose comparisons and range scan of the beam distal fall-off was used as ground truth for range verification. Results: For in-vivo dose measurement, the results were in agreement with TLD and EBT films and were within 3% from treatment planning calculations. For range verification, a precision of 0.5mm is achieved in homogeneous phantoms, and a precision of 2mm for anthropomorphic pelvic phantom, except at points with significant range mixing. Conclusion: We completed the commissioning of our system for in-vivo dosimetry and range verification in proton therapy. The results suggest that the system is ready for clinical trials on patient.« less
Binding of two-electron metastable states in semiconductor quantum dots under a magnetic field
NASA Astrophysics Data System (ADS)
Garagiola, Mariano; Pont, Federico M.; Osenda, Omar
2018-04-01
Applying a strong enough magnetic field results in the binding of few-electron resonant states. The mechanism was proposed many years ago but its verification in laboratory conditions is far more recent. In this work we study the binding of two-electron resonant states. The electrons are confined in a cylindrical quantum dot which is embedded in a semiconductor wire. The geometry considered is similar to the one used in actual experimental setups. The low-energy two-electron spectrum is calculated numerically from an effective-mass approximation Hamiltonian modelling the system. Methods for binding threshold calculations in systems with one and two electrons are thoroughly studied; in particular, we use quantum information quantities to assess when the strong lateral confinement approximation can be used to obtain reliable low-energy spectra. For simplicity, only cases without bound states in the absence of an external field are considered. Under these conditions, the binding threshold for the one-electron case is given by the lowest Landau energy level. Moreover, the energy of the one-electron bounded resonance can be used to obtain the two-electron binding threshold. It is shown that for realistic values of the two-electron model parameters it is feasible to bind resonances with field strengths of a few tens of tesla.
Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection
NASA Astrophysics Data System (ADS)
Kang, Z.; Lindenbergh, R.; Pu, S.
2016-06-01
This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.
Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".
Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly
2014-06-01
Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.
Tahir, Muhammad; Jan, Bismillah; Hayat, Maqsood; Shah, Shakir Ullah; Amin, Muhammad
2018-04-01
Discriminative and informative feature extraction is the core requirement for accurate and efficient classification of protein subcellular localization images so that drug development could be more effective. The objective of this paper is to propose a novel modification in the Threshold Adjacency Statistics technique and enhance its discriminative power. In this work, we utilized Threshold Adjacency Statistics from a novel perspective to enhance its discrimination power and efficiency. In this connection, we utilized seven threshold ranges to produce seven distinct feature spaces, which are then used to train seven SVMs. The final prediction is obtained through the majority voting scheme. The proposed ETAS-SubLoc system is tested on two benchmark datasets using 5-fold cross-validation technique. We observed that our proposed novel utilization of TAS technique has improved the discriminative power of the classifier. The ETAS-SubLoc system has achieved 99.2% accuracy, 99.3% sensitivity and 99.1% specificity for Endogenous dataset outperforming the classical Threshold Adjacency Statistics technique. Similarly, 91.8% accuracy, 96.3% sensitivity and 91.6% specificity values are achieved for Transfected dataset. Simulation results validated the effectiveness of ETAS-SubLoc that provides superior prediction performance compared to the existing technique. The proposed methodology aims at providing support to pharmaceutical industry as well as research community towards better drug designing and innovation in the fields of bioinformatics and computational biology. The implementation code for replicating the experiments presented in this paper is available at: https://drive.google.com/file/d/0B7IyGPObWbSqRTRMcXI2bG5CZWs/view?usp=sharing. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems
NASA Technical Reports Server (NTRS)
Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris
2010-01-01
Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.
Integrating Formal Methods and Testing 2002
NASA Technical Reports Server (NTRS)
Cukic, Bojan
2002-01-01
Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.
Baeten; Bruggeman; Paepen; Carchon
2000-03-01
The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.
NASA Astrophysics Data System (ADS)
Turco, M.; Milelli, M.
2009-09-01
To the authors' knowledge there are relatively few studies that try to answer this topic: "Are humans able to add value to computer-generated forecasts and warnings ?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast (see for instance Baars et al., 2005, Charba et al., 2002, Doswell C., 2003, Roebber et al., 1996, Sanders F., 1986). Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human QPF) in terms of an areal average for each of the 13 regional warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS network of rain gauges available that makes possible a high resolution verification. In this context the most useful verification approach is the measure of the QPF and HQPF skills by first converting precipitation expressed as continuous amounts into ‘‘exceedance'' categories (yes-no statements indicating whether precipitation equals or exceeds selected thresholds) and then computing the performances for each threshold. In particular in this work we compare the performances of the latest three years of QPF derived from two meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.
Evidence flow graph methods for validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant
1989-01-01
The results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems are given. A translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis were developed. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could affect the output from a set of rules.
Expert system verification and validation survey, delivery 4
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.
Expert system verification and validation survey. Delivery 2: Survey results
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and industry applications. This is the first task of the series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.
Man-rated flight software for the F-8 DFBW program
NASA Technical Reports Server (NTRS)
Bairnsfather, R. R.
1976-01-01
The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described.
Expert system verification and validation survey. Delivery 5: Revised
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.
Expert system verification and validation survey. Delivery 3: Recommendations
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose is to determine the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of ESs.
Klein, Gerwin; Andronick, June; Keller, Gabriele; Matichuk, Daniel; Murray, Toby; O'Connor, Liam
2017-10-13
We present recent work on building and scaling trustworthy systems with formal, machine-checkable proof from the ground up, including the operating system kernel, at the level of binary machine code. We first give a brief overview of the seL4 microkernel verification and how it can be used to build verified systems. We then show two complementary techniques for scaling these methods to larger systems: proof engineering, to estimate verification effort; and code/proof co-generation, for scalable development of provably trustworthy applications.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).
A human visual based binarization technique for histological images
NASA Astrophysics Data System (ADS)
Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos
2017-05-01
In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.
Bridge Health Monitoring Using a Machine Learning Strategy
DOT National Transportation Integrated Search
2017-01-01
The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...
Catarinucci, L; Tarricone, L
2009-12-01
With the next transposition of the 2004/40/EC Directive, employers will become responsible for the electromagnetic field level at the workplace. To make this task easier, the scientific community is compiling practical guidelines to be followed. This work aims at enriching such guidelines, especially for the dosimetric issues. More specifically, some critical aspects related to the application of numerical dosimetric techniques for the verification of the safety limit compliance have been highlighted. In particular, three different aspects have been considered: the dosimetric parameter dependence on the shape and the inner characterisation of the exposed subject as well as on the numerical algorithm used, and the correlation between reference limits and basic restriction. Results and discussions demonstrate how, even by using sophisticated numerical techniques, in some cases a complex interpretation of the result is mandatory.
EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis
NASA Technical Reports Server (NTRS)
Hagale, Thomas J.; Price, Larry R.
2000-01-01
The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.
Infrasound from the 2009 and 2017 DPRK rocket launches
NASA Astrophysics Data System (ADS)
Evers, L. G.; Assink, J. D.; Smets, P. SM
2018-06-01
Supersonic rockets generate low-frequency acoustic waves, that is, infrasound, during the launch and re-entry. Infrasound is routinely observed at infrasound arrays from the International Monitoring System, in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Association and source identification are key elements of the verification system. The moving nature of a rocket is a defining criterion in order to distinguish it from an isolated explosion. Here, it is shown how infrasound recordings can be associated, which leads to identification of the rocket. Propagation modelling is included to further constrain the source identification. Four rocket launches by the Democratic People's Republic of Korea in 2009 and 2017 are analysed in which multiple arrays detected the infrasound. Source identification in this region is important for verification purposes. It is concluded that with a passive monitoring technique such as infrasound, characteristics can be remotely obtained on sources of interest, that is, infrasonic intelligence, over 4500+ km.
Closed Loop Requirements and Analysis Management
NASA Technical Reports Server (NTRS)
Lamoreaux, Michael; Verhoef, Brett
2015-01-01
Effective systems engineering involves the use of analysis in the derivation of requirements and verification of designs against those requirements. The initial development of requirements often depends on analysis for the technical definition of specific aspects of a product. Following the allocation of system-level requirements to a product's components, the closure of those requirements often involves analytical approaches to verify that the requirement criteria have been satisfied. Meanwhile, changes that occur in between these two processes need to be managed in order to achieve a closed-loop requirement derivation/verification process. Herein are presented concepts for employing emerging Team center capabilities to jointly manage requirements and analysis data such that analytical techniques are utilized to effectively derive and allocate requirements, analyses are consulted and updated during the change evaluation processes, and analyses are leveraged during the design verification process. Recommendations on concept validation case studies are also discussed.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
Static test induced loads verification beyond elastic limit
NASA Technical Reports Server (NTRS)
Verderaime, V.; Harrington, F.
1996-01-01
Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.
NASA Astrophysics Data System (ADS)
Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo
2018-01-01
Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.
An evaluation of computer assisted clinical classification algorithms.
Chute, C G; Yang, Y; Buntrock, J
1994-01-01
The Mayo Clinic has a long tradition of indexing patient records in high resolution and volume. Several algorithms have been developed which promise to help human coders in the classification process. We evaluate variations on code browsers and free text indexing systems with respect to their speed and error rates in our production environment. The more sophisticated indexing systems save measurable time in the coding process, but suffer from incompleteness which requires a back-up system or human verification. Expert Network does the best job of rank ordering clinical text, potentially enabling the creation of thresholds for the pass through of computer coded data without human review.
Practical Formal Verification of Diagnosability of Large Models via Symbolic Model Checking
NASA Technical Reports Server (NTRS)
Cavada, Roberto; Pecheur, Charles
2003-01-01
This document reports on the activities carried out during a four-week visit of Roberto Cavada at the NASA Ames Research Center. The main goal was to test the practical applicability of the framework proposed, where a diagnosability problem is reduced to a Symbolic Model Checking problem. Section 2 contains a brief explanation of major techniques currently used in Symbolic Model Checking, and how these techniques can be tuned in order to obtain good performances when using Model Checking tools. Diagnosability is performed on large and structured models of real plants. Section 3 describes how these plants are modeled, and how models can be simplified to improve the performance of Symbolic Model Checkers. Section 4 reports scalability results. Three test cases are briefly presented, and several parameters and techniques have been applied on those test cases in order to produce comparison tables. Furthermore, comparison between several Model Checkers is reported. Section 5 summarizes the application of diagnosability verification to a real application. Several properties have been tested, and results have been highlighted. Finally, section 6 draws some conclusions, and outlines future lines of research.
Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers
NASA Astrophysics Data System (ADS)
Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille
This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.
Application of additive laser technologies in the gas turbine blades design process
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.; Komarov, I. I.
2017-11-01
An emergence of modern innovative technologies requires delivering new and modernization existing design and production processes. It is especially relevant for designing the high-temperature turbines of gas turbine engines, development of which is characterized by a transition to higher parameters of working medium in order to improve their efficient performance. A design technique for gas turbine blades based on predictive verification of thermal and hydraulic models of their cooling systems by testing of a blade prototype fabricated using the selective laser melting technology was presented in this article. Technique was proven at the time of development of the first stage blade cooling system for the high-pressure turbine. An experimental procedure for verification of a thermal model of the blades with convective cooling systems based on the comparison of heat-flux density obtained from the numerical simulation data and results of tests in a liquid-metal thermostat was developed. The techniques makes it possible to obtain an experimentally tested blade version and to exclude its experimental adjustment after the start of mass production.
Multibody modeling and verification
NASA Technical Reports Server (NTRS)
Wiens, Gloria J.
1989-01-01
A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.
Development of a software safety process and a case study of its use
NASA Technical Reports Server (NTRS)
Knight, John C.
1993-01-01
The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
Advanced Curation Protocols for Mars Returned Sample Handling
NASA Astrophysics Data System (ADS)
Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.
Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this end, cleaning techniques such as ultrasonication in ultra -pure water (UPW), oxygen (O2) plasma, and carbon dioxide (CO2) "snow" are being used to clean a variety of different contaminants on a variety of different surfaces. Additionally, once cleaned, techniques to directly verify the s rface cleanliness are being developed. Theseu include X ray photoelectron spectroscopy (XPS) quantification, and screening with- contact angle measure ments , which can be correlated with XPS standards. Methods developed in the Advanced Curation Laboratory will determine the extent to which inorganic and biological contamination can be controlled and minimized.
Surface inspection: Research and development
NASA Technical Reports Server (NTRS)
Batchelder, J. S.
1987-01-01
Surface inspection techniques are used for process learning, quality verification, and postmortem analysis in manufacturing for a spectrum of disciplines. First, trends in surface analysis are summarized for integrated circuits, high density interconnection boards, and magnetic disks, emphasizing on-line applications as opposed to off-line or development techniques. Then, a closer look is taken at microcontamination detection from both a patterned defect and a particulate inspection point of view.
TomoTherapy MLC verification using exit detector data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Quan; Westerly, David; Fang Zhenyu
2012-01-15
Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scatteredmore » radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment systems can provide valuable information about MLC behavior during delivery. A technique to estimate the TomoTherapy binary MLC leaf open time from exit detector signals is described. This technique is shown to be both robust and accurate for delivery verification.« less
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - 4100 VAPOR DETECTOR - ELECTRONIC SENSOR TECHNOLOGY
In July 1997, the U.S. Environmental Protection Agency conducted a demonstration of polychlorinated biphenyl (PCB) FIELD ANALYTICAL TECHNIQUES. The demonstration design was subjected to extensive review and comment by EPA's National Exposure Research Laboratory (NERL) Environmen...
Projects in an expert system class
NASA Technical Reports Server (NTRS)
Whitson, George M.
1991-01-01
Many universities now teach courses in expert systems. In these courses students study the architecture of an expert system, knowledge acquisition techniques, methods of implementing systems and verification and validation techniques. A major component of any such course is a class project consisting of the design and implementation of an expert system. Discussed here are a number of techniques that we have used at the University of Texas at Tyler to develop meaningful projects that could be completed in a semester course.
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1975-01-01
Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.
Linear and nonlinear verification of gyrokinetic microstability codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, R. V.; Candy, J.; Barnes, M.
2011-12-15
Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set ofmore » parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2[W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of the nonlinear fluxes without collisions. With collisions, the differences between the time-averaged fluxes are larger than the uncertainties defined as the oscillations of the fluxes, with the GS2 fluxes consistently larger (or more positive) than those from GYRO. However, the electrostatic fluxes are much smaller than those without collisions (the electromagnetic energy flux is negligible in both cases). In fact, except for the electron energy fluxes, the absolute magnitudes of the differences in fluxes with collisions are the same or smaller than those without. None of the fluxes exhibit large absolute differences between codes. Beyond these results, the specific linear and nonlinear benchmarks proposed here, as well as the underlying methodology, provide the basis for a wide variety of future verification efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm, J; Mein, S; McNiven, A
2015-06-15
Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less
Elizabeth A. Freeman; Gretchen G. Moisen
2008-01-01
Modelling techniques used in binary classification problems often result in a predicted probability surface, which is then translated into a presence - absence classification map. However, this translation requires a (possibly subjective) choice of threshold above which the variable of interest is predicted to be present. The selection of this threshold value can have...
Power Performance Verification of a Wind Farm Using the Friedman's Test.
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L
2016-06-03
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.
Power Performance Verification of a Wind Farm Using the Friedman’s Test
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.
2016-01-01
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Phillip A.; O'Hagan, Ryan; Shumaker, Brent
The Advanced Test Reactor (ATR) has always had a comprehensive procedure to verify the performance of its critical transmitters and sensors, including RTDs, and pressure, level, and flow transmitters. These transmitters and sensors have been periodically tested for response time and calibration verification to ensure accuracy. With implementation of online monitoring techniques at ATR, the calibration verification and response time testing of these transmitters and sensors are verified remotely, automatically, hands off, include more portions of the system, and can be performed at almost any time during process operations. The work was done under a DOE funded SBIR project carriedmore » out by AMS. As a result, ATR is now able to save the manpower that has been spent over the years on manual calibration verification and response time testing of its temperature and pressure sensors and refocus those resources towards more equipment reliability needs. More importantly, implementation of OLM will help enhance the overall availability, safety, and efficiency. Together with equipment reliability programs of ATR, the integration of OLM will also help with I&C aging management goals of the Department of Energy and long-time operation of ATR.« less
Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1995-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.
NASA Astrophysics Data System (ADS)
Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang
2016-07-01
This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.
Threshold-adaptive canny operator based on cross-zero points
NASA Astrophysics Data System (ADS)
Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu
2018-03-01
Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.
A Bispectral Composite Threshold Approach for Automatic Cloud Detection in VIIRS Imagery
NASA Technical Reports Server (NTRS)
LaFontaine Frank J.; Jedlovec, Gary J.
2015-01-01
The detection of clouds in satellite imagery has a number of important applications in weather and climate studies. The presence of clouds can alter the energy budget of the Earth-atmosphere system through scattering and absorption of shortwave radiation and the absorption and re-emission of infrared radiation at longer wavelengths. The scattering and absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric or surface parameters that give insight into weather and climate processes. For many applications however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In these cases, is important to isolate cloud-free pixels, used to retrieve atmospheric thermodynamic information or surface geophysical parameters, from cloudy ones. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels from VIIRS in two spectral tests; a straight-forward infrared threshold test with the longwave channel and a shortwave - longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The paper and subsequent presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.
An integrative perspective of the anaerobic threshold.
Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Knechtle, Beat; Nikolaidis, Pantelis Theodoros; Alves, Polissandro Mortoza; Simões, Herbert Gustavo
2017-12-14
The concept of anaerobic threshold (AT) was introduced during the nineteen sixties. Since then, several methods to identify the anaerobic threshold (AT) have been studied and suggested as novel 'thresholds' based upon the variable used for its detection (i.e. lactate threshold, ventilatory threshold, glucose threshold). These different techniques have brought some confusion about how we should name this parameter, for instance, anaerobic threshold or the physiological measure used (i.e. lactate, ventilation). On the other hand, the modernization of scientific methods and apparatus to detect AT, as well as the body of literature formed in the past decades, could provide a more cohesive understanding over the AT and the multiple physiological systems involved. Thus, the purpose of this review was to provide an integrative perspective of the methods to determine AT. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence flow graph methods for validation and verification of expert systems
NASA Technical Reports Server (NTRS)
Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant
1988-01-01
This final report describes the results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems. This was approached by developing a translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could effect the output from a set of rules.
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose is to report the state-of-the-practice in Verification and Validation (V and V) of Expert Systems (ESs) on current NASA and Industry applications. This is the first task of a series which has the ultimate purpose of ensuring that adequate ES V and V tools and techniques are available for Space Station Knowledge Based Systems development. The strategy for determining the state-of-the-practice is to check how well each of the known ES V and V issues are being addressed and to what extent they have impacted the development of Expert Systems.
NASA Technical Reports Server (NTRS)
1973-01-01
The development, construction, and test of a 100-word vocabulary near real time word recognition system are reported. Included are reasonable replacement of any one or all 100 words in the vocabulary, rapid learning of a new speaker, storage and retrieval of training sets, verbal or manual single word deletion, continuous adaptation with verbal or manual error correction, on-line verification of vocabulary as spoken, system modes selectable via verification display keyboard, relationship of classified word to neighboring word, and a versatile input/output interface to accommodate a variety of applications.
Palmprint verification using Lagrangian decomposition and invariant interest points
NASA Astrophysics Data System (ADS)
Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.
Arithmetic Circuit Verification Based on Symbolic Computer Algebra
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.
Reasoning about Function Objects
NASA Astrophysics Data System (ADS)
Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian
Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.
NASA Astrophysics Data System (ADS)
Shen, Feng; Flynn, Patrick J.
2013-05-01
Iris recognition is one of the most reliable biometric technologies for identity recognition and verification, but it has not been used in a forensic context because the representation and matching of iris features are not straightforward for traditional iris recognition techniques. In this paper we concentrate on the iris crypt as a visible feature used to represent the characteristics of irises in a similar way to fingerprint minutiae. The matching of crypts is based on their appearances and locations. The number of matching crypt pairs found between two irises can be used for identity verification and the convenience of manual inspection makes iris crypts a potential candidate for forensic applications.
Model-Driven Test Generation of Distributed Systems
NASA Technical Reports Server (NTRS)
Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin
2012-01-01
This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.
Investigation of optical/infrared sensor techniques for application satellites
NASA Technical Reports Server (NTRS)
Kaufman, I.
1972-01-01
A method of scanning an optical sensor array by acoustic surface waves is discussed. Data cover detailed computer based analysis of the operation of a multielement acoustic surface-wave-scanned optical sensor, the development of design and operation techniques that were used to show the feasibility of an integrated array to design several such arrays, and experimental verification of a number of the calculations with discrete sensor devices.
General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests
NASA Astrophysics Data System (ADS)
George, T. G.
1987-03-01
The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.
Beam Loss Monitoring for LHC Machine Protection
NASA Astrophysics Data System (ADS)
Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos
The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.
A New Objective Technique for Verifying Mesoscale Numerical Weather Prediction Models
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Manobianco, John; Lane, John E.; Immer, Christopher D.
2003-01-01
This report presents a new objective technique to verify predictions of the sea-breeze phenomenon over east-central Florida by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical weather prediction (NWP) model. The Contour Error Map (CEM) technique identifies sea-breeze transition times in objectively-analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times against the observed times, and computes the mean post-sea breeze wind direction and speed to compare the observed and forecast winds behind the sea-breeze front. The CEM technique is superior to traditional objective verification techniques and previously-used subjective verification methodologies because: It is automated, requiring little manual intervention, It accounts for both spatial and temporal scales and variations, It accurately identifies and verifies the sea-breeze transition times, and It provides verification contour maps and simple statistical parameters for easy interpretation. The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the sea-breeze transition times in the observed and model grid points. Once the transition times are identified, CEM fits a Gaussian histogram function to the actual histogram of transition time differences between the model and observations. The fitted parameters of the Gaussian function subsequently explain the timing bias and variance of the timing differences across the valid comparison domain. Once the transition times are all identified at each grid point, the CEM computes the mean wind direction and speed during the remainder of the day for all times and grid points after the sea-breeze transition time. The CEM technique performed quite well when compared to independent meteorological assessments of the sea-breeze transition times and results from a previously published subjective evaluation. The algorithm correctly identified a forecast or observed sea-breeze occurrence or absence 93% of the time during the two- month evaluation period from July and August 2000. Nearly all failures in CEM were the result of complex precipitation features (observed or forecast) that contaminated the wind field, resulting in a false identification of a sea-breeze transition. A qualitative comparison between the CEM timing errors and the subjectively determined observed and forecast transition times indicate that the algorithm performed very well overall. Most discrepancies between the CEM results and the subjective analysis were again caused by observed or forecast areas of precipitation that led to complex wind patterns. The CEM also failed on a day when the observed sea- breeze transition affected only a very small portion of the verification domain. Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze transition too early and/or quickly. The domain-wide timing biases provided by CEM indicated an early bias on 30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the analysis domain. These results are consistent with previous subjective verifications of the RAMS sea breeze predictions. A comparison of the mean post-sea breeze winds indicate that RAMS has a positive wind-speed bias for .all days, which is also consistent with the early bias in the sea-breeze transition time since the higher wind speeds resulted in a faster inland penetration of the sea breeze compared to reality.
NASA Technical Reports Server (NTRS)
Dabney, James B.; Arthur, James Douglas
2017-01-01
Agile methods have gained wide acceptance over the past several years, to the point that they are now a standard management and execution approach for small-scale software development projects. While conventional Agile methods are not generally applicable to large multi-year and mission-critical systems, Agile hybrids are now being developed (such as SAFe) to exploit the productivity improvements of Agile while retaining the necessary process rigor and coordination needs of these projects. From the perspective of Independent Verification and Validation (IVV), however, the adoption of these hybrid Agile frameworks is becoming somewhat problematic. Hence, we find it prudent to question the compatibility of conventional IVV techniques with (hybrid) Agile practices.This paper documents our investigation of (a) relevant literature, (b) the modification and adoption of Agile frameworks to accommodate the development of large scale, mission critical systems, and (c) the compatibility of standard IVV techniques within hybrid Agile development frameworks. Specific to the latter, we found that the IVV methods employed within a hybrid Agile process can be divided into three groups: (1) early lifecycle IVV techniques that are fully compatible with the hybrid lifecycles, (2) IVV techniques that focus on tracing requirements, test objectives, etc. are somewhat incompatible, but can be tailored with a modest effort, and (3) IVV techniques involving an assessment requiring artifact completeness that are simply not compatible with hybrid Agile processes, e.g., those that assume complete requirement specification early in the development lifecycle.
Uncertainty Estimates of Psychoacoustic Thresholds Obtained from Group Tests
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Christian, Andrew
2016-01-01
Adaptive psychoacoustic test methods, in which the next signal level depends on the response to the previous signal, are the most efficient for determining psychoacoustic thresholds of individual subjects. In many tests conducted in the NASA psychoacoustic labs, the goal is to determine thresholds representative of the general population. To do this economically, non-adaptive testing methods are used in which three or four subjects are tested at the same time with predetermined signal levels. This approach requires us to identify techniques for assessing the uncertainty in resulting group-average psychoacoustic thresholds. In this presentation we examine the Delta Method of frequentist statistics, the Generalized Linear Model (GLM), the Nonparametric Bootstrap, a frequentist method, and Markov Chain Monte Carlo Posterior Estimation and a Bayesian approach. Each technique is exercised on a manufactured, theoretical dataset and then on datasets from two psychoacoustics facilities at NASA. The Delta Method is the simplest to implement and accurate for the cases studied. The GLM is found to be the least robust, and the Bootstrap takes the longest to calculate. The Bayesian Posterior Estimate is the most versatile technique examined because it allows the inclusion of prior information.
A calibration method for patient specific IMRT QA using a single therapy verification film
Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.
2013-01-01
Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification. PMID:24416558
Post-OPC verification using a full-chip pattern-based simulation verification method
NASA Astrophysics Data System (ADS)
Hung, Chi-Yuan; Wang, Ching-Heng; Ma, Cliff; Zhang, Gary
2005-11-01
In this paper, we evaluated and investigated techniques for performing fast full-chip post-OPC verification using a commercial product platform. A number of databases from several technology nodes, i.e. 0.13um, 0.11um and 90nm are used in the investigation. Although it has proven that for most cases, our OPC technology is robust in general, due to the variety of tape-outs with complicated design styles and technologies, it is difficult to develop a "complete or bullet-proof" OPC algorithm that would cover every possible layout patterns. In the evaluation, among dozens of databases, some OPC databases were found errors by Model-based post-OPC checking, which could cost significantly in manufacturing - reticle, wafer process, and more importantly the production delay. From such a full-chip OPC database verification, we have learned that optimizing OPC models and recipes on a limited set of test chip designs may not provide sufficient coverage across the range of designs to be produced in the process. And, fatal errors (such as pinch or bridge) or poor CD distribution and process-sensitive patterns may still occur. As a result, more than one reticle tape-out cycle is not uncommon to prove models and recipes that approach the center of process for a range of designs. So, we will describe a full-chip pattern-based simulation verification flow serves both OPC model and recipe development as well as post OPC verification after production release of the OPC. Lastly, we will discuss the differentiation of the new pattern-based and conventional edge-based verification tools and summarize the advantages of our new tool and methodology: 1). Accuracy: Superior inspection algorithms, down to 1nm accuracy with the new "pattern based" approach 2). High speed performance: Pattern-centric algorithms to give best full-chip inspection efficiency 3). Powerful analysis capability: Flexible error distribution, grouping, interactive viewing and hierarchical pattern extraction to narrow down to unique patterns/cells.
SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachibana, H; Tachibana, R
2015-06-15
Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification softwaremore » program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction.« less
Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.
Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M
2013-05-21
This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.
[Validation and verfication of microbiology methods].
Camaró-Sala, María Luisa; Martínez-García, Rosana; Olmos-Martínez, Piedad; Catalá-Cuenca, Vicente; Ocete-Mochón, María Dolores; Gimeno-Cardona, Concepción
2015-01-01
Clinical microbiologists should ensure, to the maximum level allowed by the scientific and technical development, the reliability of the results. This implies that, in addition to meeting the technical criteria to ensure their validity, they must be performed with a number of conditions that allows comparable results to be obtained, regardless of the laboratory that performs the test. In this sense, the use of recognized and accepted reference methodsis the most effective tool for these guarantees. The activities related to verification and validation of analytical methods has become very important, as there is continuous development, as well as updating techniques and increasingly complex analytical equipment, and an interest of professionals to ensure quality processes and results. The definitions of validation and verification are described, along with the different types of validation/verification, and the types of methods, and the level of validation necessary depending on the degree of standardization. The situations in which validation/verification is mandatory and/or recommended is discussed, including those particularly related to validation in Microbiology. It stresses the importance of promoting the use of reference strains as controls in Microbiology and the use of standard controls, as well as the importance of participation in External Quality Assessment programs to demonstrate technical competence. The emphasis is on how to calculate some of the parameters required for validation/verification, such as the accuracy and precision. The development of these concepts can be found in the microbiological process SEIMC number 48: «Validation and verification of microbiological methods» www.seimc.org/protocols/microbiology. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, R; Kamima, T; Tachibana, H
2016-06-15
Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Exploring three faint source detections methods for aperture synthesis radio images
NASA Astrophysics Data System (ADS)
Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.
2015-04-01
Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.
Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques
NASA Technical Reports Server (NTRS)
Wilder, R.
1979-01-01
Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.
ENVIRONMENTAL TECHNOLOGICAL VERIFICATION REPORT - L2000 PCB/CHLORIDE ANALYZER - DEXSIL CORPORATION
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of Polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCBs in soil...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - ENVIROGARD PCB TEST KIT - STRATEGIC DIAGNOSTICS INC
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of Polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCBs in soil...
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of polychlorinated biphenyl (PCB) field analytical techniques. The demonstration design was subjected to extensive review and comment by EPA's National Exposure Research Laboratory (NERL) Envi...
NASA Astrophysics Data System (ADS)
Kim, Youngmi; Choi, Jae-Young; Choi, Kwangseon; Choi, Jung-Hoe; Lee, Sooryong
2011-04-01
As IC design complexity keeps increasing, it is more and more difficult to ensure the pattern transfer after optical proximity correction (OPC) due to the continuous reduction of layout dimensions and lithographic limitation by k1 factor. To guarantee the imaging fidelity, resolution enhancement technologies (RET) such as off-axis illumination (OAI), different types of phase shift masks and OPC technique have been developed. In case of model-based OPC, to cross-confirm the contour image versus target layout, post-OPC verification solutions continuously keep developed - contour generation method and matching it to target structure, method for filtering and sorting the patterns to eliminate false errors and duplicate patterns. The way to detect only real errors by excluding false errors is the most important thing for accurate and fast verification process - to save not only reviewing time and engineer resource, but also whole wafer process time and so on. In general case of post-OPC verification for metal-contact/via coverage (CC) check, verification solution outputs huge of errors due to borderless design, so it is too difficult to review and correct all points of them. It should make OPC engineer to miss the real defect, and may it cause the delay time to market, at least. In this paper, we studied method for increasing efficiency of post-OPC verification, especially for the case of CC check. For metal layers, final CD after etch process shows various CD bias, which depends on distance with neighbor patterns, so it is more reasonable that consider final metal shape to confirm the contact/via coverage. Through the optimization of biasing rule for different pitches and shapes of metal lines, we could get more accurate and efficient verification results and decrease the time for review to find real errors. In this paper, the suggestion in order to increase efficiency of OPC verification process by using simple biasing rule to metal layout instead of etch model application is presented.
TH-B-204-01: Real-Time Tracking with Implanted Markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Q.
Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant for Accuray planning service.« less
TH-B-204-02: Application of Implanted Markers in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.
Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant for Accuray planning service.« less
TH-B-204-00: Implanted Markers for Radiation Therapy and TG 199 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant for Accuray planning service.« less
An unattended verification station for UF6 cylinders: Field trial findings
NASA Astrophysics Data System (ADS)
Smith, L. E.; Miller, K. A.; McDonald, B. S.; Webster, J. B.; Zalavadia, M. A.; Garner, J. R.; Stewart, S. L.; Branney, S. J.; Todd, L. C.; Deshmukh, N. S.; Nordquist, H. A.; Kulisek, J. A.; Swinhoe, M. T.
2017-12-01
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs to the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. Analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 "typical" Type 30B cylinders, and the viability of an "NDA Fingerprint" concept as a high-fidelity means to periodically verify that material diversion has not occurred.
A Simplified Approach to Cloud Masking with VIIRS in the S-NPP/JPSS Era
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Lafontaine, Frank J.
2014-01-01
The quantitative detection of clouds in satellite imagery has a number of important applications in weather analysis. The proper interpretation of satellite imagery for improved situational awareness depends on knowing where the clouds are at all times of the day. Additionally, many products derived from infrared measurements need accurate cloud information to mask out regions where retrieval of geophysical parameters in the atmosphere or on the surface are not possible. Thus, the accurate detection of the presence of clouds in satellite imagery on a global basis is important to the product developers and the operational weather community to support their decision-making process. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels in two spectral tests; a straightforward infrared threshold test with the longwave channel and a shortwave minus longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toltz, Allison; Hoesl, Michaela; Schuemann, Jan
Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solidmore » water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.« less
Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.
Cone, Barbara; Whitaker, Richard
2013-07-01
Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency-intensity input output functions were steeper in infants compared to adults. CAEP amplitude growth functions with respect to stimulus SPL are adult-like at this age, particularly for the earliest component, P1-N1. Infant perceptual thresholds were elevated with respect to those found in adults. Furthermore, perceptual thresholds were higher, on average, than levels at which CAEPs could be obtained. When CAEP amplitudes were plotted with respect to perceptual threshold (dB SL), the infant CAEP amplitude growth slopes were steeper than in adults. Although CAEP latencies indicate immaturity in neural transmission at the level of the cortex, amplitude growth with respect to stimulus SPL is adult-like at this age, particularly for the earliest component, P1-N1. The latency and amplitude input-output functions may provide additional information as to how infants perceive stimulus level. The reasons for the discrepancy between electrophysiologic and perceptual threshold may be due to immaturity in perceptual temporal resolution abilities and the broad-band listening strategy employed by infants. The findings from the current study can be translated to the clinical setting. It is possible to use tonal or speech sound tokens to evoke CAEPs in an awake, passively alert infant, and thus determine whether these sounds activate the auditory cortex. This could be beneficial in the verification of hearing aid or cochlear implant benefit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Quantitative verification of ab initio self-consistent laser theory.
Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E
2008-10-13
We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.
Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly
NASA Technical Reports Server (NTRS)
Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom
2013-01-01
Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.
The FoReVer Methodology: A MBSE Framework for Formal Verification
NASA Astrophysics Data System (ADS)
Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald
2013-08-01
The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.
Verification and Validation of KBS with Neural Network Components
NASA Technical Reports Server (NTRS)
Wen, Wu; Callahan, John
1996-01-01
Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.
Gain-assisted broadband ring cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2017-02-01
Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.
Bradley, David; Nisbet, Andrew
2012-01-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649
A Study of Feature Combination for Vehicle Detection Based on Image Processing
2014-01-01
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification. PMID:24672299
Palmer, Antony; Bradley, David; Nisbet, Andrew
2012-06-01
This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.
Merlyn J. Paulson
1979-01-01
This paper outlines a project level process (V.I.S.) which utilizes very accurate and flexible computer algorithms in combination with contemporary site analysis and design techniques for visual evaluation, design and management. The process provides logical direction and connecting bridges through problem identification, information collection and verification, visual...
TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS
Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...
In July 1997, the U.S. Environmental Protection Agency (EPA) conducted a demonstration of polychlorinated biphenyl (PCB) field analytical techniques. The purpose of this demonstration was to evaluate field analytical technologies capable of detecting and quantifying PCB's in soi...
Safeguards by Design Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise
The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always bemore » as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).« less
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Giannakopoulou, Dimitra
2006-01-01
This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.
Learning Assumptions for Compositional Verification
NASA Technical Reports Server (NTRS)
Cobleigh, Jamieson M.; Giannakopoulou, Dimitra; Pasareanu, Corina; Clancy, Daniel (Technical Monitor)
2002-01-01
Compositional verification is a promising approach to addressing the state explosion problem associated with model checking. One compositional technique advocates proving properties of a system by checking properties of its components in an assume-guarantee style. However, the application of this technique is difficult because it involves non-trivial human input. This paper presents a novel framework for performing assume-guarantee reasoning in an incremental and fully automated fashion. To check a component against a property, our approach generates assumptions that the environment needs to satisfy for the property to hold. These assumptions are then discharged on the rest of the system. Assumptions are computed by a learning algorithm. They are initially approximate, but become gradually more precise by means of counterexamples obtained by model checking the component and its environment, alternately. This iterative process may at any stage conclude that the property is either true or false in the system. We have implemented our approach in the LTSA tool and applied it to the analysis of a NASA system.
NASA Astrophysics Data System (ADS)
Raikovskiy, N. A.; Tretyakov, A. V.; Abramov, S. A.; Nazmeev, F. G.; Pavlichev, S. V.
2017-08-01
The paper presents a numerical study method of the cooling medium flowing in the water jacket of self-lubricating sliding bearing based on ANSYS CFX. The results of numerical calculations have satisfactory convergence with the empirical data obtained on the testbed. Verification data confirm the possibility of applying this numerical technique for the analysis of coolant flowings in the self-lubricating bearing containing the water jacket.
Wavelet-based adaptive thresholding method for image segmentation
NASA Astrophysics Data System (ADS)
Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl
2001-05-01
A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.
Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm
NASA Astrophysics Data System (ADS)
Elahi, Sana; kaleem, Muhammad; Omer, Hammad
2018-01-01
Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.
Expert system verification and validation study
NASA Technical Reports Server (NTRS)
French, Scott W.; Hamilton, David
1992-01-01
Five workshops on verification and validation (V&V) of expert systems (ES) where taught during this recent period of performance. Two key activities, previously performed under this contract, supported these recent workshops (1) Survey of state-of-the-practice of V&V of ES and (2) Development of workshop material and first class. The first activity involved performing an extensive survey of ES developers in order to answer several questions regarding the state-of-the-practice in V&V of ES. These questions related to the amount and type of V&V done and the successfulness of this V&V. The next key activity involved developing an intensive hands-on workshop in V&V of ES. This activity involved surveying a large number of V&V techniques, conventional as well as ES specific ones. In addition to explaining the techniques, we showed how each technique could be applied on a sample problem. References were included in the workshop material, and cross referenced to techniques, so that students would know where to go to find additional information about each technique. In addition to teaching specific techniques, we included an extensive amount of material on V&V concepts and how to develop a V&V plan for an ES project. We felt this material was necessary so that developers would be prepared to develop an orderly and structured approach to V&V. That is, they would have a process that supported the use of the specific techniques. Finally, to provide hands-on experience, we developed a set of case study exercises. These exercises were to provide an opportunity for the students to apply all the material (concepts, techniques, and planning material) to a realistic problem.
Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina
2018-04-01
In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.
A high-throughput method to measure NaCl and acid taste thresholds in mice.
Ishiwatari, Yutaka; Bachmanov, Alexander A
2009-05-01
To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.
2017-01-01
Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185
Auditory steady-state response in cochlear implant patients.
Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo
2018-03-19
Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Investigation of advanced phase-shifting projected fringe profilometry techniques
NASA Astrophysics Data System (ADS)
Liu, Hongyu
1999-11-01
The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.
The verification of LANDSAT data in the geographical analysis of wetlands in west Tennessee
NASA Technical Reports Server (NTRS)
Rehder, J.; Quattrochi, D. A.
1978-01-01
The reliability of LANDSAT imagery as a medium for identifying, delimiting, monitoring, measuring, and mapping wetlands in west Tennessee was assessed to verify LANDSAT as an accurate, efficient cartographic tool that could be employed by a wide range of users to study wetland dynamics. The verification procedure was based on the visual interpretation and measurement of multispectral imagery. The accuracy testing procedure was predicated on surrogate ground truth data gleaned from medium altitude imagery of the wetlands. Fourteen sites or case study areas were selected from individual 9 x 9 inch photo frames on the aerial photography. These sites were then used as data control calibration parameters for assessing the cartography accuracy of the LANDSAT imagery. An analysis of results obtained from the verification tests indicated that 1:250,000 scale LANDSAT data were the most reliable scale of imagery for visually mapping and measuring wetlands using the area grid technique. The mean areal percentage of accuracy was 93.54 percent (real) and 96.93 percent (absolute). As a test of accuracy, the LANDSAT 1:250,000 scale overall wetland measurements were compared with an area cell mensuration of the swamplands from 1:130,000 scale color infrared U-2 aircraft imagery. The comparative totals substantiated the results from the LANDSAT verification procedure.
Safety Verification of the Small Aircraft Transportation System Concept of Operations
NASA Technical Reports Server (NTRS)
Carreno, Victor; Munoz, Cesar
2005-01-01
A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.
Towards Trustable Digital Evidence with PKIDEV: PKI Based Digital Evidence Verification Model
NASA Astrophysics Data System (ADS)
Uzunay, Yusuf; Incebacak, Davut; Bicakci, Kemal
How to Capture and Preserve Digital Evidence Securely? For the investigation and prosecution of criminal activities that involve computers, digital evidence collected in the crime scene has a vital importance. On one side, it is a very challenging task for forensics professionals to collect them without any loss or damage. On the other, there is the second problem of providing the integrity and authenticity in order to achieve legal acceptance in a court of law. By conceiving digital evidence simply as one instance of digital data, it is evident that modern cryptography offers elegant solutions for this second problem. However, to our knowledge, there is not any previous work proposing a systematic model having a holistic view to address all the related security problems in this particular case of digital evidence verification. In this paper, we present PKIDEV (Public Key Infrastructure based Digital Evidence Verification model) as an integrated solution to provide security for the process of capturing and preserving digital evidence. PKIDEV employs, inter alia, cryptographic techniques like digital signatures and secure time-stamping as well as latest technologies such as GPS and EDGE. In our study, we also identify the problems public-key cryptography brings when it is applied to the verification of digital evidence.
Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Fritzemeier, Marilyn L.; Skowronski, Raymund P.
1994-01-01
Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.
NASA Astrophysics Data System (ADS)
Salam, Afifah Salmi Abdul; Isa, Mohd. Nazrin Md.; Ahmad, Muhammad Imran; Che Ismail, Rizalafande
2017-11-01
This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.
NASA Astrophysics Data System (ADS)
Medjoubi, K.; Dawiec, A.
2017-12-01
A simple method is proposed in this work for quantitative evaluation of the quality of the threshold adjustment and the flat-field correction of Hybrid Photon Counting pixel (HPC) detectors. This approach is based on the Photon Transfer Curve (PTC) corresponding to the measurement of the standard deviation of the signal in flat field images. Fixed pattern noise (FPN), easily identifiable in the curve, is linked to the residual threshold dispersion, sensor inhomogeneity and the remnant errors in flat fielding techniques. The analytical expression of the signal to noise ratio curve is developed for HPC and successfully used as a fit function applied to experimental data obtained with the XPAD detector. The quantitative evaluation of the FPN, described by the photon response non-uniformity (PRNU), is measured for different configurations (threshold adjustment method and flat fielding technique) and is demonstrated to be used in order to evaluate the best setting for having the best image quality from a commercial or a R&D detector.
Biomedical support systems. [use and verification of biomedical hardware in altitude test
NASA Technical Reports Server (NTRS)
Brockett, R. M.; Ferguson, J. M.; Luczkowski, S. M.
1973-01-01
Biomedical support hardware for SMEAT consisted basically of two systems, the inflight medical support system, and the operational bioinstrumentation system. The former is essentially a diagnostic and therapeutic kit; the latter is a belt equipped with sensors worn by the crewman to permit monitoring of his vital signs. Special attention was given during to the use and verification of the items in the systems so that changes required in the equipment could be pinpointed and effected prior to the Skylab mission. During the in-chamber testing, evaluations were made of the effectiveness of the proposed microbiology procedures, techniques, equipment, and the stability of media and reagents over the extended period of storage.
Interface Generation and Compositional Verification in JavaPathfinder
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Pasareanu, Corina
2009-01-01
We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.
A fingerprint key binding algorithm based on vector quantization and error correction
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Qian; Lv, Ke; He, Ning
2012-04-01
In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.
Prompt gamma timing range verification for scattered proton beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kormoll, T.; Golnik, C.; Hueso Gonzalez, F.
2015-07-01
Range verification is a very important point in order to fully exploit the physical advantages of protons compared to photons in cancer irradiation. Recently, a simple method has been proposed which makes use of the time of fight of protons in tissue and the promptly emitted secondary photons along the proton path (Prompt Gamma Timing, PGT). This has been considered so far for monoenergetic pencil beams only. In this work, it has been studied whether this technique can also be applied in passively formed irradiation fields with a so called spread out Bragg peak. Time correlated profiles could be recorded,more » which show a trend that is consistent with theoretical predictions. (authors)« less
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Results of FM-TV threshold reduction investigation for the ATS F trust experiment
NASA Technical Reports Server (NTRS)
Brown, J. P.
1972-01-01
An investigation of threshold effects in FM TV was initiated to determine if any simple, low cost techniques were available which can reduce the subjective video threshold, applicable to low cost community TV reception via satellite. Two methods of eliminating these effects were examined: the use of standard video pre-emphasis, and the use of an additional circuit to blank the picture tube during the retrace period.
Threshold of transverse mode coupling instability with arbitrary space charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbekov, V.
The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.
Threshold of transverse mode coupling instability with arbitrary space charge
Balbekov, V.
2017-11-30
The threshold of the transverse mode coupling instability is calculated in framework of the square well model at arbitrary value of space charge tune shift. A new method of calculation is developed beyond the traditional expansion technique. The square, resistive, and exponential wakes are investigated. It is shown that the instability threshold goes up indefinitely when the tune shift increases. Finally, a comparison with conventional case of the parabolic potential well is performed.
Interaction thresholds in Er:YAG laser ablation of organic tissue
NASA Astrophysics Data System (ADS)
Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros
1996-01-01
Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
Horseshoes in a Chaotic System with Only One Stable Equilibrium
NASA Astrophysics Data System (ADS)
Huan, Songmei; Li, Qingdu; Yang, Xiao-Song
To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.
Estimator banks: a new tool for direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Gershman, Alex B.; Boehme, Johann F.
1997-10-01
A new powerful tool for improving the threshold performance of direction-of-arrival (DOA) estimation is considered. The essence of our approach is to reduce the number of outliers in the threshold domain using the so-called estimator bank containing multiple 'parallel' underlying DOA estimators which are based on pseudorandom resampling of the MUSIC spatial spectrum for given data batch or sample covariance matrix. To improve the threshold performance relative to conventional MUSIC, evolutionary principles are used, i.e., only 'successful' underlying estimators (having no failure in the preliminary estimated source localization sectors) are exploited in the final estimate. An efficient beamspace root implementation of the estimator bank approach is developed, combined with the array interpolation technique which enables the application to arbitrary arrays. A higher-order extension of our approach is also presented, where the cumulant-based MUSIC estimator is exploited as a basic technique for spatial spectrum resampling. Simulations and experimental data processing show that our algorithm performs well below the MUSIC threshold, namely, has the threshold performance similar to that of the stochastic ML method. At the same time, the computational cost of our algorithm is much lower than that of stochastic ML because no multidimensional optimization is involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Ding, X; Syh, J
2015-06-15
Purpose: An approved proton pencil beam scanning (PBS) treatment plan might not be able to deliver because of existed extremely low monitor unit per beam spot. A dual hybrid plan with higher efficiency of higher spot monitor unit and the efficacy of less number of energy layers were searched and optimized. The range of monitor unit threshold setting was investigated and the plan quality was evaluated by target dose conformity. Methods: Certain limitations and requirements need to be checks and tested before a nominal proton PBS treatment plan can be delivered. The plan needs to be met the machine characterization,more » specification in record and verification to deliver the beams. Minimal threshold of monitor unit, e.g. 0.02, per spot was set to filter the low counts and plan was re-computed. Further MU threshold increment was tested in sequence without sacrificing the plan quality. The number of energy layer was also alternated due to elimination of low count layer(s). Results: Minimal MU/spot threshold, spot spacing in each energy layer and total number of energy layer and the MU weighting of beam spots of each beam were evaluated. Plan optimization between increases of the spot MU (efficiency) and less energy layers of delivery (efficacy) was adjusted. 5% weighting limit of total monitor unit per beam was feasible. Scarce spreading of beam spots was not discouraging as long as target dose conformity within 3% criteria. Conclusion: Each spot size is equivalent to the relative dose in the beam delivery system. The energy layer is associated with the depth of the targeting tumor. Our work is crucial to maintain the best possible quality plan. To keep integrity of all intrinsic elements such as spot size, spot number, layer number and the carried weighting of spots in each layer is important in this study.« less
Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.
2016-05-01
Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.
NASA Astrophysics Data System (ADS)
Kawamori, E.; Igami, H.
2017-11-01
A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.
Validity of Lactate Thresholds in Inline Speed Skating.
Hecksteden, Anne; Heinze, Tobias; Faude, Oliver; Kindermann, Wilfried; Meyer, Tim
2015-09-01
Lactate thresholds are commonly used as estimates of the highest workload where lactate production and elimination are in equilibrium (maximum lactate steady state [MLSS]). However, because of the high static load on propulsive muscles, lactate kinetics in inline speed skating may differ significantly from other endurance exercise modes. Therefore, the discipline-specific validity of lactate thresholds has to be verified. Sixteen competitive inline-speed skaters (age: 30 ± 10 years; training per week: 10 ± 4 hours) completed an exhaustive stepwise incremental exercise test (start 24 km·h, step duration 3 minutes, increment 2 km·h) to determine individual anaerobic threshold (IAT) and the workload corresponding to a blood lactate concentration of 4 mmol·L (LT4) and 2-5 continuous load tests of (up to) 30 minutes to determine MLSS. The IAT and LT4 correlated significantly with MLSS, and the mean differences were almost negligible (MLSS 29.5 ± 2.5 km·h; IAT 29.2 ± 2.0 km·h; LT4 29.6 ± 2.3 km·h; p > 0.1 for all differences). However, the variability of differences was considerable resulting in 95% limits of agreement in the upper range of values known from other endurance disciplines (2.6 km·h [8.8%] for IAT and 3.1 km·h [10.3%] for LT4). Consequently, IAT and LT4 may be considered as valid estimates of the MLSS in inline speed skating, but verification by means of a constant load test should be considered in cases of doubt or when optimal accuracy is needed (e.g., in elite athletes or scientific studies).
NASA Astrophysics Data System (ADS)
Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.
1988-08-01
Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).
Zone plate method for electronic holographic display using resolution redistribution technique.
Takaki, Yasuhiro; Nakamura, Junya
2011-07-18
The resolution redistribution (RR) technique can increase the horizontal viewing-zone angle and screen size of electronic holographic display. The present study developed a zone plate method that would reduce hologram calculation time for the RR technique. This method enables calculation of an image displayed on a spatial light modulator by performing additions of the zone plates, while the previous calculation method required performing the Fourier transform twice. The derivation and modeling of the zone plate are shown. In addition, the look-up table approach was introduced for further reduction in computation time. Experimental verification using a holographic display module based on the RR technique is presented.
Vredenbregt, M J; Caspers, P W J; Hoogerbrugge, R; Barends, D M
2003-11-01
Recently the CPMP/CVMP sent out for consultation the draft Note for Guidance (dNfG) on the use of near infrared spectroscopy (NIRS) by the pharmaceutical industry and the data to be forwarded in part II of the dossier for a marketing authorization. We explored the practicability of this dNfG with respect to the verification of the correct identity of starting materials in a generic tablet-manufacturing site. Within the boundaries of the dNfG, a release procedure was developed for 12 substances containing structurally related compounds and substances differing only in particle size. For the method development literature data were also taken into consideration. Good results were obtained with wavelength correlation (WC), applied on raw spectra or second derivative spectra both without smoothing. The defined threshold of 0.98 for raw spectra differentiated between all molecular structures. Both methods were found to be robust over a period of 1 year. For the differentiation between the different particle sizes a subsequent second chemometric technique had to be used. Soft independent modelling of class analogy (SIMCA) with a probability level of 0.01 proved suitable. Internal and external validation I according to the dNfG showed no incorrect rejections or false acceptances. External validation II according to the dNfG was carried out with 95 potentially interfering substances from which 46 were tested experimentally. Macrogol 400 was not distinguished from macrogol 300. For the complete verification of the identity of macrogol 300 test A of the European Pharmacopoeia is needed in addition to the NIRS application. A release procedure developed with WC applied on raw spectra and SIMCA as a second method, which is different from the preferred method of the dNfG, was tested in practice with good results. We conclude that the dNfG has good practicability and that deviations from the preferred methods of the dNfG can also give good differentiation.
NASA Astrophysics Data System (ADS)
Mendela-Anzlik, Małgorzata; Borkowski, Andrzej
2017-06-01
Airborne laser scanning data (ALS) are used mainly for creation of precise digital elevation models. However, it appears that the informative potential stored in ALS data can be also used for updating spatial databases, including the Database of Topographic Objects (BDOT10k). Typically, geometric representations of buildings in the BDOT10k are equal to their entities in the Land and Property Register (EGiB). In this study ALS is considered as supporting data source. The thresholding method of original ALS data with the use of the alpha shape algorithm, proposed in this paper, allows for extraction of points that represent horizontal cross section of building walls, leading to creation of vector, geometric models of buildings that can be then used for updating the BDOT10k. This method gives also the possibility of an easy verification of up-to-dateness of both the BDOT10k and the district EGiB databases within geometric information about buildings. For verification of the proposed methodology there have been used the classified ALS data acquired with a density of 4 points/m2. The accuracy assessment of the identified building outlines has been carried out by their comparison to the corresponding EGiB objects. The RMSE values for 78 buildings are from a few to tens of centimeters and the average value is about 0,5 m. At the same time for several objects there have been revealed huge geometric discrepancies. Further analyses have shown that these discrepancies could be resulted from incorrect representations of buildings in the EGiB database.
Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper
NASA Technical Reports Server (NTRS)
Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.;
2014-01-01
Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).
Cusumano, Davide; Fumagalli, Maria L; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena
2015-01-01
Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusumano, Davide, E-mail: davide.cusumano@unimi.it; Fumagalli, Maria L.; Marchetti, Marcello
2015-10-01
Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses usingmore » this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.« less
An unattended verification station for UF 6 cylinders: Field trial findings
Smith, L. E.; Miller, K. A.; McDonald, B. S.; ...
2017-08-26
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. In conclusion, analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that material diversion has not occurred.« less
An unattended verification station for UF 6 cylinders: Field trial findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L. E.; Miller, K. A.; McDonald, B. S.
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS), which could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass, and identification for all declared uranium hexafluoride cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs tomore » the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The first phase of the UCVS viability study was centered on a long-term field trial of a prototype UCVS system at a fuel fabrication facility. A key outcome of the study was a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This paper provides a description of the UCVS prototype design and an overview of the long-term field trial. In conclusion, analysis results and interpretation are presented with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that material diversion has not occurred.« less
Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform
NASA Astrophysics Data System (ADS)
Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.
2017-03-01
The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.
NASA Astrophysics Data System (ADS)
Wang, Gaili; Yang, Ji; Wang, Dan; Liu, Liping
2016-11-01
Extrapolation techniques and storm-scale Numerical Weather Prediction (NWP) models are two primary approaches for short-term precipitation forecasts. The primary objective of this study is to verify precipitation forecasts and compare the performances of two nowcasting schemes: a Beijing Auto-Nowcast system (BJ-ANC) based on extrapolation techniques and a storm-scale NWP model called the Advanced Regional Prediction System (ARPS). The verification and comparison takes into account six heavy precipitation events that occurred in the summer of 2014 and 2015 in Jiangsu, China. The forecast performances of the two schemes were evaluated for the next 6 h at 1-h intervals using gridpoint-based measures of critical success index, bias, index of agreement, root mean square error, and using an object-based verification method called Structure-Amplitude-Location (SAL) score. Regarding gridpoint-based measures, BJ-ANC outperforms ARPS at first, but then the forecast accuracy decreases rapidly with lead time and performs worse than ARPS after 4-5 h of the initial forecast. Regarding the object-based verification method, most forecasts produced by BJ-ANC focus on the center of the diagram at the 1-h lead time and indicate high-quality forecasts. As the lead time increases, BJ-ANC overestimates precipitation amount and produces widespread precipitation, especially at a 6-h lead time. The ARPS model overestimates precipitation at all lead times, particularly at first.
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
DOT National Transportation Integrated Search
1987-08-01
One of the primary reasons that highway departments are hesitant to use heat-straightening techniques to repair damaged steel girders is the lack of experimental verification of the process. A comprehensive experimental program on the subject has bee...
IT Project Success w\\7120 and 7123 NPRs to Achieve Project Success
NASA Technical Reports Server (NTRS)
Walley, Tina L.
2009-01-01
This slide presentation reviews management techniques to assure information technology development project success. Details include the work products, the work breakdown structure (WBS), system integration, verification and validation (IV&V), and deployment and operations. An example, the NASA Consolidated Active Directory (NCAD), is reviewed.
NASA Technical Reports Server (NTRS)
Martin, F. H.
1972-01-01
An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.
Bistatic radar sea state monitoring system design
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.
1975-01-01
Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.
Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.
ERIC Educational Resources Information Center
Kaya, Azmi
1982-01-01
Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...
Geothermal Resource Verification for Air Force Bases,
1981-06-01
phase of reservoir - ... geothermal techniques will begin to focus on the deeer, iso ’i fined reservoirs that will have little or no definitive surfa...1976. ;L-ison, D. L., PROGRAM REVIEW, GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM, U. S. Department of Energy, DOE/ET/ 27002 -6, December 1979
A significant challenge in environmental studies is to determine the onset and extent of MTBE bioremediation at an affected site, which may involve indirect approaches such as microcosm verification of microbial activities at a given site. Stable isotopic fractionation is cha...
Earth Science Activities: A Guide to Effective Elementary School Science Teaching.
ERIC Educational Resources Information Center
Kanis, Ira B.; Yasso, Warren E.
The primary emphasis of this book is on new or revised earth science activities that promote concept development rather than mere verification of concepts learned by passive means. Chapter 2 describes philosophies, strategies, methods, and techniques to guide preservice and inservice teachers, school building administrators, and curriculum…
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael J.; Cramer, Nicholas O.; Benz, Jacob M.
Traditional arms control treaty verification activities typically involve a combination of technical measurements via physical and chemical sensors, state declarations, political agreements, and on-site inspections involving international subject matter experts. However, the ubiquity of the internet, and the electronic sharing of data that it enables, has made available a wealth of open source information with the potential to benefit verification efforts. Open source information is already being used by organizations such as the International Atomic Energy Agency to support the verification of state-declared information, prepare inspectors for in-field activities, and to maintain situational awareness . The recent explosion in socialmore » media use has opened new doors to exploring the attitudes, moods, and activities around a given topic. Social media platforms, such as Twitter, Facebook, and YouTube, offer an opportunity for individuals, as well as institutions, to participate in a global conversation at minimal cost. Social media data can also provide a more data-rich environment, with text data being augmented with images, videos, and location data. The research described in this paper investigates the utility of applying social media signatures as potential arms control and nonproliferation treaty verification tools and technologies, as determined through a series of case studies. The treaty relevant events that these case studies touch upon include detection of undeclared facilities or activities, determination of unknown events recorded by the International Monitoring System (IMS), and the global media response to the occurrence of an Indian missile launch. The case studies examine how social media can be used to fill an information gap and provide additional confidence to a verification activity. The case studies represent, either directly or through a proxy, instances where social media information may be available that could potentially augment the evaluation of an event. The goal of this paper is to instigate a discussion within the verification community as to where and how social media can be effectively utilized to complement and enhance traditional treaty verification efforts. In addition, this paper seeks to identify areas of future research and development necessary to adapt social media analytic tools and techniques, and to form the seed for social media analytics to aid and inform arms control and nonproliferation policymakers and analysts. While social media analysis (as well as open source analysis as a whole) will not ever be able to replace traditional arms control verification measures, they do supply unique signatures that can augment existing analysis.« less
Neutron Scattering from Polymers: Five Decades of Developing Possibilities.
Higgins, J S
2016-06-07
The first three decades of my research career closely map the development of neutron scattering techniques for the study of molecular behavior. At the same time, the theoretical understanding of organization and motion of polymer molecules, especially in the bulk state, was developing rapidly and providing many predictions crying out for experimental verification. Neutron scattering is an ideal technique for providing the necessary evidence. This autobiographical essay describes the applications by my research group and other collaborators of increasingly sophisticated neutron scattering techniques to observe and understand molecular behavior in polymeric materials. It has been a stimulating and rewarding journey.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2014-12-01
Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.
2011-01-01
Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509
Comprehensive test ban negotiations
NASA Astrophysics Data System (ADS)
Grab, G. Allen; Heckrotte, Warren
1983-10-01
Although it has been a stated policy goal of American and Soviet leaders since 1958 (with the exception of Ronald Reagan), the world today is still without a Comprehensive Test Ban Treaty. Throughout their history, test an negotiatins have been plagued by a number of persistent problems. Chief among these is East-West differences on the verification question, with the United States concerned about the problem of possible Soviet cheating and the USSR concerned about the protection of its national sovereignty. In addition, internal bureaucratic politics have played a major role in preventing the successful conclusion of an agreement. Despite these problems, the superpowers have concluded several significant partial meausres: a brief (1958-1961) total moratorium on nuclear weapons tests; the Limited Test Ban Treaty of 1963, banning tests in the air, water and outer space; the Threshold Test Ban Treaty of 1974 (150 KT limit on underground explosions); and the Peaceful Nuclear Explosions Treaty of 1976 (150 KT limit on individal PNEs). Today, the main U.S. objections to a CTBT center is the nuclear weapons laboratories, the Department of Energy, and the Pentagon, who all stress the issues of stockpile reliability and verification. Those who remain committed to a CTBT emphasize and the potential political leverage it offers in checking both horizontal and vertical proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Glenn, L.A.
This report presents a preliminary summary of the data recorded at three regional seismic stations from surface blasting at the Black Thunder Coal Mine in northeast Wyoming. The regional stations are part of a larger effort that includes many more seismic stations in the immediate vicinity of the mine. The overall purpose of this effort is to characterize the source function and propagation characteristics of large typical surface mine blasts. A detailed study of source and propagation features of conventional surface blasts is a prerequisite to attempts at discriminating this type of blasting activity from other sources of seismic events.more » The Black Thunder Seismic experiment is a joint verification effort to determine seismic source and path effects that result from very large, but routine ripple-fired surface mining blasts. Studies of the data collected will be for the purpose of understanding how the near-field and regional seismic waveforms from these surface mining blasts are similar to, and different from, point shot explosions and explosions at greater depth. The Black Hills Station is a Designated Seismic Station that was constructed for temporary occupancy by the Former Soviet Union seismic verification scientists in accordance with the Threshold Test Ban Treaty protocol.« less
Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte
2016-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.
NASA Technical Reports Server (NTRS)
Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte
2016-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.
SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE
2017-01-01
This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164
redMaGiC: selecting luminous red galaxies from the DES Science Verification data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozo, E.
We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshiftmore » range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10 -3 (h -1Mpc) -3, and a median photo-z bias (z spec z photo) and scatter (σ z=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.« less
Entanglement verification with detection efficiency mismatch
NASA Astrophysics Data System (ADS)
Zhang, Yanbao; Lütkenhaus, Norbert
Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.
Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation
NASA Technical Reports Server (NTRS)
Tunstel, Edward
2000-01-01
This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.
Beauty and charm production in fixed target experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidonakis, Nikolaos; Vogt, Ramona
We present calculations of NNLO threshold corrections for beauty and charm production in {pi}{sup -} p and pp interactions at fixed-target experiments. Recent calculations for heavy quark hadroproduction have included next-to-next-to-leading-order (NNLO) soft-gluon corrections [1] to the double differential cross section from threshold resummation techniques [2]. These corrections are important for near-threshold beauty and charm production at fixed-target experiments, including HERA-B and some of the current and future heavy ion experiments.
Multichannel forward scattering meter for oceanography
NASA Technical Reports Server (NTRS)
Mccluney, W. R.
1974-01-01
An instrument was designed and built that measures the light scattered at several angles in the forward direction simultaneously. The instrument relies on an optical multiplexing technique for frequency encoding of the different channels suitable for detection by a single photodetector. A Mie theory computer program was used to calculate the theoretical volume scattering function for a suspension of polystyrene latex spheres. The agreement between the theoretical and experimental volume scattering functions is taken as a verification of the calibration technique used.
Ionospheric propagation correction modeling for satellite altimeters
NASA Technical Reports Server (NTRS)
Nesterczuk, G.
1981-01-01
The theoretical basis and avaliable accuracy verifications were reviewed and compared for ionospheric correction procedures based on a global ionsopheric model driven by solar flux, and a technique in which measured electron content (using Faraday rotation measurements) for one path is mapped into corrections for a hemisphere. For these two techniques, RMS errors for correcting satellite altimeters data (at 14 GHz) are estimated to be 12 cm and 3 cm, respectively. On the basis of global accuracy and reliability after implementation, the solar flux model is recommended.
Survey of NASA V and V Processes/Methods
NASA Technical Reports Server (NTRS)
Pecheur, Charles; Nelson, Stacy
2002-01-01
The purpose of this report is to describe current NASA Verification and Validation (V&V) techniques and to explain how these techniques are applicable to 2nd Generation RLV Integrated Vehicle Health Management (IVHM) software. It also contains recommendations for special V&V requirements for IVHM. This report is divided into the following three sections: 1) Survey - Current NASA V&V Processes/Methods; 2) Applicability of NASA V&V to 2nd Generation RLV IVHM; and 3) Special 2nd Generation RLV IVHM V&V Requirements.
The augmented Lagrangian method for parameter estimation in elliptic systems
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Kunisch, Karl
1990-01-01
In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.
Farah, Ra'fat I; Alshabi, Abdullah M
2016-09-01
This report describes a straightforward technique for verifying the accuracy of a definitive cast by using a maximal intercuspation record fabricated from polyvinyl siloxane occlusal registration material. This precise verification method detects inaccurate casts before the dental prosthesis is fabricated, thus saving chairside and laboratory time while reducing the number of costly prosthesis remakes. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1971-01-01
The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.
Extinction measurement of dense media by an optical coherence tomography technique
NASA Astrophysics Data System (ADS)
Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko
2016-10-01
The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.